Superconducting wind turbine generators – A game changer? Asger B. Abrahamsen, PhD Senior Research Scientist HI2015 Tuesday 22 September 2015 New innovations and Game changers session Cu Fe Motivation f I B J ~ 2 A/mm2 TC = 1043 K Br ~ 0 Tesla Fe D l R B Torque Power BI D2l R 1G : Copper + Iron 2G : R2Fe14B magnets + Fe 10 MW ~ 6 tons PM 3G : RBa2Cu3O6+x HTS + Fe 2 10 MW ~ 10 kg RBCO DTU Wind Energy, Technical University of Denmark TC = 583 K Br ~ 1.4 Tesla TC = 93 K TC = 39 K Bc2 ~ 100 Tesla Bc2 ~ 40 Tesla J J < 200 kA/mm2 < 20 kA/mm2 20 September 2015 30 €/m 20 €/m Choice of superconductors NbTi Bruker EST 0.4 €/m MgB2 Columbus 1-4 €/m 4 mm Fill factor ~ 0.3 % AmSC YBCO DTU Wind Energy, Technical University of Denmark Bi-2223 20 September 2015 Jensen, Mijatovic & Abrahamsen, J. Renewable Sustainable Energy 5, 023137 (2013) INNWIND.EU – 10 MW MgB2 SC Direct drive • 10 MW reference turbine D = 178 m & 9.7 rpm D = 6.0 m L ~ 2.5 m • King-pin nacelle (DNV-GL) • Two main bearings on hub • Blade loads directly to tower • Front mounted generator - Easy to compare different types • Scalable to 20 MW but issues with manufacturing (bearings and cast pieces) • MgB2: T = 20 K by cooling machines 4 DTU Wind Energy, Technical University of Denmark 20 September 2015 A.B Abrahamsen et. al., EWEA 2014 10 MW generator optimization D = 6.0 m Fe: 3 €/kg MgB2: Cu: 15 €/kg G10: 4 €/m More iron 15 €/kg PM: 50-75 €/kg Armature back Armature Cu SC field More iron Armature teeth SC Pole B [T] SC back 5 DTU Wind Energy, Technical University of Denmark 20 September 2015 Active material cost: MgB2 from 4 €/m 1 €/m Put as much iron as possible ! LMgB2 ~ 100 km assuming 1 €/m €MgB2 ~ 100 k€ Matches Permanent Magnet Direct Drive 6 DTU Wind Energy, Technical University of Denmark 20 September 2015 D. Liu et. al., submitted IJAEM Roadmap to 10 GW SCDD Wire use 10 MW(GW) NbTi 720 km (Mm) 25000 km/year fCAPEX ~ 2% T = 4.2 K MgB2 100 km (Mm) 5000 km/year fCAPEX ~ 1-2% T = 10-20 K REBa2Cu3O6+x 200 km (Mm) Abrahamsen and Jensen , "Wind Energy Conversion System: DTU Wind Energy, Technical University of Denmark Technology and Trend“, ISBN 978-1-4471-2200-5, Springer 2012. 3000 km/year fCAPEX ~ 40-50% T = 20-40K 20 September 2015 Conclusion Why superconducting? • Bairgap > 1 Tesla More compact direct drive for Multi-MW turbines with high torque • Vanishing dependency on Rare Earth element supply • High magnetic field vs. high current density High J most economical for MgB2 & HTS • NbTi: T = 4.2K GE (transfer MRI to wind) CAPEX fraction ~ 2 % • MgB2: T = 20 K SUPRApower, Hypertech, AML, INNWIND CAPEX fraction ~ 1-2 % • YBCO: T = 20-40 K AMSC, (GE), ECOSWING, INNWIND CAPEX fraction ~ 40 % • Chicken & egg: Demand to increase volume and drive down price of SC wires. • Huge learning potential for MgB2 and YBCO wires. Have to include wire improvement. • Demonstrate MgB2 and YBCO field coil technologies. Is it a game changer ? It is getting closer ….. But should we find a better material? 8 DTU Wind Energy, Technical University of Denmark 20 September 2015 H2S 9 DTU Wind Energy, Technical University of Denmark Jensen et. al., J. Renewable Sustainable Energy 5, 023137 (2013) • The smell of rotten eggs • Freeze & Press (a lot) • TC = 203 K • Hc2(0) 73 Tesla • A BCS superconductor !!!! • Light elements combined with Hydrogen. Better candidates? • Cooling by liquid natural gas (LNG) at 111 K or -162 oC *Drozdov * 20 September 2015 et. al., Nature525, 73 (2015) INNWIND.EU Collaborators in Workpackage 3 on Electromechanical Conversion • Asger B. Abrahamsen ([email protected]) – DTU Wind Energy (DK) • Dong Liu & Henk Polinder – Delft University of Technology (NL) • Niklas Magnuson – SINTEF (N) • Ewoud Stehouwer & Ben Hendriks -DNV GL (NL) • Arwyn Thomas – Siemens Wind Power (DK) Project website: www.innwind.eu 10 DTU Wind Energy, Technical University of Denmark 20 September 2015
© Copyright 2025