ﻧﻅﺭﻳﺔ ﺍﻟﺗﻌﻘﻳﺩ
ﻣﺣﺎﺿﺭﺓ 9
ﺍﻟﻌﻼﻗﺔ ≤pﻫﻲ ﻋﻼﻗﺔ ﻣﺗﻌﺩﻳﺔ :
1/4/2014
A ≤p B , B ≤p C ⟹ A ≤p C
ﺍﻟﺑﺭﻫﺎﻥ :ﻣﻥ ﺍﻟﻔﺭﺽ :ﻳﻭﺟﺩ ﺗﺎﺑﻌﺎﻥ *∑ ⟶ *∑ ، f ,g :ﻗﺎﺑﻠﻳﻥ ﻟﻠﺣﺳﺎﺏ ﺑﺯﻣﻥ ﻛﺛﻳﺭﺓ
ﺍﻟﺣﺩﻭﺩ ، nkg , nkfﺑﺣﻳﺙ ﺃﻥ :
f(x) ∈ B ⟺ x ∈ A
ﻧﺄﺧﺫ ﺍﻟﺗﺎﺑﻊx ∈ A ⟺ g(f(x)) ∈ C ، g(f(x)) :
g(x)∈ C ⟺ x ∈ B
x ∈ A ⟺ f(x) ∈ B ⟺ g(f(x)) ∈ C
ﺯﻣﻥ ). (nkf)kg = g(f
ﻣﻼﺣﻅﺔ :ﻳﻧﻁﺑﻕ ﻫﺫﺍ ﺍﻟﻛﻼﻡ ﻋﻠﻰ .≤m
ﻣﻼﺣﻅﺔ DTime (nk) ⊆ NTime (nk) ⊆ DTime(2n)k :2
ﺗﻌﺭﻳﻑ :ﻧﻘﻭﻝ ﻋﻥ ﻣﺟﻣﻭﻋﺔ ﺃﻧﻬﺎ NP_hard
ﺇﺫﺍ ﻭﻓﻘﻁ ﺇﺫﺍ ﻛﺎﻥ:
) ⋀B∈NP B ≤p Aﺃﻱ ﻣﻥ ﺃﺟﻝ ﻛﻝ (B∈NP
ﻭﻧﻘﻭﻝ ﻋﻥ ﻣﺟﻣﻭﻋﺔ ﻣﻥ NP_hardﺃﻧﻬﺎ NP_completeﺇﺫﺍ ﻛﺎﻧﺕ ﻣﻥ NP
ﺗﻌﺭﻳﻑ :ﻧﻘﻭﻝ ﻋﻥ ﻣﺟﻣﻭﻋﺔ Aﺃﻧﻬﺎ NP_completeﺇﺫﺍ ﻛﺎﻧﺕ:
A ∈ NP (۱
B ≤p A (۲
⋀B∈NP
ﻧﻅﺭﻳﺔ :1971 – cook
SAT is NP_complete
ﻧﻅﺭﻳﺔ :ﺇﺫﺍ ﻛﺎﻧﺕ ، A ∈ NP_completeﻭ ، A ≤p Bﻭ B ∈ NP
ﻋﻧﺩﺋ ٍﺫ ﺗﻛﻭﻥ B is NP_complete
ﺍﻟﺑﺭﻫﺎﻥ :ﺑﻣﺎ ﺃﻥ : A ∈ NP_complete
۱
ﻧﻅﺭﻳﺔ ﺍﻟﺗﻌﻘﻳﺩ
ﻣﺣﺎﺿﺭﺓ 9
1/4/2014
; C ≤p A
ﻭﺑﻣﺎ ﺃﻥ A ≤p B :
⋁fc ; ∑∗ ⟶ ∑∗ ; x ∈ C ⟺ f(x) ∈ A
;
⋀C∈NP
⋀C∈NP
⋁f ; ∑∗ ⟶ ∑∗ ; x ∈ A ⟺ f(x) ∈ B
ﻣﻧﻪ ﻳﻧﺗﺞ :
⋀C∈NP ; ⋁g=f(fc ) ; x ∈ c ⟺ g(x) ∈ B
ﻭﻟﺩﻳﻧﺎ ﺑﺎﻟﻔﺭﺽ . B is NP_complete ⇐ B ∈ NP
ﻧﻅﺭﻳﺔ :
α1
α2
α3
3_SAT = {C1 ∧ C2 ∧…. Cn} ; Ci = (X i1
∨ X i2
∨ X i3
)
ﺃﻱ 3_SATﻫﻲ ﻣﺟﻣﻭﻋﺔ ﺍﻟﺗﻌﺎﺑﻳﺭ ﺫﺍﺕ ﺍﻟﺷﻛﻝ ﺍﻟﺳﺎﺑﻕ ،ﻭﻗﺎﺑﻠﺔ ﻟﻠﺗﺣﻘﻳﻕ.
ﻣﺛﻼً� 5 ∨ X1 ) :
(X1 ∨ �X 2 ) ∧ X3 ∧ (X2 ∨ X
ﺍﻟﺑﺭﻫﺎﻥ :ﻳﻛﻔﻲ ﺃﻥ ﻧﺑﺭﻫﻥ ﺃﻥ SAT ≤p 3SAT
ﻷﻥ 3SAT ∈ NP :
ﻟﻛﻲ ﻧﺑﺭﻫﻥ ﻋﻥ ﻣﺳﺄﻟﺔ ﻣﺎ ﺃﻧﻬﺎ ، NPﻓﻧﻌﻠﻡ ﺃﻥ ﻣﺳﺎﺋﻝ NPﻛﻠﻬﺎ ﺗﻌﺗﻣﺩ ﻋﻠﻰ ﺧﻳﺎﺭﺍﺕ
ﻛﺛﻳﺭﺓ ،ﺇﺫﺍ ﻛﺎﻥ ﺯﻣﻥ ﺍﺧﺗﺑﺎﺭ ﺍﻟﺧﻳﺎﺭ ﺍﻟﻭﺍﺣﺩ ﻫﻭ Pﻓﺈﻥ ﺍﻟﻣﺳﺄﻟﺔ ﺗﻛﻭﻥ .NP
(۱ﻣﻥ ﺃﺟﻝ
Ci = Xi ، |Ci|=1
�i1 ∨ Yi2 ) ∧ (X i ∨ Yi1 ∨ Y
∧ ) �i2
f(Ci) = (X i ∨ Yi1 ∨ Yi2 ) ∧ (X i ∨ Y
�i1 ∨ Y
) �i2
(X i ∨ Y
Ci = (Xi ∨ Yj) ، |Ci|=2 (۲
� �i1
f(Ci) = �X j ∨ X k ∨ Yi1 � ∧ �X j ∨ X k ∨ Y
، |Ci|=3 (۳ﻳﺑﻘﻰ ﺍﻟﺗﻌﺑﻳﺭ ﻛﻣﺎ ﻫﻭ.
Ci = (u1 ∨ u2 ……. ∨ uk) ، |Ci|>3 (٤
۲
ﻧﻅﺭﻳﺔ ﺍﻟﺗﻌﻘﻳﺩ
ﻣﺣﺎﺿﺭﺓ 9
1/4/2014
∨ f(Ci) = (u1 ∨ u2 ∨ yi1 ) ∧ (y� i1 ∨ u3 ∨ Yi2 ) … … ∧ (y� ik−3
) uk−1 ∨ uk
ﺇﺫﺍ ﻛﺎﻥ ﺍﻟﺗﻌﺑﻳﺭ ﻣﺣﻘﻕ ﻣﻥ ﺃﺟﻝ ﺃﺣﺩ ﺍﻟـ ) (uﻓﻠﻥ ﺗﺅﺛﺭ ﻗﻳﻡ yﻣﻬﻣﺎ ﻛﺎﻧﺕ.
ﻭﺇﺫﺍ ﻛﺎﻥ ﻏﻳﺭ ﻣﺣﻘﻕ ﻓﻠﻥ ﺗﺅﺛﺭ ﻗﻳﻡ .y
ﻭﻟﻥ ﻳﻛﻭﻥ ﻣﺣﻘﻕ ﺇﻻ ﺇﺫﺍ ﺗﺣﻘﻘﺕ .Ci
__________________
__________
___
۳
© Copyright 2026