TRIDIMENZIONALNA STRUKTURA MEMBRANSKIH PROTEINOV Seminar pri predmetu Biološke membrane Šolsko leto: 2014/2015 Ljubljana, 15. 1. 2015 Urška Rauter, Špela Tomaž, Valter Bergant in Mirjam Kmetič Osnovne lastnosti membranskih proteinov • Strukturo membranskih proteinov določajo lastnosti membrane. • α-vijačnice ali β-sodčki. Slika 1: Bakteriorodpsin iz bakterije Halobacterium salinarum. PDB koda: 4MD2 Slika 2: OmpA iz bakterije E. coli. PDB koda: 1BXW Vpliv membrane na strukturo proteinov • Hidrofobnost membrane; koncentracija holesterola in sfingomielina. • Dielektrična konstanta membrane; visoka jakost elektrostatskih interakcij. • Veliko manj nabitih in polarnih aminokislinskih ostankov. Slika 3: Transmembranski del proteina GLPH. a) Prikaz nabitih aminokislinskih ostankov Asp, Glu, Arg in Lys. b) Prikaz polarnih aminokislinskih ostankov His, Asn in Gln. • TM heliksi so bogati z glicinom in prolinom. Slika 4: Transmembranski del proteina GLPH. f) Z rdečo so označeni C α atomi glicinov in z zeleno so označeni atomi prolinskega obroča. Znanstveni razvoj določanja struktur membranskih proteinov • 1985: Deisenhofer et. al., struktura fotosintetskega reakcijskega centra iz bakterije Rhodopseudomonas viridis pri ločljivosti 3 Å. Slika 4: Stereo risba strukture fotosintetskega reakcijskega centra. Slika 5: Število določenih struktur v odbobju 1985-2008. Sodobno določanje struktur membranskih proteinov • Rentgenska kristalografija ostaja najpomembnejša tehnika. • Priprava kristalov membranskih proteinov je še vedno težavna. • Poznavanje strukture omogoča razvoj novih zdravil. • 2012: Nobelova nagrada za kemijo, Lefkowitz in Kobilka, za raziskave na receptorjih sklopljenih z G proteini. Slika 6: Ovire v procesu določanja 3D strukture membranskih proteinov. Rentgenska kristalografija membranskih proteinov ključna pridobitev kvalitetnih kristalov membranski proteini slabo topni v vodi izolacija s surfaktanti Kristalizacijske tehnike • In surfo PDC – proteindetergent complex visok delež surfaktanta nižja kvaliteta difrakcije Kristalizacijske tehnike • In meso membranski protein Lipidna kubična faza vodni kanali lipidni dvosloj majhen delež surfaktanta kvalitetni, a majhni kristali Serijska femtosekundna kristalografija XFEL (X-ray free-electron lasers) – visoka energija & femtosekundna kristalografija – obsevanje s kratkimi pulzi lipidna kubična faza • majhni kristali (LCP), • zajemanje podatkov pred uničenjem kristala • delo na sobni tempereaturi Serijska femtosekundna kristalografija SERIJSKA FEMTOSEKUNDNA KRISTALOGRAFIJA VS SINHROTRON receptor serotonina 5-HT2B (z G proteini sklopljen receptor) Uporaba tehnik NMR pri določevanju struktur membranskih proteinov Tekočinski NMR http://sligarlab.life.uiuc.edu/nanodisc.html https://commons.wikimedia.org/wiki/File:Liposome_cross_section.png http://www.cbmn.u-bordeaux.fr/127-research-lipids-in-all-their-states.html Oriented sample ssNMR Das et al., 2013 Magic Angle Spinning ssNMR Park et al., 2012 Beckonert et al., 2010 https://news.slac.stanford.edu/features/phrase-week-magic-angle Krio-elektronska mikroskopija Vrsta presevne elektronske mikroskopije Prednosti • Slikanje in/ali elektronska difrakcija • Nativno stanje proteinov • Pomoč pri določitvah ali potrditvah struktur pridobljenih z drugimi metodami Omejitve • Najmanjši delci za opazovanje 300 kDa • Nizko razmerje signal/ šum • Poškodbe vzorca Elektronska kristalografija • 2D kristalinična razporeditev v dvosloju • Nezmožnost tvorbe 3D kristalov ali v primeru premajhnih količin • Nativnejše okolje in lažja tvorba • 2D kristalov P. Werten et al. Progress in the analasys of membrane protein structure and function, 2002; R. Hite et al. Interaction of AQP0 with E. coli lipids,2010 Krio-elektronska tomografija • Ne moremo očistiti do homogenega vzorca ali pa odstraniti iz njihovega fiziološkega okolja • Resolucije do 20 Å Subramaniam et al. Electron tomography,2003 Single-particle krio-EM • Mikrograf homogenega vzorca • Ena najučinkovotejših in enostavnih tehnik • Pri transmembranskih proteinih zmerne resolucije 10-15 Å Milne et al. Cryo-electron microscopy,2013; Ludtke et al. Structure of GroEL,2004 Določitev strukture IP3R1 s single-particle krio-EM • Inozitol 1,4,5-trifosfatni receptor tipa 1 • 1,3 MDa velik Ca2+ kanalček • 2002-2004 več struktur pri resolucijah 20-40 Å Jiang et al. 2002; Serysheva et al. 2003; da Fonesca et al. 2003 Določitev strukture IP3R1 s single-particle krio-EM • 2011 pri zmerni resoluciji 10-17 Å • Začetni vpogled v strukturo in primerjava z drugimi kanalčki • Zaključitev dolgotrajnih razprav o različnih strukturah Ludtke et al. Flexible architecture of IP3R1 by cryo-EM, 2011 Viri in literatura • 1. Lesk, A. (2010). Introduction to Protein Science: Architecture, Function, and Genomics. at <https://www.google.si/books?hl=sl&lr=&id=QVScAQAAQBAJ&pgis=1> • 2. Vinothkumar, K.R. & Henderson, R. (2010). Structures of membrane proteins. Quarterly reviews of biophysics 43, 65–158 • 3. Zhou, H.-X. & Cross, T.A. (2013). Influences of membrane mimetic environments on membrane protein structures. Annual review of biophysics 42, 361–92 • 4. Rossman, J.S. & Lamb, R.A. (2011). Influenza virus assembly and budding. Virology 411, 229–36 • 5. Belrhali, H., Nollert, P., Royant, A., Menzel, C., Rosenbusch, J.P., Landau, E.M. & Pebay-Peyroula, E. (1999). Protein, lipid and water organization in bacteriorhodopsin crystals: a molecular view of the purple membrane at 1.9 A resolution. Structure (London, England : 1993) 7, 909–17 • 6. Dong, H., Sharma, M., Zhou, H.-X. & Cross, T.A. (2012). Glycines: role in α-helical membrane protein structures and a potential indicator of native conformation. Biochemistry 51, 4779–89 • 7. Chang, G. (1998). Structure of the MscL Homolog from Mycobacterium tuberculosis: A Gated Mechanosensitive Ion Channel. Science 282, 2220–2226 • 8. MacKinnon, R. (2004). Potassium channels and the atomic basis of selective ion conduction (Nobel Lecture). Angewandte Chemie (International ed. in English) 43, 4265–77 • 9. Locher, K.P., Lee, A.T. & Rees, D.C. (2002). The E. coli BtuCD structure: a framework for ABC transporter architecture and mechanism. Science (New York, N.Y.) 296, 1091–8 • 10. Moraes, I., Evans, G., Sanchez-Weatherby, J., Newstead, S. & Stewart, P.D.S. (2014). Membrane protein structure determination - the next generation. Biochimica et biophysica acta 1838, 78–87 • 11. Hopf, T.A., Colwell, L.J., Sheridan, R., Rost, B., Sander, C. & Marks, D.S. (2012). Three-dimensional structures of membrane proteins from genomic sequencing. Cell 149, 1607–21 • 12. Liu, W., Wacker, D., Wang, C., Abola, E. & Cherezov, V. (2014). Femtosecond crystallography of membrane proteins in the lipidic cubic phase. Philosophical transactions of the Royal Society of London. Series B, Biological sciences 369, 20130314 • 13. Blunk, D., Bierganns, P., Bongartz, N., Tessendorf, R. & Stubenrauch, C. (2006). New speciality surfactants with natural structural motifs. New Journal of Chemistry 30, 1705 • 14. Caffrey, M., Li, D. & Dukkipati, A. (2012). Membrane protein structure determination using crystallography and lipidic mesophases: recent advances and successes. Biochemistry 51, 6266–88 • 15. Landau, E.M. & Rosenbusch, J.P. (1996). Lipidic cubic phases: a novel concept for the crystallization of membrane proteins. Proceedings of the National Academy of Sciences of the United States of America 93, 14532–5 • 16. Liu, W., Wacker, D., Gati, C., Han, G.W., James, D., Wang, D., Nelson, G., Weierstall, U., Katritch, V., Barty, A., Zatsepin, N.A., Li, D., Messerschmidt, M., Boutet, S., Williams, G.J., Koglin, J.E., Seibert, M.M., Wang, C., Shah, S.T.A., Basu, S., Fromme, R., Kupitz, C., Rendek, K.N., Grotjohann, I., Fromme, P., Kirian, R.A., Beyerlein, K.R., White, T.A., Chapman, H.N., Caffrey, M., Spence, J.C.H., Stevens, R.C. & Cherezov, V. (2013). Serial femtosecond crystallography of G protein-coupled receptors. Science (New York, N.Y.) 342, 1521–4 Literatura • Stanley J. Opella, Structure Determination of Membrane Proteins by Nuclear Magnetic Resonance Spectroscopy, Annu Rev Anal Chem (Palo Alto Calif). 2013 ; 6: 305–328 • Nabanita Das, Dylan T Murray & Timothy A Cross, Lipid bilayer preparations of membrane proteins for oriented and magic-angle spinning solid-state NMR samples, Nature Protocols, 2013, 8: 2256–2270 • Park SH, Das BB, Casagrande F, Tian Y, Nothnagel HJ, Chu M, Kiefer H, Maier K, De Angelis AA, Marassi FM, Opella SJ, Structure of the chemokine receptor cxcr1 in phospholipid bilayers, Nature (2012) 491 p.779 • Sunney I. Chan, A Physical Chemist's Expedition to Explore the World of Membrane Proteins, Annual Review of Biophysics, June 2009, Vol. 38: 1-27 • P. J. Judge and A. Watts, Recent contributions from solid-state NMR to the understanding of membrane protein structure and function, Current Opinion in chemical biology, 2011, 15, 690-695 • S. Wang, Vladimir Ladizhansky, Recent advances in magic angle spinning solid state NMR of membrane proteins, Progress in Nuclear Magnetic Resonance Spectroscopy, 2014, 82, 1–26 • A. Bodor, K. E. Kövér, L. Mäler, Membrane interactions in small fast-tumbling bicelles as studied by 31P NMR, Biochimica et Biophysica Acta, 2015, 1848, 760-766 • Olaf Beckonert, Muireann Coen, Hector C Keun, Yulan Wang, Timothy M D Ebbels, Elaine Holmes, John C Lindon & Jeremy K Nicholson, High-resolution magic-angle-spinning NMR spectroscopy for metabolic profiling of intact tissues, Nature Protocols, 2010, 5, 1019 - 1032 Viri • J. Milne et al. Cryo-electron microscopy – a primer for the non-microscopist. FEBS Journal, 280, 28–45 2013 • W. Kühlbrandt. Cryo-EM enters a new era. eLife 2014;3:e03678. DOI: 10.7554/eLife.03678 • Kutti R. Vinothkumar and Richard Henderson. Structures of membrane proteins. Quarterly Reviews of Biophysics 43, 1 (2010), pp. 65–158. • Kenneth N. Goldie, Priyanka Abeyrathne, Fabian Kebbel, Mohamed Chami, Philippe Ringler, and Henning Stahlberg. Cryo-electron Microscopy of Membrane Proteins. John Kuo (ed.), Electron Microscopy: Methods and Protocols, Methods in Molecular Biology, vol. 1117, 2014 • Fujiyoshi Y, Unwin N (2008) Electron crystal- lography of proteins in membranes. Curr Opin Struct Biol 18:587–592 • Steven J. Ludtke et al. Flexible Architecture of IP3R1 by Cryo-EM. Structure 19, 1192–1199, August 10, 2011 • Alberto Bartesaghi and Sriram Subramaniam. Membrane protein structure determination using cryoelectron tomography and 3D image averaging. Curr Opin Struct Biol. 2009 August ; 19(4): 402–407 • Stephen C. Murray John Flanagan Olga B. Popova, Wah Chiu, Steven J. Ludtke and Irina I. Serysheva. Validation of Cryo-EM Structure of IP3R1 Channel. Structure 21, 900–909, June 4, 2013
© Copyright 2025