COMPLEX NUMBER

FE /Maths-I/ GQ/Complex number
COMPLEX NUMBER
1.
The number of the form x + i y where x and y are real numbers and i = -1 i. e.(i 2  1)
is called a complex number and it is denoted by z i.e . z = x + i y.The complex number
z is represented by a point P(x, y) on XY - plane
2.
x is called real part and is denoted Re z = x & y is called imaginary part and is denoted by
Im z  y.
3.
If z = x + i y be any complex number then its conjugate is denoted by z and z  x  iy
5.
Euler' s Formulae
i) ei  cos  i sin 
6.
bg
bg
Polar form
b
ii) e- i  cos  i sin 
g
z = r cos + i sin  r ei
7.
r = x 2  y 2 is said to be modulus of the complex number z and is denoted by
z  x  iy 
8.
b g
x 2  y 2 ,   tan 1 y / x
Where r =
x2  y2
b g
 = tan -1 y / x is said to be amplitude or argument of the complex number
b g
z = x + iy and is denoted by arg z = amp z  tan 1 y / x
The value such that -      is said to be principle value of the argument.
9.
Properties of modulus and argument
1. z1  z2  z1  z2
2. z1  z2
3.
z1z2  z1
z2

z1 - z 2
z
z1
 1
z2
z2
z
6. arg 1  arg z1  arg z2
z2
4.
b g
5. arg z1z2  arg z1  arg z 2
Exponential form of circular function:
e i  e i
e i  e i
i sin =
ii cos =
2i
2
Hyperbolic Functions
ex  e x
1.
Let x be real or complex then
is called hyperbolic sine of x and is denoted by sinh x
2
ex  e x
and
is called hyperbolic cosine of x and is denoted cosh x
2
ex  e x
ex  e x
 sinh x =
; coshx =
2
2
x
x
sinh x
e e
1
2
tanh x =
 x
sech x =
 x
x
cosh x
e e
cosh x
e  e x
x
x
cosh x
e e
1
2
coth x =
 x
cosech x =
= x x
x
sinh x
e e
sinh x
e e
bg
bg
Relations between circular function and hyperbolic functions
b g
b g
b g
(i) Sin i x = i sinh x
(iii) tan i x = i tanh x
(v) Cosh i x = cos x
b g
b g
b g
(ii) cos i x = cosh x
(iv) Sinh i x = i sin x
(vi) tanh i x = i tan x
1
FE /Maths-I/ GQ/Complex number
3.
Hyperbolic Identities.
(i) sinh (-x) = - sinh x
(iii) tanh -x = - tanh x
( ii) cosh (-x) = cosh x
(iv) e x  cosh x  sinh x
b g
4.
5.
Square Relations
(i) Cosh2 - sin h2 x = 1 (ii) sech2 x + tanh2 x = 1
g
Product Formulae
(i) sinh ( A + B) + sinh (A - B) = 2 sinh A cosh B.
(ii) sinh (A + B) - sinh (A - B) = 2 cosh A sinh B
(iii) cosh (A + B) + cosh (A - B) = 2 cosh A cosh B
(iv) cosh (A + B) - cosh (A - B) = 2 sinh A sinh B
C+D
C-D
(v) sinh C + sinh D = 2 sinh
cosh
2
2
C+D
C-D
(vi) sinh C - sinh D = 2 cosh
sinh
2
2
C+D
C-D
(vii) cosh C + cosh D = 2 cosh
cosh
2
2
C+D
C-D
(viii) cosh C - cosh D = 2 sinh
sinh
2
2
FG
H
FG
H
7.
FG
H
FG
H
IJ
K
IJ
K
IJ
K
IJ
K
FG
H
FG
H
IJ
K
IJ
K
FG IJ
H K
FG IJ
H K
Formulae for 2x and 3x
ii) cosh 2 x = cosh 2 x  sinh 2 x
1
iv) sinh 2 x  cosh 2 x  1
2
i) sinh 2 x = 2 sinh x cosh x
1
iii) cosh 2 x  cosh 2 x  1
2
2 tanh x
v) tanh 2 x =
1 + tanh 2 2 x
b
b
g
ix) sinh 2 x =
g
vi) sinh 3x = 3 sinh x + 4 sinh 3 x
vii) cosh 3x = 4 cosh 3 x  3 cosh x
8.
(iii) coth2 x - cosech2 x = 1
Addition formulae
Sinh (A  B) = sinh A cosh B  cosh A sinh B
Cosh (A  B) = coshA coshB  sinh A sinh B
tanh A  tanh B
tanh A  B 
1  tanh A tanh B
b
6.
(v) e -x  cosh x  sin h x
viii) tanh 3x =
2 tanh x
x) cosh 2 x =
1 - tanh 2 x
3 tanh x + tanh 3 x
1  3 tanh 2 x
1 + tanh 2 x
1  tanh 2 x
Values of Hyperbolic functions
x
sinh x
coshx
tanhx
-
-

-1
0
0
1
0



1
EXAMPLES:
1. If x  iy 
2. If   i 
2 a 2  b2
then prove that  x 2  y 2   2
c  d2


c  id
a  ib
1
a  ib
then prove that   2  2   a 2  b2   1

 

2
FE /Maths-I/ GQ/Complex number
1  x  iy
3. If x 2  y 2  1 Then show that
 x  iy
1  x  iy
4. Express the complex number
x  1  iy
x  1  iy
2
2
number then show that x  y  1
in the form a  ib.If this is a purely imaginary
5. Find the complex numbers whose sum is 4 and whose product is 8.
6.
Find the complex number z such that

2
i) arg z +1 
and arg z -1 
6
3
b g
b g
FG z + iIJ   / 4
HzK
iii) Find z if arg b z + 2ig =  / 4 and arg b z - 2ig =
ii) Find z if z + i  z and arg
3
4
7. Find the loci represented by
ii) z + 2i  z - 2i = 6
ii) z - 3  z + 3 = 4
iii) z - 2 + i = 3
iv) z - 5- 6i = 4
DE MOIVRE’S THEROEM
bCos 5 - i sin 5g bcos 7 + i sin 7g
bCos 4 - i sin 4 g bcos  + i sin  g
3
4
1. Simplify
9
2. Express in the form a + ib
5
bCos 3  + i sin 3g
FG Cos 3 + i sin 3 IJ
H 2
2K
4
bcos 5  - i sin 5 g
FG cos 4  isin 4 IJ
H 5
5K
4 /5
2/9
10
b1  ig d1- i 3i
3. Express in the form a + ib
b1  ig d1  i 3i
b 1  ig d 3  i i
4. Express in the form a + ib
b 1 i g d 3  i i
1
i
5. It z =

Then simplify b z g  d z i
2
2
d1 + i 3 i
6. Find the modulus and argument of
d 3 i i
6
4
8
5
8
4
8
4
10
10
13
11
C.N. 1
1. Prove that
LM1 + sin + i cos OP
N 1 + sin  - i cos Q
Evaluate
LM1 + sin + i cos OP
N 1 + sin  - i cos Q
3. Show that
LM1 + cos + i sin OP
N 1 + cos  - i sin Q
2.
n
 cos
FG n  nIJ
H2 K
 i sin
FG n  nIJ
H2 K
n
n
 cosn + i sinn
3
FE /Maths-I/ GQ/Complex number
b1+ cos + i sin g  b1 + cos
n
4. Show that
b
5. Show that 1 + sin + i cos 
6. Show that
bcos
g + b1
n
b
g
7. Show that
g
n
= 2 n+1 cosn
+ sin - i cos
g
n

2
cos
n
2
FG 
H4
-
= 2 n+1 cosn
bcos - cos g - i bsin
FG  -  IJ cos n FG  +  +  IJ
H2K
H 2 K
- cos + i sin - sin
= 2 n+1 sin n
- i sin
g
n
+
IJ
2K

- sin
cos
g
FG n
H4
-
n
2
IJ
K
n
F I
i G - J
1 + cos  + i sin
 cot  / 2 e H 2 K
1 - cos + i sin
b
8. If 1+ cos + i sin
i) v = u tan
3
2
g b1 + cos2
g
+ i sin2  u + iv
ii) u 2  v 2  16cos2  cos2
then prove that

2
9. Prove that a = cos + i sin , b = cos  + i sin  then show that
(a + b) (ab -1) sin   sin 

(a - b) (ab +1) sin   sin 
10. If a = cos + i sin , b = cos  + i sin , c = cos + i sin then prove that
ba + b g b b + cg bc + a g
abc
= 8 cos
FG  -  IJ cos FG  -  IJ cos FG  -  IJ
H 2K H2K H 2K
11. If a = cos 2 + i sin 2 , b = cos 2  i sin 2 and c = cos 2  , + i sin 2  then prove that
b
ab

c
c
= 2 cos  +  - 
ab
g
12. If a = cos 3 + i sin 3 , b = cos 3  i sin 3 and c = cos 3 , + i sin 3 then prove that
3
ab

c
3
b
c
= 2 cos  +  - 
ab
g
C.N.2
1. Prove that (4n) th power of
1+ 7i
is equal to (-4) n where n is positive integer
(2 - i) 2
2. If z = cos  + i sin then prove that
i)
2

 1  i tan
1+ z
2
3. If z1  e i and z 2  e i then prove that
b g
sin  -  
4. If a 2 + b 2  c 2  1 & b  ic  (1  a)z then prove that
1
2i
ii)
FG z
Hz
1
1+ z

 i cot
1- z
2

2
z2
z1
IJ
K
a + ib 1  iz

1+ c 1  iz

2
5. If sin  itan then prove that cos  isin 

1  tan
2
 
6. If sin  itan then prove that cos  isin  tan 
4 2
1  tan
FG
H
IJ
K
4
FE /Maths-I/ GQ/Complex number
C.N .3
1. If z1 and z 2 are any two complex numbers such that
z z
z1  z 2 and z1   z 2 then show that 1 2
z1  z 2
is purely imaginary
2. If z1 and z 2 are any two complex numbers then prove that
z1  z 2
2
 z1  z 2
2
2
2
z1
2
 z2
3. Prove that the statement Rez  0 & z  1  z  1 are equivalent where z  x  iy
4. If z1 and z 2 are any two complex numbers such that z1 + z 2
then show that argz1  argz 2 
5. Prove that
 z1  z 2
and

2
z
 1  arg z
z
C.N. 4
1. If z1  cos + i sin z 2  cos + i sin where 0 <  <  / 2
0< /2
1+ z12
1  i z1z 2
Find the modulus and argument of
2. Prove that e
2 a i cot -1b
LM bi -1 OP
N bi +1 Q
a
 1
b
g b g  b  g.sinn.cosec 
h  c1  e h
3. If   1  i,   1  i & cot  x  1 prove that x    x  
4. Prove that
b g c
1+ cosec  / 2  1  e i
1 2
n
n
n
 i 1 2
C.N. 5
1. If  and  are the roots of the equation x 2  2 3 x + 4 = 0 Then prove that  3   3  0
FG n IJ
H4K
2. If  and  are the roots of the equation x 2 - 2x + 2 = 0 Then prove that  n   n  2.2 n/2 cos
hence deduce that
 8  8  32
3. If  and  are the roots of the equation
 n   n  2 n 1 cos
FG n IJ
H 3K
x 2  2 x  4  0 Then prove that
Hence find the value of  6 +  6
4. If  and  are the roots of the equation
x 2  3x  1  0 then prove that  n   n  2 cos
FG n IJ
H 6K
Hence prove that 12  12  2
5. If  and  are the roots of the equation z 2 sin 2  - z sin 2 + 1 = 0 then prove that
 n   n  2 cos n cosec n  )
6. If z = -1+ i 3 & n is integer, then prove that z 2n  2 n z n  2 2n  0 if n is not a mutiple of 3.
7. If x +
1
1
= 2 cos , prove that x r  r  2 cos r
x
x
5
FE /Maths-I/ GQ/Complex number
1
1
1
= 2 cos and y +
 2 cos  then prove that one of the values of x m y n  m n
x
y
x y
8. If x +
b
b
g
xm
yn
is 2cos m + n and that of n + m is 2 cos m - n
y
x
9. If x +
g
1
1
1
= 2cos, y   2 cos and z +  2 cos 
x
y
Z
b
b
g
1
xm
yn
then prove that i) xyz +
= 2 cos  +  + 
ii) n + m = 2 cos m - n
xyz
y
x
1
1
1
10. If x = 2 sin , y  2 sin & z -  2 sin then prove that
x
y
Z
b
1
= 2 cos  +  + 
xyz
i) xyz +
g
m
ii) the one of
n
FG
H
x ny
 
+ m is 2 cos
m n
y
x
g
IJ
K
C.N.6
1. If n is a positive integer then show that
ba - i b g = 2 ea + b j cos LMN n tan FGH ba IJK OPQ
Hence find the value of b 1 + i g + b 1 - i g
Lm
O
2. Prove that ba + ibg  ba  ibg  2 ea  b j cos M tan b b / a gP
Nn
Q
Hence find the value of b3 + 4ig  b3- 4ig
L n O
3. Prove that d1+ i 3 i  d1  i 3 i  2
cos M P
N3Q
F -1+ i 3 I  F 1  i 3 I  RS1 if n = 3k  ! Where k is a positive integer
4. Prove that G
H 2 JK GH 2 JK T 2 if n = 3k
ba + ibg
n
n
+
2
2
n2
n
m
n
n
m
n
m
2 2n
2
2/3
n
n
-1
-1
2/3
n 1
n
n
C.N. 7
FG  IJ
H2 K
1. If x r  cos
r
+ i sin
FG  IJ
H2 K
then prove that
r
i) x1 x 2 x 3 ............... ad  = -1 ii) x 0 x1 x 2 x 3 ........... ad   1
2. If x r  cos
FG  IJ  i sin FG  IJ
H3 K
H3 K
r
the prove that
r
i) x1 x 2 x 3 .......... ad  = i
b
i) ca
ii) x 0 x1 x 2 x 3 ........... ad    i
g ba  ib g ......ba  ib g = A + iB then prove that
 b h ca  b h ........ ca  b h  A  B
Fb I
b
b
F B IJ
ii) tan
+ tan
 .......+tan G J  tan G
HAK
a
a
Ha K
3. If a 1  ib1
2
1
2
1
-1
2
2
2
1
1
b
gb
2
n
2
2
-1
2
n
2
2
gb g
n
2
n
2
-1
n
2
1
n
4. If 1+ ia 1+ ib 1+ ic  p + iq then prove that
p tan tan -1a  tan 1 b  tan 1 c  q
b
g bcos 2 + i sin2g.............. bcos n + i sin ng  1
4k
then prove that  =
where K is any integer.
nb n +1g
5. If cos + isin
6
FE /Maths-I/ GQ/Complex number
b1+ xg  p + p x  p x ...... p x then prove that
F n I
F n I
cosG J
2. p  p  p ...........  2 sinG J
H4K
H4K
F n I
 2 cosG J
H4K
n
6. If n is a positive integer and
1. p 0  p 2  p 4 ...........  2 n 2
2
0
1
n
2
n
n2
1
3
5
n
1
2
3. p 0  p 4  p8 .........  2 n  2
C.N. 8
1. If x = e i , y = e i and z = e i and x + y + z = 0 then prove that
2. If sin + sin = 0 and cos + cos = 0 then prove that
b
i. cos2 + cos 2 = 2 cos  +  + 
g
1
1
1
+
+
= 0
x
y
z
b
ii. sin2 + sin2 = 2sin  +  + 
g
3. If cos + cos + cos = 0 and sin + sin + sin = 0 then prove that
i. cos2 + cos2 + cos2  = 0
ii. sin2 + sin2 + sin2  = 0
4. If cos + cos + cos = sin + sin + sin = 0
i. cos   cos   cos   3 2
2
2
b
g
2
b g
b
g
iii. cos  +   cos     cos     0
then prove that
ii. sin 2   sin 2   sin 2  = 3 / 2
b
b g
g
b
g
iv. sin  +   sin     sin     0
5. If a cos + b cos + c cos = 0 and a sin + b sin + c sin = 0 then prove that
b
i. a 3 cos 3 + b 3 cos 3 + c 3 cos3 = 3abc cos  +  + 
b
ii. a 3 sin 3 + b 3sin3 + c 3 sin 3  3abc sin  +  + 
g
g
6. If cos + cos + cos = sin  + sin + sin = 0 then prove that
b
i. cos3 + cos3 + cos3 = 3 cos  +  + 
b
g
g
i. cos3 + 8 cos3 + 27 cos3 = 18 cos b +  +  g
ii. sin 3 + 8 sin3 + 27 sin3 = 18 sin b +  +  g
ii. sin3 + sin3 + sin3 = 3 sin  +  + 
7. If cos + 2 cos + 3 cos = sin + 2 sin + 3 sin  0
then prove that
C.N. 9 Expansion of cosn , sinn in powers of sin , cos
1. Using De - Moivre' s theorem show that sin 3 = 3cos2 sin   sin 3 
2. Use De - Moiver's theorem to prove the following result
cos 4 = cos4  6 cos2  sin 2   sin 4 
3. Obtain the expansions of cos 5 and sin 5 in terms of powers of cos and sin
4. Prove that sin5 = 5 sin - 20 sin 3 +16 sin5
5. Prove that cos5 = 5 cos - 20 cos3 +16 cos5
6. Obtain the expansion of cos 6 in terms of powers of sin and cos
7. Prove that cos 6 = 1-18 sin 2   48 sin 4   32 sin 6 
8. If sin6 = A cos5 sin - B cos3 sin 3 + C cos  sin5
Find the values of A, B and C
7
FE /Maths-I/ GQ/Complex number
9. Prove that sin7 = 7cos6 sin - 35cos4 sin 3  21cos2  sin5  sin 7 
sin5
 16 cos4   12 cos2  + 1
sin
sin7
11. Prove that
 7 - 56 sin 2  112 sin 4  65 sin 6 
sin
10. Prove that
12. Prove that
sin7
 64 cos6  80 cos4  24 cos2   1
sin
13. Prove that tan 5 =
14. Prove that tan 7 =
5 tan -10 tan 3  tan5 
1  10 tan 2   5 tan 4 
Hence deduce that 5 tan 4

10
 10 tan 2

10
1  0
7t - 35t 3  21 t 5  t 7
where t = tan
1  21t 2  35t 4  7 t 6



Hence deduce that 1- 21tan 2
 35 tan 4
 7 tan 6
0
14
14
14
C.N. 10 Expansion of cosn , sinn in terms of sines or cosines of multiples of 
1
sin 5  5 sin 3  10 sin 
16
Obtain the expansions of cos6 and sin 6 in terms of cosines of multiples of 
1
Prove that cos6  sin 6  3 cos 4  5
8
1
Use De - Moivre's theorem to prove that cos6  sin 6   4 cos 6  15 cos 2
2
6
7
Prove that - 2 sin   sin 7  7 sin 5  21 sin3 - 35sin 
1. Prove that sin5 
2.
3.
4.
5.
6. Express cos8 as a series in cosines of multiples of 
7. Prove that cos8  sin8  
1
cos 8 + 28 cos4 + 35
64
8. Express cos5 sin 3  as a series in sines of multiples of 
-1
9. Prove that cos5 sin 3 = 7 sin 8 + 2 sin6 - 2 sin 4 - 6 sin2
2
10. Prove that cos5 sin 7  =
-1
sin 12 - 2 sin10 - 4 sin 8 + 10 sin 6 + 5sin4 - 20 sin2
211
11. Prove that - 212 cos6 x sin 7 x  sin13x - sin11x - 6 sin9x + 6 sin7x + 15 sin5x - 15 sin3x - 20 sinx
12. Show that 25 sin 4  cos2  = cos6 - 2cos4 - cos2 + 2.
13. If sin 4  cos3 = A 1 cos   A 3 cos 3  A 5 cos 5  A 7 cos 7
Prove that A 1  9A 3  25A 5  49 A 7  0
2
1+ cos7
 x3  x2  2x  1
where x = 2 cos
1+ cos
e
14. Prove that
j
b
g c
h
2
15. Using De - Moivre's theorem show that 2 1+ cos8  x 4  4 x 2  2 where x  2 cos 
16. Use De - Moivre's theorem to show that
b
gc
h
1+ cos 9 = 1+ cos 16cos4   8 cos3   12 cos2   4 cos   1
2
8
FE /Maths-I/ GQ/Complex number
SUMATION OF SERIES
sin  sin 2 sin 3
2 sin 


......... 
2
3
2
2
2
5- 4 cos 
1
1
1
9 - 3 cos x
Prove that 1+ cosx +
cos 2x +
cos 3x + ............ =
3
9
27
10 - 6 cos x
2
x
Find the sum of the series sin  + x sin  +  
Sin  + 2 ...........
2!
e 3
e5
-1

Prove that e cos  cos 3 +
cos 5  +......... =
tan -1 cos  cosech 
3
5
2
1 2
1 3
x sin 
Prove that x sin  x sin 2 +
x sin 3........= tan -1
2
3
1+ x cos 
n(n  1)
n(n  1)(n  2)
Find the sum of the series n sin 
sin2 
sin3  ...upto n terms
1.2
1.2.3
C.N. 11 Roots of Complex Number
1. Show that
2.
3.
4.
5.
6.
b
b
g
g
b
FG
H
g
IJ
K
1. Find all the values of i 2 3 and show that their continued product is -1
F 1+ 3 I and show that their continued product is 1.
2. Find all the values of G
H 2 JK
3. Find all the values of b1+ ig and show that their continued product is 1+ i
4. Show that the continued product of all the values of b1+ ig is  b1+ ig
5. Find the continued product of all the values of b1- ig
3/ 4
1/ 5
1/ 8
2/3
C.N. 12 Solve the following equation
1. x 6  i  0
2. x 3  i  0
3. x 7  x 4  x 3  1  0
4. x14  127 x 7  128  0
5. x 9  x5  x 4  1  0
6. x 9  x 6  x 3  1  0
7. x 9  8x 6  x 3  8  0
8. x 7  x 4  i x 3  1  0
b g
9. x 7  64 x 4  64 x 3  64
c
2
0
h
10. x10  11x5  10  0
11. x 4  x 2  1  x 3  x
12. x 4  x 3  x 2  x  1  0
13. x 4  x 2  1  0
C.N. 13 Roots of Complex Number
1. Find the cube roots of unity and show that they can be expressed as 1,  ,  2
bg
2. Prove that the n th roots of unity are in geometric progression & their sum is zero & product is -1
3. If  is the complex cube root of unity then show that
b1- g
6
n-1
 27
4. Find the n th roots of -1 and show that they can be expressed as  ,  3 ,  5 .......  2 n1
Also find their continued product
5. Show that the roots of the equation x5  1  0 can be written as
b gc
Hence prove that 1-  1-  2
h c1-  h c1-  h  5
3
1,  ,  2 ,  3 ,  4 .
4
6 If  ,  2 ,  3 ........  6 are the roots of the equation x 7  1  0 then prove that
b1- g c1-  h c1-  h c1-  h c1-  h c1-  h  7
2
3
4
5
6
9
FE /Maths-I/ GQ/Complex number
7. Solve the equation x  1  0 and show that
5
cx  1h = bx -1g FGH x
5
2
IJ FG x
KH

+ 1
5
 2 x cos
2
 2 x cos
IJ
K
3
1
5
C.N. 14
1. Prove that
n
a + bi +
n
a - bi has n real values and find those of
b g
b g
5
2. Show that the roots of the equation x -1  32 x  1
FG 2r IJ
H5K
F 2r IJ
5  4 cos G
H5K
5
3
1+ i 3 +
3
1- i 3
are given by
-3 + 4i sin
x =
where r = 0, 1, 2, 3, 4
3. Find the common roots of x 4  1  0 & x 6  i  0
4. Solve the equation x12  1  0 and find which of its roots satisfy the equation x 4  x 2  1  0
b g
1
for its real part.
2
6
5. Show that every root of 1+ x  x 6  0 has 
b g b g
6
6
6. Show that the roots of x +1  x  1  0 are given by - i cot
b g b g
7
LM b2p +1g OP, p = 0,1,2,3,4,5
N 12 Q
7
7. Show that the roots of the equation x +1  x  1 are given by
 icot
FG k IJ ,
H7K
k = 1,2,3
Why k  0?
b g
5
8. Show that the roots of the equation 2z -1 
z =
FG IJ
H K
1 i
k
 cot
, k = 1,2,3,4
4 4
5
32 z5 are given by
k0
9. Find the three cube roots of 1- cos - i sin
10. Solve the equation z5  3  i
C.N. 15
1.
If 1+ 2i is a root of the equation x 4  3x 3  8 x 2  7 x  5  0
Find all other roots
2. If one of the roots of the equation x 4  6 x 3  15x 2  18 x  10  0 is 1+ i Find all other roots.
C.N. 16 Hyperbolic Functions
Seperate the real and imaginary parts of
b
i. sin x + iy
g
b
ii. cos x + iy
g
b
iii. sinh x + iy
g
b
iv. cosh x + iy
g
b
g
b
iv. tan x + iy v. tanh x + iy
g
C.N. 17
10
FE /Maths-I/ GQ/Complex number
b
g  cosh nx  sinh nx
L1+ tanh x OP  cosh 2nx  sinh 2nx
2. Prove that M
N 1- tanh x Q
L1+ tanh x OP  cosh 6x  sinh 6x
3. Prove that M
N 1- tanh x Q
L cosh x + sinh x OP  cosh 2nx  sinh 2nx
4. Prove that M
N cosh x - sinh x Q
1. Show that cosh x - sinh x
n
n
3
n
5. Prove that cosec hx + coth x = coth x / 2
6. If 5 sinh x  cosh x  5 , find tanh x
7. Pr ove that 16 cosh5 x  cosh 5x  5 cosh 3x  10 cosh x
b g
8. If x = tanh -1 0.5 then prove that sinh 2x = 4 / 3 and cosh 2x = 5 / 3
9. If sin = tanhx Prove that tan = sinhx
10. Prove that
1
 cosh 2 x (M'96 )
1
11
11- cosh 2 x
1
  sinh 2 x
1
11
11+ sinh 2 x
11. Prove that
C.N. 18
b
g
1. If cosh  + i  x  i y then prove that
2
i.
x
y2

 1
cosh 2 
sinh 2 
b
g
2. If cos-1 x  i y    i 
ii.
then prove that
i. x sec   y cos ec   1
2
2
2
b
2
g
3. If sin x + i y  u  i v
2
2
b
ii. x 2 sec h 2  y 2 cos ech 2  1
then prove that
i. u cos ec x  v sec x  1
2
x2
y2

 1
cos2 
sin 2 
2
ii. u 2 sec h 2 y + v 2 cos ech 2 y  1
g
4. If sinh a + i b  x  i y then prove that
x
y2
i.

 1
sinh 2 a
cosh 2 a
y2
x2
ii.

 1
sin 2 b
cos2 b
2
C.N. 19
b
1. If tan  + i 
g
= x + i y then prove that
i. x 2 + y 2 + 2x cot 2 = 1
b
ii. x 2 + y 2 - 2 y coth 2  = -1
g
2. If tanh a + i b = x + i y then prove that
2
2
i. 1 + x + y = 2x coth 2a
3. If x + i y = tan
4. If tanh
FG  +
H
FG 
H6
i
6
IJ
K
+ i
IJ
K
ii. x 2 + y 2 + 2 y cot 2 b = 1
then prove that x 2 + y 2 +
2x
3
= x + i y then prove that x 2 + y 2 +
= 1
2y
= 1
3
11
FE /Maths-I/ GQ/Complex number
C.N. 20
b
g
1. If sin  + i  e i then prove that
b
g
b
g
cos2  =  sin
2. If sinh   i  e i then prove that sinh 4   cos2   cos4 
3. If cosh  + i  cos   i sin  then prove that sin 2   sin 4   sinh 4 
C.N. 21
1. If sin  + i  P cos + isin then prove that
1
i. P 2  cosh 2 - cos2 ii. tan = tanh  cos
2
b
b
g
b
b
g
g
g
2. If e z  sin u + iv and z = x + iy then prove that 2e 2x = cosh 2v - cos2u
b
3. If x + iy = cos  + i
g
then express x and y in terms of  and  . Hence show that cos2 and
c
h
cosh 2  are the roots of the equation. 2  x 2  y 2  1  + x 2  0
b
g
4. If sin -1   i  x  iy then show that sin 2 x and cosh 2 y are the roots of the equation
c
h
p     1 p + 2  0
2
2
2
b
g
5. If cos  + i  cos  i sin  then prove that cos2  cosh 2  2
C.N. 22
1-  2   2
cos 2 x
1. If tan x + iy    i then prove that

2
2
1   
cosh 2 y
x
y
c
2. If x + iy = c cot u + iv then prove that

=
sin 2u
sinh 2v
cosh 2v - cos2u
sin 2x
tan u
3. If tan x + iy = sin u + iv then prove that

sinh 2y tanh v
b
g
b
b
g
b
g
C.N. 23
FG
H
1. If  + i = tanh x +
2. If cosec
FG 
H4
IJ
K
+ ix
g
i
4
IJ
K
then prove that  2   2  1
= u + iv then prove that
FG
H
3. If x + iy = 2 cosh  +
i
4
IJ
K
cu
2
 v2
h
2
c
= 2 u2  v2
h
then prove that x 2  y 2  2
C.N. 24
b
g
1. If fan  + i  tan   i sec  then prove that
FG FG
H H
2. If u = log tan
3. If tan


+
4
2
IJ IJ
KK
i. 2 = n +


2
then prove that i. tanh u / 2 = tan
ii. e 2    cot

2

ii. cosh u.cos   1
2
x
u
= tanh
then prove that i. sinh u = tan x ii. coshu = secx
2
2
12
FE /Maths-I/ GQ/Complex number
b
g
4. If cos  + i  r ei then show that  =
LM b g OP
N b gQ
sin  - 
1
log
2
sin   
5. If log tanx = y then prove that
1
tan n x  cot n x
2
ii. cosh n +1 y + cosh n -1 y = 2 cosh ny.cosec 2x
i. sinh ny =
b g
b g
x

=  tan
2
2
 

iii. x = log tan +
iv.    2 tan 1 (e  x )
4 2
2
6. If cosh x = sec then prove that i. tanh
LM FG
N H
ii. sinhx = tan
IJ OP
KQ
C.N. 25
x + iy - c
1. If
= e u+iV where x, y, u and v are real then prove that
x + iy + c
-c sinh u
c sin v
i. x =
ii. y =
cosh u - cos v
cosh u - cos v
b
g
2. If sin  + i  tan   i sec  then prove that cos2 cosh 2 = 3
b
g
3. If tan  / 4 + iv  r e i then show that r = 1, tan = sinh 2v and tanh v = tan

2
4. If x = 2 sin cosh  and y = 2 cos sinh  then prove that
4x
4iy
i. cosec  - i + cosec  + i = 2
ii. cosec  - i - cosec  + i = 2
2
x y
x  y2
b
b
g
b
g
b
g
g
5. If x = 2cos cosh and y = 2 sin sinh  then prove that
b
b
g
g
4x
x  y2
i. sec   i + sec  - i =
b g
 bcosh v  cos ug
2
b
b
g
g
ii. sec  + i - sec   i =
4iy
x  y2
2
6. If x + iy = cos u + iv then prove that
b g
2
i. 1+ x  y 2
7. Prove that tan -1
b g
2
2
b
ii. 1- x  y 2  cosh v - cosu
LM tan 2  tanh 2 OP + tan LM tan   tanh  OP  tan
N tan 2  tanh 2 Q
N tan   tanh  Q
-1
b
g
1
2
cot coth 
g
u -1
 sin x + iy then show that the argument of u is  +  where
u +1
cosx sinh y
cosx sinh y
tan =
,
tan =
1+ sin x cosh y
1- sin x cosh y
8. If
C.N. 26
Prove that
1.
e
sinh -1 x = log x +
x2 + 1
j
2.
L1 + 1 + x OP ( D'03)
cosech x = log M
MN x PQ
1
F 1 + x IJ ( J'02,N'95)
tanh x =
log G
H1 - xK
2
2
3.
5.
-1
-1
4.
e
L1 +
x = log M
MN
cosh -1 x = log x +
sech
-1
6.
coth -1 x =
1
2
j
1 - x O
PP
x
Q
F x + 1IJ
log G
H x - 1K
x2 - 1
2
13
FE /Maths-I/ GQ/Complex number
C.N. 27
Prove the following relations
FG
H
1.
cosh -1
1+ x 2 = tanh -1
3.
sech -1 sin  = log cot
5.
sinh -1
btan xg = log tan FGH 4
7.
cosh -1
1 + x 2 = sinh -1 x
IJ
1+ x K
x
2

2
b g
IJ
K
+ x/2
b g
b
2.
tanh -1 sin  = cosh -1 sec 
4.
tanh -1
x = sinh -1
b
FG
H
tanh -1 cos  = cosh -1
8.
sinh -1 x =
C.N. 28
x
1 - x2
IJ
K
bcosec g
g
6.
g
1
cosec -1
2
1
2x 1+ x 2
c h
1. Seperate the real and Imaginary parts of tan -1 e i
c h
2. Prove that tan 1 e i 
c h
3. Prove that tan -1 e i 
LM FG
N H
n  i
 
  log tan 
2 4 2
4 2
LM FG
N H
n  i
 
  log tan 
2 4 2
4 2
IJ OP
KQ
IJ OP
KQ
4. Prove that sin -1 e i  cos1 sin   i log
c h
sin  1  sin 
c h
1  sin   sin 
5. Prove that cos-1 e i  sin 1 sin   i log
b
6. Seperate the real and imaginary parts of i. tan -1 x  iy
b
g
ii. tanh -1 x  iy
g
C.N. 29
Prove that
b g
1
log iz  1  z 2
i

3. cos1 ix =
 i log x + x 2  1
2

5. sinh -1 ix  cosh 1 x  i
2
e
1. sin -1 z =
j
b g
b g
7. tan -1 z =
e
i
log
2
e
2. sin -1 ix  2 n  i log x  1  x 2
j
e
4. cos-1 z = - i log z + z 2  1
b g
6. cosh -1 ix  sinh 1 x  i
FG i + z IJ
H i-z K
b
g
8. sin -1 cos ec 
j
j

2


+ i log cot
2
2
C.N. 30
Express in the form a + ib
3i
i. cos-1
4
FG IJ
H K
C.N. 31
FG
H
1
1+ i e i
1. If x + iy = log
i
1  i e i
2. If cos
FG   iaIJ
H4 K
FG
H
bg
ii. cos-1 i
IJ
K
cosh b + i
3. Pr ove that tanh(log 5 ) 
then show that
IJ  1
4K

b g
bg
iii. sin -1 3i / 4 iv. sin -1 i
x =

and y = log sec + tan
2
b
d
then show that 2b = log 2 + 3
g
i
2
3
14
b
FE /Maths-I/ GQ/Complex number
g
3. If tan x + iy  i where x and y are real then prove that x is indeterminate and y is infinite.
LM FG x  a IJ OP 
N H x  aKQ
4. Prove that tan -1 i
i
log a / x
2
b g
C.N. 32 LOGARITHMS OF COMPLEX NUMBER
Express in the form a + ib
bg
bg
i. log -5
b g
ii. logb -3g -2 iii. log 3 + 4i
4m +1
v. Prove that log i i =
4n +1
C.N. 33
LM sin bx + iyg OP  2i tan bcot x tanh yg
N sin bx  iyg Q
F a + ib IJ  2i tan bb / ag
log G
H a - ib K
L F a - ib IJ OP  2ab
tan Mi log G
N H a + ib K Q a  b
L F a + ib IJ OP  a  b
cos Mi log G
N H a - ib K Q a  b
L F a - ib IJ OP  2ab
sin Mi log G
N H a + ib K Q a  b
-1
1. Prove that log
2. Prove that
3. Prove that
4. Prove that
5. Prove that
b g
iv. log b1 - i g 1 + i
-1
2
2
2
2
2
2
2
2
6. Prove that sin log(i -i )  1
C.N. 34
1.
2.
FG 1 IJ  log FG 1 cosec  IJ  i FG    IJ
H 1- e K H 2
H 2 2K
2K
2 tan b b / a g
y
If ba + ibg  m
then prove that

x
log ca  b h
b g
1+ ig
x
b
If
   i then prove that tan b /  g 
 y log2
b
g
2
b1  ig
Prove that log b1+ cos 2  i sin 2g  log b2cos g  i
Prove that log
p
i
1
x  iy
2
2
x  iy
3.
4.
-1
x  iy
C.N. 35
1.
Seperate the real and imaginary parts by considering the principal values only.
d
1-i
1 i
i
i) 1+ i
iv) ib
b g
1 iI
F
ii) G
H 2 JK
v) b1+ igb g
d1i 3i
3
g
1 i
iii) i i
b gb
vi) -i
 1 i
g
C.N. 36
1.
2.
3.
Find the principal value of i log b1 i g and show that its real part is e
-  2 /8
FG  log2IJ
H4 K
cos
then prove that y = x tan tanq log x  y
b g
d i
Seperate d i i
into real and imaginary parts by considering principal values only
If log log x + iy  p  iq
2
2
i
C.N. 37
1.
If i +i    i
then prove that  2  2  eb4 n1g
15
i-- 
FG
H
FE /Maths-I/ GQ/Complex number
IJ
K
A
2
B
A
A

 2n +
B
2
 A  iB, Prove that i) tan
ii) A 2 + B2 = e- B
2.
ii
3.
If i i  i B then prove that
4.
Prove that i i  cos   i sin
5.
Find the principal value of
6.
Pr ove that the general value of (1  i tan  )  i is e 2 m cos(log  )  i sin(log  )
7.
Find the principal value of 1+ i 3
A
=
b
g
where  = 2n +1/ 2  e -b 2m+1/2 g 
i
b1+ i tang
d
id
i
1 i 3
i
C.N. 38
1. If log sin x + iy = a + ib then prove that
b
g
i) 2e 2a  cosh 2y - cos 2x
2. Show that log tan
b
FG   i x IJ  i tan bsinh xg
H 4 2K
-1
g
3. If tan log x + iy  a  ib
4.
b
If 1+ i tan
gb
ii) tanb = cotx tanh y
1i tan 
c
h
then prove that tan log x 2  y 2 
2a
1  a 2  b2
b g
where a 2  b 2  1
g can have real value then show that it is sec esec j
2
ANSWERS
Examples P. 2
1
3
i
2
2
5. 2  2i 6. i. z 
7. i.
F 1  2 I  iFG  1IJ
GH 2 JK H 2 K
z
1
3
i
2
2
1
4
5. 0
.
iii. z  2
x2 y2
x2 y2
x2 y2

 1 ii.

 1 iii. 
1
5
9
25 16
4
5
DE MOIVRE’S THM
1.
ii. z 
1
2. cos
FG 47 IJ
H3 K
+ i sin
FG 47 IJ
H3 K
3.
i
4
4. -
6. modulus = 4i , argument =  / 6
C.N. 4
1. Modulus = cos sec
LM      OP
N4 2 Q
Argument =
  

4
2
C.N. 5
3.  2 16
C.N. 6
n
 n 
1. 2 2 2 Cos  
 4 
C.N. 9
2
2
4 
2. 2  5  3 cos  tan -1   
3 
3
3. cos 5 = cos5  10 cos3  sin 2   5 cos  sin 4 
sin 5 = 5 cos4 sin - 10 cos2 sin 3 + sin5
6. cos 6 = cos6 - 15 cos4  sin 2  + 15cos2 sin 4  - sin6
8. A = 6, B = 20, C = 6
16
FE /Maths-I/ GQ/Complex number
C.N. 10
1
cos 6 - 6 cos 4 + 15 cos 2 -10
32
1
cos6  
cos 6 + 6 cos 4 + 15 cos 2 + 10
32
1
6. cos8 
cos 8 + 8 cos 6  28 cos 4  56 cos 2  35
128
1
8. cos5  Sin 3 
sin 8 + 2 sin 6 - 2 sin 4 - 6 sin 2
128
2. sin 6  
SUMMATION OF SERIES
b
3. e x cos  sin  + x sin 
g
C.N. 12
1.
2.
3.
4.
5.
6.
7.
8.
14.
15.
9.
b g 12 + i sin b4k +1g 12 , k = 0,1, 2, 3, 4, 5


x = cos b4k +1g + i sin b4k +1g , k = 0, 1, 2
6
6
x = cos 4k +1
x =  2,  2i
LM b g   i sin b2k +1g  OP, k = 0, 1, 2, 3, 4
5
5Q
N


x = cos b2k +1g + i sin b2k +1g , k = 0, 1, 2, 3, 4 and
5
5
F k I
F k I
x = cos G J + i sin G J k = 0, 1, 2, 3,
H2K
H2K


x = cos b2k +1g + i sin b2k +1g , k = 0, 1, 2, 3, 4, 5 and
6
6


x = cos b2k +1g + i sin b2k +1g , k = 0, 1, 2
3
3


x = cos b2k +1g + i sin b2k +1g , k = 0, 1, 2, 3, 4, 5 and
6
6

O
L
x = 2 Mbcos 2k +1g + i sin b2k +1g P, k = 0, 1, 2
3
3Q
N


x = cos b4k +1g - i sin b4k +1g , k = 0, 1, 2, 3, and
8
8


x = cos b2k +1g + i sin b2k +1g , k = 0, 1, 2
3
3
x = 2 cos 2k +1
2k
2k
+ i sin
, k = 1, 2, 3, 4, k  0
5
5
k
k
x = cos
+ i sin
, k = 1, 2, 3, 4, 5 k  0
3
3
x = cos
LM b g  + i sin b4k +1g  OP, k = 0, 1, 2, and
3
3Q
N

O
L
x = 2 Mcos b2k +1g
+ i sin b2k +1g P k = 0, 1, 2,3
4
4Q
N


x = cos b2k +1g
+ i sin b2k +1g , k = 0, 1, 2, 3, 4 and
5
5

O
L
x = b10g Mcos b2k +1g
+ i sin b2k +1g P k = 0, 1, 2, 3, 4
5
5Q
N


x = cos b2k +1g  i sin b2k +1g , k = 0, 1, 3, 4, k  2
5
5


x = cos b2k +1g  i sin b2k +1g , k = 0, 1, 2, 4, 5, 6, k  3
7
7
1 L

O
x =
cosb2k +1g  i sin b2k +1g P, k = 0, 1, 3, 4, k  2
M
2 N
5
5Q
x = 4 cos 2k +1
3/2
10
1/ 5
11.
12.
13.
14.
15.
2k
2k
+ i sin
, k = 1, 2, 3, 4, k  0
5
5
k
k
x = cos
+ i sin
, k = 1, 2, 3, 4, 5 k  0
3
3
x = cos
17
LM
N
FE /Maths-I/ GQ/Complex number
OP
Q
1
2k
2k
cos
+ i sin
, k = 1, 2, 3, 4, k  0
2
5
5
1
x =
, k = 0, 1, 2, 3, 4, 5, 6, 7


cos 2k +1  i sin 2k +1 -1
8
8


x = cos 2k +1  i sin 2k +1 , k = 0, 2, 3, 5 k  1,4
6
6
16.
x =
17.
b
b
18.
b
b
g
g
g
g
C.N. 14
FG 2k +  / 3IJ , k  0,1,2
H 3 K


x = cos b2k +1g  i sin b2k +1g , k = 0, 1, 2, 3, 4, 5 and
6
6
2 21/3 cos
1.
3.
k
k
 i sin
, k = 0, 1, 2, 3, 4, 5
3
3
k
k
common roots are x =
+ i sin
, k = 1, 2, 4, 5 k  0,3
3
3
4 k -1   
4k -1   
1/ 3
2 sin  / 2
cos
 i sin
, k = 0, 1, 2
6
6


Z = cos 12k + 5
 i sin 12k + 5
k = 0, 1, 2, 3, 4
30
30
x = cos
8.
9.
g LMN b g
b g
b
b
b
OP
Q
g
g
C.N. 15
1.
1- 2i,
1
3
i
2
2
1- i, 2  i
2.
C.N. 16
1.
Sin x cosh y + i cos x sinh y
3.
sinh x cos y + i cosh x sin y
sin 2x + i sinh 2y
5.
cos 2x + cosh 2y
C.N. 28
n  i
1+ sin
1.
  log
2 4 4
1- sin
6.
LM
N
L bx +1g
1
ii.
log M
4
MN bx  1g
i.
cos x cosh y - i sin x sinh y
4.
cosh x cos y + i sinh x sin y
6.
sinh 2x + i sin 2y
cos 2x + cos 2y
IJ
K
OP + i log LM by +1g  x
Q 4 MN by  1g  x
L 2y OP
y O i
P
 tan M
 y PQ 2
N1  x  y Q
1
2x
tan -1
2
1  x2  y2
C.N. 30

1.
 i log 2
2
C.N. 32
1.
FG
H
2.
a
2
2
2
2
2
OP
PQ
2
-1
2
2
2
2.

 i log
2
d
i
2 1
2
3. i log 2
4.
d
log 1+ 2
i
f
log 5 + i 2k + 1 
a
f a2n + 1f 2  i a2m  1f log 3 - a2n + 1f  log 2
alog 3f2  a2n  1f2 2
1


log 2g 
 i log 2
b
4
16
4
log 5 + i 2k + tan b4 / 3g
4.
1

log 2g 
b
4
16
log 2 log 3 + 2m + 1
2.
2
3.
2
-1
2
2
18
FE /Maths-I/ GQ/Complex number
C.N. 35
LMcos FG   3 log 2IJ  i sin FG   3 log 2IJ OP
K
H3
KQ
N H3
IJ L
K Cos FG   log 2IJ  i sin FG   log 2IJ O
MN H 4 K
H 4 K PQ
L F 1 I
F 1
4. ie
5. 2 e Mcos G  log 2J  i sin G 
H4 2
N H4 2 K
1.
2e -  /
2.
FG 1 log 2 - /4
eH 2
3.
3
e -  /2
 /2
 /4
IJ OP
KQ
log 2
6.
e i /2
C.N. 36
3. e- /4
2
LMcos   i sin  OP
4 2Q
N 42
C.N. 37
5.
eb
2k +
g
b
g
b
cos log cos - i sin log cos 
g
19