COMSATS Institute of Information Technology, Islamabad Department of Mathematics Assignment # 2 Program: BSM Semester: VI Date: Sep 22, 2015 Instructor: Dr. Muhammad Saeed Akram Maximum Marks: 10 Deadline : Sep 30, 2015 Assignment Topics: Uniform convergence of sequence of functions. Discuss the uniform convergence of the sequence of function {fn }, where 1. FA11-BSM-012 x 1. fn (x) = (x ∈ R, n = 1, 2, 3, . . . ). n 2. fn (x) = sin nx 1 + nx (x ∈ [0, ∞), n = 1, 2, 3, . . . ). 2. FA12-BSM-001 1. fn (x) = xn 2. fn (x) = (x ∈ R, n = 1, 2, 3, . . . ). xn 1 + xn (x ∈ [0, ∞), n = 1, 2, 3, . . . ). 3. FA12-BSM-010 1. fn (x) = x2 + nx n (x ∈ R, n = 1, 2, 3, . . . ). 2 x2 2. fn (x) = n3/2 xe−n (x ∈ [−1, 1], n = 1, 2, 3, . . . ). 4. FA12-BSM-013 1 1. fn (x) = ( ) sin(nx + n) n 2. fn (x) = (cos x)n (x ∈ R, n = 1, 2, 3, . . . ). (x ∈ [0, π], n = 1, 2, 3, . . . ). 5. FA12-BSM-017 1. fn (x) = 1 nx (x ∈ (0, 1], n = 1, 2, 3, . . . ). 2 x2 2. fn (x) = nxe−n 6. FA12-BSM-021 x 1. fn (x) = 1 + nx (x ∈ R, n = 1, 2, 3, . . . ). (x ∈ [0, ∞), n = 1, 2, 3, . . . ). 1 −x xe n 2. fn (x) = n (x ∈ (0, ∞), n = 1, 2, 3, . . . ). 7. FA12-BSM-022 1. fn (x) = xn (x ∈ [0, 1], n = 1, 2, 3, . . . ). 2. fn (x) = (1 − |x|)n (x ∈ (−1, 1), n = 1, 2, 3, . . . ). 8. FA12-BSM-024 1. fn (x) = n2 x(1 − x2 )n ) 2. fn (x) = x 1 + nx2 (0 ≤ x ≤ 1, n = 1, 2, 3, . . . ). (x ∈ R, n = 1, 2, 3, . . . ). 9. SP13-BSM-001 nx 1. fn (x) = 1 + n2 x2 (x ∈ [0, ∞), n = 1, 2, 3, . . . ). 2. fn (x) = n2 xn (1 − x)) (x ∈ [0, 1], n = 1, 2, 3, . . . ). 10. SP13-BSM-002 ( 1, −n ≤ x ≤ n 1. fn (x) = 0, otherwise 2. fn (x) = x2 + nx n (x ∈ R, n = 1, 2, 3, . . . ). 11. SP13-BSM-006 ( n, x ∈ (0, n1 ) 1. fn (x)(x) = 0, otherwise 2. fn (x) = x2n 1 + x2n nx 1 + nx 13. SP13-BSM-009 x 1. fn (x) = 1 − n 2. fn (x) = (sin x)n (x ∈ [0, 1], n = 1, 2, 3, . . . ). (x ∈ R, n = 1, 2, 3, . . . ). 12. SP13-BSM-008 ( n, x ∈ (− n1 , n1 ) 1. fn (x)(x) = 0, otherwise 2. fn (x) = (x ∈ R, n = 1, 2, 3, . . . ). (x ∈ [−1, 1], n = 1, 2, 3, . . . ). (x ∈ R, n = 1, 2, 3, . . . ). (x ∈ [0, 1], n = 1, 2, 3, . . . ). (x ∈ [0, π], n = 1, 2, 3, . . . ). 2
© Copyright 2025