ITU-R P.1238

‫ﺍﻟﺘﻮﺻﻴﺔ‬
‫ﺍﻟﺘﻮﺻﻴﺔ‬
‫‪ITU-R BS.1698‬‬
‫‪1‬‬
‫‪ITU-R BS.1698‬‬
‫ﺗﻘﻴﻴﻢ ﺍﺠﻤﻟﺎﻻﺕ ﺍﻟﻨﺎﲨﺔ ﻋﻦ ﺃﻧﻈﻤﺔ ﺍﻹﺭﺳﺎﻝ ﺍﻹﺫﺍﻋﻲ ﻟﻸﺭﺽ‬
‫ﺍﻟﻌﺎﻣﻠﺔ ﰲ ﺃﻱ ﻧﻄﺎﻕ ﺗﺮﺩﺩ ﻣﻦ ﺃﺟﻞ ﺗﻘﺪﻳﺮ ﺃﺛﺮ ﺍﻟﺘﻌﺮﺽ‬
‫ﻟﻺﺷﻌﺎﻋﺎﺕ ﻏﲑ ﺍﳌﺆﻳﱢﻨﺔ‬
‫)ﺍﳌﺴﺄﻟﺔ ‪(ITU-R 50/6‬‬
‫)‪(2005‬‬
‫ﳎﺎﻝ ﺍﻟﺘﻄﺒﻴﻖ‬
‫ﺍﻟﻐﺮﺽ ﻣﻦ ﻫﺬﻩ ﺍﻟﺘﻮﺻﻴﺔ ﻭﺿﻊ ﺃﺳﺎﺱ ﳊﺴﺎﺏ ﻭﺗﻘﺪﻳﺮ ﻗﻴﻢ ﺍﻹﺷﻌﺎﻋﺎﺕ ﺍﻟﻜﻬﺮﻣﻐﻨﻄﻴﺴﻴﺔ ﺍﻟﻨﺎﲨﺔ ﻋﻦ ﳏﻄﺔ ﺇﺫﺍﻋﺔ‪ ،‬ﻋﻠﻰ ﻣﺴﺎﻓﺎﺕ‬
‫ﻣﻌﻴﱠﻨﺔ ﻣﻦ ﻣﻮﻗﻊ ﺍﻹﺭﺳﺎﻝ‪ .‬ﻭﻫﺬﻩ ﺍﳌﻌﻠﻮﻣﺎﺕ ﺗﺴﺘﺨﺪﻣﻬﺎ ﺍﳌﻨﻈﻤﺎﺕ ﺍﳌﺴﺆﻭﻟﺔ ﻟﻮﺿﻊ ﻣﻌﺎﻳﲑ ﻣﻼﺋﻤﺔ ﺗُﺴﺘﻌﻤَﻞ ﳊﻤﺎﻳﺔ ﺍﻟﻨﺎﺱ ﻣﻦ‬
‫ﺍﻟﺘﻌﺮﺽ ﻏﲑ ﺍﳌﺮﻏﻮﺏ ﻓﻴﻪ ﻟﻺﺷﻌﺎﻋﺎﺕ ﺍﳌﺆﺫﻳﺔ‪ .‬ﺃﻣﺎ ﺍﻟﻘﻴﻢ ﺍﻟﻔﻌﻠﻴﺔ ﺍﻟﻼﺯﻡ ﺗﻄﺒﻴﻘﻬﺎ ﲟﻮﺟﺐ ﺃﻱ ﺗﻨﻈﻴﻢ ﻓﺘﻈﻞ ﺑﺎﻟﻄﺒﻊ ﻣﺮﻫﻮﻧﺔ‬
‫ﺑﺎﻟﻘﺮﺍﺭﺍﺕ ﺍﻟﱵ ﺗﺘﻮﺻﻞ ﺇﻟﻴﻬﺎ ﺍﳍﻴﺌﺎﺕ ﺍﻟﺼﺤﻴﺔ ﺍﳌﻌﻨﻴﺔ‪ ،‬ﺍﻟﻮﻃﻨﻴﺔ ﻣﻨﻬﺎ ﻭﺍﻟﻌﺎﳌﻴﺔ‪.‬‬
‫ﺇﻥ ﲨﻌﻴﺔ ﺍﻻﺗﺼﺎﻻﺕ ﺍﻟﺮﺍﺩﻳﻮﻳﺔ ﻟﻼﲢﺎﺩ ﺍﻟﺪﻭﱄ ﻟﻼﺗﺼﺎﻻﺕ‪،‬‬
‫ﺇﺫ ﺗﻀﻊ ﰲ ﺍﻋﺘﺒﺎﺭﻫﺎ‬
‫ﺃ (‬
‫ﺃﻥ ﻃﺎﻗﺔ ﺍﻟﺘﺮﺩﺩﺍﺕ ﺍﻟﺮﺍﺩﻳﻮﻳﺔ ﻣﻦ ﺷﺄﻬﻧﺎ ﺃﻥ ﺗﺆﺛﺮ ﰲ ﺟﺴﻢ ﺍﻹﻧﺴﺎﻥ ﺗﺄﺛﲑﹰﺍ ﺧﻄﲑﹰﺍ؛‬
‫ﺏ(‬
‫ﺃﻥ ﻃﺎﻗﺔ ﺍﻟﺘﺮﺩﺩﺍﺕ ﺍﻟﺮﺍﺩﻳﻮﻳﺔ ﻣﻦ ﺷﺄﻬﻧﺎ ﺃﻥ ﺗﺴﺘﺤﺚ ﰲ ﺍﳌﻮﺍﺩ ﺍﳌﻮﺻﻠﺔ ﻛﻤﻮﻧﺎﺕ ﻛﻬﺮﺑﺎﺋﻴﺔ ﻣﺆﺫﻳﺔ؛‬
‫ﺃﻥ ﻃﺎﻗﺔ ﺍﻟﺘﺮﺩﺩﺍﺕ ﺍﻟﺮﺍﺩﻳﻮﻳﺔ ﻣﻦ ﺷﺄﻬﻧﺎ ﺃﻥ ﺗﻮﻗﻊ ﺁﺛﺎﺭﹰﺍ ﻣﺆﺫﻳﺔ ﰲ ﺍﻷﺟﻬﺰﺓ )ﻣﺜﻞ ﺃﺟﻬﺰﺓ ﺍﻻﺗﺼﺎﻻﺕ ﺍﻟﺮﺍﺩﻳﻮﻳﺔ‪ ،‬ﻭﺃﺟﻬﺰﺓ‬
‫ﺝ(‬
‫ﺍﳌﻼﺣﺔ‪ ،‬ﻭﺍﻟﻨﺎﻇﻤﺎﺕ ﺍﻟﻘﻠﺒﻴﺔ‪ ،‬ﻭﺍﻟﺘﺠﻬﻴﺰﺍﺕ ﺍﻟﻌﻠﻤﻴﺔ ﺃﻭ ﺍﻟﻄﺒﻴﺔ‪ ،‬ﻭﻏﲑ ﺫﻟﻚ؛‬
‫ﺩ (‬
‫ﺃﻥ ﻣﻦ ﺷﺄﻥ ﻃﺎﻗﺔ ﺍﻟﺘﺮﺩﺩﺍﺕ ﺍﻟﺮﺍﺩﻳﻮﻳﺔ ﺃﻥ ﺗﺴﺒﺐ ﻋﺮﺿﹰﺎ ﺍﺣﺘﺮﺍﻕ ﻣﻮﺍﺩ ﻗﺎﺑﻠﺔ ﻟﻼﺷﺘﻌﺎﻝ ﺃﻭ ﺍﻻﻧﻔﺠﺎﺭ؛‬
‫ﺃﻥ ﲢﺪﻳﺪ ﺳﻮﻳﺎﺕ ﺍﻹﺷﻌﺎﻋﺎﺕ ﻭﺍﻟﻜﻤﻮﻧﺎﺕ ﺍﻟﻜﻬﺮﺑﺎﺋﻴﺔ ﺍﳋﻄﺮﺓ‪ ،‬ﻣﻦ ﺣﻴﺚ ﳏﺘﻮﻯ ﺍﻟﻄﻴﻒ‪ ،‬ﻭﺍﻟﺸﺪﺓ‪ ،‬ﻭﺍﻵﺛﺎﺭ‬
‫ه (‬
‫ﺍﻟﺘﺮﺍﻛﻤﻴﺔ‪ ،‬ﻭﻣﺎ ﺇﱃ ﺫﻟﻚ‪ ،‬ﺗﻘﻮﻡ ﺑﻪ ﺣﺎﻟﻴﹰﺎ ﺍﻟﺴﻠﻄﺎﺕ ﺍﳌﺨﺘﺼﺔ؛‬
‫ﺃﻥ ﺍﻟﺴﻠﻄﺎﺕ ﺍﳌﺨﺘﺼﺔ ﺗﻌﻤﻞ ﺣﺎﻟﻴﹰﺎ ﻋﻠﻰ ﲢﺪﻳﺪ ﺍﳌﻨﺎﻃﻖ ﺍﻟﱵ ﺗﺘﺠﺎﻭﺯ ﻓﻴﻬﺎ ﻗﻴﻢ ﳎﺎﻻﺕ ﺍﻟﺘﺮﺩﺩﺍﺕ ﺍﻟﺮﺍﺩﻳﻮﻳﺔ ﻭﺍﻟﻜﻤﻮﻧﺎﺕ‬
‫ﻭ (‬
‫ﺍﻟﻜﻬﺮﺑﺎﺋﻴﺔ ﺳﻮﻳﺎﺕ ﺍﻟﺴﻼﻣﺔ؛‬
‫ﺃﻥ ﺃﺷﺨﺎﺻﹰﺎ ﻻ ﻋﻼﻗﺔ ﳍﻢ ﻬﺑﺬﻩ ﺍﻷﻧﻈﻤﺔ ﻗﺪ ﻳﺘﻌﺮﺿﻮﻥ ﺑﺎﻟﺼﺪﻓﺔ ﳍﺬﻩ ﺍﻹﺷﻌﺎﻋﺎﺕ )ﻛﺎﳌﺴﺎﻓﺮﻳﻦ ﺟﻮﹰﺍ‪ ،‬ﻋﻠﻰ ﺳﺒﻴﻞ ﺍﳌﺜﺎﻝ(‬
‫ﺯ (‬
‫ﺃﻭ ﳍﺬﻩ ﺍﻟﻜﻤﻮﻧﺎﺕ ﺍﻟﻜﻬﺮﺑﺎﺋﻴﺔ؛‬
‫ﺃﻧﻪ ﻗﺪ ﻳُﻄﻠﹶﺐ ﻣﻦ ﺍﻟﻘﺎﺋﻤﲔ ﺑﺘﺸﻐﻴﻞ ﻭﺻﻴﺎﻧﺔ ﺃﻧﻈﻤﺔ ﺍﻹﺭﺳﺎﻝ ﺍﻟﺮﺍﺩﻳﻮﻱ ﺃﻥ ﻳﻌﻤﻠﻮﺍ ﰲ ﺍﳉﻮﺍﺭ ﺍﳌﺒﺎﺷﺮ ﳌﺼﺎﺩﺭ ﺇﺷﻌﺎﻉ‬
‫ﺡ(‬
‫ﺍﻟﺘﺮﺩﺩﺍﺕ ﺍﻟﺮﺍﺩﻳﻮﻳﺔ ﻫﺬﻩ؛‬
‫ﺗﻮﺻﻲ ﲟﺎ ﻳﻠﻲ‪:‬‬
‫ﺃﻥ ﻳُﺴﺘﻌﻤَﻞ ﺍﳌﻠﺤﻖ ‪ 1‬ﳍﺬﻩ ﺍﻟﺘﻮﺻﻴﺔ ﻟﺘﻘﻴﻴﻢ ﺍﺠﻤﻟﺎﻻﺕ ﺍﻟﻜﻬﺮﻣﻐﻨﻄﻴﺴﻴﺔ ﺍﻟﱵ ﺗﻮﻟﱢﺪﻫﺎ ﺃﻧﻈﻤﺔ ﺍﻹﺭﺳﺎﻝ ﺍﻹﺫﺍﻋﻲ ﻟﻸﺭﺽ‬
‫‪1‬‬
‫ﺍﻟﻌﺎﻣﻠﺔ ﰲ ﺃﻱ ﻧﻄﺎﻕ ﺗﺮﺩﺩ‪ ،‬ﻣﻦ ﺃﺟﻞ ﺗﻘﺪﻳﺮ ﺃﺛﺮ ﺍﻟﺘﻌﺮﺽ ﻟﻺﺷﻌﺎﻋﺎﺕ ﻏﲑ ﺍﳌﺆﻳﱢﻨﺔ‪.‬‬
‫‪2‬‬
‫ﺍﻟﺘﻮﺻﻴﺔ‬
‫‪ITU-R BS.1698‬‬
‫ﺍﳌﻠﺤﻖ‬
‫‪1‬‬
‫ﺗﻘﻴﻴﻢ ﺍﺠﻤﻟﺎﻻﺕ ﺍﻟﻨﺎﲨﺔ ﻋﻦ ﺃﻧﻈﻤﺔ ﺍﻹﺭﺳﺎﻝ ﺍﻹﺫﺍﻋﻲ ﻟﻸﺭﺽ‬
‫ﺍﻟﻌﺎﻣﻠﺔ ﰲ ﺃﻱ ﻧﻄﺎﻕ ﺗﺮﺩﺩ ﻣﻦ ﺃﺟﻞ ﺗﻘﺪﻳﺮ ﺃﺛﺮ ﺍﻟﺘﻌﺮﺽ‬
‫ﻟﻺﺷﻌﺎﻋﺎﺕ ﻏﲑ ﺍﳌﺆﻳﱢﻨﺔ‬
‫ﺍﶈﺘﻮﻳﺎﺕ‬
‫ﺍﻟﺼﻔﺤﺔ‬
‫‪1‬‬
‫ﻣﻘﺪﻣﺔ ‪........................................................................................‬‬
‫‪3‬‬
‫‪2‬‬
‫ﺧﺼﺎﺋﺺ ﺍﺠﻤﻟﺎﻻﺕ ﺍﻟﻜﻬﺮﻣﻐﻨﻄﻴﺴﻴﺔ ‪..............................................................‬‬
‫ﺧﺼﺎﺋﺺ ﺍﺠﻤﻟﺎﻝ ﺍﻟﻜﻬﺮﻣﻐﻨﻄﻴﺴﻲ ﺍﻟﻌﺎﻣﺔ ‪..................................................‬‬
‫‪1.2‬‬
‫‪ 1.1.2‬ﻣﻜﻮّﻧﺎﺕ ﺍﺠﻤﻟﺎﻝ ‪.............................................................‬‬
‫‪ 2.1.2‬ﺍﺠﻤﻟﺎﻝ ﺍﻟﺒﻌﻴﺪ ‪................................................................‬‬
‫‪ 3.1.2‬ﺍﺠﻤﻟﺎﻝ ﺍﻟﻘﺮﻳﺐ ‪...............................................................‬‬
‫‪ 4.1.2‬ﺍﻻﺳﺘﻘﻄﺎﺏ ‪................................................................‬‬
‫‪ 5.1.2‬ﺍﻟﺘﺸﻜﻴﻞ ‪...................................................................‬‬
‫‪ 6.1.2‬ﳐﻄﻄﺎﺕ ﺍﻟﺘﺪﺍﺧﻞ ‪..........................................................‬‬
‫ﺏ ﺍﳍﻮﺍﺋﻴﺎﺕ ﺍﻹﺫﺍﻋﻴﺔ ‪.............................................‬‬
‫ﺳﻮﻳﺎﺕ ﺷﺪﺓ ﺍﺠﻤﻟﺎﻝ ﻗﺮ َ‬
‫‪2.2‬‬
‫‪ 1.2.2‬ﻧﻄﺎﻗﺎﺕ ﺍﳌﻮﺟﺎﺕ ﺍﻟﻜﻴﻠﻮﻣﺘﺮﻳﺔ‪/‬ﺍﳍﻜﺘﻮﻣﺘﺮﻳﺔ )‪........ (kHz 1 605-150) (LF/MF‬‬
‫‪ 2.2.2‬ﻧﻄﺎﻗﺎﺕ ﺍﳌﻮﺟﺎﺕ ﺍﻟﺪﻳﻜﺎﻣﺘﺮﻳﺔ )‪............................ (MHz 30-3) (HF‬‬
‫‪ 3.2.2‬ﻧﻄﺎﻗﺎﺕ ﺍﳌﻮﺟﺎﺕ ﺍﳌﺘﺮﻳﺔ‪/‬ﺍﻟﺪﻳﺴﻴﻤﺘﺮﻳﺔ )‪........ (GHz 3-MHz 30) (VHF/UHF‬‬
‫‪ 4.2.2‬ﻧﻄﺎﻗﺎﺕ ﺍﳌﻮﺟﺎﺕ ﺍﻟﺴﻨﺘﻴﻤﺘﺮﻳﺔ )‪........................... (GHz 30-3) (SHF‬‬
‫ﺍﺠﻤﻟﺎﻝ ﺍﳌﺨﺘﻠﻄﺔ ﻓﻴﻪ ﺍﻟﺘﺮﺩﺩﺍﺕ ‪...........................................................‬‬
‫‪3.2‬‬
‫ﺍﺠﻤﻟﺎﻻﺕ ﺍﻟﻜﻬﺮﻣﻐﻨﻄﻴﺴﻴﺔ )‪ (EMF‬ﺩﺍﺧﻞ ﺍﳌﺒﺎﱐ ‪...........................................‬‬
‫‪4.2‬‬
‫‪4‬‬
‫‪3‬‬
‫ﺍﳊﺴﺎﺑﺎﺕ ‪.....................................................................................‬‬
‫ﺍﻹﺟﺮﺍﺀﺍﺕ ‪...........................................................................‬‬
‫‪1.3‬‬
‫‪ 1.1.3‬ﺣﻠﻮﻝ ﺍﳊﻠﻘﺔ ﺍﳌﻐﻠﻘﺔ ‪.........................................................‬‬
‫‪ 2.1.3‬ﺍﻹﺟﺮﺍﺀﺍﺕ ﺍﻟﺮﻗﻤﻴﺔ ‪..........................................................‬‬
‫‪4‬‬
‫ﺍﻟﻘﻴﺎﺳﺎﺕ ‪.....................................................................................‬‬
‫ﺍﻹﺟﺮﺍﺀﺍﺕ ‪...........................................................................‬‬
‫‪1.4‬‬
‫‪ 1.1.4‬ﻧﻄﺎﻗﺎﺕ ﺍﳌﻮﺟﺎﺕ ﺍﻟﻜﻴﻠﻮﻣﺘﺮﻳﺔ‪/‬ﺍﳍﻜﺘﻮﻣﺘﺮﻳﺔ )‪........................... (LF/MF‬‬
‫‪ 2.1.4‬ﻧﻄﺎﻗﺎﺕ ﺍﳌﻮﺟﺎﺕ ﺍﻟﺪﻳﻜﺎﻣﺘﺮﻳﺔ )‪.......................................... (HF‬‬
‫‪4‬‬
‫‪4‬‬
‫‪4‬‬
‫‪7‬‬
‫‪7‬‬
‫‪7‬‬
‫‪13‬‬
‫‪13‬‬
‫‪13‬‬
‫‪13‬‬
‫‪14‬‬
‫‪14‬‬
‫‪16‬‬
‫‪16‬‬
‫‪17‬‬
‫‪17‬‬
‫‪17‬‬
‫‪18‬‬
‫‪20‬‬
‫‪20‬‬
‫‪20‬‬
‫‪21‬‬
‫ﺍﻟﺘﻮﺻﻴﺔ‬
‫‪3‬‬
‫‪ITU-R BS.1698‬‬
‫ﺍﻟﺼﻔﺤﺔ‬
‫‪3.1.4‬‬
‫ﻧﻄﺎﻕ ﺍﳌﻮﺟﺎﺕ ﺍﳌﺘﺮﻳﺔ‪/‬ﺍﻟﺪﻳﺴﻴﻤﺘﺮﻳﺔ )‪.............................. (VHF/UHF‬‬
‫‪21‬‬
‫‪4.1.4‬‬
‫‪...........................................‬‬
‫‪21‬‬
‫ﺍﻷﺩﻭﺍﺕ ‪.............................................................................‬‬
‫‪21‬‬
‫‪1.2.4‬‬
‫ﻣﻘﺪﻣﺔ ‪.....................................................................‬‬
‫‪21‬‬
‫‪2.2.4‬‬
‫ﺧﺼﺎﺋﺺ ﺃﺩﻭﺍﺕ ﺍﻟﻘﻴﺎﺱ ﻟﻜﻞ ﻣﻦ ﺍﺠﻤﻟﺎﻟﲔ ﺍﻟﻜﻬﺮﺑﺎﺋﻲ ﻭﺍﳌﻐﻨﻄﻴﺴﻲ ‪................‬‬
‫‪22‬‬
‫‪3.2.4‬‬
‫ﺃﳕﺎﻁ ﻭﻣﻮﺍﺻﻔﺎﺕ ﺍﻷﺩﻭﺍﺕ ﺍﻟﻀﻴﻘﺔ ﺍﻟﻨﻄﺎﻕ ‪....................................‬‬
‫‪23‬‬
‫ﻣﻘﺎﺭﻧﺔ ﺑﲔ ﺍﻟﺘﻮﻗﻌﺎﺕ ﻭﺍﻟﻘﻴﺎﺳﺎﺕ ‪.......................................................‬‬
‫‪24‬‬
‫ﺍﻟﺘﺪﺍﺑﲑ ﺍﻻﺣﺘﺮﺍﺳﻴﺔ ﺍﻟﻮﺍﺟﺒﺔ ﰲ ﳏﻄﺎﺕ ﺍﻹﺭﺳﺎﻝ ﻭﰲ ﺟﻮﺍﺭﻫﺎ ‪.......................................‬‬
‫‪24‬‬
‫ﺍﻟﺘﺪﺍﺑﲑ ﺍﻻﺣﺘﺮﺍﺳﻴﺔ ﻟﻠﺘﺨﻔﻴﻒ ﻣﻦ ﺍﻵﺛﺎﺭ ﺍﳌﺒﺎﺷﺮﺓ ﻹﺷﻌﺎﻋﺎﺕ ﺍﻟﺘﺮﺩﺩﺍﺕ ﺍﻟﺮﺍﺩﻳﻮﻳﺔ ﻋﻠﻰ ﺍﻟﺼﺤﺔ ‪.‬‬
‫‪24‬‬
‫‪1.1.5‬‬
‫ﺍﻟﺘﺪﺍﺑﲑ ﺍﻻﺣﺘﺮﺍﺳﻴﺔ ﲞﺼﻮﺹ ﺍﳌﻮﻇﻔﲔ )ﺍﻟﻌﺎﻣﻠﲔ( ‪...............................‬‬
‫‪25‬‬
‫‪2.1.5‬‬
‫ﺍﻟﺘﺪﺍﺑﲑ ﺍﻻﺣﺘﺮﺍﺳﻴﺔ ﲞﺼﻮﺹ ﻋﺎﻣﺔ ﺍﳉﻤﻬﻮﺭ ‪....................................‬‬
‫‪26‬‬
‫ﺍﻟﺘﺪﺍﺑﲑ ﺍﻻﺣﺘﺮﺍﺳﻴﺔ ﻟﻠﺘﺨﻔﻴﻒ ﻣﻦ ﺍﻵﺛﺎﺭ ﻏﲑ ﺍﳌﺒﺎﺷﺮﺓ ﻟﻺﺷﻌﺎﻋﺎﺕ ﺍﻟﺮﺍﺩﻳﻮﻳﺔ ‪..................‬‬
‫‪26‬‬
‫ﺍﻟﺘﺬﻳﻴﻞ ‪ 1‬ﻟﻠﻤﻠﺤﻖ ‪ - 1‬ﺃﻣﺜﻠﺔ ﻋﻠﻰ ﺷﺪﺩ ﳎﺎﻝ ﻗﺮﻳﺐ ﻣﻦ ﻫﻮﺍﺋﻴﺎﺕ ﺍﻹﺭﺳﺎﻝ‪ ،‬ﻗﻴﻤﻬﺎ ﳏﺼﱠﻠﺔ ﺑﺎﳊﺴﺎﺏ ‪..............‬‬
‫‪27‬‬
‫ﺍﻟﺘﺬﻳﻴﻞ ‪ 2‬ﻟﻠﻤﻠﺤﻖ ‪ - 1‬ﻣﻘﺎﺭﻧﺔ ﺑﲔ ﻧﺘﺎﺋﺞ ﺍﻟﺘﻮﻗﻌﺎﺕ ﻭﻧﺘﺎﺋﺞ ﺍﻟﻘﻴﺎﺳﺎﺕ ‪..........................................‬‬
‫‪41‬‬
‫ﺍﻟﺘﺬﻳﻴﻞ ‪ 3‬ﻟﻠﻤﻠﺤﻖ ‪ - 1‬ﺍﳊﺪﻭﺩ ﻭﺍﻟﺴﻮﻳﺎﺕ ‪.................................................................‬‬
‫‪62‬‬
‫ﺍﻟﺘﺬﻳﻴﻞ ‪ 4‬ﻟﻠﻤﻠﺤﻖ ‪ - 1‬ﻃﺮﺍﺋﻖ ﺗﻘﻴﻴﻢ ﺃﺧﺮﻯ ‪................................................................‬‬
‫‪71‬‬
‫ﺍﻟﺘﺬﻳﻴﻞ ‪ 5‬ﻟﻠﻤﻠﺤﻖ ‪ - 1‬ﺍﻷﺟﻬﺰﺓ ﺍﻹﻟﻜﺘﺮﻭﻧﻴﺔ ﺍﻟﻄﺒﻴﺔ ‪..........................................................‬‬
‫‪75‬‬
‫ﺍﻟﺘﺬﻳﻴﻞ ‪ 6‬ﻟﻠﻤﻠﺤﻖ ‪ - 1‬ﻣﺮﺍﺟﻊ ﺑﻴﺒﻠﻴﻮﻏﺮﺍﻓﻴﺔ ‪.................................................................‬‬
‫‪76‬‬
‫‪2.4‬‬
‫‪3.4‬‬
‫‪5‬‬
‫‪1.5‬‬
‫‪2.5‬‬
‫‪1‬‬
‫ﻧﻄﺎﻕ ﺍﳌﻮﺟﺎﺕ ﺍﻟﺴﻨﺘﻴﻤﺘﺮﻳﺔ‬
‫)‪(SHF‬‬
‫ﻣﻘﺪﻣﺔ‬
‫ﻣﺎ ﺯﺍﻝ ﻣﻮﺿﻮﻉ ﺁﺛﺎﺭ ﺍﻹﺷﻌﺎﻋﺎﺕ ﺍﻟﻜﻬﺮﻣﻐﻨﻄﻴﺴﻴﺔ ﻳُﺪﺭَﺱ ﻣﻨﺬ ﺳﻨﲔ‪ ،‬ﻭُﺑﺬِﻟﺖ ﳏﺎﻭﻻﺕ ﰲ ﺳﺒﻴﻞ ﺗﻜﻤﻴﺔ ﺣﺪﻭﺩ ﻣﻌﻴﱠﻨﺔ ﳝﻜﻦ‬
‫ﺍﺳﺘﻌﻤﺎﳍﺎ ﳊﻤﺎﻳﺔ ﺍﻟﺒﺸﺮ ﻣﻦ ﺍﻵﺛﺎﺭ ﻏﲑ ﺍﳌﺮﻏﻮﺑﺔ ﳍﺬﻩ ﺍﻹﺷﻌﺎﻋﺎﺕ‪ .‬ﻭﺃﺳﻔﺮﺕ ﺩﺭﺍﺳﺎﺕ ﺃﺟﺮﻬﺗﺎ ﻣﻨﻈﻤﺎﺕ ﳐﺘﻠﻔﺔ ﰲ ﺑﻠﺪﺍﻥ ﻋﺪﻳﺪﺓ‬
‫ﺕ ﲟﻌﻴﺎﺭ ﻭﺍﺣﺪ ﰲ ﻫﺬﺍ‬
‫ﻋﻦ ﻭﺿﻊ ﺗﻨﻈﻴﻤﺎﺕ ﺇﺩﺍﺭﻳﺔ ﻣﺘﻨﻮﻋﺔ‪ .‬ﻭﻣﻦ ﺍﳉﺪﻳﺮ ﺑﺎﳌﻼﺣﻈﺔ ﻭﺍﻟﺴﺎﺋﻎ ﻓﻬﻤﻪ ﺃﻥ ﻛﻞ ﺗﻠﻚ ﺍﳉﻬﻮﺩ ﱂ ﺗﺄ ِ‬
‫ﺍﺠﻤﻟﺎﻝ‪.‬‬
‫ﻓﺎﻟﻐﺮﺽ ﻣﻦ ﻫﺬﻩ ﺍﻟﺘﻮﺻﻴﺔ ﻫﻮ ﻭﺿﻊ ﺃﺳﺎﺱ ﳊﺴﺎﺏ ﻭﺗﻘﺪﻳﺮ ﻗﻴﻢ ﺍﻹﺷﻌﺎﻋﺎﺕ ﺍﻟﻜﻬﺮﻣﻐﻨﻄﻴﺴﻴﺔ ﺍﻟﻨﺎﲨﺔ ﻋﻦ ﳏﻄﺔ ﺇﺫﺍﻋﺔ‪ ،‬ﻋﻠﻰ‬
‫ﻣﺴﺎﻓﺎﺕ ﻣﻌﻴﱠﻨﺔ ﻣﻦ ﻣﻮﻗﻊ ﺍﻹﺭﺳﺎﻝ‪ .‬ﻭﻫﺬﻩ ﺍﳌﻌﻠﻮﻣﺎﺕ ﺗﺴﺘﺨﺪﻣﻬﺎ ﺍﳌﻨﻈﻤﺎﺕ ﺍﳌﺴﺆﻭﻟﺔ ﻟﻮﺿﻊ ﻣﻌﺎﻳﲑ ﻣﻼﺋﻤﺔ ﺗُﺴﺘﻌﻤَﻞ ﳊﻤﺎﻳﺔ ﺍﻟﻨﺎﺱ‬
‫ﺍﻟﺘﻮﺻﻴﺔ‬
‫‪4‬‬
‫‪ITU-R BS.1698‬‬
‫ﻣﻦ ﺍﻟﺘﻌﺮﺽ ﻏﲑ ﺍﳌﺮﻏﻮﺏ ﻓﻴﻪ ﻟﻺﺷﻌﺎﻋﺎﺕ ﺍﳌﺆﺫﻳﺔ‪ .‬ﺃﻣﺎ ﺍﻟﻘﻴﻢ ﺍﻟﻔﻌﻠﻴﺔ ﺍﻟﻼﺯﻡ ﺗﻄﺒﻴﻘﻬﺎ ﲝﺴﺐ ﺃﻱ ﺗﻨﻈﻴﻢ ﻓﺘﻈﻞ ﺑﺎﻟﻄﺒﻊ ﻣﺮﻫﻮﻧﺔ‬
‫ﺑﺎﻟﻘﺮﺍﺭﺍﺕ ﺍﻟﱵ ﺗﺘﻮﺻﻞ ﺇﻟﻴﻬﺎ ﺍﳍﻴﺌﺎﺕ ﺍﻟﺼﺤﻴﺔ ﺍﳌﻌﻨﻴﺔ‪ ،‬ﺍﻟﻮﻃﻨﻴﺔ ﻣﻨﻬﺎ ﻭﺍﻟﻌﺎﳌﻴﺔ‪.‬‬
‫ﻳﺴﺘﺮﻋﻰ ﺍﻻﻧﺘﺒﺎﻩ ﺇﱃ ﺃﻥ ﺗﻮﺻﻴﺔ ﻗﻄﺎﻉ ﺍﻻﺗﺼﺎﻻﺕ ﺍﻟﺮﺍﺩﻳﻮﻳﺔ )‪ (ITU-R‬ﻫﺬﻩ ﻭﺗﻮﺻﻴﺎﺕ ﻗﻄﺎﻉ ﺗﻘﻴﻴﺲ ﺍﻻﺗﺼﺎﻻﺕ )‪(ITU-T‬‬
‫ﻼ ﻣﻨﻬﺎ ﺗﺮﻛﺰ ﻋﻠﻰ ﺟﻮﺍﻧﺐ ﳐﺘﻠﻔﺔ ﻣﻦ ﺍﳌﻮﺿﻮﻉ ﺍﻟﻌﺎﻡ ﻧﻔﺴﻪ‪ .‬ﻓﻌﻠﻰ ﺳﺒﻴﻞ ﺍﳌﺜﺎﻝ‪ ،‬ﺇﻥ ﺍﻟﺘﻮﺻﻴﺘﲔ‬
‫ﺗﻐﻄﻲ ﻣﻮﺍﺩ ﻣﺘﺸﺎﻬﺑﺔ‪ ،‬ﻭﻟﻜﻦ ﻛ ﹰ‬
‫‪) ،ITU-T K.52‬ﺗﻮﺟﻴﻬﺎﺕ ﺑﺸﺄﻥ ﺍﻟﻘﻴﻢ ﺍﳊﺪﻳﺔ ﻟﺴﻼﻣﺔ ﺗﻌﺮﺽ ﺍﻷﺷﺨﺎﺹ ﻟﻠﻤﺠﺎﻻﺕ ﺍﻟﻜﻬﺮﻣﻐﻨﻄﻴﺴﻴﺔ( ﻭ‪ITU-T K.61‬‬
‫)ﺗﻮﺟﻴﻬﺎﺕ ﺑﺸﺄﻥ ﻗﻴﺎﺱ ﻭﺗﻮﻗﻊ ﺍﺠﻤﻟﺎﻻﺕ ﺍﻟﻜﻬﺮﻣﻐﻨﻄﻴﺴﻴﺔ ﺭﻗﻤﻴﹰﺎ ﻣﻦ ﺃﺟﻞ ﺍﻟﺘﻘﻴّﺪ ﺑﺎﻟﻘﻴﻢ ﺍﳊﺪﻳﺔ ﻟﺴﻼﻣﺔ ﺗﻌﺮﺽ ﺍﻷﺷﺨﺎﺹ‬
‫ﻹﺷﻌﺎﻋﺎﺕ ﻣﻨﺸﺂﺕ ﺍﻻﺗﺼﺎﻻﺕ(‪ ،‬ﺗﻮﻓﺮﺍﻥ ﺗﻮﺟﻴﻬﺎﺕ ﺑﺸﺄﻥ ﺍﻟﺘﻘﻴﺪ ﲝﺪﻭﺩ ﺍﻟﺴﻼﻣﺔ ﰲ ﺍﻟﺘﻌﺮﺽ ﻹﺷﻌﺎﻋﺎﺕ ﻣﻨﻈﻮﻣﺎﺕ ﺍﻻﺗﺼﺎﻻﺕ‪.‬‬
‫ﻭﺗﺮﺩ ﰲ ﺍﻟﺘﺬﻳﻴﻞ ‪ 6‬ﻣﻌﻠﻮﻣﺎﺕ ﻋﻦ ﺍﳌﺮﺍﺟﻊ ﺫﺍﺕ ﺍﻟﺼﻠﺔ‪.‬‬
‫‪2‬‬
‫ﺧﺼﺎﺋﺺ ﺍﺠﻤﻟﺎﻻﺕ ﺍﻟﻜﻬﺮﻣﻐﻨﻄﻴﺴﻴﺔ‬
‫‪1.2‬‬
‫ﺧﺼﺎﺋﺺ ﺍﺠﻤﻟﺎﻝ ﺍﻟﻜﻬﺮﻣﻐﻨﻄﻴﺴﻲ ﺍﻟﻌﺎﻣﺔ‬
‫ﻳﻌﻄﻲ ﻫﺬﺍ ﺍﻟﻘﺴﻢ ﶈﺔ ﺷﺎﻣﻠﺔ ﻋﻦ ﺧﺼﺎﺋﺺ ﻣﻌﻴﱠﻨﺔ ﻣﻦ ﺧﺼﺎﺋﺺ ﺍﺠﻤﻟﺎﻝ ﺍﻟﻜﻬﺮﻣﻐﻨﻄﻴﺴﻲ )ﺍﺠﻤﻟﺎﻝ ‪ (EM‬ﳍﺎ ﺻﻠﺔ ﻬﺑﺬﻩ ﺍﻟﺘﻮﺻﻴﺔ‪،‬‬
‫ﻭﻻ ﺳﻴﻤﺎ ﺍﻟﺘﻤﻴﻴﺰ ﺑﲔ ﺍﺠﻤﻟﺎﻝ ﺍﻟﻘﺮﻳﺐ ﻭﺍﺠﻤﻟﺎﻝ ﺍﻟﺒﻌﻴﺪ‪ .‬ﻭﻳﻌﺮﺽ ﻫﺬﺍ ﺍﻟﻘﺴﻢ ﻣﻌﺎﺩﻻﺕ ﺑﺴﻴﻄﺔ ﻣﺸﺘﻘﺔ ﻣﻦ ﺃﺟﻞ ﺣﺴﺎﺏ ﻛﺜﺎﻓﺔ ﺍﻟﻘﺪﺭﺓ‬
‫ﻭﺷﺪﺓ ﺍﺠﻤﻟﺎﻝ ﰲ ﻣﻨﻄﻘﺔ ﺍﺠﻤﻟﺎﻝ ﺍﻟﺒﻌﻴﺪﺓ‪ ،‬ﻭﻳﺄﰐ ﰲ ﺧﺘﺎﻡ ﺍﻟﻘﺴﻢ ﺗﻌﺮﻳﻒ ﳐﻄ ﹶﻄ ْﻲ ﺍﻻﺳﺘﻘﻄﺎﺏ ﻭﺍﻟﺘﺪﺍﺧﻞ‪.‬‬
‫‪1.1.2‬‬
‫ﻣﻜﻮﱢﻧﺎﺕ ﺍﺠﻤﻟﺎﻝ‬
‫ﻳﺘﺄﻟﻒ ﺍﺠﻤﻟﺎﻝ ‪ EM‬ﺍﻟﻨﺎﺟﻢ ﻋﻦ ﺇﺷﻌﺎﻉ ﻫﻮﺍﺋﻲ ﻣﺎ‪ ،‬ﻣﻦ ﻣﻜﻮﱢﻧﺎﺕ ﳎﺎﻝ ﻛﻬﺮﺑﺎﺋﻲ ﻭﻣﻐﻨﻄﻴﺴﻲ ﻣﺘﻨﻮﻋﺔ ﺗﺘﻮﻫﱠﻦ ﺗﺒﻌﹰﺎ ﻟﻠﻤﺴﺎﻓﺔ ‪ r‬ﻋﻦ‬
‫ﺍﳌﺼﺪﺭ‪ .‬ﻭﺍﳌﻜﻮﻧﺎﺕ ﺍﻟﺮﺋﻴﺴﻴﺔ ﻫﻲ‪:‬‬
‫‪-‬‬
‫ﺍﺠﻤﻟﺎﻝ ﺍﻟﺒﻌﻴﺪ )‪ ،(Fraunhofer‬ﻭﻳُﺴﻤّﻰ ﺃﻳﻀﹰﺎ ﳎﺎﻝ ﺍﻹﺷﻌﺎﻉ‪ ،‬ﻳﺘﻨﺎﻗﺺ ﻓﻴﻪ ﺍﺗﺴﺎﻉ ﺍﺠﻤﻟﺎﻻﺕ ﲟﻌﺪﻝ ‪1/r‬؛‬
‫‪-‬‬
‫ﳊﺜﹼﻲ‪ .‬ﺑﻨﻴﺔ ﻫﺬﺍ ﺍﺠﻤﻟﺎﻝ ﻣﺮﻫﻮﻧﺔ ﺇﱃ ﺣﺪ ﻛﺒﲑ ﺑﺸﻜﻞ ﺍﳍﻮﺍﺋﻲ‬
‫ﺍﺠﻤﻟﺎﻝ ﺍﻟﻘﺮﻳﺐ ﻟﻺﺷﻌﺎﻉ )‪ ،(Fresnel‬ﻭﻳﺴﻤﻰ ﺃﻳﻀﹰﺎ ﺍﺠﻤﻟﺎﻝ ﺍ ﹶ‬
‫ﻭﻗﺪّﻩ ﻭﳕﻄﻪ‪ ،‬ﻋﻠﻰ ﺍﻟﺮﻏﻢ ﻣﻦ ﺃﻥ ﻣﻌﺎﻳﲑ ﻣﺘﻨﻮﻋﺔ ﻭﺿﻌﺖ ﻭﺷﺎﻉ ﺍﺳﺘﻌﻤﺎﳍﺎ ﻟﺘﺤﺪﻳﺪ ﺳﻠﻮﻙ ﻫﺬﺍ ﺍﺠﻤﻟﺎﻝ؛‬
‫‪-‬‬
‫ﺍﺠﻤﻟﺎﻝ ﺍﻟﻘﺮﻳﺐ ﺍﳌﺘﻔﺎﻋﻞ )‪ ،(Rayleigh‬ﻭﻳﺴﻤﻰ ﺃﻳﻀﹰﺎ ﺍﺠﻤﻟﺎﻝ ﺷﺒﻪ ﺍﻟﺴﻜﻮﱐ‪ ،‬ﻳﺘﻨﺎﻗﺺ ﲟﻌﺪﻝ ‪.1/r3‬‬
‫ﲟﺎ ﺃﻥ ﺍﺠﻤﻟﺎﻝ ﺍﳊﺜﻲ ﻭﺍﺠﻤﻟﺎﻝ ﺷﺒﻪ ﺍﻟﺴﻜﻮﱐ ﻳﺘﻮﻫّﻨﺎﻥ ﺳﺮﻳﻌﹰﺎ ﻣﻊ ﺗﺒﺎﻋﺪ ﺍﳌﺴﺎﻓﺔ ﻋﻦ ﻣﺼﺪﺭ ﺍﻹﺷﻌﺎﻉ‪ ،‬ﻓﺄﳘﻴﺘﻬﻤﺎ ﳏﺼﻮﺭﺓ ﰲ ﻗﺮﻬﺑﻤﺎ ﻣﻦ‬
‫ﻫﻮﺍﺋﻲ ﺍﻹﺭﺳﺎﻝ – ﰲ ﻣﺎ ﻳﺴﻤّﻰ ﲟﻨﻄﻘﺔ ﺍﺠﻤﻟﺎﻝ ﺍﻟﻘﺮﻳﺐ‪.‬‬
‫ﺃﻣﺎ ﳎﺎﻝ ﺍﻹﺷﻌﺎﻉ ﻓﻬﻮ ﺍﻟﻌﻨﺼﺮ ﺍﻟﻐﺎﻟﺐ ﰲ ﻣﺎ ﻳﺴﻤّﻰ ﲟﻨﻄﻘﺔ ﺍﺠﻤﻟﺎﻝ ﺍﻟﺒﻌﻴﺪ‪ .‬ﻓﻤﺠﺎﻝ ﺍﻹﺷﻌﺎﻉ ﻫﻮ ﺍﻟﺬﻱ ﳛﻤﻞ ﺑﺎﻟﻔﻌﻞ ﺍﻹﺷﺎﺭﺍﺕ‬
‫ﺍﻟﺮﺍﺩﻳﻮﻳﺔ ﺃﻭ ﺍﻟﺘﻠﻔﺰﻳﻮﻧﻴﺔ ﻣﻦ ﺍﳌﺮﺳِﻞ ﺇﱃ ﻣﺴﺘﻘﺒﹺﻞ ﺑﻌﻴﺪ‪.‬‬
‫‪2.1.2‬‬
‫ﺍﺠﻤﻟﺎﻝ ﺍﻟﺒﻌﻴﺪ‬
‫ﰲ ﻣﻨﻄﻘﺔ ﺍﺠﻤﻟﺎﻝ ﺍﻟﺒﻌﻴﺪ‪ ،‬ﻳﺘﺴﻢ ﺍﺠﻤﻟﺎﻝ ﺍﻟﻜﻬﺮﻣﻐﻨﻄﻴﺴﻲ ﺑﻐﻠﺒﺔ ﺍﳌﻮﺟﺔ ﺍﳌﺴﺘﻮﻳﺔ‪ .‬ﻭﻫﺬﺍ ﻳﻌﲏ ﺃﻥ ﺍﺠﻤﻟﺎﻝ ﺍﻟﻜﻬﺮﺑﺎﺋﻲ ﻭﺍﺠﻤﻟﺎﻝ ﺍﳌﻐﻨﻄﻴﺴﻲ‬
‫ﻣﻄﺎﻭَﺭﺍﻥ‪ ،‬ﻭﺃﻥ ﺍﻟﻨﺴﺒﺔ ﺑﲔ ﺍﺗﺴﺎ َﻋﻴْﻬﻤﺎ ﺛﺎﺑﺘﺔ‪ .‬ﻭﺑﺎﻹﺿﺎﻓﺔ ﺇﱃ ﺫﻟﻚ‪ ،‬ﻳﺸﻜﻞ ﺍﺠﻤﻟﺎﻝ ﺍﻟﻜﻬﺮﺑﺎﺋﻲ ﻭﺍﺠﻤﻟﺎﻝ ﺍﳌﻐﻨﻄﻴﺴﻲ ﺯﺍﻭﻳﺔ ﻗﺎﺋﻤﺔ‪،‬‬
‫ﻭﻳﻘﻌﺎﻥ ﰲ ﻣﺴﺘ ﹴﻮ ﻋﻤﻮﺩﻱ ﻋﻠﻰ ﺍﲡﺎﻩ ﺍﻻﻧﺘﺸﺎﺭ‪.‬‬
‫ﻭﻛﺜﲑﹰﺍ ﻣﺎ ﻳُﻌﺘﺒَﺮ ﺃﻥ ﺷﺮﻭﻁ ﺍﺠﻤﻟﺎﻝ ﺍﻟﺒﻌﻴﺪ ﺗﻨﻄﺒﻖ ﻋﻠﻰ ﻣﺴﺎﻓﺎﺕ ﺃﻛﱪ ﻣﻦ ‪ ،2D2/λ‬ﺣﻴﺚ‬
‫ﺍﻷﻗﺼﻰ‪.‬‬
‫‪D‬‬
‫ﺑﲔ ﺃﺑﻌﺎﺩ ﺍﳍﻮﺍﺋﻲ ﻫﻮ ﺍﻟﺒﻌﺪ ﺍﳋﻄﻲ‬
‫ﺍﻟﺘﻮﺻﻴﺔ‬
‫‪5‬‬
‫‪ITU-R BS.1698‬‬
‫ﻭﻟﻜﻦ ﳚﺐ ﺗﻮﺧّﻲ ﺍﻻﺣﺘﺮﺍﺱ ﻋﻨﺪ ﺗﻄﺒﻴﻖ ﻫﺬﺍ ﺍﻟﺸﺮﻁ ﻋﻠﻰ ﻫﻮﺍﺋﻴﺎﺕ ﺇﺫﺍﻋﻴﺔ‪ ،‬ﻟﺴﺒﺒﲔ ﳘﺎ‪:‬‬
‫‪-‬‬
‫ﺃﻥ ﻫﺬﺍ ﺍﻟﺸﺮﻁ ﻣﺴﺘَﺨﺮَﺝ ﻣﻦ ﺍﻋﺘﺒﺎﺭﺍﺕ ﺗﺘﻌﻠﻖ ﺑﺎﳍﻮﺍﺋﻴﺎﺕ ﺍﳌﺴﺘﻮﻳﺔ؛‬
‫‪-‬‬
‫ﻣﻦ ﺍﳌﻔﺘﺮﺽ ﺃﻥ ‪ D‬ﻛﺒﲑ ﻗﻴﺎﺳﹰﺎ ﺇﱃ ‪.λ‬‬
‫ﻓﺤﻴﺜﻤﺎ ﺍﻧﻌﺪﻡ ﺍﻟﻮﻓﺎﺀ ﺑﺎﻟﺸﺮﻭﻁ ﺍﳌﺬﻛﻮﺭﺓ ﺃﻋﻼﻩ‪ ،‬ﻟﺰﻡ ﺍﺳﺘﻌﻤﺎﻝ ﻣﺴﺎﻓﺔ ﺃﻛﱪ ﻣﻦ ‪ λ 10‬ﲞﺼﻮﺹ ﺍﺠﻤﻟﺎﻝ ﺍﻟﺒﻌﻴﺪ‪.‬‬
‫‪1.2.1.2‬‬
‫ﻛﺜﺎﻓﺔ ﺍﻟﻘﺪﺭﺓ‬
‫ﺠ َﻬ ْﻲ ﺍﳌﻜﻮﱢﻥ ﺍﻟﻜﻬﺮﺑﺎﺋﻲ‪ ،E ،‬ﻭﺍﳌﻜﻮﱢﻥ‬
‫ﻳُﺤﺼﱠﻞ ﻣﱠﺘﺠﹺﻪ ﻛﺜﺎﻓﺔ ﺍﻟﻘﺪﺭﺓ ﺠﻤﻟﺎﻝ ﻛﻬﺮﻣﻐﻨﻄﻴﺴﻲ‪ ،‬ﻣﺘﺠﻪ ‪ ،S ،Poynting‬ﻣﻦ ﺿﺮﺏ ﻣﱠﺘ ﹺ‬
‫ﺍﳌﻐﻨﻄﻴﺴﻲ‪ ،H ،‬ﻟﻠﻤﺠﺎﻝ ﺍﻟﻜﻬﺮﻣﻐﻨﻄﻴﺴﻲ ﺍﳌﻘﺼﻮﺩ‪ ،‬ﺃﻱ‪:‬‬
‫‪S=E×H‬‬
‫)‪(1‬‬
‫ﺣﲔ ﺗﺘﻬﻴﺄ ﰲ ﺍﺠﻤﻟﺎﻝ ﺍﻟﺒﻌﻴﺪ ﻇﺮﻭﻑ ﻣُﺜﻠﻰ‪ ،‬ﺣﻴﺚ ﻻ ﺗﺄﺛﲑ ﺫﺍ ﺷﺄﻥ ﻣﻦ ﺟﻬﺔ ﺍﻷﺭﺽ ﺃﻭ ﺍﳊﻮﺍﺟﺰ‪ ،‬ﳝﻜﻦ ﺗﺒﺴﻴﻂ ﻫﺬﻩ ﺍﳌﻌﺎﺩﻟﺔ‪ ،‬ﻷﻥ‬
‫ﺍﺠﻤﻟﺎﻟﲔ ﺍﻟﻜﻬﺮﺑﺎﺋﻲ ﻭﺍﳌﻐﻨﻄﻴﺴﻲ ﻭﺍﲡﺎﻩ ﺍﻻﻧﺘﺸﺎﺭ ﺗﻜﻮﻥ ﻛﻠﻬﺎ ﻣﺘﻌﺎﻣﺪﺓ‪ .‬ﻭﺑﺎﻹﺿﺎﻓﺔ ﺇﱃ ﺫﻟﻚ ﺗﻜﻮﻥ ﺍﻟﻨﺴﺒﺔ ﺑﲔ ﺍﺗﺴﺎ َﻋ ْﻲ ﺷﺪَﺗ ْﻲ ﺍﺠﻤﻟﺎﻝ‬
‫ﺍﻟﻜﻬﺮﺑﺎﺋﻲ‪ ،E ،‬ﻭﺍﺠﻤﻟﺎﻝ ﺍﳌﻐﻨﻄﻴﺴﻲ‪ ،H ،‬ﻗﻴﻤﺔ ﺛﺎﺑﺘﺔ‪ ،Z0 ،‬ﻣﻌﺮﻭﻓﺔ ﺑﺄﻬﻧﺎ ﺍﳌﻌﺎﻭﻗﺔ ﺍﳌﻤﻴﱢﺰﺓ ﻟﻠﻔﻀﺎﺀ ﺍﳊﺮ‪ ،1‬ﻭﺃﻬﻧﺎ ﺗﻀﺎﻫﻲ ‪Ω 377‬‬
‫)ﺃﻭ ‪.(Ω 120 π‬‬
‫ﻭﻫﻜﺬﺍ ﻓﻔﻲ ﻣﻨﻄﻘﺔ ﺍﺠﻤﻟﺎﻝ ﺍﻟﺒﻌﻴﺪ‪ ،‬ﲢﺼﻞ ﻛﺜﺎﻓﺔ ﺍﻟﻘﺪﺭﺓ‪ ،S ،‬ﰲ ﺍﻟﻔﻀﺎﺀ ﺍﳊﺮ‪ ،‬ﲝﻞ ﺍﳌﻌﺎﺩﻟﺔ ﺍﻟﺘﺎﻟﻴﺔ‪:‬‬
‫‪S = E 2/Z = H 2 Z0‬‬
‫)‪(2‬‬
‫ﻭﳝﻜﻦ ﺣﺴﺎﺏ ﻛﺜﺎﻓﺔ ﺍﻟﻘﺪﺭﺓ ﰲ ﺍﺠﻤﻟﺎﻝ ﺍﻟﺒﻌﻴﺪ ‪ -‬ﺃﻳﹰﺎ ﻛﺎﻧﺖ ﺍﳌﺴﺎﻓﺔ ﻭﰲ ﺃﻱ ﺍﲡﺎﻩ ﻛﺎﻥ ‪ -‬ﺑﺘﻄﺒﻴﻖ ﺍﳌﻌﺎﺩﻟﺔ ﺍﻟﺘﺎﻟﻴﺔ‪:‬‬
‫)‪S = P Gi /(4π r2‬‬
‫ﺣﻴﺚ‪:‬‬
‫‪:S‬‬
‫‪:P‬‬
‫‪:Gi‬‬
‫‪:r‬‬
‫)‪(3‬‬
‫ﻛﺜﺎﻓﺔ ﺍﻟﻘﺪﺭﺓ )‪ (W/m2‬ﰲ ﺍﲡﺎﻩ ﻣﻌﻴﱠﻦ‬
‫ﺍﻟﻘﺪﺭﺓ )‪ (W‬ﺍﳌﺰﻭﱠﺩ ﻬﺑﺎ ﻣﺼﺪﺭ ﺍﻹﺷﻌﺎﻉ‪ ،‬ﻋﻠﻰ ﺍﻓﺘﺮﺍﺽ ﻣﻨﻈﻮﻣﺔ ﺑﻼ ﺧﺴﺎﺭﺓ‬
‫ﺡ‬
‫ﻉ ﻣﺘﻨﺎ ﹴ‬
‫ﻋﺎﻣﻞ ﻛﺴﺐ ﻣﺼﺪﺭ ﺍﻹﺷﻌﺎﻉ ﰲ ﺍﻻﲡﺎﻩ ﺍﳌﻌﻴﱠﻦ‪ ،‬ﺑﺎﻟﻨﺴﺒﺔ ﺇﱃ ﻣﺸﻌﺎ ﹴ‬
‫ﺍﳌﺴﺎﻓﺔ )‪ (m‬ﻋﻦ ﻣﺼﺪﺭ ﺍﻹﺷﻌﺎﻉ‪.‬‬
‫ﺸﻌﱠﺔ ﺍﳌﻜﺎﻓﺌﺔ ﺍﳌﺘﻨﺎﺣﻴﺔ( ﻭﻫﻲ ﲤﺜﻞ ﺍﻟﻘﺪﺭﺓ ﺍﻟﱵ ﳛﺘﺎﺝ ﺇﱃ‬
‫ﻭﰲ ﺍﳌﻌﺎﺩﻟﺔ )‪ (3‬ﻳﺴﻤّﻰ ﺣﺎﺻﻞ ﺍﻟﻀﺮﺏ ‪ PGi‬ﺑﺎﻟﻘﺪﺭﺓ ‪) e.i.r.p.‬ﺍﻟﻘﺪﺭﺓ ﺍﳌ َ‬
‫ﺡ ﻭﳘﻲ ﻟﻜﻲ ﻳُﺤﺪِﺙ ﺷﺪﺓ ﺍﺠﻤﻟﺎﻝ ﻧﻔﺴﻬﺎ ﰲ ﻧﻘﻄﺔ ﺍﻻﺳﺘﻘﺒﺎﻝ‪.‬‬
‫ﺑﺜﻬﺎ ﻣﺸﻌﺎﻉ ﻣﺘﻨﺎ ﹴ‬
‫ﻭﳚﺐ ﳊﺴﺎﺏ ﻛﺜﺎﻓﺔ ﺍﻟﻘﺪﺭﺓ ﰲ ﺍﲡﺎﻫﺎﺕ ﺃﺧﺮﻯ ﺃﻥ ﻳﺆﺧﺬ ﰲ ﺍﻻﻋﺘﺒﺎﺭ ﳐﻄﻂ ﺍﳍﻮﺍﺋﻲ‪.‬‬
‫ﺡ ‪ ،Gr‬ﻣﺜﻞ ﺛﻨﺎﺋﻲ ﺍﻟﻘﻄﺐ‬
‫ﻭﺇﺫﺍ ﺃﹸﺭﻳ َﺪ ﺍﺳﺘﻌﻤﺎﻝ ﺍﳌﻌﺎﺩﻟﺔ )‪ (3‬ﺑﺼﺪﺩ ﻫﻮﺍﺋﻲ ﻛﺴﺒﻪ ‪ Ga‬ﻣﺴﺘﻤﺪ ﻧﺴﺒﻴﹰﺎ ﻣﻦ ﻫﻮﺍﺋﻲ ﻣﺮﺟﻌﻲ ﻛﺴﺒﻪ ﻣﺘﻨﺎ ﹴ‬
‫ﻧﺼﻒ ﺍﳌﻮﺟﻲ ﺃﻭ ﺍﻷﺣﺎﺩﻱ ﺍﻟﻘﻄﺐ ﺍﻟﻘﺼﲑ‪ ،‬ﻭﺟﺐ ﻋﻨﺪﺋﺬ ﺍﻻﺳﺘﻌﺎﺿﺔ ﻋﻦ ﻋﺎﻣﻞ ﺍﻟﻜﺴﺐ ‪ Gi‬ﲝﺎﺻﻞ ﺍﻟﻀﺮﺏ ‪ Gr . Ga‬ﻛﻤﺎ ﰲ‬
‫ﺍﳌﻌﺎﺩﻟﺔ )‪ (4‬ﺍﻟﺘﺎﻟﻴﺔ‪ .‬ﻭﺍﻟﻌﺎﻣﻞ ‪ Gr‬ﺍﳌﻼﺋﻢ ﻳﻌﺮﺿﻪ ﺍﳉﺪﻭﻝ ‪:1‬‬
‫)‪S = P Gr Ga /(4π r 2‬‬
‫‪1‬‬
‫ﻋﻠﻰ ﻭﺟﻪ ﺍﻟﻌﻤﻮﻡ‪ ،‬ﺗُﺤﺼﱠﻞ ﺍﳌﻌﺎﻭﻗﺔ ﺍﳌﻤﻴﱢﺰﺓ ﻟﻮﺳﻂ ﻣﺎ ﺑﺎﳌﻌﺎﺩﻟﺔ ﺍﻟﺘﺎﻟﻴﺔ‪ z = (µ / ε) :‬ﺣﻴﺚ‬
‫)‪ ،(=1,2566.. × 10–6 F/m‬ﻭ‪ ε‬ﻫﻲ ﺍﻟﺴﻤﺎﺣﻴﺔ ﰲ ﺍﻟﻔﻀﺎﺀ ﺍﳊﺮ )‪.(= 8,85418 × 10–12 H/m‬‬
‫)‪(4‬‬
‫‪µ‬‬
‫ﻫﻲ ﺍﻹﻧﻔﺎﺫﻳﺔ ﺍﳌﻐﻨﻄﻴﺴﻴﺔ ﰲ ﺍﻟﻔﻀﺎﺀ ﺍﳊﺮ‬
‫ﺍﻟﺘﻮﺻﻴﺔ‬
‫‪6‬‬
‫‪ITU-R BS.1698‬‬
‫ﺍﳉﺪﻭﻝ‬
‫ﻋﻮﺍﻣﻞ ﺍﻟﻜﺴﺐ ﺍﳌﺘﻨﺎﺣﻲ ﻷﳕﺎﻁ ﻣﻦ ﺍﳍﻮﺍﺋﻲ ﺍﳌﺮﺟﻌﻲ ﳐﺘﻠﻔﺔ‬
‫‪1‬‬
‫ﳕﻂ ﺍﳍﻮﺍﺋﻲ‬
‫ﺍﳌﺮﺟﻌﻲ‬
‫ﺡ‬
‫ﻣﺸﻌﺎﻉ ﻣﺘﻨﺎ ﹴ‬
‫ﺛﻨﺎﺋﻲ ﺍﻟﻘﻄﺐ ﻧﺼﻒ ﻣﻮﺟﻲ‬
‫ﺃﺣﺎﺩﻱ ﺍﻟﻘﻄﺐ ﻗﺼﲑ‬
‫ﻭﻫﻜﺬﺍ‪ ،‬ﺣﲔ ﻳﻜﻮﻥ ﻛﺴﺐ ﺍﳍﻮﺍﺋﻲ‬
‫ﺍﳌﻌﺎﺩﻟﺔ ﺍﻟﺘﺎﻟﻴﺔ‪:‬‬
‫ﺣﻴﺚ‪:‬‬
‫ﻋﺎﻣﻞ ﺍﻟﻜﺴﺐ‬
‫ﺍﳌﺘﻨﺎﺣﻲ‪Gr ،‬‬
‫ﺗﻄﺒﻴﻘﺎﺕ ﳕﻄﻴﺔ ﻣﺘﻌﻠﻘﺔ ﺑﻨﻤﻂ‬
‫ﺍﳍﻮﺍﺋﻲ ﺍﳌﺮﺟﻌﻲ‬
‫ﺭﺍﺩﺍﺭ‪ ،‬ﻭﺻﻠﺔ ﺭﺍﺩﻳﻮﻳﺔ ﺳﺎﺗﻠﻴﺔ ﺃﻭ ﺃﺭﺿﻴﺔ‬
‫ﺗﻠﻔﺰﻳﻮﻥ‪ ،‬ﺇﺫﺍﻋﺔ ﺑﺎﳌﻮﺟﺎﺕ ﺍﳌﺘﺮﻳﺔ )‪ (VHF‬ﻭﺍﻟﺪﻳﻜﺎﻣﺘﺮﻳﺔ )‪ (HF‬ﺃﺣﻴﺎﻧﹰﺎ‬
‫ﺇﺫﺍﻋﺔ ﺑﺎﳌﻮﺟﺎﺕ ﺍﻟﻜﻴﻠﻮﻣﺘﺮﻳﺔ )‪ (LF‬ﻭﺍﳍﻜﺘﻮﻣﺘﺮﻳﺔ )‪ (MF‬ﻭﺃﺣﻴﺎﻧﹰﺎ‬
‫ﺑﺎﻟﺪﻳﻜﺎﻣﺘﺮﻳﺔ )‪(HF‬‬
‫‪1,0‬‬
‫‪1,64‬‬
‫‪3,0‬‬
‫‪Gd‬‬
‫)‪ (Ga = Gd‬ﻣﻌﺒﱠﺮﹰﺍ ﻋﻨﻪ ﻗﻴﺎﺳﹰﺎ ﺇﱃ ﻛﺴﺐ ﻫﻮﺍﺋﻲ ﺛﻨﺎﺋﻲ ﺍﻟﻘﻄﺐ ﻧﺼﻒ ﻣﻮﺟﻲ‪ ،‬ﺗﻨﻄﺒﻖ‬
‫)‪S = 1,64 PGd /(4π r 2‬‬
‫)‪(5‬‬
‫‪ :Gd‬ﻛﺴﺐ ﺍﳍﻮﺍﺋﻲ ﺑﺎﻟﻨﺴﺒﺔ ﺇﱃ ﻫﻮﺍﺋﻲ ﺛﻨﺎﺋﻲ ﺍﻟﻘﻄﺐ ﻧﺼﻒ ﻣﻮﺟﻲ‪.‬‬
‫ﻛﺬﻟﻚ‪ ،‬ﺣﲔ ﻳﻜﻮﻥ ﻛﺴﺐ ﺍﳍﻮﺍﺋﻲ ‪ Gm = Ga‬ﻣﻌﺒﱠﺮﹰﺍ ﻋﻨﻪ ﺑﺎﻟﻨﺴﺒﺔ ﺇﱃ ﻛﺴﺐ ﻫﻮﺍﺋﻲ ﺃﺣﺎﺩﻱ ﺍﻟﻘﻄﺐ ﻗﺼﲑ‪ ،‬ﺗﻨﻄﺒﻖ ﺍﳌﻌﺎﺩﻟﺔ ﺍﻟﺘﺎﻟﻴﺔ‪:‬‬
‫ﺣﻴﺚ‪:‬‬
‫‪2.2.1.2‬‬
‫)‪S = 3,0 PGm /(4π r 2‬‬
‫)‪(6‬‬
‫‪ :Gm‬ﻛﺴﺐ ﺍﳍﻮﺍﺋﻲ ﺑﺎﻟﻨﺴﺒﺔ ﺇﱃ ﻫﻮﺍﺋﻲ ﺃﺣﺎﺩﻱ ﺍﻟﻘﻄﺐ ﻗﺼﲑ‪.‬‬
‫ﺷﺪﺓ ﺍﺠﻤﻟﺎﻝ‬
‫ﺗﺴﺘﻨﺪ ﺍﳌﻌﺎﺩﻻﺕ )‪ (10)-(2‬ﺇﱃ ﺍﻓﺘﺮﺍﺽ ﻇﺮﻭﻑ ﻣﻮﺟﺔ ﻣﺴﺘﻮﻳﺔ )ﰲ ﺍﺠﻤﻟﺎﻝ ﺍﻟﺒﻌﻴﺪ(‪ ،‬ﻓﻬﻲ ﻻ ﺗﻨﻄﺒﻖ ﻋﻠﻰ ﺍﳊﺴﺎﺑﺎﺕ ﺍﳌﺘﻌﻠﻘﺔ ﺑﺎﺠﻤﻟﺎﻝ‬
‫ﺍﻟﻘﺮﻳﺐ‪.‬‬
‫ﺇﺫﺍ ﺃﹸﺩﺭﹺﺟﺖ ﺍﳌﻌﺎﺩﻟﺔ )‪ (2‬ﰲ ﺍﳌﻌﺎﺩﻟﺔ )‪ (3‬ﻣﻦ ﺃﺟﻞ ﺇﺯﺍﻟﺔ ‪ ،S‬ﻭﺃﹸﺩﺧﻞ ﻋﺎﻣﻞ ‪ C‬ﻣﺮﺍﻋﺎﺓ ﻻﲡﺎﻫﻴﺔ ﻣﺼﺪﺭ ﺍﻹﺷﻌﺎﻉ‪َ ،‬ﺣﺼَﻠﺖ ﺍﳌﻌﺎﺩﻟﺔ‬
‫)‪ (7‬ﺍﻟﱵ ﲤﻜﱢﻦ ﻣﻦ ﺣﺴﺎﺏ ﺷﺪﺓ ﺍﺠﻤﻟﺎﻝ ﺍﻟﻜﻬﺮﺑﺎﺋﻲ )‪ (E‬ﰲ ﺍﺠﻤﻟﺎﻝ ﺍﻟﺒﻌﻴﺪ ﳌﺼﺪﺭ ﺍﻹﺷﻌﺎﻉ‪:‬‬
‫‪30 PGi‬‬
‫ﺣﻴﺚ‪:‬‬
‫‪:E‬‬
‫‪= Z0‬‬
‫‪:P‬‬
‫‪:C‬‬
‫‪C‬‬
‫‪r‬‬
‫=‪C‬‬
‫‪PGi‬‬
‫‪r‬‬
‫‪Z0‬‬
‫‪4π‬‬
‫=‪E‬‬
‫)‪(7‬‬
‫ﺷﺪﺓ ﺍﺠﻤﻟﺎﻝ ﺍﻟﻜﻬﺮﺑﺎﺋﻲ )‪(V/m‬‬
‫‪ ،Ω 377‬ﺍﳌﻌﺎﻭﻗﺔ ﺍﳌﻤﻴﺰﺓ ﻟﻠﻔﻀﺎﺀ ﺍﳊﺮ‬
‫ﺍﻟﻘﺪﺭﺓ )‪ (W‬ﺍﳌﺰﻭﱠﺩ ﻬﺑﺎ ﻣﺼﺪﺭ ﺍﻹﺷﻌﺎﻉ‪ ،‬ﻋﻠﻰ ﺍﻓﺘﺮﺍﺽ ﻧﻈﺎﻡ ﺑﻼ ﺧﺴﺎﺭﺓ‬
‫ﻋﺎﻣﻞ )‪ (0 ≤ C ≤1‬ﻳﺮﺍﻋﻲ ﺍﲡﺎﻫﻴﺔ ﻣﺼﺪﺭ ﺍﻹﺷﻌﺎﻉ )ﰲ ﺍﻻﲡﺎﻩ ﺍﻟﺮﺋﻴﺴﻲ ﻟﻺﺷﻌﺎﻉ‪.(1 = C ،‬‬
‫ﻭﺇﺫﺍ ﻛﺎﻥ ﻛﺴﺐ ﺍﳍﻮﺍﺋﻲ ﻣﻌﱪﹰﺍ ﻋﻨﻪ ﺑﺎﻟﻨﺴﺒﺔ ﺇﱃ ﻫﻮﺍﺋﻲ ﺛﻨﺎﺋﻲ ﺍﻟﻘﻄﺐ ﻧﺼﻒ ﻣﻮﺟﻲ ﺃﻭ ﻫﻮﺍﺋﻲ ﺃﺣﺎﺩﻱ ﺍﻟﻘﻄﺐ ﻗﺼﲑ‪ ،‬ﻭﻟﻴﺲ ﺇﱃ‬
‫ﻉ ﻣﺘﻨﺎﺡﹴ‪ ،‬ﻓﻌﻨﺪﺋﺬ ﳚﺐ ﺍﺳﺘﻌﻤﺎﻝ ﺍﻟﻌﺎﻣﻠﲔ ‪ Gd‬ﻭ‪ Gm‬ﺑﺘﺮﺗﻴﺐ ﺍﻟﺘﻮﺍﱄ ﺑﺪ ﹰﻻ ﻣﻦ ﺍﻟﻌﺎﻣﻞ ‪ ،Gi‬ﰲ ﺍﳌﻌﺎﺩﻟﺘﲔ )‪ (8‬ﻭ)‪:(9‬‬
‫ﻛﺴﺐ ﻣﺸﻌﺎ ﹴ‬
‫‪49,2 PGd‬‬
‫‪C‬‬
‫‪r‬‬
‫=‪C‬‬
‫‪90 PGm‬‬
‫‪C‬‬
‫‪r‬‬
‫=‪C‬‬
‫‪1,64 PGd‬‬
‫‪r‬‬
‫‪3PGm‬‬
‫‪r‬‬
‫‪Z0‬‬
‫‪4π‬‬
‫‪Z0‬‬
‫‪4π‬‬
‫=‪E‬‬
‫=‪E‬‬
‫)‪(8‬‬
‫)‪(9‬‬
‫ﺍﻟﺘﻮﺻﻴﺔ‬
‫‪ITU-R BS.1698‬‬
‫‪7‬‬
‫ﻭﺗُﺴﺘﻌﻤَﻞ ﺍﳌﻌﺎﺩﻟﺔ )‪ (10‬ﻣﻦ ﺃﺟﻞ ﺣﺴﺎﺏ ﺷﺪﺓ ﺍﺠﻤﻟﺎﻝ ﺍﳌﻐﻨﻄﻴﺴﻲ ﰲ ﺍﺠﻤﻟﺎﻝ ﺍﻟﺒﻌﻴﺪ ﳌﺼﺪﺭ ﺍﻹﺷﻌﺎﻉ‪:‬‬
‫‪H = E / Z0‬‬
‫)‪(10‬‬
‫ﺣﻴﺚ‪:‬‬
‫‪ :E‬ﺷﺪﺓ ﺍﺠﻤﻟﺎﻝ ﺍﻟﻜﻬﺮﺑﺎﺋﻲ )‪(V/m‬‬
‫‪ :H‬ﺷﺪﺓ ﺍﺠﻤﻟﺎﻝ ﺍﳌﻐﻨﻄﻴﺴﻲ )‪(A/m‬‬
‫‪Z0‬‬
‫‪3.1.2‬‬
‫= ‪ ،(120π) Ω 377‬ﺍﳌﻌﺎﻭﻗﺔ ﺍﳌﻤﻴﺰﺓ ﻟﻠﻔﻀﺎﺀ ﺍﳊﺮ‪.‬‬
‫ﺍﺠﻤﻟﺎﻝ ﺍﻟﻘﺮﻳﺐ‬
‫ﺑﻨﻴﺔ ﺍﺠﻤﻟﺎﻝ ﰲ ﻣﻨﻄﻘﺔ ﺍﺠﻤﻟﺎﻝ ﺍﻟﻘﺮﻳﺐ ﺃﻛﺜﺮ ﺗﻌﻘﻴﺪﹰﺍ ﻣﻦ ﺍﻟﺒﻨﻴﺔ ﺍﳌﻮﺻﻮﻓﺔ ﺃﻋﻼﻩ ﲞﺼﻮﺹ ﺍﺠﻤﻟﺎﻝ ﺍﻟﺒﻌﻴﺪ‪ .‬ﻭﺍﻟﺴﺒﺐ ﰲ ﺍﺠﻤﻟﺎﻝ ﺍﻟﻘﺮﻳﺐ ﻫﻮ‬
‫ﻼ ﻋﻦ ﺃﻥ ﺷﺪﺓ ﺍﺠﻤﻟﺎﻝ‬
‫ﺍﻟﻌﻼﻗﺔ ﺍﻟﻌﺸﻮﺍﺋﻴﺔ ﻟﻠﻄﻮﺭ ﻭﺍﻻﺗﺴﺎﻉ ﺑﲔ ﻣﱠﺘﺠﹺﻪ ﺷﺪﺓ ﺍﺠﻤﻟﺎﻝ ﺍﻟﻜﻬﺮﺑﺎﺋﻲ ﻭﻣﱠﺘﺠﹺﻪ ﺷﺪﺓ ﺍﺠﻤﻟﺎﻝ ﺍﳌﻐﻨﻄﻴﺴﻲ‪ ،‬ﻓﻀ ﹰ‬
‫ﺗﺘﻐﲑ ﻛﺜﲑﹰﺍ ﻣﻦ ﻧﻘﻄﺔ ﺇﱃ ﺃﺧﺮﻯ‪ .‬ﻭﻣﻦ ﰒ ﳚﺐ ﻣﻦ ﺃﺟﻞ ﲢﺪﻳﺪ ﻃﺒﻴﻌﺔ ﺍﺠﻤﻟﺎﻝ ﺍﻟﻘﺮﻳﺐ ﺃﻥ ﻳُﺤﺴﺐ ﺃﻭ ﻳﻘﺎﺱ ﺍﻟﻄﻮﺭ ﻭﺍﻻﺗﺴﺎﻉ ﻟﻜﻼ‬
‫ﺍﺠﻤﻟﺎﻟﲔ ﺍﻟﻜﻬﺮﺑﺎﺋﻲ ﻭﺍﳌﻐﻨﻄﻴﺴﻲ‪ .‬ﻟﻜﻦ ﲢﻘﻴﻖ ﺫﻟﻚ ﻋﻤﻠﻴﹰﺎ ﻗﺪ ﻳﻜﻮﻥ ﺑﺎﻟﻎ ﺍﻟﺼﻌﻮﺑﺔ‪.‬‬
‫‪ 1.3.1.2‬ﻛﺜﺎﻓﺔ ﺍﻟﻘﺪﺭﺓ ﻭﺷﺪﺓ ﺍﺠﻤﻟﺎﻝ‬
‫ﻟﻴﺲ ﻣﻦ ﺍﻟﺴﻬﻞ ﲢﺪﻳﺪ ﻣﱠﺘﺠﹺﻪ ‪ Poynting‬ﰲ ﺍﺠﻤﻟﺎﻝ ﺍﻟﻘﺮﻳﺐ‪ ،‬ﺑﺴﺒﺐ ﺍﻟﻌﻼﻗﺔ ﺍﻟﻌﺸﻮﺍﺋﻴﺔ ﺑﲔ ﺍﻟﻄﻮﺭ ﻭﺍﻻﺗﺴﺎﻉ ﺍﳌﺬﻛﻮﺭﺓ ﺃﻋﻼﻩ‪ .‬ﺇﺫ‬
‫ﳚﺐ ﺃﻥ ﻳﻘﺎﺱ ﺃﻭ ﻳُﺤﺴﺐ ﻋﻠﻰ ﺣﺪﺓ‪ ،‬ﻭﰲ ﻛﻞ ﻧﻘﻄﺔ‪ ،‬ﺍﻻﺗﺴﺎﻉ ﻭﺍﻟﻄﻮﺭ ﻟﻜﻼ ﺍﺠﻤﻟﺎﻟﲔ ‪ E‬ﻭ‪ H‬ﻭﺍﻟﻌﻼﻗﺔ ﺑﻴﻨﻬﻤﺎ‪ ،‬ﻭﻫﺬﻩ ﺍﳊﺴﺎﺑﺎﺕ‬
‫ﲡﻌﻞ ﺍﳌﻬﻤﺔ ﺑﺎﻟﻐﺔ ﺍﻟﺘﻌﻘﻴﺪ ﻭﺍﻻﺳﺘﻬﻼﻙ ﻟﻠﻮﻗﺖ‪.‬‬
‫ﻓﻼ ﳝﻜﻦ ﺑﺎﺳﺘﻌﻤﺎﻝ ﺻﻴﻎ ﲢﻠﻴﻠﻴﺔ ﺃﻥ ﺗﻘﺪﺭ ﺷﺪﺓ ﺍﺠﻤﻟﺎﻝ ﰲ ﺍﺠﻤﻟﺎﻝ ﺍﻟﻘﺮﻳﺐ ﺇﻻ ﺑﺼﺪﺩ ﻣﺸﺎﻋﻴﻊ ﺑﺴﻴﻄﺔ ﻣُﺜﻠﻰ ﻛﺎﳍﻮﺍﺋﻲ ﺍﻟﺜﻨﺎﺋﻲ ﺍﻟﻘﻄﺐ‬
‫ﺍﻟﺒﺴﻴﻂ‪ .‬ﺃﻣﺎ ﰲ ﺣﺎﻟﺔ ﺃﻧﻈﻤﺔ ﻫﻮﺍﺋﻴﺎﺕ ﺃﻛﺜﺮ ﺗﻌﻘﻴﺪﹰﺍ‪ ،‬ﻓﻴﻠﺰﻡ ﺍﺳﺘﻌﻤﺎﻝ ﺗﻘﻨﻴﺎﺕ ﺭﻳﺎﺿﻴﺔ ﺃﺧﺮﻯ ﻣﻦ ﺃﺟﻞ ﺗﻘﺪﻳﺮ ﺳﻮﻳﺎﺕ ﺷﺪﺓ ﺍﺠﻤﻟﺎﻝ ﰲ‬
‫ﻣﻨﻄﻘﺔ ﺍﺠﻤﻟﺎﻝ ﺍﻟﻘﺮﻳﺐ‪ .‬ﻭﻫﺬﻩ ﺍﻟﺘﻘﻨﻴﺎﺕ ﺍﻷﺧﺮﻯ ﲤﻜﱢﻦ ﻣﻦ ﺗﻘﺪﻳﺮﺍﺕ ﺩﻗﻴﻘﺔ ﻧﺴﺒﻴﹰﺎ ﻟﺸﺪﺓ ﺍﺠﻤﻟﺎﻝ‪ ،‬ﻭﻛﺜﺎﻓﺔ ﺍﻟﻘﺪﺭﺓ ﻭﻏﲑﳘﺎ ﻣﻦ‬
‫ﺧﺼﺎﺋﺺ ﺍﺠﻤﻟﺎﻝ ﺍﳌﻔﻴﺪﺓ‪ ،‬ﻭﺫﻟﻚ ﺣﱴ ﰲ ﻣﻨﻄﻘﺔ ﺍﺠﻤﻟﺎﻝ ﺍﻟﻘﺮﻳﺐ ﺍﳌﻌﻘﱠﺪ‪.‬‬
‫ﰒ ﺇﻥ ﻋﻤﻠﻴﺔ ﺍﻟﻘﻴﺎﺱ ﰲ ﺍﺠﻤﻟﺎﻝ ﺍﻟﻘﺮﻳﺐ ﺃﺻﻌﺐ ﻣﻦ ﺫﻟﻚ‪ ،‬ﺇﺫ ﻻ ﺗﻮﺟﺪ ﻃﺮﻳﻘﺔ ﻣﺮﺟﻌﻴﺔ ﻟﻠﻤﻌﺎﻳﺮﺓ‪ .‬ﻭﰲ ﺍﻟﻮﻗﺖ ﺍﳊﺎﺿﺮ‪ ،‬ﺗﻌﻤﻞ ﺍﻟﻠﺠﻨﺔ‬
‫ﺍﻟﻜﻬﺮﺗﻘﻨﻴﺔ ﺍﻟﺪﻭﻟﻴﺔ ﻋﻠﻰ ﺇﻋﺪﺍﺩ ﻣﻌﻴﺎﺭ ﻟﻘﻴﺎﺱ ﺷﺪﺓ ﺍﺠﻤﻟﺎﻝ ﺍﻟﻜﻬﺮﻣﻐﻨﻄﻴﺴﻲ ﺍﻟﻌﺎﱄ ﺍﻟﺘﺮﺩﺩﺍﺕ )ﻣﻦ ‪ kHz 9‬ﺇﱃ ‪ (GHz 300‬ﻭﻻ ﺳﻴّﻤﺎ‬
‫ﻼ ﻋﻦ ﺫﻟﻚ‪ ،‬ﻳﻮﺟﺪ ﻣﺰﻳﺪ ﻣﻦ ﺍﳌﻌﻠﻮﻣﺎﺕ ﻋﻦ ﻫﺬﺍ ﺍﳌﻮﺿﻮﻉ ﰲ ﺍﻟﻔﻘﺮﺓ ‪ 4.1.6‬ﻣﻦ ﺍﳌﻌﻴﺎﺭ ‪EN 61566‬‬
‫ﰲ ﺍﺠﻤﻟﺎﻝ ﺍﻟﻘﺮﻳﺐ ]‪ .[1‬ﻭﻓﻀ ﹰ‬
‫)ﻗﻴﺎﺳﺎﺕ ﺍﻟﺘﻌﺮﺽ ﻟﺸﺪﺓ ﺍﺠﻤﻟﺎﻝ ﺍﻟﻜﻬﺮﻣﻐﻨﻄﻴﺴﻲ ﻟﻠﺘﺮﺩﺩﺍﺕ ﺍﻟﺮﺍﺩﻳﻮﻳﺔ ﺍﳌﺘﺮﺍﻭﺣﺔ ﰲ ﻣﺪﻯ ﺍﻟﺘﺮﺩﺩ ‪.(GHz 1- kHz 1‬‬
‫‪4.1.2‬‬
‫ﺍﻻﺳﺘﻘﻄﺎﺏ‬
‫ﻳُﻌﺮﱠﻑ ﺍﻻﺳﺘﻘﻄﺎﺏ ﺑﺄﻧﻪ ﺍﲡﺎﻩ ﻣﱠﺘﺠﹺﻪ ﺍﺠﻤﻟﺎﻝ ﺍﻟﻜﻬﺮﺑﺎﺋﻲ‪ ،‬ﺑﺎﻟﻨﺴﺒﺔ ﺇﱃ ﺍﲡﺎﻩ ﺍﻧﺘﺸﺎﺭ ﺟﺒﻬﺔ ﺍﳌﻮﺟﺔ‪.‬‬
‫ﻭﻳُﺴﺘﻌﻤﻞ ﰲ ﺍﻹﺫﺍﻋﺔ ﺃﳕﺎﻁ ﺍﺳﺘﻘﻄﺎﺏ ﳐﺘﻠﻔﺔ‪ ،‬ﺑﻴﻨﻬﺎ ﳕﻄﺎﻥ ﺭﺋﻴﺴﻴﺎﻥ ﳘﺎ ﺍﻟﻌﻤﻮﺩﻱ ﻭﺍﻷﻓﻘﻲ )ﺑﺎﻟﻨﺴﺒﺔ ﺇﱃ ﺟﺒﻬﺔ ﻣﻮﺟﺔ ﺗﻨﺘﺸﺮ ﲟﻮﺍﺯﺍﺓ‬
‫ﺍﻷﺭﺽ(‪ ،‬ﻭﻟﻜﻦ ﺗُﺴﺘﻌﻤَﻞ ﺃﻳﻀﹰﺎ ﺃﳕﺎﻁ ﺍﺳﺘﻘﻄﺎﺏ ﺃﺧﺮﻯ‪ ،‬ﻣﺜﻞ ﺍﻻﺳﺘﻘﻄﺎﺏ ﺍﳌﺎﺋﻞ ﻭﺍﻻﺳﺘﻘﻄﺎﺏ ﺍﻹﻫﻠﻴﻠﺠﻲ‪.‬‬
‫‪5.1.2‬‬
‫ﺍﻟﺘﺸﻜﻴﻞ‬
‫ﺍﻟﺘﺸﻜﻴﻞ ﲰﺔ ﺧﺼﻮﺻﻴﺔ ﺟﺪﹰﺍ ﻟﻠﺒﺚ ﻣﻦ ﻣﺮﺳﻞ ﺇﺫﺍﻋﻲ‪ .‬ﻭﲟﺎ ﺃﻥ ﺑﻌﺾ ﺁﺛﺎﺭ ﺍﻹﺷﻌﺎﻉ ﺍﻟﻜﻬﺮﻣﻐﻨﻄﻴﺴﻲ ﺗﺎﺑﻌﺔ ﻟﻨﻤﻂ ﺍﻟﺘﺸﻜﻴﻞ‬
‫ﺍﳌﺴﺘﻌﻤﻞ‪ ،‬ﻳﻠﺰﻡ ﻣﻦ ﰒ ﺃﻥ ﻳﺆﺧﺬ ﺍﻟﺘﺸﻜﻴﻞ ﰲ ﺍﻻﻋﺘﺒﺎﺭ ﻋﻨﺪ ﺗﻘﻴﻴﻢ ﻇﺮﻭﻑ ﺍﻟﺴﻼﻣﺔ‪ .‬ﻭﳚﺐ ﺃﻥ ﻳﺆﺧﺬ ﺍﻟﺘﺸﻜﻴﻞ ﰲ ﺍﻻﻋﺘﺒﺎﺭ ﺃﻳﻀﹰﺎ‬
‫ﻼ ﲡﺎﻭﺯ ﳊﺪﻭﺩ ﺍﻟﺴﻼﻣﺔ ﺃﻡ ﻻ‪.‬‬
‫ﻋﻨﺪ ﺇﺟﺮﺍﺀ ﻗﻴﺎﺳﺎﺕ ﺃﻭ ﺣﺴﺎﺑﺎﺕ ﳌﻌﺮﻓﺔ ﻣﺎ ﺇﺫﺍ ﻛﺎﻥ ﺣﺎﺻ ﹰ‬
‫ﺍﻟﺘﻮﺻﻴﺔ‬
‫‪8‬‬
‫‪ITU-R BS.1698‬‬
‫ﻭﻛﺜﲑﹰﺍ ﻣﺎ ﻳﻨﺠﻢ ﻋﻦ ﺍﻟﺘﺸﻜﻴﻞ ﺗﻐﲑ ﰲ ﺍﺗﺴﺎﻉ ﺍﻹﺷﺎﺭﺓ ﻭﺗﺮﺩﺩﻫﺎ‪ .‬ﻓﻠﻬﺬﺍ ﺍﻟﺴﺒﺐ ﻳﻠﺰﻡ ﻋﺎﺩﺓ ﺍﺳﺘﺨﺮﺍﺝ ﻣﺘﻮﺳﻂ ﺯﻣﲏ ﻟﺘﺤﺪﻳﺪ ﺍﻟﻘﻴﻢ‬
‫ﺍﻟﻮﺍﺟﺐ ﺍﺳﺘﻌﻤﺎﳍﺎ ﰲ ﺍﻟﻘﻴﺎﺳﺎﺕ ﻭﺍﳊﺴﺎﺑﺎﺕ‪ .‬ﻭﻫﺬﺍ ﺍﳌﻄﻠﺐ ﻣﻌﺘﺮﻑ ﺑﻪ ﺃﻳﻀﹰﺎ ﰲ ﳐﺘﻠﻒ ﺍﳌﻌﺎﻳﲑ ﺫﺍﺕ ﺍﻟﺼﻠﺔ‪.‬‬
‫‪ 1.5.1.2‬ﺧﺼﺎﺋﺺ ﺍﻹﺭﺳﺎﻝ ﺍﻟﺮﺍﺩﻳﻮﻱ‬
‫ﺗﺼﻨﱢﻒ ﻟﻮﺍﺋﺢ ﺍﻟﺮﺍﺩﻳﻮ ﻋﻤﻠﻴﺎﺕ ﺍﻟﺒﺚ ﻣﻦ ﺍﳌﺮﺳِﻼﺕ ﺍﻟﺮﺍﺩﻳﻮﻳﺔ ﺗﺒﻌﹰﺎ ﻟﻌﺮﺽ ﺍﻟﻨﻄﺎﻕ ﺍﳌﻄﻠﻮﺏ‪ ،‬ﻭﳋﺼﺎﺋﺺ ﺍﻹﺭﺳﺎﻝ ﺍﻷﺳﺎﺳﻴﺔ‬
‫ﻭﺍﻻﺧﺘﻴﺎﺭﻳﺔ‪ .‬ﻭﻳﻘﻮﻡ ﺍﻟﺘﺼﻨﻴﻒ ﺍﻟﻜﺎﻣﻞ ﻋﻠﻰ ﺗﺴﻊ ﲰﺎﺕ ﻛﻤﺎ ﻳﻠﻲ‪:‬‬
‫‪-‬‬
‫ﺍﻟﺴﻤﺎﺕ ‪ 4-1‬ﺗﺼﻒ ﻋﺮﺽ ﺍﻟﻨﻄﺎﻕ‪ ،‬ﻳُﺴﺘﻌﻤَﻞ ﻓﻴﻬﺎ ﺛﻼﺛﺔ ﺃﺭﻗﺎﻡ ﻭﺣﺮﻑ؛‬
‫‪-‬‬
‫ﺍﻟﺴﻤﺎﺕ ‪ 7-5‬ﺗﺼﻒ ﺍﳋﺼﺎﺋﺺ ﺍﻷﺳﺎﺳﻴﺔ‪ ،‬ﻳُﺴﺘﻌﻤَﻞ ﻓﻴﻬﺎ ﺣﺮﻓﺎﻥ ﻭﺭﻗﻢ ﻭﺍﺣﺪ؛‬
‫‪-‬‬
‫ﺍﻟﺴﻤﺎﺕ ‪ 9-8‬ﺗﺼﻒ ﺍﳋﺼﺎﺋﺺ ﺍﻻﺧﺘﻴﺎﺭﻳﺔ‪ ،‬ﻳُﺴﺘﻌﻤَﻞ ﻓﻴﻬﺎ ﺣﺮﻓﺎﻥ‪.‬‬
‫ﻭﻋﻨﺪ ﺍﻟﻨﻈﺮ ﰲ ﻗﻀﺎﻳﺎ ﺍﻟﺴﻼﻣﺔ ﺍﳌﺘﺼﻠﺔ ﺑﺎﻟﺘﺮﺩﺩﺍﺕ ﺍﻟﺮﺍﺩﻳﻮﻳﺔ‪ ،‬ﻻ ﻳﺆﺧﺬ ﺇﻻ ﺑﺎﻟﺴﻤﺎﺕ ﺍﻷﺳﺎﺳﻴﺔ ﺍﻟﺜﻼﺙ‪ ،‬ﻛﻤﺎ ﻳﻠﻲ‪:‬‬
‫‪-‬‬
‫ﳕﻂ ﺗﺸﻜﻴﻞ ﺍﳌﻮﺟﺔ ﺍﳊﺎﻣﻠﺔ ﺍﻟﺮﺋﻴﺴﻴﺔ‬
‫ﺍﻟﺴﻤﺔ‬
‫‪5‬‬
‫‪-‬‬
‫ﻃﺒﻴﻌﺔ ﺍﻹﺷﺎﺭﺓ )ﺃﻭ ﺍﻹﺷﺎﺭﺍﺕ( ﺍﻟﱵ ﺗﺸﻜﻞ ﺍﳌﻮﺟﺔ ﺍﳊﺎﻣﻠﺔ ﺍﻟﺮﺋﻴﺴﻴﺔ‬
‫ﺍﻟﺴﻤﺔ‬
‫‪6‬‬
‫‪-‬‬
‫ﳕﻂ ﺍﳌﻌﻠﻮﻣﺎﺕ ﺍﳌﻘﺼﻮﺩ ﺇﺭﺳﺎﳍﺎ‬
‫ﺍﻟﺴﻤﺔ‬
‫‪7‬‬
‫ﻳﺴﺘﻨﺪ ﺍﳉﺪﻭﻝ ‪ 2‬ﺇﱃ ﺍﳌﻌﻠﻮﻣﺎﺕ ﺍﻟﱵ ﺗﺘﻀﻤﻨﻬﺎ ﻟﻮﺍﺋﺢ ﺍﻟﺮﺍﺩﻳﻮ‪ ،‬ﻭﻳﻌﺮﺽ ﳐﺘﻠﻒ ﺍﻟﺴﻤﺎﺕ ﺍﳌﺴﺘﻌﻤَﻠﺔ ﰲ ﺗﺼﻨﻴﻒ ﺍﳋﺼﺎﺋﺺ ﺍﻷﺳﺎﺳﻴﺔ‬
‫ﺍﻟﺜﻼﺙ ﻟﻺﺭﺳﺎﻝ ﺍﻟﺮﺍﺩﻳﻮﻱ‪ .‬ﻓﺒﺨﺼﻮﺹ ﺍﻹﺭﺳﺎﻻﺕ ﺍﻟﺼﻮﺗﻴﺔ ﻭﺍﻟﺘﻠﻔﺰﻳﻮﻧﻴﺔ‪ ،‬ﺍﻟﺴﻤﺎﺕ ﺫﺍﺕ ﺍﻟﺼﻠﺔ ﻫﻲ‪:‬‬
‫‪-‬‬
‫ﺇﺭﺳﺎﻝ ﺭﺍﺩﻳﻮﻱ ‪) AM‬ﻣﻮﺟﺎﺕ ﻛﻴﻠﻮﻣﺘﺮﻳﺔ )‪ ،(LF‬ﻭﻫﻜﺘﻮﻣﺘﺮﻳﺔ )‪ ،(MF‬ﻭﺩﻳﻜﺎﻣﺘﺮﻳﺔ )‪ (HF‬ﺑﻨﻄﺎﻕ ﺟﺎﻧﱯ ﻣﺰﺩﻭﺝ(‬
‫‪A3E‬‬
‫‪-‬‬
‫ﺇﺭﺳﺎﻝ ﺭﺍﺩﻳﻮﻱ ‪) AM‬ﻣﻮﺟﺎﺕ ﺩﻳﻜﺎﻣﺘﺮﻳﺔ )‪ (HF‬ﺑﻨﻄﺎﻕ ﺟﺎﻧﱯ ﻭﺣﻴﺪ‪ ،‬ﺍﳌﻮﺟﺔ ﺍﳊﺎﻣﻠﺔ ﳐﻔﱠﻀﺔ‪/‬ﻣﺘﻐﻴﱢﺮﺓ ﺍﻟﺴﻮﻳﺔ(‬
‫‪R3E‬‬
‫‪-‬‬
‫ﺇﺭﺳﺎﻝ ﺭﺍﺩﻳﻮﻱ ‪) AM‬ﻣﻮﺟﺎﺕ ﺩﻳﻜﺎﻣﺘﺮﻳﺔ )‪ (HF‬ﺑﻨﻄﺎﻕ ﺟﺎﻧﱯ ﻭﺣﻴﺪ‪ ،‬ﺍﳌﻮﺟﺔ ﺍﳊﺎﻣﻠﺔ ﳏﺬﻭﻓﺔ(‬
‫‪J3E‬‬
‫‪-‬‬
‫ﺻﻮﺭ ﺗﻠﻔﺰﻳﻮﻧﻴﺔ‬
‫‪C3F‬‬
‫‪-‬‬
‫ﺇﺷﺎﺭﺍﺕ ﺻﻮﺗﻴﺔ ﺗﻠﻔﺰﻳﻮﻧﻴﺔ‬
‫‪-‬‬
‫ﺇﺭﺳﺎﻝ ﺭﺍﺩﻳﻮﻱ‬
‫‪-‬‬
‫ﺇﺭﺳﺎﻝ ﺭﺍﺩﻳﻮﻱ ﻓﻴﺪﻳﻮﻱ ﺭﻗﻤﻲ )‪(DVB‬‬
‫‪G7F‬‬
‫‪-‬‬
‫ﺇﺭﺳﺎﻝ ﺭﺍﺩﻳﻮﻱ ﲰﻌﻲ ﺭﻗﻤﻲ )‪(DAB‬‬
‫‪G7E‬‬
‫‪FM‬‬
‫ﺍﳉﺪﻭﻝ‬
‫‪ F3E‬ﺃﻭ‬
‫‪A3E‬‬
‫‪ F3E‬ﺃﻭ‬
‫‪F9E‬‬
‫‪2‬‬
‫ﺍﻟﺴﻤﺎﺕ ﺍﳌﺴﺘﻌﻤﻠﺔ ﻟﺘﻌﺮﻳﻒ ﺻﻨﻒ ﺍﻹﺭﺳﺎﻝ‪ ،‬ﺍﺳﺘﻨﺎﺩﹰﺍ ﺇﱃ ﺍﳌﻌﻠﻮﻣﺎﺕ ﺍﳌﻌﻄﺎﺓ ﰲ ﻟﻮﺍﺋﺢ ﺍﻟﺮﺍﺩﻳﻮ‬
‫ﺍﻟﺴﻤﺔ ‪7‬‬
‫ﺍﻟﺴﻤﺔ ‪6‬‬
‫ﺍﻟﺴﻤﺔ ‪5‬‬
‫ﳕﻂ ﺍﳌﻌﻠﻮﻣﺎﺕ ﺍﳌﻘﺼﻮﺩ ﺇﺭﺳﺎﳍﺎ‬
‫ﳕﻂ ﺗﺸﻜﻴﻞ ﺍﳌﻮﺟﺔ ﺍﳊﺎﻣﻠﺔ ﺍﻟﺮﺋﻴﺴﻴﺔ‬
‫ﻃﺒﻴﻌﺔ ﺍﻹﺷﺎﺭﺍﺕ ﺍﳌﺸﻜﱢﻠﺔ‬
‫ﻟﻠﻤﻮﺟﺔ ﺍﳊﺎﻣﻠﺔ ﺍﻟﺮﺋﻴﺴﻴﺔ‬
‫‪ N‬ﻻ ﻣﻌﻠﻮﻣﺎﺕ ﻣﺮﺳﻠﺔ‬
‫‪ 0‬ﺇﺷﺎﺭﺓ ﻏﲑ ﻣﺸﻜﱢﻠﺔ‬
‫‪ N‬ﻏﲑ ﻣﺸﻜﱠﻞ‬
‫‪ 1‬ﻗﻨﺎﺓ ﻭﺣﻴﺪﺓ ﲢﺘﻮﻱ‪ :‬ﻣﻌﻠﻮﻣﺎﺕ ﻣﻜﻤﱠﺎﺓ ‪ A‬ﺇﺑﺮﺍﻕ ﻣﻦ ﺃﺟﻞ ﺍﺳﺘﻘﺒﺎﻝ ﲰﻌﻲ‬
‫‪ A‬ﺗﺸﻜﻴﻞ ﺍﺗﺴﺎﻉ‪ :‬ﻧﻄﺎﻕ ﺟﺎﻧﱯ‬
‫ﻣﺰﺩﻭﺝ‬
‫ﺃﻭ ﺭﻗﻤﻴﺔ ﻏﲑ ﻣﺴﺘﻌﻤﻠﺔ ﳊﺎﻣﻠﺔ ﻓﺮﻋﻴﺔ‬
‫ﻣﺸﻜﱢﻠﺔ‬
‫‪ 2‬ﻗﻨﺎﺓ ﻭﺣﻴﺪﺓ ﲢﺘﻮﻱ‪ :‬ﻣﻌﻠﻮﻣﺎﺕ ﻣﻜﻤﱠﺎﺓ ‪ B‬ﺇﺑﺮﺍﻕ ﻣﻦ ﺃﺟﻞ ﺍﺳﺘﻘﺒﺎﻝ‬
‫‪ H‬ﺗﺸﻜﻴﻞ ﺍﺗﺴﺎﻉ‪ :‬ﻧﻄﺎﻕ ﺟﺎﻧﱯ‬
‫ﺃﻭﺗﻮﻣﺎﰐ‬
‫ﺃﻭ ﺭﻗﻤﻴﺔ ﻣﺴﺘﻌﻤﻠﺔ ﳊﺎﻣﻠﺔ ﻓﺮﻋﻴﺔ ﻣﺸ ﱢﻜﻠﺔ‬
‫ﻭﺣﻴﺪ‪ ،‬ﻣﻮﺟﺔ ﺣﺎﻣﻠﺔ ﻛﺎﻣﻠﺔ‬
‫ﺍﻟﺘﻮﺻﻴﺔ‬
‫‪9‬‬
‫‪ITU-R BS.1698‬‬
‫ﺍﳉﺪﻭﻝ‬
‫‪2‬‬
‫ﺍﻟﺴﻤﺎﺕ ﺍﳌﺴﺘﻌﻤﻠﺔ ﻟﺘﻌﺮﻳﻒ ﺻﻨﻒ ﺍﻹﺭﺳﺎﻝ‪ ،‬ﺍﺳﺘﻨﺎﺩﹰﺍ ﺇﱃ ﺍﳌﻌﻠﻮﻣﺎﺕ ﺍﳌﻌﻄﺎﺓ ﰲ ﻟﻮﺍﺋﺢ ﺍﻟﺮﺍﺩﻳﻮ‬
‫ﺍﻟﺴﻤﺔ ‪7‬‬
‫ﺍﻟﺴﻤﺔ ‪6‬‬
‫ﺍﻟﺴﻤﺔ ‪5‬‬
‫ﳕﻂ ﺍﳌﻌﻠﻮﻣﺎﺕ ﺍﳌﻘﺼﻮﺩ ﺇﺭﺳﺎﳍﺎ‬
‫ﳕﻂ ﺗﺸﻜﻴﻞ ﺍﳌﻮﺟﺔ ﺍﳊﺎﻣﻠﺔ ﺍﻟﺮﺋﻴﺴﻴﺔ‬
‫ﻃﺒﻴﻌﺔ ﺍﻹﺷﺎﺭﺍﺕ ﺍﳌﺸﻜﱢﻠﺔ‬
‫ﻟﻠﻤﻮﺟﺔ ﺍﳊﺎﻣﻠﺔ ﺍﻟﺮﺋﻴﺴﻴﺔ‬
‫‪R‬‬
‫ﺗﺸﻜﻴﻞ ﺍﺗﺴﺎﻉ‪ :‬ﻧﻄﺎﻕ ﺟﺎﻧﱯ‬
‫ﻭﺣﻴﺪ‪ ،‬ﻣﻮﺟﺔ ﺣﺎﻣﻠﺔ ﳐﻔﻀﺔ ﺃﻭ‬
‫ﻣﺘﻐﲑﺓ ﺍﻟﺴﻮﻳﺔ‬
‫‪3‬‬
‫ﻗﻨﺎﺓ ﻭﺣﻴﺪﺓ ﲢﺘﻮﻱ‪ :‬ﻣﻌﻠﻮﻣﺎﺕ ﲤﺎﺛﻠﻴﺔ‬
‫‪C‬‬
‫ﻃﺒﺼﻠﺔ‬
‫‪J‬‬
‫ﺗﺸﻜﻴﻞ ﺍﺗﺴﺎﻉ‪ :‬ﻧﻄﺎﻕ ﺟﺎﻧﱯ‬
‫ﻭﺣﻴﺪ‪ ،‬ﺍﳌﻮﺟﺔ ﺍﳊﺎﻣﻠﺔ ﳏﺬﻭﻓﺔ‬
‫‪7‬‬
‫ﻗﻨﺎﺗﺎﻥ ﺃﻭ ﻗﻨﻮﺍﺕ ﲢﺘﻮﻱ‪ :‬ﻣﻌﻠﻮﻣﺎﺕ‬
‫ﻣﻜﻤّﺎﺓ ﺃﻭ ﺭﻗﻤﻴﺔ‬
‫‪D‬‬
‫ﺇﺭﺳﺎﻝ ﻣﻌﻄﻴﺎﺕ‪ ،‬ﻗﻴﺎﺱ ﻋﻦ ﺑﻌﺪ‬
‫ﻭﲢﻜﻢ ﻋﻦ ﺑﻌﺪ‬
‫‪B‬‬
‫ﺗﺸﻜﻴﻞ ﺍﺗﺴﺎﻉ‪ :‬ﻧﻄﺎﻗﺎﺕ ﺟﺎﻧﺒﻴﺔ‬
‫ﻣﺴﺘﻘﻠﺔ‬
‫‪8‬‬
‫ﻗﻨﺎﺗﺎﻥ ﺃﻭ ﻗﻨﻮﺍﺕ ﲢﺘﻮﻱ‪ :‬ﻣﻌﻠﻮﻣﺎﺕ‬
‫ﲤﺎﺛﻠﻴﺔ‬
‫‪E‬‬
‫ﻣﻬﺎﺗﻔﺔ ﲟﺎ ﻓﻴﻬﺎ ﺇﺫﺍﻋﺔ ﺻﻮﺗﻴﺔ‬
‫‪C‬‬
‫ﺗﺸﻜﻴﻞ ﺍﺗﺴﺎﻉ‪ :‬ﻧﻄﺎﻕ ﺟﺎﻧﱯ ﻣﺘﺒ ﱟﻖ‬
‫‪9‬‬
‫ﻗﻨﺎﺗﺎﻥ ﺃﻭ ﻗﻨﻮﺍﺕ ﲢﺘﻮﻱ‪ :‬ﺧﻠﻴﻂ ﻣﻦ‬
‫ﻗﻨﻮﺍﺕ ﲤﺎﺛﻠﻴﺔ ﻭﺭﻗﻤﻴﺔ‬
‫‪F‬‬
‫ﺗﻠﻔﺰﻳﻮﻥ )ﻓﻴﺪﻳﻮ(‬
‫‪F‬‬
‫ﻼ(‬
‫ﻱ‪ :‬ﺗﺮﺩﺩ )‪ FM‬ﻣﺜ ﹰ‬
‫ﺗﺸﻜﻴﻞ ﺯﺍﻭ ّ‬
‫‪X‬‬
‫ﺣﺎﻻﺕ ﻏﲑ ﻣﺸﻤﻮﻟﺔ ﺑﻄﺮﻳﻘﺔ ﺃﺧﺮﻯ‬
‫‪W‬‬
‫ﺗﻮﻟﻴﻔﺔ ﻣﻦ ﺍﻟﻌﻨﺎﺻﺮ ﺍﻟﻮﺍﺭﺩﺓ‬
‫ﺃﻋﻼﻩ‬
‫‪G‬‬
‫ﻱ‪ :‬ﻃﻮﺭ‬
‫ﺗﺸﻜﻴﻞ ﺯﺍﻭ ّ‬
‫‪X‬‬
‫ﺣﺎﻻﺕ ﻏﲑ ﻣﺸﻤﻮﻟﺔ ﺑﻄﺮﻳﻘﺔ‬
‫ﺃﺧﺮﻯ‬
‫‪D‬‬
‫ﺧﻠﻴﻂ ﺍﺗﺴﺎﻉ ﻭﺗﺸﻜﻴﻞ ﺯﺍﻭﻱ‬
‫)ﺑﺘﺂﻭﻥ ﺃﻭ ﺑﺘﺘﺎﺑﻊ(‬
‫‪P‬‬
‫ﺗﺘﺎﺑﻊ ﻧﺒﻀﺎﺕ‪ :‬ﻏﲑ ﻣﺸﻜﱠﻞ‬
‫‪K‬‬
‫ﺗﺘﺎﺑﻊ ﻧﺒﻀﺎﺕ‪ :‬ﻣﺸﻜﱠﻞ ﺑﺎﻻﺗﺴﺎﻉ‬
‫‪L‬‬
‫ﺗﺘﺎﺑﻊ ﻧﺒﻀﺎﺕ‪ :‬ﻣﺸﻜﱠﻞ‬
‫ﺑﺎﻟﻌﺮﺽ‪/‬ﺑﺎﳌﺪﺓ‬
‫‪M‬‬
‫ﺗﺘﺎﺑﻊ ﻧﺒﻀﺎﺕ‪ :‬ﻣﺸﻜﱠﻞ‬
‫ﺑﺎﳌﻮﺿﻊ‪/‬ﺑﺎﻟﻄﻮﺭ‬
‫‪Q‬‬
‫ﺗﺘﺎﺑﻊ ﻧﺒﻀﺎﺕ‪ :‬ﺗﺸﻜﻴﻞ ﺯﺍﻭﻱ‬
‫ﻟﻠﻤﻮﺟﺔ ﺍﳊﺎﻣﻠﺔ ﻃﻴﻠﺔ ﻣﺪﺓ ﺍﻟﻨﺒﻀﺔ‬
‫‪V‬‬
‫ﺗﺘﺎﺑﻊ ﻧﺒﻀﺎﺕ‪ :‬ﺗﻮﻟﻴﻔﺔ ﻣﻦ‬
‫ﻭ‪ M‬ﻭ‪ ،Q‬ﺃﻭ ﻏﲑ ﺫﻟﻚ‬
‫‪ K‬ﻭ‪L‬‬
‫‪W‬‬
‫ﺣﺎﻻﺕ ﻏﲑ ﻣﺸﻤﻮﻟﺔ ﲟﺎ ﺗﻘﺪﻡ‬
‫ﺃﻋﻼﻩ‪ :‬ﻣﻮﺟﺔ ﺣﺎﻣﻠﺔ ﻣﺸﻜﱠﻠﺔ‬
‫ﺑﺄﺳﻠﻮﺑﲔ ﺃﻭ ﺃﻛﺜﺮ )ﺍﺗﺴﺎﻉ‪ ،‬ﺯﺍﻭﻳﺔ‪،‬‬
‫ﻧﺒﻀﺔ(‬
‫‪X‬‬
‫ﺣﺎﻻﺕ ﻏﲑ ﻣﺸﻤﻮﻟﺔ ﺑﻄﺮﻳﻘﺔ ﺃﺧﺮﻯ‬
‫ﺍﻟﺘﻮﺻﻴﺔ‬
‫‪10‬‬
‫‪ITU-R BS.1698‬‬
‫‪ 2.5.1.2‬ﺍﻟﺘﻌﺒﲑ ﻋﻦ ﻗﺪﺭﺓ ﺍﳌﺮﺳﻞ ﻭﺷﺪﺓ ﺍﺠﻤﻟﺎﻝ ﺑﻨﻤﻂ ﺍﻟﺘﺸﻜﻴﻞ‬
‫ﳝﻜﻦ ﺍﳊﺼﻮﻝ ﻋﻠﻰ ﻣﻌﻠﻮﻣﺎﺕ ﻋﻦ ﻗﺪﺭﺓ ﺍﳌﺮﺳﻞ ﺍﳌﺰﻭﱠﺩ ﻬﺑﺎ ﺍﳍﻮﺍﺋﻲ ﻭﻋﻦ ﳕﻂ ﺍﻟﺘﺸﻜﻴﻞ‪ ،‬ﻣﻦ ﺍﳌﺴﺆﻭﻟﲔ ﻋﻦ ﺗﺸﻐﻴﻞ ﺍﻟﺘﺠﻬﻴﺰ ﰲ‬
‫ﻣﻮﻗﻊ ﻣﺎ‪ .‬ﻭﻣﻦ ﺍﳌﻬﻢ ﻣﻌﺮﻓﺔ ﻣﺎ ﺇﺫﺍ ﻛﺎﻧﺖ ﻗﺪﺭﺓ ﺍﳌﺮﺳِﻞ ﻣﻌﱪﹰﺍ ﻋﻨﻬﺎ ﺑﻘﺪﺭﺓ ﺍﳌﻮﺟﺔ ﺍﳊﺎﻣﻠﺔ‪ ،Pc ،‬ﺃﻭ ﺍﻟﻘﺪﺭﺓ ﺍﳌﺘﻮﺳﻄﺔ‪ ،Pm ،‬ﺃﻭ ﻗﺪﺭﺓ‬
‫ﺍﻟﺬﺭﻭﺓ‪ ،Pp ،‬ﻟﻜﻲ ﳝﻜﻦ ﻣﻘﺎﺭﻧﺔ ﺍﻟﻘﻴﻢ ﺍﶈﺼﱠﻠﺔ ﺑﺎﻟﻘﻴﺎﺱ ﺃﻭ ﺑﺎﳊﺴﺎﺏ ﻣﻘﺎﺭﻧﺔ ﺩﻗﻴﻘﺔ ﺑﺎﻟﺴﻮﻳّﺎﺕ ﺍﳌﺸﺘﻘﺔ‪.‬‬
‫ﻟﻨﺄﺧﺬ ﻣﺜﺎ ﹰﻻ ﻋﻠﻰ ﺫﻟﻚ ﻣﺮﺳﻞ ﺇﺫﺍﻋﺔ ﺻﻮﺗﻴﺔ ﺑﺎﳌﻮﺟﺎﺕ ﺍﳍﻜﺘﻮﻣﺘﺮﻳﺔ )‪) (MF‬ﺃﻱ ﺇﺭﺳﺎﻝ ﻣﻦ ﺍﻟﻨﻤﻂ ‪ .(A3E‬ﻭﻳُﻔﺘﺮَﺽ ﺃﻥ ﺍﳊﺴﺎﺑﺎﺕ‬
‫ﻭﺍﻟﻘﻴﺎﺳﺎﺕ ﺭﻭﻋﻲ ﻓﻴﻬﺎ ﻗﺪﺭﺓ ﺍﳌﻮﺟﺔ ﺍﳊﺎﻣﻠﺔ ﻓﻘﻂ‪ ،‬ﻟﻜﻦ ﺍﻟﺴﻮﻳﺎﺕ ﺍﳌﺸﺘﻘﺔ ﺭﻭﻋﻲ ﻓﻴﻬﺎ ﻣﻜﻮﱢﻧﺎﺕ ﺍﻟﺘﺸﻜﻴﻞ ﺃﻳﻀﹰﺎ )ﻣﻦ ﺣﻴﺚ ﻗﺪﺭﺓ‬
‫ﺍﳌﺮﺳﻞ ﻫﺬﻩ ﺍﻟﻘﺪﺭﺓ ﻫﻲ ﺍﳌﺘﻮﺳﻄﺔ(‪ .‬ﻭﻳُﻔﺘﺮَﺽ ﺑﺎﻹﺿﺎﻓﺔ ﺇﱃ ﺫﻟﻚ ﺃﻧﻪ ﻻ ﻳُﺴﺘﻌﻤَﻞ ﺇﻻ ﺍﻟﻘﻴﻢ ﺍﻟﻔﻌﺎﻟﺔ‪.‬‬
‫ﻭﻻ ﺑﺪ ﻟﻠﻤﻘﺎﺭﻧﺔ ﺑﲔ ﺍﻟﻘﻴﻢ ﺍﶈﺼﱠﻠﺔ ﺑﺎﻟﻘﻴﺎﺱ ﺃﻭ ﺑﺎﳊﺴﺎﺏ ﻭﺍﻟﺴﻮﻳّﺎﺕ ﺍﳌﺸﺘﻘﺔ‪ ،‬ﻣﻦ ﺇﺟﺮﺍﺀ ﺃﺣﺪ ﺍﻟﺘﺤﻮﻳﻠﲔ ﺍﻟﺘﺎﻟﻴﲔ‪:‬‬
‫‪-‬‬
‫ﺗﻌﺪﻳﻞ ﺍﻟﻘﻴﻢ ﺍﶈﺼﱠﻠﺔ ﺑﺎﻟﻘﻴﺎﺱ ﺃﻭ ﺑﺎﳊﺴﺎﺏ ﲝﻴﺚ ﺗﺘﻀﻤﻦ ﻣﻜﻮﱢﻧﺎﺕ ﺍﻟﺘﺸﻜﻴﻞ؛‬
‫‪-‬‬
‫ﺗﻌﺪﻳﻞ ﺍﻟﺴﻮﻳﺎﺕ ﺍﳌﺸﺘﻘﺔ ﲝﻴﺚ ﺗﻄﺎﺑﻖ ﻗﻴﻢ ﻗﺪﺭﺓ ﺍﳌﻮﺟﺔ ﺍﳊﺎﻣﻠﺔ ﻓﻘﻂ‪ ،‬ﺃﻱ ﺑﺪﻭﻥ ﻣﻜﻮﱢﻧﺎﺕ ﺍﻟﺘﺸﻜﻴﻞ‪.‬‬
‫ﻭﻳﻌﻄﻲ ﺍﳉﺪﻭﻝ ‪3‬ﺃ ﻋﻮﺍﻣﻞ ﺍﻟﻀﺮﺏ ﺍﻟﱵ ﺗﺮﺑﻂ ﺃﳕﺎﻁ ﺗﺮﻣﻴﺰ ﺍﻟﻘﺪﺭﺓ ﺑﻌﻀﻬﺎ ﺑﺒﻌﺾ )ﻭﺗﻌﺮﻳﻒ ﺃﳕﺎﻁ ﺍﻟﺘﺮﻣﻴﺰ ﻫﺬﻩ ﻣﻮﺟﻮﺩ ﰲ ﻟﻮﺍﺋﺢ‬
‫ﺍﻟﺮﺍﺩﻳﻮ(‪ .‬ﻓﻔﻲ ﺣﺎﻟﺔ ﺇﺭﺳﺎﻝ ﺗﺼﻨﻴﻔﻪ ‪ ،A3E‬ﻣﺸﺎﺭ ﺇﻟﻴﻪ ﺑـ ‪ A*E‬ﰲ ﺍﳉﺪﻭﻝ ‪3‬ﺃ‪ ،‬ﻧﺴﺘﻄﻴﻊ ﺃﻥ ﻧﺸﺎﻫﺪ ﺃﻥ ﺍﻟﻘﺪﺭﺓ ﺍﳌﺘﻮﺳﻄﺔ‪،Pm ،‬‬
‫ﺗﺴﺎﻭﻱ ‪ 1,5‬ﻣﺮﺓ ﻗﺪﺭﺓ ﺍﳌﻮﺟﺔ ﺍﳊﺎﻣﻠﺔ‪.Pc ،‬‬
‫ﻭﳚﺪﺭ ﺍﻻﻧﺘﺒﺎﻩ ﻫﻨﺎ ﺇﱃ ﺃﻥ ﺍﳉﺪﻭﻝ ‪3‬ﺃ ﻳﻌﻄﻲ ﺍﻟﻘﻴﻢ ﰲ "ﺃﺳﻮﺃ ﺍﳊﺎﻻﺕ"‪ ،‬ﺇﺫ ﻳﻔﺘﺮﺽ ﺍﻟﺘﺸﻜﻴﻞ ﺑﻌﻤﻖ ‪ .%100‬ﺃﻣﺎ ﰲ ﺍﻟﻮﺍﻗﻊ ﻓﺈﻥ‬
‫ﻋﻤﻖ ﺍﻟﺘﺸﻜﻴﻞ ﳌﺮﺳﻞ ﺇﺫﺍﻋﻲ ﻳﻜﻮﻥ ﺃﻗﻞ ﻣﻦ ‪ ،%100‬ﻭﻣﻦ ﰒ ﻳﻜﻮﻥ ﻣﺘﻮﺳﻂ ﺍﻟﻘﺪﺭﺓ ﻣﺴﺎﻭﻳﹰﺎ ﺃﻗﻞ ﻣﻦ ‪ 1,5‬ﻣﺮﺓ ﻗﺪﺭﺓ ﺍﳌﻮﺟﺔ‬
‫ﺍﳊﺎﻣﻠﺔ‪ .‬ﻭﳍﺬﺍ ﺍﻟﺴﺒﺐ ﻳﻌﻄﻲ ﺍﳉﺪﻭﻝ ‪3‬ﺏ ﻋﻮﺍﻣﻞ ﺿﺮﺏ ﺗﻨﺎﺳﺐ ﻋﻤﻘﹰﺎ ﳕﻄﻴﹰﺎ ﻟﻠﺘﺸﻜﻴﻞ )ﺃﻱ ‪ %70‬ﻹﺭﺳﺎ ﹴﻝ ﺗﺼﻨﻴﻔﹸﻪ ‪،A3E‬‬
‫ﻣﺎ ﻳﻄﺎﺑﻖ ﻧﺴﺒﺔ ﺑﲔ ﻣﺘﻮﺳﻂ ﺍﻟﻘﺪﺭﺓ ﻭﻗﺪﺭﺓ ﺍﳌﻮﺟﺔ ﺍﳊﺎﻣﻠﺔ )‪ (Pm/Pc‬ﺗﺴﺎﻭﻱ ‪ 1,25‬ﻭﻟﻴﺲ ‪.(1,5‬‬
‫ﺍﳉﺪﻭﻝ ‪3‬ﺃ‬
‫ﺍﻟﻌﻼﻗﺔ ﺑﲔ ﻗﺪﺭﺓ ﺍﳌﻮﺟﺔ ﺍﳊﺎﻣﻠﺔ ﻭﺍﻟﻘﺪﺭﺓ ﺍﳌﺘﻮﺳﻄﺔ ﻭﺫﺭﻭﺓ ﺍﻟﻘﺪﺭﺓ ﻭﺍﻟﻘﺪﺭﺓ ﺍﻵﻧﻴﺔ ﺍﻟﻘﺼﻮﻯ‬
‫ﲞﺼﻮﺹ ﺃﺻﻨﺎﻑ ﺇﺭﺳﺎﻝ ﳐﺘﻠﻔﺔ )ﺍﻷﺭﻗﺎﻡ ﲤﺜﻞ ﺃﺳﻮﺃ ﺍﳊﺎﻻﺕ(‬
‫ﺻﻨﻒ ﺍﻹﺭﺳﺎﻝ‬
‫ﳕﻂ ﺍﻟﻘﺪﺭﺓ ﺍﳌﻌﺮﻭﻓﺔ‬
‫)ﺍﳋﺼﺎﺋﺺ ﺍﻷﺳﺎﺳﻴﺔ(‬
‫)‪(2) ،(1‬‬
‫ﻗﺪﺭﺓ ﺍﳌﻮﺟﺔ ﺍﳊﺎﻣﻠﺔ‪،‬‬
‫ﻋﺎﻣﻞ ﲢﺪﻳﺪ‪:‬‬
‫‪Pc‬‬
‫‪Pm‬‬
‫‪Pc‬‬
‫‪Pp‬‬
‫ﺍﻟﻘﺪﺭﺓ ﺍﳌﺘﻮﺳﻄﺔ‪،‬‬
‫ﻋﺎﻣﻞ ﲢﺪﻳﺪ‪:‬‬
‫‪Pc‬‬
‫‪Pm‬‬
‫ﺫﺭﻭﺓ ﺍﻟﻘﺪﺭﺓ‪،‬‬
‫ﻋﺎﻣﻞ ﲢﺪﻳﺪ‪:‬‬
‫‪Pm‬‬
‫‪Pp‬‬
‫‪Pp‬‬
‫‪Pc‬‬
‫‪Pm‬‬
‫‪Pp‬‬
‫‪A1A‬‬
‫‪1‬‬
‫‪A1B‬‬
‫‪1‬‬
‫‪1‬‬
‫‪1‬‬
‫‪1‬‬
‫‪1‬‬
‫‪1‬‬
‫‪1‬‬
‫‪1‬‬
‫‪A*C‬‬
‫‪1‬‬
‫‪A*E‬‬
‫‪B*B‬‬
‫‪B*E‬‬
‫‪1,5‬‬
‫‪4‬‬
‫‪0,67‬‬
‫‪1‬‬
‫‪2,67‬‬
‫‪0,25‬‬
‫‪0,38‬‬
‫‪1‬‬
‫)‪(3‬‬
‫)‪(3‬‬
‫‪B*W‬‬
‫)‪(3‬‬
‫–‬
‫–‬
‫–‬
‫–‬
‫‪1‬‬
‫‪1‬‬
‫–‬
‫‪1‬‬
‫‪1‬‬
‫ﺍﻟﺘﻮﺻﻴﺔ‬
‫‪11‬‬
‫‪ITU-R BS.1698‬‬
‫ﺍﳉﺪﻭﻝ ‪3‬ﺃ‬
‫ﺍﻟﻌﻼﻗﺔ ﺑﲔ ﻗﺪﺭﺓ ﺍﳌﻮﺟﺔ ﺍﳊﺎﻣﻠﺔ ﻭﺍﻟﻘﺪﺭﺓ ﺍﳌﺘﻮﺳﻄﺔ ﻭﺫﺭﻭﺓ ﺍﻟﻘﺪﺭﺓ ﻭﺍﻟﻘﺪﺭﺓ ﺍﻵﻧﻴﺔ ﺍﻟﻘﺼﻮﻯ‬
‫ﲞﺼﻮﺹ ﺃﺻﻨﺎﻑ ﺇﺭﺳﺎﻝ ﳐﺘﻠﻔﺔ )ﺍﻷﺭﻗﺎﻡ ﲤﺜﻞ ﺃﺳﻮﺃ ﺍﳊﺎﻻﺕ(‬
‫ﺻﻨﻒ ﺍﻹﺭﺳﺎﻝ‬
‫ﳕﻂ ﺍﻟﻘﺪﺭﺓ ﺍﳌﻌﺮﻭﻓﺔ‬
‫)ﺍﳋﺼﺎﺋﺺ ﺍﻷﺳﺎﺳﻴﺔ(‬
‫)‪(2) ،(1‬‬
‫ﻗﺪﺭﺓ ﺍﳌﻮﺟﺔ ﺍﳊﺎﻣﻠﺔ‪،‬‬
‫ﻋﺎﻣﻞ ﲢﺪﻳﺪ‪:‬‬
‫‪Pc‬‬
‫‪C*F‬‬
‫‪Pm‬‬
‫‪Pc‬‬
‫‪Pp‬‬
‫ﺍﻟﻘﺪﺭﺓ ﺍﳌﺘﻮﺳﻄﺔ‪،‬‬
‫ﻋﺎﻣﻞ ﲢﺪﻳﺪ‪:‬‬
‫‪Pc‬‬
‫‪Pm‬‬
‫ﺫﺭﻭﺓ ﺍﻟﻘﺪﺭﺓ‪،‬‬
‫ﻋﺎﻣﻞ ﲢﺪﻳﺪ‪:‬‬
‫‪Pm‬‬
‫‪Pp‬‬
‫‪Pp‬‬
‫‪Pc‬‬
‫‪Pm‬‬
‫‪Pp‬‬
‫)‪(4‬‬
‫ﺗﺸﻜﻴﻞ ﺳﻠﱯ‬
‫ﺗﺸﻜﻴﻞ ﺇﳚﺎﰊ‬
‫‪F*...‬‬
‫)‪(5‬‬
‫–‬
‫–‬
‫–‬
‫–‬
‫‪1‬‬
‫‪1‬‬
‫‪1‬‬
‫‪1‬‬
‫‪1‬‬
‫‪1,85‬‬
‫‪1‬‬
‫‪1,42‬‬
‫‪1‬‬
‫‪1‬‬
‫–‬
‫‪1‬‬
‫‪0,54‬‬
‫‪1‬‬
‫‪0,87‬‬
‫‪1‬‬
‫‪1‬‬
‫‪1‬‬
‫‪H*A‬‬
‫‪H*B‬‬
‫‪1‬‬
‫‪2‬‬
‫‪4‬‬
‫‪0,5‬‬
‫‪1‬‬
‫‪2‬‬
‫‪0,25‬‬
‫‪0,5‬‬
‫‪1‬‬
‫‪H*E‬‬
‫‪J*B‬‬
‫)‪(3‬‬
‫‪J*C‬‬
‫)‪(3‬‬
‫‪J*E‬‬
‫–‬
‫–‬
‫–‬
‫‪0‬‬
‫‪1‬‬
‫‪1‬‬
‫‪0‬‬
‫‪1‬‬
‫‪1‬‬
‫)‪(3‬‬
‫‪K*A‬‬
‫‪1‬‬
‫‪K*E‬‬
‫‪1,5‬‬
‫‪4/d‬‬
‫‪0,67‬‬
‫‪1‬‬
‫‪2,67/d‬‬
‫‪0,25d‬‬
‫‪0,38d‬‬
‫‪1‬‬
‫‪L*A‬‬
‫‪L*E‬‬
‫‪M*A‬‬
‫‪1‬‬
‫‪1‬‬
‫‪1/d‬‬
‫‪1‬‬
‫‪1‬‬
‫‪1/d‬‬
‫‪d‬‬
‫‪D‬‬
‫‪1‬‬
‫‪H*E‬‬
‫‪P*N‬‬
‫‪R*B‬‬
‫)‪(3‬‬
‫‪R*C‬‬
‫)‪(3‬‬
‫‪R*E‬‬
‫–‬
‫–‬
‫–‬
‫–‬
‫‪1‬‬
‫‪1‬‬
‫–‬
‫‪1‬‬
‫‪1‬‬
‫)‪(3‬‬
‫‪G7E‬‬
‫‪1‬‬
‫‪1‬‬
‫‪1‬‬
‫‪1‬‬
‫‪1‬‬
‫‪1‬‬
‫‪1‬‬
‫‪1‬‬
‫‪1‬‬
‫‪G7F‬‬
‫‪1‬‬
‫‪1‬‬
‫‪1‬‬
‫‪1‬‬
‫‪1‬‬
‫‪1‬‬
‫‪1‬‬
‫‪1‬‬
‫‪1‬‬
‫)‪ (1‬ﻳُﺮﺟَﻊ ﺇﱃ ﺍﳉﺪﻭﻝ ‪ 2‬ﻻﺳﺘﻜﻤﺎﻝ ﺍﳌﻌﻠﻮﻣﺎﺕ ﻋﻦ ﺍﻟﺸﻔﺮﺓ ﺍﻟﺜﻼﺛﻴﺔ ﺍﻟﺮﻣﻮﺯ‪ ،‬ﺍﳌﺴﺘﻌﻤﻠﺔ ﰲ ﻭﺻﻒ ﺍﳋﺼﺎﺋﺺ ﺍﻷﺳﺎﺳﻴﺔ ﺍﻟﺜﻼﺙ ﻟﻨﻤﻂ ﺍﻹﺭﺳﺎﻝ‪.‬‬
‫)‪ (2‬ﺗﺪﻝ ﺍﻟﻌﻼﻣﺔ ﺍﻟﻨﺠﻤﻴﺔ * ﻋﻠﻰ ﺃﻥ ﺍﳋﺼﻴﺼﺔ ﺍﻟﺜﺎﻧﻴﺔ )ﺃﻱ ﻃﺒﻴﻌﺔ ﺇﺷﺎﺭﺓ ﺍﻟﺘﺸﻜﻴﻞ( ﻻ ﺻﻠﺔ ﳍﺎ ﺑﺘﻘﺪﻳﺮ ﺍﳌﺨﺎﻃﺮ‪.‬‬
‫)‪ (3‬ﻳُﻔَﺘﺮَﺽ ﺃﻥ ﺍﳌﻮﺟﺔ ﺍﳊﺎﻣﻠﺔ ﳏﺬﻭﻓﺔ ﺑﺎﻟﻜﺎﻣﻞ ﺗﻘﺮﻳﺒﹰﺎ‪ ،‬ﻭﺃﻧﻪ ﳝﻜﻦ‪ ،‬ﰲ ﺣﺎﻟﺔ ﺗﺸﻜﻴﻞ ﻣﻊ ﻧﻐﻤﺔ‪ ،‬ﺃﻥ ﺗﺼﻞ ﻗﺪﺭﺓ ﺍﳌﺮﺳﻞ ﺇﱃ ﺍﻟﺬﺭﻭﺓ ﰲ ﻧﻄﺎﻕ ﺟﺎﻧﱯ‬
‫ﻭﺣﻴﺪ‪.‬‬
‫)‪ (4‬ﻟﻴﺴﺖ ﻗﺪﺭﺓ ﺍﳌﻮﺟﺔ ﺍﳊﺎﻣﻠﺔ‪ ، Pc ،‬ﻣﻌﺮﱠﻓﺔ ﺑﻮﺿﻮﺡ‪.‬‬
‫)‪ (5‬ﺍﳋﺼﻴﺼﺔ ﺍﻟﺜﺎﻟﺜﺔ ﻻ ﺻﻠﺔ ﳍﺎ ﺑﺘﻘﺪﻳﺮ ﺍﳌﺨﺎﻃﺮ‪.‬‬
‫‪ = d‬ﻋﺎﻣﻞ ﺍﺳﺘﻌﻤﺎﻝ ﺗﺘﺎﺑﻊ ﻧﺒﻀﺎﺕ‪.‬‬
‫ﻫﺬﻩ ﺍﻟﻌﻮﺍﻣﻞ ﻣﻌﻄﺎﺓ ﲞﺼﻮﺹ ﺍﻹﺭﺳﺎﻝ ﺍﻟﺴﻤﻌﻲ ﺍﻟﺮﻗﻤﻲ )‪ (DAB‬ﻭﺍﻹﺭﺳﺎﻝ ﺍﻟﻔﻴﺪﻳﻮﻱ ﺍﻟﺮﻗﻤﻲ )‪ (DVB‬ﻋﻨﺪﻣﺎ ﺗﻘﺎﺱ ﺍﻟﻘﺪﺭﺓ ﰲ ﺍﻟﻘﻨﺎﺓ ﻛﻠﻬﺎ‬
‫)ﻭﺗﻜﻮﻥ ﻋﻠﻰ ﺍﻟﻌﻤﻮﻡ ‪ MHz 1,5‬ﻟﻺﺭﺳﺎﻝ ‪ DAB‬ﻭ‪ MHz 8‬ﻟﻺﺭﺳﺎﻝ ‪.(DVB‬‬
‫ﺍﻟﺘﻮﺻﻴﺔ‬
‫‪12‬‬
‫‪ITU-R BS.1698‬‬
‫ﺍﳉﺪﻭﻝ ‪3‬ﺏ‬
‫ﺍﻟﻌﻼﻗﺔ ﺑﲔ ﻗﺪﺭﺓ ﺍﳌﻮﺟﺔ ﺍﳊﺎﻣﻠﺔ ﻭﺍﻟﻘﺪﺭﺓ ﺍﳌﺘﻮﺳﻄﺔ ﻭﺫﺭﻭﺓ ﺍﻟﻘﺪﺭﺓ ﻭﺍﻟﻘﺪﺭﺓ ﺍﻵﻧﻴﺔ ﺍﻟﻘﺼﻮﻯ‬
‫ﲞﺼﻮﺹ ﺃﺻﻨﺎﻑ ﺇﺭﺳﺎﻝ ﳐﺘﻠﻔﺔ )ﺣﺎﻟﺔ ﺍﻟﺘﺸﻜﻴﻞ ﺍﻟﻨﻤﻄﻴﺔ(‬
‫ﻗﺪﺭﺓ ﺍﳌﻮﺟﺔ ﺍﳊﺎﻣﻠﺔ‪،‬‬
‫ﻋﺎﻣﻞ ﲢﺪﻳﺪ‪:‬‬
‫ﺻﻨﻒ ﺍﻹﺭﺳﺎﻝ‬
‫)ﺍﳋﺼﺎﺋﺺ ﺍﻷﺳﺎﺳﻴﺔ(‬
‫‪Pc‬‬
‫‪) A*C‬ﻣﻦ ﺃﺟﻞ ‪(%70 = m‬‬
‫‪) A*C‬ﻣﻦ ﺃﺟﻞ ‪(%70 = m‬‬
‫‪C*F‬‬
‫‪1‬‬
‫‪1,25‬‬
‫‪Pc‬‬
‫‪Pp‬‬
‫‪2,89‬‬
‫‪Pc‬‬
‫‪0,80‬‬
‫‪Pm‬‬
‫‪1‬‬
‫ﺫﺭﻭﺓ ﺍﻟﻘﺪﺭﺓ‪،‬‬
‫ﻋﺎﻣﻞ ﲢﺪﻳﺪ‪:‬‬
‫‪Pp‬‬
‫‪Pp‬‬
‫‪Pc‬‬
‫‪2,32‬‬
‫‪Pm‬‬
‫‪0,43‬‬
‫‪0,35‬‬
‫‪Pp‬‬
‫‪1‬‬
‫)‪(1‬‬
‫ﺗﺸﻜﻴﻞ ﺳﻠﱯ‬
‫ﺗﺸﻜﻴﻞ ﺇﳚﺎﰊ‬
‫‪F*...‬‬
‫)‪(1‬‬
‫‪Pm‬‬
‫ﳕﻂ ﺍﻟﻘﺪﺭﺓ ﺍﳌﻌﺮﻭﻓﺔ‬
‫ﺍﻟﻘﺪﺭﺓ ﺍﳌﺘﻮﺳﻄﺔ‪Pm ،‬‬
‫ﻋﺎﻣﻞ ﲢﺪﻳﺪ‪:‬‬
‫–‬
‫–‬
‫–‬
‫–‬
‫‪1‬‬
‫‪4,34‬‬
‫–‬
‫‪0,23‬‬
‫‪1‬‬
‫–‬
‫–‬
‫–‬
‫–‬
‫‪1‬‬
‫‪2,7‬‬
‫–‬
‫‪0,37‬‬
‫‪1‬‬
‫‪1‬‬
‫‪1‬‬
‫‪1‬‬
‫‪1‬‬
‫‪1‬‬
‫‪1‬‬
‫‪1‬‬
‫‪1‬‬
‫‪1‬‬
‫ﻟﻴﺴﺖ ﻗﺪﺭﺓ ﺍﳌﻮﺟﺔ ﺍﳊﺎﻣﻠﺔ‪ ،Pc ،‬ﻣﻌﺮﱠﻓﺔ ﺑﻮﺿﻮﺡ‪.‬‬
‫ﻭﳝﻜﻦ ﺃﻳﻀﹰﺎ ﺍﺳﺘﻌﻤﺎﻝ ﺍﳉﺪﻭﻝ ‪3‬ﺏ ﻣﻦ ﺃﺟﻞ ﲢﻮﻳﻞ ﻗﻴﻢ ﺷﺪﺓ ﺍﺠﻤﻟﺎﻝ ﺇﱃ ﺗﺮﻣﻴﺰﺍﺕ ﺃﺧﺮﻯ‪ .‬ﻭﻟﻜﻦ ﻳُﺴﺘﺮﻋﻰ ﺍﻻﻧﺘﺒﺎﻩ ﺇﱃ ﺃﻥ ﺍﳉﺬﺭ‬
‫ﺍﻟﺘﺮﺑﻴﻌﻲ ﻟﻌﻮﺍﻣﻞ ﺍﻟﺘﺤﻮﻳﻞ ﺍﳌﻌﻄﺎﺓ ﰲ ﺍﳉﺪﻭﻝ ‪3‬ﺏ ﳚﺐ ﺍﺳﺘﻌﻤﺎﻟﻪ ﺑﺼﺪﺩ ﻗﻴﻢ ﺷﺪﺓ ﺍﺠﻤﻟﺎﻝ‪ .‬ﻭﻋﻠﻴﻪ‪ ،‬ﻓﻔﻲ ﻣﺜﺎﻝ ﺍﻹﺭﺳﺎﻝ ﺍﻟﺮﺍﺩﻳﻮﻱ‬
‫‪ AM‬ﺍﳌﻌﻄﻰ ﺃﻋﻼﻩ‪ ،‬ﳚﺐ ﺃﻥ ﺗُﻀﺮَﺏ ﻓﻘﻂ ﺍﻟﻘﻴﻤﺔ ﺍﻟﻔﻌﺎﻟﺔ ﻟﺸﺪﺓ ﳎﺎﻝ ﺍﳌﻮﺟﺔ ﺍﳊﺎﻣﻠﺔ ﺑﺎﳉﺬﺭ ‪) 1,5‬ﺃﻭ ‪ ( 1,25‬ﻣﻦ ﺃﺟﻞ ﺍﳊﺼﻮﻝ‬
‫ﻋﻠﻰ ﺍﻟﻘﻴﻤﺔ ﺍﻟﻔﻌﺎﻟﺔ ﻟﺸﺪﺓ ﺍﺠﻤﻟﺎﻝ ﺍﻟﱵ ﺗﺪﺧﻞ ﰲ ﺣﺴﺎﻬﺑﺎ ﻣﻜﻮﱢﻧﺎﺕ ﺍﻟﺘﺸﻜﻴﻞ‪ .‬ﻭﺑﺎﻟﻌﻜﺲ ﰲ ﺣﺎﻟﺔ ﺍﻟﺴﻮﻳﺔ ﺍﳌﺸﺘﻘﺔ )ﺍﻟﱵ ﺗﺪﺧﻞ ﰲ‬
‫ﺣﺴﺎﻬﺑﺎ ﻣﻜﻮﱢﻧﺎﺕ ﺍﻟﺘﺸﻜﻴﻞ(‪ :‬ﳚﺐ ﺃﻥ ﺗُﻘﺴﻢ ﻗﻴﻤﺘﻬﺎ ﻋﻠﻰ ﺍﳉﺬﺭ ‪) 1,5‬ﺃﻭ ‪ ( 1,25‬ﻣﻦ ﺃﺟﻞ ﺍﳊﺼﻮﻝ ﻋﻠﻰ ﺍﻟﺴﻮﻳﺔ ﺍﳌﺸﺘﻘﺔ‬
‫ﺍﳌﻜﺎﻓﺌﺔ ﲞﺼﻮﺹ ﺍﳌﻮﺟﺔ ﺍﳊﺎﻣﻠﺔ ﻭﺣﺪﻫﺎ‪.‬‬
‫ﻭﺍﻟﻘﻴﻤﺔ ﺍﻟﻔﻌﺎﻟﺔ ﻟﺸﺪﺓ ﺍﺠﻤﻟﺎﻝ ﰲ ﺍﺠﻤﻟﺎﻝ ﺍﻟﺒﻌﻴﺪ ﳝﻜﻦ ﺃﻥ ﺗُﺤﺴَﺐ ﺍﻧﻄﻼﻗﹰﺎ ﻣﻦ ﺍﻟﻘﺪﺭﺓ ﺍﳌﻌﺮﻭﻓﺔ‪ ،‬ﺑﺎﺳﺘﻌﻤﺎﻝ ﺍﳌﻌﺎﺩﻟﺔ )‪ .(7‬ﻭﳕﻂ ﺍﻟﻘﺪﺭﺓ‬
‫ﺍﳌﻨﺎﺳﺐ ﺍﺳﺘﻌﻤﺎﻟﻪ )‪ Pm‬ﺃﻭ ‪ (Pp‬ﻣﻌﻄﻰ ﰲ ﺍﳉﺪﻭﻝ ‪.4‬‬
‫ﺍﳉﺪﻭﻝ‬
‫‪4‬‬
‫ﺍﻟﻌﻼﻗﺔ ﺑﲔ ﺑﻌﺾ ﺗﺮﻣﻴﺰﺍﺕ ﺷﺪﺓ ﺍﺠﻤﻟﺎﻝ ﻭﺑﻌﺾ ﺗﺮﻣﻴﺰﺍﺕ ﺍﻟﻘﺪﺭﺓ‬
‫ﺍﻟﻘﻴﻤﺔ ﺍﳌﻘﺼﻮﺩﺓ ﺑﺎﳊﺴﺎﺏ‬
‫ﺍﻟﻘﻴﻤﺔ ﺍﻟﻔﻌﻠﻴﺔ ﻟﺸﺪﺓ ﺍﺠﻤﻟﺎﻝ ﺍﳌﻜﺎﻓﺌﺔ‬
‫ﺍﻟﻘﺪﺭﺓ ﺍﳌﻨﺎﺳﺐ ﺍﺳﺘﻌﻤﺎﳍﺎ‬
‫ﻗﺪﺭﺓ ﺍﳌﺮﺳِﻞ ﺍﳌﺘﻮﺳﻄﺔ‪،‬‬
‫ﺍﻟﻘﻴﻤﺔ ﺍﳌﺘﻮﺳﻄﺔ ﻟﺸﺪﺓ ﺍﺠﻤﻟﺎﻝ ﺍﳌﻜﺎﻓﺌﺔ ﺍﻟﱵ ﲢﺼﻞ ﺧﻼﻝ ﻓﺘﺮﺓ ﺍﻟﺬﺭﻭﺓ ﻟﺬﺑﺬﺑﺔ ﺍﻟﺘﺮﺩﺩ ﺫﺭﻭﺓ ﺍﻟﻘﺪﺭﺓ‪،‬‬
‫ﺍﻟﺮﺍﺩﻳﻮﻱ‬
‫‪Pp‬‬
‫ﺫﺭﻭﺓ ﺍﻟﻘﺪﺭﺓ‪،‬‬
‫‪Pp‬‬
‫ﻗﻴﻤﺔ ﺍﻟﺬﺭﻭﺓ )ﺍﻟﻘﺼﻮﻯ( ﻟﺸﺪﺓ ﺍﺠﻤﻟﺎﻝ ﺍﳌﻜﺎﻓﺌﺔ‬
‫‪Pm‬‬
‫)‪(1‬‬
‫)‪ (1‬ﲢﺪﺩ ﻗﻴﻤﺔ ﺍﻟﺬﺭﻭﺓ ﻟﺸﺪﺓ ﺍﺠﻤﻟﺎﻝ ﺍﳌﻜﺎﻓﺌﺔ ﺍﻧﻄﻼﻗﹰﺎ ﻣﻦ ﺫﺭﻭﺓ ﺍﻟﻘﺪﺭﺓ‪ ،Pp ،‬ﺑﺎﺳﺘﻌﻤﺎﻝ ﻋﺎﻣﻞ ﺗﺼﺤﻴﺢ ﻗﻴﻤﺔ ﺍﻟﺬﺭﻭﺓ‪/‬ﺍﻟﻘﻴﻤﺔ ﺍﻟﻔﻌﺎﻟﺔ‪.‬‬
‫ﻭﻋﺎﻣﻞ ﺍﻟﺘﺼﺤﻴﺢ ﻫﺬﺍ ﻫﻮ ‪ 21/2‬ﲞﺼﻮﺹ ﻣﻮﺟﺔ ﺣﺎﻣﻠﺔ ﺟﻴﺒﻴﺔ‪.‬‬
‫ﺍﻟﺘﻮﺻﻴﺔ‬
‫‪6.1.2‬‬
‫‪ITU-R BS.1698‬‬
‫‪13‬‬
‫ﳐﻄﻄﺎﺕ ﺍﻟﺘﺪﺍﺧﻞ‬
‫ﻣﻦ ﺷﺄﻥ ﺍﻟﺒﲎ ﺍﻟﻄﺒﻴﻌﻴﺔ ﻭﺍﻻﺻﻄﻨﺎﻋﻴﺔ ﻋﻠﻰ ﺍﻟﺴﻮﺍﺀ ﺃﻥ ﺗﻜﺮﺭ ﺇﺷﻌﺎﻉ ﳎﺎﻝ ﻛﻬﺮﻣﻐﻨﻄﻴﺴﻲ )‪ .(EMF‬ﻭﺍﺠﻤﻟﺎﻝ ﺍﳌﻌﺎﺩ ﺇﺷﻌﺎﻋﻪ ﻳﻀﺎﻑ‬
‫ﺍﲡﺎﻫﻴﹰﺎ ﺇﱃ ﺍﺠﻤﻟﺎﻝ ﺍﳌﺒﺎﺷﺮ‪ .‬ﻓﺘﺴﻔﺮ ﻫﺬﻩ ﺍﻹﺿﺎﻓﺔ ﻋﻦ ﳐﻄﻄﺎﺕ ﺗﺪﺍﺧﻞ ﺗﺘﺄﻟﻒ ﻣﻦ ﻗﻴﻢ ﳏﺪﺩﺓ ﺍﳌﻮﺿﻊ ﻗﺼﻮﻯ ﻭﺩﻧﻴﺎ ﻟﺸﺪﺓ ﺍﺠﻤﻟﺎﻝ‪ .‬ﺑﻞ‬
‫ﻭﻳﺰﺩﺍﺩ ﺗﻌﻘﻴﺪ ﳐﻄﻂ ﺍﻟﺘﺪﺍﺧﻞ ﻣﱴ ﺗﻌﺪﺩﺕ ﺣﺎﻻﺕ ﺇﻋﺎﺩﺓ ﺇﺷﻌﺎﻉ ﺍﺠﻤﻟﺎﻝ‪.‬‬
‫ﰒ ﺇﻥ ﳐﻄﻄﺎﺕ ﺍﻟﺘﺪﺍﺧﻞ ﺗﺎﺑﻌﺔ ﻟﺘﺮﺩﺩ ﻣﺼﺪﺭ ﺍﻹﺷﻌﺎﻉ‪ .‬ﻓﻜﻠﻤﺎ ﻋﻼ ﺍﻟﺘﺮﺩﺩ ﺻﻐُﺮ ﻃﻮﻝ ﺍﳌﻮﺟﺔ‪ ،‬ﻓﻘﺮُﺑﺖ ﻣﻜﺎﻧﻴﹰﺎ ﺍﻟﻘﻴﻢ ﺍﻟﻘﺼﻮﻯ‬
‫ﻭﺍﻟﺪﻧﻴﺎ‪ .‬ﻓﻔﻲ ﺍﻟﺘﺮﺩﺩﺍﺕ ﺍﻟﺪﻳﺴﻴﻤﺘﺮﻳﺔ ﺍﳌﺨﺼﺼﺔ ﻟﻠﺘﻠﻔﺰﻳﻮﻥ )ﺍﻟﺘﺮﺩﺩﺍﺕ ‪ ،(UHF‬ﻻ ﻳﻔﺼﻞ ﻣﻜﺎﻧﻴﹰﺎ ﺑﲔ ﺍﻟﻘﻴﻢ ﺍﻟﻘﺼﻮﻯ ﻭﺍﻟﺪﻧﻴﺎ ﺇﻻ‬
‫ﺑﻀﻊ ﻋﺸﺮﺍﺕ ﻣﻦ ﺍﻟﺴﻨﺘﻴﻤﺘﺮﺍﺕ‪.‬‬
‫ﻭﳛﺪﺙ ﺗﺮﺍﻛﺐ ﻋﺪﺓ ﳐﻄﻄﺎﺕ ﰲ ﺣﺎﻟﺔ ﺗﻌﺪﺩ ﻣﺼﺎﺩﺭ ﺍﻹﺷﻌﺎﻉ‪ ،‬ﺃﻱ ﰲ ﺣﺎﻟﺔ ﺇﺷﻌﺎﻉ ﻋﺪﺓ ﻗﻨﻮﺍﺕ ﺇﺫﺍﻋﺔ ﻭﺗﻠﻔﺰﻳﻮﻥ ﻣﻦ ﻣﻮﻗﻊ‬
‫ﻭﺍﺣﺪ‪.‬‬
‫‪2.2‬‬
‫ﺏ ﺍﳍﻮﺍﺋﻴﺎﺕ ﺍﻹﺫﺍﻋﻴﺔ‬
‫ﺳﻮﻳﺎﺕ ﺷﺪﺓ ﺍﺠﻤﻟﺎﻝ ﻗﺮ َ‬
‫ﻳﺘﻨﺎﻭﻝ ﻫﺬﺍ ﺍﻟﻘﺴﻢ ﺳﻮﻳﺎﺕ ﺷﺪﺓ ﺍﺠﻤﻟﺎﻝ ﺍﻟﱵ ﺗﻮﺟﺪ ﻗﺮﺏ ﺍﳍﻮﺍﺋﻴﺎﺕ ﺍﻹﺫﺍﻋﻴﺔ ﺍﻟﻨﻤﻄﻴﺔ ﺍﻟﱵ ﺗُﺮﺳِﻞ ﺑﺎﳌﻮﺟﺎﺕ ﺍﻟﻜﻴﻠﻮﻣﺘﺮﻳﺔ‪/‬ﺍﳍﻜﺘﻮﻣﺘﺮﻳﺔ‬
‫)‪ (LF/MF‬ﻭﺍﻟﺪﻳﻜﺎﻣﺘﺮﻳﺔ )‪ (HF‬ﻭﺍﳌﺘﺮﻳﺔ )‪ (VHF‬ﻭﺍﻟﺪﻳﺴﻴﻤﺘﺮﻳﺔ )‪.(UHF‬‬
‫‪1.2.2‬‬
‫ﻧﻄﺎﻗﺎﺕ ﺍﳌﻮﺟﺎﺕ ﺍﻟﻜﻴﻠﻮﻣﺘﺮﻳﺔ‪/‬ﺍﳍﻜﺘﻮﻣﺘﺮﻳﺔ )‪(kHz 1 605-150) (LF/MF‬‬
‫ﰲ ﺣﺎﻟﺔ ﺍﻹﺭﺳﺎﻝ ﺑﺎﳌﻮﺟﺎﺕ ﺍﻟﻜﻴﻠﻮﻣﺘﺮﻳﺔ ﻭﺍﳍﻜﺘﻮﻣﺘﺮﻳﺔ ﺗﻜﻮﻥ ﺍﻟﺘﺮﺩﺩﺍﺕ ﺃﺧﻔﺾ ﻣﻦ ﺗﺮﺩﺩﺍﺕ ﺭﻧﲔ ﻛﺎﻣﻞ ﺍﳉﺴﻢ‪ .‬ﻓﻔﻲ ﺣﺎﻻﺕ‬
‫ﺗﺄﺛﲑ ﺍﺠﻤﻟﺎﻝ ﺍﻟﻜﻬﺮﻣﻐﻨﻄﻴﺴﻲ ﻣﺒﺎﺷﺮﺓ‪ ،‬ﺗﻜﻮﻥ ﺍﻟﺴﻮﻳﺎﺕ ﺍﳊﺪﻳﺔ )ﻭﺗُﻌﺮﱠﻑ ﺃﻳﻀﹰﺎ ﺑﺄﻬﻧﺎ "ﺳﻮﻳﺎﺕ ﻣﺸﺘﻘﺔ"( ﻟﻘﻴﻢ ﻛﻼ ﺍﺠﻤﻟﺎﻟﲔ ﺍﻟﻜﻬﺮﺑﺎﺋﻲ‪،‬‬
‫‪ ،E‬ﻭﺍﳌﻐﻨﻄﻴﺴﻲ‪ ،H ،‬ﻋﺎﻟﻴﺔ ﻧﺴﺒﻴﹰﺎ‪ .‬ﺇﻻ ﺃﻧﻪ ﰲ ﻛﺜﲑ ﻣﻦ ﺍﳊﺎﻻﺕ ﻻ ﺗﻮﺟﺪ ﺍﻟﻘﻴﻢ ﺍﻟﻌﺎﻟﻴﺔ ﺇﻻ ﻗﺮﻳﺒﹰﺎ ﺟﺪﹰﺍ ﻣﻦ ﻫﻮﺍﺋﻲ ﺍﻹﺭﺳﺎﻝ‪ .‬ﻭﻫﺬﺍ‬
‫ﻳﺼﺪﻕ ﺧﺼﻮﺻﹰﺎ ﻋﻠﻰ ﺍﻟﻄﺮﻑ ﺍﻷﺩﱏ ﳌﺪﻯ ﺍﻟﺘﺮﺩﺩﺍﺕ ﺍﻟﻜﻴﻠﻮﻣﺘﺮﻳﺔ‪/‬ﺍﳍﻜﺘﻮﻣﺘﺮﻳﺔ‪ ،‬ﻭﻋﻠﻰ ﺍﳌﻌﺎﻳﲑ‪/‬ﺍﳋﻄﻮﻁ ﺍﻟﺘﻮﺟﻴﻬﻴﺔ ﺍﻟﱵ ﺣﺪﺩﺕ‬
‫ﺳﻮﻳﺎﺕ ﻣﺸﺘﻘﺔ ﻋﺎﻟﻴﺔ‪ .‬ﺃﻣﺎ ﰲ ﺍﻟﻄﺮﻑ ﺍﻷﻋﻠﻰ ﻟﻠﻨﻄﺎﻕ ﻓﻘﺪ ﲤﺘﺪ ﻣﺴﺎﻓﺎﺕ ﺍﻟﺘﺄﺛﲑ ﺣﱴ ﺑﻀﻊ ﻣﺌﺎﺕ ﺍﻷﻣﺘﺎﺭ‪ .‬ﻭﻳﻨﺒﻐﻲ ﺍﻹﺩﺭﺍﻙ ﺃﻥ‬
‫ﺳﺒﺐ ﻫﺬﻩ ﺍﻟﺰﻳﺎﺩﺓ ﰲ ﺍﳌﺴﺎﻓﺔ ﻫﻮ‪ ،‬ﺟﺰﺋﻴﹰﺎ ﻋﻠﻰ ﺍﻷﻗﻞ‪ ،‬ﺍﻻﳔﻔﺎﺽ ﰲ ﺍﻟﺴﻮﻳﺎﺕ ﺍﳌﺮﺟﻌﻴﺔ ﻋﻨﺪ ﺍﻟﻄﺮﻑ ﺍﻷﻋﻠﻰ ﻟﻨﻄﺎﻕ ﺍﳌﻮﺟﺎﺕ‬
‫ﺍﳍﻜﺘﻮﻣﺘﺮﻳﺔ‪ .‬ﻓﻴﺠﺐ ﲡﻨﺐ ﺍﻟﻨﻔﺎﺫ ﺇﱃ ﺻﺎﺭﻱ‪/‬ﺑﺮﺝ ﺍﻹﺭﺳﺎﻝ ﺃﺛﻨﺎﺀ ﺍﻹﺭﺳﺎﻝ‪ ،‬ﻧﻈﺮﹰﺍ ﻻﺭﺗﻔﺎﻉ ﺷﺪﺓ ﺍﺠﻤﻟﺎﻝ ﻭﺧﻄﺮ ﺍﻟﺼﺪﻣﺔ ﺍﻟﻜﻬﺮﺑﺎﺋﻴﺔ‪.‬‬
‫‪2.2.2‬‬
‫ﻧﻄﺎﻗﺎﺕ ﺍﳌﻮﺟﺎﺕ ﺍﻟﺪﻳﻜﺎﻣﺘﺮﻳﺔ )‪(MHz 30-3) (HF‬‬
‫ﻳُﺴﺘﺪﻝ ﻣﻦ ﺍﻟﻘﻴﺎﺳﺎﺕ ﺍﻟﱵ ﺃﹸﺟﺮﻳﺖ ﰲ ﻣﻨﺎﻃﻖ ﻭﺍﺳﻌﺔ ﺣﻮﻝ ﳏﻄﺎﺕ ﺍﻹﺭﺳﺎﻝ ﺍﻟﻌﺎﻟﻴﺔ ﺍﻟﻘﺪﺭﺓ ﺑﺎﳌﻮﺟﺎﺕ ﺍﻟﺪﻳﻜﺎﻣﺘﺮﻳﺔ ﺃﻥ ﺍﺠﻤﻟﺎﻝ‬
‫ﺍﻟﻜﻬﺮﻣﻐﻨﻄﻴﺴﻲ ﻳﻔﻮﻕ ﺍﻟﺴﻮﻳﺎﺕ ﺍﳌﺸﺘﻘﺔ ﻟﺸﺪﺓ ﺍﺠﻤﻟﺎﻝ ﺍﻟﻜﻬﺮﺑﺎﺋﻲ‪ ،‬ﻭﻋﻠﻰ ﺍﳋﺼﻮﺹ ﻗﺮﺏ ﻛﺒﻼﺕ ﺍﻟﺘﻐﺬﻳﺔ ﺍﳌﻜﺸﻮﻓﺔ‪ .‬ﻭﻗﺪ ﺃﺻﺒﺤﺖ‬
‫ﻛﺒﻼﺕ ﺍﻟﺘﻐﺬﻳﺔ ﻣﻐﻠﱠﻔﺔ ﻭﻣﺪﻓﻮﻧﺔ ﰲ ﻛﺜﲑ ﻣﻦ ﳏﻄﺎﺕ ﺍﻟﺒﺚ ﺍﻹﺫﺍﻋﻲ ﻣﻦ ﺃﺟﻞ ﺧﻔﺾ ﺷﺪﺓ ﺍﺠﻤﻟﺎﻝ‪ ،‬ﻟﻜﻦ ﻫﺬﺍ ﺍﻹﺟﺮﺍﺀ ﻻ ﳝﻜﻦ‬
‫ﺗﻄﺒﻴﻘﻪ ﺣﻮﻝ ﺻﻔﻴﻒ ﻫﻮﺍﺋﻴﺎﺕ ﺍﻹﺭﺳﺎﻝ ﻧﻔﺴﻬﺎ‪ .‬ﻭﻟﺬﺍ ﳚﺐ ﺃﻥ ﺗُﺠﻌَﻞ ﺃﺟﺰﺍﺀ ﻣﻦ ﺍﻷﺭﺽ ﺍﶈﻴﻄﺔ ﲟﺠﻤﻮﻋﺎﺕ ﻫﻮﺍﺋﻴﺎﺕ ﺍﻹﺭﺳﺎﻝ‬
‫"ﻣﻨﺎﻃﻖ ﳏﻈﻮﺭﺓ"‪ ،‬ﻭﺃﻥ ﺗُﺨﻄﻂ ﺃﻋﻤﺎﻝ ﺍﻟﺼﻴﺎﻧﺔ ﲝﻴﺚ ﺗُﺠﺮﻯ ﰲ ﻏﲑ ﻣﻮﺍﻋﻴﺪ ﺍﻹﺭﺳﺎﻝ‪ .‬ﻟﻜﻦ ﻫﺬﺍ ﺳﻴﻜﻮﻥ ﻋﺴﲑﹰﺍ ﲞﺼﻮﺹ ﻛﺜﲑ‬
‫ﻣﻦ ﳏﻄﺎﺕ ﺍﻟﺒﺚ ﺍﻹﺫﺍﻋﻲ ﺑﺎﳌﻮﺟﺎﺕ ﺍﻟﺪﻳﻜﺎﻣﺘﺮﻳﺔ‪ ،‬ﺣﻴﺚ ﳝﻜﻦ ﺃﻥ ﺗﺘﻐﲑ ﳐﻄﻄﺎﺕ ﺍﺠﻤﻟﺎﻝ ﻛﻞ ‪ 15‬ﺩﻗﻴﻘﺔ‪ ،‬ﺑﺴﺒﺐ ﻣﺘﻄﻠﺒﺎﺕ ﺍﻟﱪﳎﺔ‪.‬‬
‫ﻭﺃﻣﺎﻡ ﺻﻔﻴﻒ ﻫﻮﺍﺋﻴﺎﺕ ﺍﻟﺒﺚ ﺍﻹﺫﺍﻋﻲ ﺑﺎﳌﻮﺟﺎﺕ ﺍﻟﺪﻳﻜﺎﻣﺘﺮﻳﺔ )‪ (HF‬ﲡﻨﺢ ﺷﺪﺓ ﺍﺠﻤﻟﺎﻝ ﺇﱃ ﺍﻟﺘﺰﺍﻳﺪ ﺍﻃﺮﺍﺩﹰﺍ ﻣﻊ ﺍﺭﺗﻔﺎﻉ ﺍﳍﻮﺍﺋﻲ ﻓﻮﻕ‬
‫ﺳﻄﺢ ﺍﻷﺭﺽ‪ .‬ﻭﻫﺬﺍ ﺍﻟﺘﺰﺍﻳﺪ ﻳُﻔﺴﱠﺮ ﺟﺰﺋﻴﹰﺎ ﺑﺄﻥ ﺍﳊﺰﻣﺔ ﺍﻟﺮﺋﻴﺴﻴﺔ ﳍﺎ ﺯﺍﻭﻳﺔ ﺍﺭﺗﻔﺎﻉ ﻋﻦ ﺳﻄﺢ ﺍﻷﺭﺽ ﺗﺘﺮﺍﻭﺡ ﻣﻦ ‪ 10‬ﺩﺭﺟﺎﺕ ﺇﱃ‬
‫‪ 15‬ﺩﺭﺟﺔ‪ ،‬ﻟﻜﻨﻪ ﻳﻌﻮﺩ ﺑﺼﻮﺭﺓ ﺭﺋﻴﺴﻴﺔ ﺇﱃ ﺍﻟﻈﺮﻭﻑ ﺍﳊﺪﻳﺔ ﺍﻟﺴﺎﺋﺪﺓ ﻋﻠﻰ ﺳﻄﺢ ﺍﻷﺭﺽ‪ .‬ﻓﺄﻛﺜﺮﻳﺔ ﻫﻮﺍﺋﻴﺎﺕ ﺍﻟﺒﺚ ﺍﻹﺫﺍﻋﻲ‬
‫ﺑﺎﳌﻮﺟﺎﺕ ‪ HF‬ﺫﺍﺕ ﺍﻻﺳﺘﻘﻄﺎﺏ ﺍﻷﻓﻘﻲ‪ ،‬ﻭﰲ ﻫﺬﻩ ﺍﳊﺎﻟﺔ ﺗﻜﻮﻥ ﺷﺪﺓ ﺍﺠﻤﻟﺎﻝ ﺍﻟﻜﻬﺮﺑﺎﺋﻲ ﻋﻠﻰ ﺳﻄﺢ ﺍﻷﺭﺽ ﻣﺴﺎﻭﻳﺔ ﻟﺼﻔﺮ ﺇﺫﺍ‬
‫ﻛﺎﻧﺖ ﺇﻳﺼﺎﻟﻴﺔ ﺍﻷﺭﺽ ﻏﲑ ﳏﺪﻭﺩﺓ‪ .‬ﻟﻜﻦ ﺇﻳﺼﺎﻟﻴﺔ ﺍﻷﺭﺽ ﳏﺪﻭﺩﺓ ﺑﺎﻟﻮﺍﻗﻊ‪ ،‬ﻭﻟﺬﺍ ﻳﻈﻞ ﻟﺸﺪﺓ ﺍﺠﻤﻟﺎﻝ ﻣﻜﻮﱢﻥ ﺃﻓﻘﻲ ﺻﻐﲑ‪.‬‬
‫ﻭﻣﻦ ﺍﳌﻬﻢ ﺍﻹﺩﺭﺍﻙ ﺃﻥ ﺍﺠﻤﻟﺎﻝ ﺍﻟﻘﺮﻳﺐ ﺠﻤﻟﻤﻮﻋﺔ ﻫﻮﺍﺋﻴﺎﺕ ﺇﺭﺳﺎﻝ ﺑﺎﳌﻮﺟﺎﺕ ‪ HF‬ﻗﺪ ﳝﺘﺪ ﻣﺴﺎﻓﺔ ﻛﺒﲑﺓ‪ .‬ﻭﻟﻴﺲ ﻗﺪ ﺍﳍﻮﺍﺋﻴﺎﺕ ﻫﻮ‬
‫ﺍﻟﺴﺒﺐ ﺍﻟﻮﺣﻴﺪ ﳍﺬﺍ ﺍﻻﻣﺘﺪﺍﺩ‪ ،‬ﺑﻞ ﻳﺴﺒﺒﻪ ﺃﻳﻀﹰﺎ ﻋﺪﻡ ﺗﺴﺎﻭﻱ ﺳﻄﺢ ﺍﻷﺭﺽ ﺍﶈﻴﻄﺔ ﺇﺫ ﺇﻥ ﻋﺪﻡ ﺍﻟﺘﺴﺎﻭﻱ ﻫﺬﺍ ﻳﺴﻔﺮ ﻋﻦ ﺍﺗﺴﺎﻉ ﻛﺒﲑ‬
‫ﺟﺪﹰﺍ ﰲ ﺍﻟﻔﺘﺤﺔ ﺍﻟﻔﻌﺎﻟﺔ ﺠﻤﻟﻤﻮﻋﺔ ﺍﳍﻮﺍﺋﻴﺎﺕ‪ .‬ﻭﻫﺬﺍ ﻳﺴﺒﺐ ﺑﺪﻭﺭﻩ ﺃﻥ ﻗﻴﻢ ﺷﺪﺓ ﺍﺠﻤﻟﺎﻝ ﺍﳌﺄﺧﻮﺫﺓ ﺑﺎﻟﻘﻴﺎﺱ ﰲ ﻣﻮﺍﺿﻊ ﻗﺮﻳﺒﺔ ﻣﻦ ﳎﻤﻮﻋﺔ‬
‫ﺍﳍﻮﺍﺋﻴﺎﺕ ﺗﻨﺨﻔﺾ ﺃﺩﱏ ﻣﻦ ﺍﻟﺴﻮﻳﺎﺕ ﺍﳌﺸﺘﻘﺔ‪ ،‬ﰒ ﺗﺮﺗﻔﻊ ﻣﻦ ﺟﺪﻳﺪ ﻛﻠﻤﺎ ﺍﺑﺘﻌﺪﺕ ﺍﳌﺴﺎﻓﺔ ﻋﻦ ﺍﳍﻮﺍﺋﻴﺎﺕ‪ .‬ﺇﻻ ﺃﻧﻪ‪ ،‬ﻣﻨﺬ ﺍﻟﺪﺧﻮﻝ ﰲ‬
‫ﻣﻨﻄﻘﺔ ﺍﺠﻤﻟﺎﻝ ﺍﻟﺒﻌﻴﺪ‪ ،‬ﺗﺘﺒﻊ ﺳﻮﻳﺎﺕ ﺷﺪﺓ ﺍﺠﻤﻟﺎﻝ ﺍﳌﺨﻄﻂ ﺍﻟﻌﺎﺩﻱ ﻭﻫﻮ ﺍﻻﳔﻔﺎﺽ ﻛﻠﻤﺎ ﺍﺑﺘﻌﺪﺕ ﺍﳌﺴﺎﻓﺔ ﻋﻦ ﳎﻤﻮﻋﺔ ﺍﳍﻮﺍﺋﻴﺎﺕ‪.‬‬
‫ﺍﻟﺘﻮﺻﻴﺔ‬
‫‪14‬‬
‫‪3.2.2‬‬
‫ﻧﻄﺎﻗﺎﺕ ﺍﳌﻮﺟﺎﺕ ﺍﳌﺘﺮﻳﺔ‪/‬ﺍﻟﺪﻳﺴﻴﻤﺘﺮﻳﺔ‬
‫‪ITU-R BS.1698‬‬
‫)‪(GHz 3-MHz 30) (VHF/UHF‬‬
‫ﰲ ﺍﶈﻄﺎﺕ ﺍﻟﻌﺎﻟﻴﺔ ﺍﻟﻘﺪﺭﺓ ﻟﻠﺒﺚ ﺑﺎﳌﻮﺟﺎﺕ ‪ ،VHF/UHF‬ﺗﻜﻮﻥ ﺍﳍﻮﺍﺋﻴﺎﺕ ﻋﺎﺩﺓ ﻣﺮﻓﻮﻋﺔ ﳓﻮ ‪ m 100‬ﻓﻮﻕ ﺳﻄﺢ ﺍﻷﺭﺽ‪ ،‬ﻋﻠﻰ‬
‫ﺳَﻮﺍ ﹴﺭ ﺃﻭ ﺃﺑﺮﺍﺝ ﺑﺪﻭﻥ ﺃﻭﺍﺻﺮ‪ .‬ﻭﻟﺬﺍ ﺗﻜﻮﻥ ﺷﺪﺓ ﺍﺠﻤﻟﺎﻝ ﻋﻠﻰ ﺳﻄﺢ ﺍﻷﺭﺽ ﻣﻨﺨﻔﻀﺔ ﻧﺴﺒﻴﹰﺎ‪ ،‬ﺑﻔﻀﻞ ﺍﳌﺴﺎﻓﺔ ﺍﻟﻔﺎﺻﻠﺔ ﻋﻦ ﺍﳍﻮﺍﺋﻲ‪،‬‬
‫ﻭﺑﻔﻀﻞ ﺿﻴﻖ ﻋﺮﺽ ﺍﳊﺰﻣﺔ ﺍﳌﺮﺳَﻠﺔ ﰲ ﺍﳌﺴﺘﻮﻱ ﺍﻟﻌﻤﻮﺩﻱ‪.‬‬
‫‪4.2.2‬‬
‫ﻧﻄﺎﻗﺎﺕ ﺍﳌﻮﺟﺎﺕ ﺍﻟﺴﻨﺘﻴﻤﺘﺮﻳﺔ )‪(GHz 30-3) (SHF‬‬
‫ﻳﺴﺘﻌﻤَﻞ ﻧﻄﺎﻕ ﺍﻟﺘﺮﺩﺩﺍﺕ ﻫﺬﺍ ﰲ ﻋﺪﺩ ﺿﺨﻢ ﻣﻦ ﺧﺪﻣﺎﺕ ﺍﻻﺗﺼﺎﻻﺕ‪ ،‬ﻣﺜﻞ ﻭﺻﻼﺕ ﺍﳌﻮﺟﺎﺕ ﺍﻟﺼﻐﺮﻳﺔ‪ ،‬ﺍﻟﺜﺎﺑﺘﺔ ﻭﺍﳌﺘﻨﻘﻠﺔ‪ ،‬ﺍﻟﱵ‬
‫ﻣﻦ ﻧﻘﻄﺔ ﺇﱃ ﻧﻘﻄﺔ ﻭﻣﻦ ﻧﻘﻄﺔ ﺇﱃ ﻧﻘﺎﻁ ﻣﺘﻌﺪﺩﺓ‪ ،‬ﻭﺃﻧﻈﻤﺔ ﺍﻟﺒﺚ ﺍﻟﺴﺎﺗﻠﻲ‪ ،‬ﻭﺃﻧﻈﻤﺔ ﺍﻟﺮﺍﺩﺍﺭ ﺍﻟﻌﺴﻜﺮﻳﺔ ﻭﺍﳌﺪﻧﻴﺔ‪ ،‬ﻭﳏﻄﺎﺕ ﺍﻟﻮﺻﻠﺔ‬
‫ﺍﻟﺼﺎﻋﺪﺓ ﺍﻷﺭﺿﻴﺔ‪ ،‬ﻭﻏﲑ ﺫﻟﻚ‪.‬‬
‫ﻭﺗﺘﻨﺎﻭﻝ ﺍﻷﻗﺴﺎﻡ ﺍﻟﻔﺮﻋﻴﺔ ﺍﻟﺘﺎﻟﻴﺔ ﺍﻷﻧﻈﻤﺔ ﺍﳌﺴﺘﻌﻤﻠﺔ ﰲ ﺍﻹﺫﺍﻋﺔ‪.‬‬
‫‪ 1.4.2.2‬ﺗﻌﺎﺭﻳﻒ ﻣﻨﺎﻃﻖ ﺍﺠﻤﻟﺎﻝ‬
‫ﲞﺼﻮﺹ ﺍﳍﻮﺍﺋﻴﺎﺕ ﺍﳌﻜﺎﻓﺌﻴّﺔ ﺍﻟﱵ ﻗﻄﺮﻫﺎ ‪ ، D >> λ‬ﺗﺴﺘﻌﻤﻞ ﺍﻟﺘﻌﺎﺭﻳﻒ ﺍﻟﺘﺎﻟﻴﺔ‪:‬‬
‫ﻣﻨﻄﻘﺔ ﺍﺠﻤﻟﺎﻝ ﺍﻟﻘﺮﻳﺐ ‪ -‬ﰲ ﺍﺠﻤﻟﺎﻝ ﺍﻟﻘﺮﻳﺐ‪ ،‬ﺃﻭ ﻣﻨﻄﻘﺔ ‪ ،Fresnel‬ﻟﻠﺤﺰﻣﺔ ﺍﻟﺮﺋﻴﺴﻴﺔ‪ ،‬ﺗﺒﻠﻎ ﻛﺜﺎﻓﺔ ﺍﻟﻘﺪﺭﺓ ﻗﻴﻤﺔ ﻗﺼﻮﻯ ﻗﺒﻞ ﺃﻥ ﺗﺒﺪﺃ‬
‫ﺑﺎﻟﺘﻨﺎﻗﺺ ﻣﻊ ﺗﺰﺍﻳﺪ ﺍﳌﺴﺎﻓﺔ‪ .‬ﻭﺗﻜﻮﻥ ﺍﻟﻘﻴﻤﺔ ﺍﻟﻘﺼﻮﻯ ﻟﻜﺜﺎﻓﺔ ﺍﻟﻘﺪﺭﺓ ﰲ ﺍﺠﻤﻟﺎﻝ ﺍﻟﻘﺮﻳﺐ ﻭﻋﻠﻰ ﳏﻮﺭ ﺍﳍﻮﺍﺋﻲ ﺗﺎﺑﻌﺔ ﻟﻠﻘﺪﺭﺓ ﺍﳌﺰﻭﱠﺩ ﻬﺑﺎ‬
‫ﺍﳍﻮﺍﺋﻲ‪ ،‬ﻭﻟﻘﻄﺮ ﺍﳍﻮﺍﺋﻲ‪ ،D ،‬ﻭﻟﻜﻔﺎﺀﺓ ﺍﳍﻮﺍﺋﻲ‪.‬‬
‫ﺍﳌﻨﻄﻘﺔ ﺍﻻﻧﺘﻘﺎﻟﻴﺔ ‪ -‬ﺗﺘﻨﺎﻗﺺ ﻛﺜﺎﻓﺔ ﺍﻟﻘﺪﺭﺓ ﰲ ﺍﳌﻨﻄﻘﺔ ﺍﻻﻧﺘﻘﺎﻟﻴﺔ ﺑﺘﻨﺎﺳﺐ ﻋﻜﺴﻲ ﻣﻊ ﺍﳌﺴﺎﻓﺔ ﻋﻦ ﺍﳍﻮﺍﺋﻲ‪.‬‬
‫ﻣﻨﻄﻘﺔ ﺍﺠﻤﻟﺎﻝ ﺍﻟﺒﻌﻴﺪ ‪ -‬ﰲ ﻣﻨﻄﻘﺔ ﺍﺠﻤﻟﺎﻝ ﺍﻟﺒﻌﻴﺪ ﺃﻭ ﻣﻨﻄﻘﺔ ‪ ،Fraunhofer‬ﺗﺘﻨﺎﻗﺺ ﻛﺜﺎﻓﺔ ﺍﻟﻘﺪﺭﺓ ﺑﺘﻨﺎﺳﺐ ﻋﻜﺴﻲ ﻣﻊ ﻣﺮﺑﻊ ﺍﳌﺴﺎﻓﺔ‪.‬‬
‫ﻭﻳﻮﺿﱢﺢ ﺍﻟﺸﻜﻞ ‪ 1‬ﳐﺘﻠﻒ ﻣﻨﺎﻃﻖ ﺍﳍﻮﺍﺋﻲ ﺍﳌﻜﺎﻓﺌﻲ‪ .‬ﻟﻜﻦ ﺍﻟﻨﻬﺞ ﺍﻟﺘﺎﱄ ﻻ ﻳﺼﻠﺢ ﺇﻻ ﻋﻠﻰ ﺍﻣﺘﺪﺍﺩ ﺍﶈﻮﺭ ﺍﻟﺮﺋﻴﺴﻲ ﻟﻠﻬﻮﺍﺋﻲ‪.‬‬
‫ﺍﻟﺸﻜﻞ‬
‫‪1‬‬
‫ﻛﺜﺎﻓﺔ ﺍﻟﻘﺪﺭﺓ ﳍﻮﺍﺋﻲ ﻣﻜﺎﻓﺌ ّﻲ ﻋﻠﻰ ﳏﻮﺭ ﺍﳍﻮﺍﺋﻲ‬
‫‪1‬‬
‫‪Feed‬‬
‫‪2‬‬
‫‪C‬‬
‫‪B‬‬
‫‪Far field‬‬
‫ﺍﻟﺒﻌﻴﺪ‬
‫‪ zone‬ﺍﺠﻤﻟﺎﻝ‬
‫ﻣﻨﻄﻘﺔ‬
‫‪Transition‬‬
‫‪zone‬‬
‫ﺍﳌﻨﻄﻘﺔ ﺍﻻﻧﺘﻘﺎﻟﻴﺔ‬
‫‪C > B1‬‬
‫‪B = B1 – A‬‬
‫‪D‬‬
‫‪A‬‬
‫‪Near field‬‬
‫ﺍﻟﻘﺮﻳﺐ‬
‫‪ zone‬ﺍﺠﻤﻟﺎﻝ‬
‫ﻣﻨﻄﻘﺔ‬
‫‪B1‬‬
‫‪1698-01‬‬
‫‪B1 = 0.6 D2 /λ‬‬
‫‪A = 0.25 D2 /λ‬‬
‫ﻳﻐﻄﻲ ﺇﺷﻌﺎﻉ ﺍﳍﻮﺍﺋﻲ ﺍﳌﻜﺎﻓﺌ ّﻲ ﻛﺎﻣﻞ ﺍﻣﺘﺪﺍﺩ ﻣﻨﻄﻘﺔ ﺍﺠﻤﻟﺎﻝ ﺍﻟﻘﺮﻳﺐ ﺑﺸﻜﻞ ﺍﺳﻄﻮﺍﱐ ﻗﻄﺮﻩ ‪ .D‬ﻭﺗﻈﻞ ﺍﻟﻘﻴﻤﺔ ﺍﻟﻘﺼﻮﻯ ﻟﺸﺪﺓ ﺍﺠﻤﻟﺎﻝ‬
‫ﺍﻟﻜﻬﺮﻣﻐﻨﻄﻴﺴﻲ ﻫﻲ ﻭﻛﺜﺎﻓﺔ ﺍﻟﻘﺪﺭﺓ ﺍﳌﺼﺎﺣﺒﺔ ﺛﺎﺑﺘﺘﲔ ﰲ ﻣﻨﻄﻘﺔ ﺍﺠﻤﻟﺎﻝ ﺍﻟﻘﺮﻳﺐ ﺑﻜﺎﻣﻠﻬﺎ‪.‬‬
‫ﺍﻟﺘﻮﺻﻴﺔ‬
‫ﻭﻳﻌﺒﱠﺮ ﻋﻨﻬﺎ ﺑﺎﳌﻌﺎﺩﻟﺔ ﺍﻟﺘﺎﻟﻴﺔ‪:‬‬
‫ﺣﻴﺚ‪:‬‬
‫‪ITU-R BS.1698‬‬
‫‪16η P‬‬
‫‪π D2‬‬
‫‪15‬‬
‫= ) ‪S ( W/m 2‬‬
‫‪ :η‬ﻓﻌﺎﻟﻴﺔ ﺍﳍﻮﺍﺋﻲ ﺍﳌﻜﺎﻓﺌ ّﻲ )ﺗُﺴﺘﻌﻤﻞ ﻗﻴﻤﺔ ‪(0,55‬‬
‫‪ :P‬ﻗﺪﺭﺓ ﺍﳌﺮﺳِﻞ )‪(W‬‬
‫‪ :D‬ﻗﻄﺮ ﺍﳍﻮﺍﺋﻲ ﺍﳌﻜﺎﻓﺌ ّﻲ )‪.(m‬‬
‫ﻳﺴﺘﺮﻋﻰ ﺍﻻﻧﺘﺒﺎﻩ ﺇﱃ ﺃﻥ ﺍﻟﻜﺜﺎﻓﺔ‪ ،S ،‬ﻗﻴﻤﺘﻬﺎ ﻗﺼﻮﻯ ﰲ ﻣﻨﻄﻘﺔ ﺍﺠﻤﻟﺎﻝ ﺍﻟﻘﺮﻳﺐ ﺑﺄﻛﻤﻠﻬﺎ‪.‬‬
‫ﺍﻧﻄﻼﻗﹰﺎ ﻣﻦ ﻧﻘﻄﺔ ‪) 1‬ﺑﺪﺍﻳﺔ ﺍﳌﻨﻄﻘﺔ ﺍﻻﻧﺘﻘﺎﻟﻴﺔ(‪ ،‬ﺗﺘﻨﺎﻗﺺ ﺍﻟﻜﺜﺎﻓﺔ‪ ،S ،‬ﺧﻄﻴﺎ ﺗﺒﻌﹰﺎ ﻟﻠﻤﺴﺎﻓﺔ ‪ r‬ﺣﱴ ﻧﻘﻄﺔ ‪ ،2‬ﺑﺪﺍﻳﺔ ﻣﻨﻄﻘﺔ ﺍﺠﻤﻟﺎﻝ ﺍﻟﺒﻌﻴﺪ‪.‬‬
‫ﰲ ﻣﻨﻄﻘﺔ ﺍﺠﻤﻟﺎﻝ ﺍﻟﺒﻌﻴﺪ‪ ،‬ﺗﺘﻨﺎﻗﺺ ﺍﻟﻜﺜﺎﻓﺔ‪ ،S ،‬ﺑﺘﻨﺎﺳﺐ ﻋﻜﺴﻲ ﻣﻊ ﻣﺮﺑﻊ ﺍﳌﺴﺎﻓﺔ ﻃﺒﻘﺎ ﻟﻠﻤﻌﺎﺩﻟﺔ ﺍﻟﺘﺎﻟﻴﺔ‪:‬‬
‫‪GP‬‬
‫‪4π r 2‬‬
‫ﺣﻴﺚ‪:‬‬
‫= ) ‪S ( W/m 2‬‬
‫ﺡ‬
‫‪ :G‬ﻛﺴﺐ ﺍﳍﻮﺍﺋﻲ ﺍﳌﻜﺎﻓﺌ ّﻲ ﺑﺎﻟﻨﺴﺒﺔ ﺇﱃ ﻣﺼﺪﺭ ﺇﺷﻌﺎﻉ ﻣﺘﻨﺎ ﹴ‬
‫‪ :r‬ﺍﳌﺴﺎﻓﺔ ﻋﻦ ﺍﳍﻮﺍﺋﻲ ﺍﳌﻜﺎﻓﺌ ّﻲ )‪.(m‬‬
‫ﻭﺗﻜﻮﻥ ﻗﻴﻤﺔ ﺍﻟﻜﺜﺎﻓﺔ ‪ S‬ﻗﺼﻮﻯ ﻋﻠﻰ ﳏﻮﺭ ﺍﳍﻮﺍﺋﻲ ﺍﳌﻜﺎﻓﺌ ّﻲ‪.‬‬
‫‪ 2.4.2.2‬ﺍﻟﻮﺻﻼﺕ ﺍﻷﺭﺿﻴﺔ ﺍﻟﺜﺎﺑﺘﺔ ﻭﺍﳌﺘﻨﻘﻠﺔ ﻟﻠﻤﻮﺟﺎﺕ ﺍﻟﺼﻐﺮﻳﺔ‬
‫ﻳﺘﻜﻮﻥ ﻧﻈﺎﻡ ﺇﺭﺳﺎﻝ ‪ -‬ﺍﺳﺘﻘﺒﺎﻝ ﳕﻄﻲ ﻣﻦ ﻣﺮﺳﻞ ‪ -‬ﻣﺴﺘﻘﺒﹺﻞ‪ ،‬ﻭﻣﻮﺟﱢﻪ ﻟﻠﻤﻮﺟﺎﺕ‪ ،‬ﻭﻫﻮﺍﺋﻲ ﻣﻜﺎﻓﺌ ّﻲ ﻟﻺﺭﺳﺎﻝ ﻭﺍﻻﺳﺘﻘﺒﺎﻝ‪ .‬ﻭﺗﻘﻊ‬
‫ﻗﺪﺭﺓ ﺍﳌﺮﺳﻞ ﺿﻤﻦ ﺍﳌﺪﻯ ﻣﻦ ‪ W 0,1‬ﺇﱃ ‪ ،W 15‬ﻭﳏﻮﺭ ﺍﳍﻮﺍﺋﻲ ﺍﳌﻜﺎﻓﺌ ّﻲ ﺿﻤﻦ ﺍﳌﺪﻯ ‪ m 0,5‬ﺇﱃ ‪ ،m 4‬ﺗﺒﻌﹰﺎ ﻟﻨﻄﺎﻕ ﺍﻟﺘﺮﺩﺩﺍﺕ‬
‫ﺍﳌﺴﺘﻌﻤﻞ‪.‬‬
‫ﻭﻳﻘﻊ ﻛﺴﺐ ﺍﳍﻮﺍﺋﻲ ﺍﳌﻜﺎﻓﺌ ّﻲ ﺍﳌﺴﺘﻌﻤﻞ ﻋﺎﺩﺓ‪ ،‬ﺿﻤﻦ ﺍﺠﻤﻟﺎﻝ ‪ 30‬ﺇﱃ ‪.dB 50‬‬
‫‪ 3.4.2.2‬ﺍﶈﻄﺎﺕ ﺍﻷﺭﺿﻴﺔ ﺍﻟﺴﺎﺗﻠﻴﺔ‬
‫ﻳﻜﻮﻥ ﺍﳌﻮﺿﻊ ﺍﳌﺜﺎﱄ ﶈﻄﺔ ﺃﺭﺿﻴﺔ ﺳﺎﺗﻠﻴﺔ ﻋﻠﻰ ﺃﺭﺽ ﻣﺴﺘﻮﻳﺔ ﻣﻨﺨﻔﻀﺔ ﺃﻭ ﰲ ﻭﺍ ٍﺩ ﺑﻌﻴﺪ ﻋﻦ ﺃﻱ ﻣﻨﺸﺄﺓ ﺃﻭ ﻣﻨﻄﻘﺔ ﺻﻨﺎﻋﻴﺔ‪ .‬ﺃﻣﺎ ﰲ‬
‫ﺍﻟﻮﺍﻗﻊ ﻓﻜﺜﲑﹰﺍ ﻣﺎ ﺗﻮﺿﻊ ﻫﺬﻩ ﺍﶈﻄﺎﺕ ﰲ ﺍﳌﻨﺎﻃﻖ ﺍﳊﻀﺮﻳﺔ‪ ،‬ﻋﻠﻰ ﺳﻄﻮﺡ ﺍﳌﺒﺎﱐ‪ ،‬ﻭﻏﲑ ﺫﻟﻚ‪.‬‬
‫ﻭﻋﻠﻰ ﺍﻟﻌﻤﻮﻡ‪ ،‬ﺗﻘﻊ ﺯﺍﻭﻳﺔ ﺍﺭﺗﻔﺎﻉ ﺍﳊﺰﻣﺔ ﺍﻟﺮﺋﻴﺴﻴﺔ ﺑﲔ ‪ °5‬ﻭ‪°50‬؛ ﻭﻳﺒﻠﻎ ﺃﻗﺼﻰ ﻃﻮﻝ ﻟﻨﺼﻒ ﻗﻄﺮ ﺍﳍﻮﺍﺋﻲ ‪ ،m 15‬ﻋﻠﻰ ﺍﻟﺮﻏﻢ ﻣﻦ‬
‫ﻭﺟﻮﺩ ﺃﻣﺜﻠﺔ ﻧﺎﺩﺭﺓ ﻋﻠﻰ ﻫﻮﺍﺋﻲ ﻣﻜﺎﻓﺌﻲ ﻗﺪﱡﻩ ﺍﻛﱪ‪.‬‬
‫ﻭﰲ ﻣﻨﻄﻘﺔ ﺍﺠﻤﻟﺎﻝ ﺍﻟﻘﺮﻳﺐ‪ ،‬ﳝﻜﻦ ﻟﺸﺪﺓ ﳎﺎﻝ ﺍﻟﻮﺻﻼﺕ ﺍﻟﺜﺎﺑﺘﺔ ﻭﺍﳌﺘﻨﻘﻠﺔ ﻟﻸﺭﺽ ﺃﻥ ﺗﺘﺠﺎﻭﺯ ﺍﻟﺴﻮﻳﺎﺕ ﺍﳌﺮﺟﻌﻴﺔ‪ ،‬ﻭﺧﺼﻮﺻﹰﺎ ﺣﲔ‬
‫ﺗﻜﻮﻥ ﺫﺍﺕ ﻗﺪﺭﺍﺕ ﺃﻋﻠﻰ‪ .‬ﻓﻠﺬﺍ ﳚﺐ ﻭﺿﻊ ﺣﺎﺋﻞ ﻣﺎﺩﻱ ﺩﻭﻥ ﻧﻔﺎﺫ ﺃﻱ ﺷﺨﺺ ﻏﲑ ﻣﺮﺧﱠﺺ ﻟﻪ ﺇﱃ ﺍﳌﻨﻄﻘﺔ‪ .‬ﻻ ﺑﻞ ﺇﻥ ﺍﻟﺴﻮﻳﺎﺕ‬
‫ﺍﳌﺮﺟﻌﻴﺔ ﻗﺪ ﳛﺼﻞ ﲡﺎﻭﺯﻫﺎ ﺣﱴ ﰲ ﺍﳌﻨﻄﻘﺔ ﺍﻻﻧﺘﻘﺎﻟﻴﺔ‪ ،‬ﻧﺎﻫﻴﻚ ﻋﻦ ﻣﻨﻄﻘﺔ ﺍﺠﻤﻟﺎﻝ ﺍﻟﻘﺮﻳﺐ‪.‬‬
‫ﻭﻋﻠﻰ ﻭﺟﻪ ﺍﳋﺼﻮﺹ‪ ،‬ﻣﻦ ﺷﺄﻥ ﺍﶈﻄﺎﺕ ﺍﻷﺭﺿﻴﺔ ﺍﻟﺴﺎﺗﻠﻴﺔ ﺍﻟﻌﺎﻟﻴﺔ ﺍﻟﻘﺪﺭﺓ ﺃﻥ ﺗُﺤﺪِﺙ‪ ،‬ﰲ ﺣﺎﻟﺔ ﻋﺪﺩ ﻛﺒﲑ ﻣﻨﻬﺎ‪ ،‬ﳎﺎﻻﺕ ﺗﺘﺠﺎﻭﺯ‬
‫ﺷﺪﺩﻫﺎ ﺍﻟﺴﻮﻳﺎﺕ ﺍﳌﻮﺻﻰ ﻬﺑﺎ ﰲ ﻛﻠﺘﺎ ﺍﳌﻨﻄﻘﺘﲔ‪ ،‬ﺍﺠﻤﻟﺎﻝ ﺍﻟﻘﺮﻳﺐ ﻭﺍﳌﻨﻄﻘﺔ ﺍﻻﻧﺘﻘﺎﻟﻴﺔ‪ .‬ﻭﲟﺎ ﺃﻧﻪ ﳛﺘﻤﻞ ﺃﻥ ﲤﺘﺪ ﻫﺬﻩ ﺍﳌﻨﺎﻃﻖ ﺍﻣﺘﺪﺍﺩﹰﺍ‬
‫ﻻ ﻳﺴﺘﻬﺎﻥ ﺑﻪ‪ ،‬ﻳﻠﺰﻡ ﺗﺮﻛﻴﺰ ﺍﻟﻌﻨﺎﻳﺔ ﰲ ﺍﺧﺘﻴﺎﺭ ﻣﻮﺿﻊ ﺍﶈﻄﺔ ﺍﻷﺭﺿﻴﺔ ﺍﻟﺴﺎﺗﻠﻴﺔ‪ .‬ﻭﲟﺎ ﺃﻥ ﺍﻹﺷﻌﺎﻉ ﻳﺼﺪﺭ ﺑﺰﺍﻭﻳﺔ ﺍﺭﺗﻔﺎﻉ ﻣﻌﻴﱠﻨﺔ‪ ،‬ﳚﺐ‬
‫ﲡﻬﻴﺰ ﺍﶈﻄﺔ ﺑﺂﻟﻴﺎﺕ ﲤﻨﻊ ﻣﻴﻜﺎﻧﻴﻜﻴﹰﺎ ﺃﻱ ﺗﻐﲑ ﰲ ﺯﺍﻭﻳﺔ ﺍﻻﺭﺗﻔﺎﻉ ﻣﻦ ﺷﺄﻧﻪ ﺟﻌﻞ ﺍﻹﺷﻌﺎﻉ ﻳﺘﺠﻪ ﺇﱃ ﻓﺴﺤﺔ ﳛﺘﻤﻞ ﺃﻥ ﻳﻮﺟﺪ ﻓﻴﻬﺎ‬
‫ﺷﺨﺺ ﻣﺎ‪.‬‬
‫ﺍﻟﺘﻮﺻﻴﺔ‬
‫‪16‬‬
‫‪3.2‬‬
‫‪ITU-R BS.1698‬‬
‫ﺍﺠﻤﻟﺎﻝ ﺍﳌﺨﺘﻠﻄﺔ ﻓﻴﻪ ﺍﻟﺘﺮﺩﺩﺍﺕ‬
‫ﻛﺜﲑﹰﺍ ﻣﺎ ﻳﻮﺟﺪ ﰲ ﺍﳌﻮﻗﻊ ﺍﻟﻮﺍﺣﺪ ﻋﺪﺩ ﻣﻦ ﺍﳌﺮﺳِﻼﺕ )ﺫﺍﺕ ﺗﺮﺩﺩﺍﺕ ﺇﺭﺳﺎﻝ ﳐﺘﻠﻔﺔ(‪ .‬ﻓﻤﻦ ﺍﻟﻀﺮﻭﺭﻱ ﰲ ﻫﺬﻩ ﺍﳊﺎﻟﺔ ﺃﻥ ﻳﺆﺧﺬ ﰲ‬
‫ﺍﻻﻋﺘﺒﺎﺭ ﺍﻟﺘﺄﺛﲑ ﺍﻟﻜﻠﻲ )ﺍﳌﺮﻛﺐ( ﳉﻤﻴﻊ ﻫﺬﻩ ﺍﳌﺮﺳﻼﺕ ﻋﻠﻰ ﺍﻟﺸﺨﺺ ﺍﻟﺬﻱ ﻳﺘﻌﺮﺽ ﻟﻄﺎﻗﺔ ﺍﻟﺘﺮﺩﺩﺍﺕ ﺍﻟﺮﺍﺩﻳﻮﻳﺔ‪ .‬ﺑﻴﺪ ﺃﻥ ﺍﻵﺛﺎﺭ‬
‫ﺗﺎﺑﻌﺔ ﻟﻠﺘﺮﺩﺩﺍﺕ‪ ،‬ﻭﻣﻦ ﰒ ﻳﻨﺒﻐﻲ ﺃﻥ ﺗُﺤﺴَﺐ ﺃﻭ ﹰﻻ ﺍﳌﻌﻠﻤﺎﺕ ﺫﺍﺕ ﺍﻟﺼﻠﺔ )‪ S‬ﻭ‪ E‬ﻭ ‪ (H‬ﰒ ﻳﺆﺧﺬ ﺍﻟﺘﺄﺛﲑ ﺍﳌﺮﻛﺐ ﰲ ﺍﻻﻋﺘﺒﺎﺭ‪.‬‬
‫ﻭﲞﺼﻮﺹ ﺍﻵﺛﺎﺭ ﺍﳊﺮﺍﺭﻳﺔ‪ ،‬ﺗﻌﻄﻰ ﺣﺪﻭﺩ ﺍﻟﺘﻌﺮﺽ ﺑﺪﻭﻥ ﺧﻄﺮ ﺑﻌﺒﺎﺭﺍﺕ ﻣﻌﺪﻝ ﺍﻻﻣﺘﺼﺎﺹ ﺍﻟﻨﻮﻋﻲ )‪(SAR, specific absortion rate‬‬
‫)ﺍﻧﻈﺮ ﺍﻟﺘﺬﻳﻴﻞ ‪ ،(4‬ﻭﻫﺬﺍ ﻳﻌﲏ ﺃﻧﻪ ﳚﺪﺭ ﲢﺪﻳﺪ ﻣﺎ ﻳﻼﺋﻢ ﻣﻦ ﻛﺜﺎﻓﺎﺕ ﺍﻟﻘﺪﺭﺓ‪ .‬ﻓﻔﻲ ﺣﺎﻟﺔ ﻣﻮﻗﻊ ﻣﺮﺳﻞ ﻣﺘﻌﺪﺩ ﺍﻟﺘﺮﺩﺩﺍﺕ‪ ،‬ﻳُﻮﺻﻲ ﺑﺄﻥ‬
‫ﺗﻜﻮﻥ ﺍﻟﻜﺜﺎﻓﺔ ﺍﻟﻜﻠﻴﺔ ﻟﻠﻘﺪﺭﺓ ﺣﺎﺻﻞ ﲨﻊ ﻛﺜﺎﻓﺎﺕ ﺍﻟﻘﺪﺭﺓ ﻟﻜﻞ ﺗﺮﺩﺩ ﺇﺭﺳﺎﻝ‪ ،‬ﻃﺒﻘﹰﺎ ﻟﻠﻤﻌﺎﺩﻟﺔ ﺍﻟﺘﺎﻟﻴﺔ‪:‬‬
‫‪n‬‬
‫‪St = ∑ Si‬‬
‫)‪(11‬‬
‫‪i =1‬‬
‫ﺣﻴﺚ ‪ Si‬ﻫﻲ ﻛﺜﺎﻓﺔ ﺍﻟﻘﺪﺭﺓ ﻟﻠﺘﺮﺩﺩ )‪ ، fi (i = 1, 2, … n‬ﺑﺸﺮﻁ ﲢﻘﻖ ﺍﻟﻼﺗﻌﺎﺩﻟﻴﺔ ﺍﻟﺘﺎﻟﻴﺔ‪:‬‬
‫‪n‬‬
‫‪Si‬‬
‫‪≤1‬‬
‫‪L‬‬
‫‪i =1 i‬‬
‫∑‬
‫)‪(12‬‬
‫ﺣﻴﺚ ‪ Li‬ﻫﻲ ﺍﻟﺴﻮﻳﺔ ﺍﳌﺮﺟﻌﻴﺔ ﻟﻜﺜﺎﻓﺔ ﺍﻟﻘﺪﺭﺓ‪ ،‬ﲞﺼﻮﺹ ﺍﻟﺘﺮﺩﺩ )‪. fi (i = 1, 2, … n‬‬
‫ﻫﺬﺍ ﻫﻮ ﺍﳌﺒﺪﺃ ﺍﻷﺳﺎﺳﻲ‪ ،‬ﻟﻜﻦ ﺗﻄﺒﻴﻘﻪ ﻳﺸﺘﻤﻞ ﻋﻠﻰ ﻓﺮﻭﻕ )ﺍﻧﻈﺮ ﺍﻟﺘﺬﻳﻴﻞ ‪.(4‬‬
‫‪4.2‬‬
‫ﺍﺠﻤﻟﺎﻻﺕ ﺍﻟﻜﻬﺮﻣﻐﻨﻄﻴﺴﻴﺔ )‪ (EMF‬ﺩﺍﺧﻞ ﺍﳌﺒﺎﱐ‬
‫ﺇﻥ ﳌﻮﺍﺩ ﺇﻗﺎﻣﺔ ﺍﳌﺒﲎ ﻭﻟﻠﺒﻨﻴﺔ ﺍﻟﺘﺤﺘﻴﺔ ﺩﺍﺧﻠﻪ ﺗﺄﺛﲑﹰﺍ ﻗﻮﻳﹰﺎ ﺟﺪﹰﺍ ﻋﻠﻰ ﺍﺠﻤﻟﺎﻝ‪ ،‬ﺇﺫ ﺇﻬﻧﺎ ﺗﺴﺒﺐ ﺗﻐﲑ ﺍﺠﻤﻟﺎﻝ ﻣﻦ ﻧﻘﻄﺔ ﺇﱃ ﻧﻘﻄﺔ‪ ،‬ﺣﱴ ﺩﺍﺧﻞ‬
‫ﺍﻟﻐﺮﻓﺔ ﺍﻟﻮﺍﺣﺪﺓ‪ .‬ﻓﺎﻟﺘﻐﻴّﺮﺍﺕ ﺍﳌﻜﺎﻧﻴﺔ ﰲ ﺍﺠﻤﻟﺎﻝ ﺍﻟﻜﻬﺮﻣﻐﻨﻄﻴﺴﻲ ﺗﺴﺒﺒﻬﺎ ﺍﻻﻧﻌﻜﺎﺳﺎﺕ ﺍﳌﺘﻌﺪﺩﺓ ﻟﻠﻤﻮﺟﺔ ﺍﻟﺴﺎﻗﻄﺔ‪ ،‬ﻭﻣﻦ ﰒ ﻓﺈﻥ‬
‫ﺍﺳﺘﻘﻄﺎﺏ ﺍﺠﻤﻟﺎﻝ ﺍﻟﻨﺎﺗﺞ ﳝﻜﻦ ﺃﻥ ﳜﺘﻠﻒ ﻋﻦ ﺍﺳﺘﻘﻄﺎﺏ ﺍﳌﻮﺟﺔ ﺍﻟﺴﺎﻗﻄﺔ‪.‬‬
‫ﻭﺗﺴﺒﺐ ﺍﻷﺷﻴﺎﺀ ﺍﳌﻌﺪﻧﻴﺔ ﻭﺍﻟﺘﻤﺪﻳﺪﺍﺕ )ﺍﻷﺳﻼﻙ ﻭﺍﻷﻧﺎﺑﻴﺐ( ﺇﻋﺎﺩﺓ ﺇﺷﻌﺎﻉ )ﻓﺘﺆﺛﺮ ﻛﻤﺼﺪﺭ ﺛﺎﻧﻮﻱ(‪ ،‬ﻭﺗﻐﲑ ﺷﺪﺓ ﺍﺠﻤﻟﺎﻝ ﰲ‬
‫ﺟﻮﺍﺭﻫﺎ‪.‬‬
‫ﻓﻜﻞ ﻫﺬﻩ ﺍﻟﻈﺮﻭﻑ ﲡﻌﻞ ﺗﻘﺪﻳﺮ ﺣﺪﻭﺩ ﺍﻟﺘﻌﺮﺽ ﻣﺴﺄﻟﺔ ﺻﻌﺒﺔ‪ .‬ﻭﻟﺬﺍ ﻳﻨﺒﻐﻲ ﺃﻥ ﻳﺆﺧﺬ ﰲ ﺍﻻﻋﺘﺒﺎﺭ ﻋﺪﺩ ﻛﺒﲑ ﻣﻦ ﺍﳌﻌﻠﻤﺎﺕ‪ ،‬ﻋﻨﺪ‬
‫ﺇﺟﺮﺍﺀ ﺣﺴﺎﺑﺎﺕ ﺃﻭ ﻗﻴﺎﺳﺎﺕ‪.‬‬
‫ﻭﻻ ﺑﺪ ﻣﻦ ﺍﺧﺘﻴﺎﺭ ﺍﻟﻨﻤﻮﺫﺝ ﺍﳌﻼﺋﻢ ﻟﺘﻤﺜﻴﻞ ﺍﻟﺒﻴﺌﺔ‪ ،‬ﺇﺫﺍ ﺃﹸﺭﻳﺪ ﺣﺴﺎﺏ ﺣﺪﻭﺩ ﺍﻟﺘﻌﺮﺽ ﺑﺪﻗﺔ ﻣﻘﺒﻮﻟﺔ‪.‬‬
‫ﻭﺃﻣﺎ ﺍﻟﺪﻗﺔ ﰲ ﺍﻟﻘﻴﺎﺱ ﻓﺈﻬﻧﺎ ﻣﺮﻫﻮﻧﺔ ﲝﺠﻢ ﻭﳕﻂ ﺍﳌﺴﺒﺎﺭ‪ ،‬ﻭﻛﺬﻟﻚ ﲟﻮﺿﻊ ﺍﻟﻘﺎﺋﺲ ﺑﺎﻟﻨﺴﺒﺔ ﺇﱃ ﻣﺼﺪﺭ ﺍﻹﺷﻌﺎﻉ ﻭﺇﱃ ﺍﳌﺴﺒﺎﺭ‪.‬‬
‫ﻭﻻ ﺗﻮﺟﺪ ﺑﻌﺪ ﻣﻌﺎﻳﲑ ﺩﻭﻟﻴﺔ ﻟﻄﺮﺍﺋﻖ ﺍﳊﺴﺎﺏ ﻭﺍﻟﻘﻴﺎﺱ‪.‬‬
‫ﺐ ﺍﳌﺴﺄﻟﺔ ﻻ ﻳﻨﺤﺼﺮ ﰲ ﻣﻌﺮﻓﺔ ﻗﻴﻤﺔ ﺣﺪﻭﺩ ﺍﻟﺘﻌﺮﺽ‪ ،‬ﺑﻞ ﻳﺘﻌﺪﺍﻫﺎ ﺇﱃ ﻣﻌﺮﻓﺔ ﺍﻟﻄﺮﻳﻘﺔ ﺍﻟﺴﺪﻳﺪﺓ ﻹﺟﺮﺍﺀ ﺍﳊﺴﺎﺑﺎﺕ ﻭﺍﻟﻘﻴﺎﺳﺎﺕ‪،‬‬
‫ﻓﻠ ﱡ‬
‫ﻭﻫﺬﺍ ﻫﻮ ﺍﳍﺪﻑ ﺍﻟﺮﺋﻴﺴﻲ ﳍﺬﻩ ﺍﻟﺘﻮﺻﻴﺔ‪.‬‬
‫ﺍﻟﺘﻮﺻﻴﺔ‬
‫‪3‬‬
‫ﺍﳊﺴﺎﺑﺎﺕ‬
‫‪1.3‬‬
‫ﺍﻹﺟﺮﺍﺀﺍﺕ‬
‫‪ITU-R BS.1698‬‬
‫‪17‬‬
‫ﲤﻜﱢﻦ ﻃﺮﺍﺋﻖ ﺍﳊﺴﺎﺏ ﺍﻟﺘﺤﻠﻴﻠﻴﺔ ﻭﺍﻟﺮﻗﻤﻴﺔ ﻣﻦ ﺗﻮﻗﻊ ﺍﺠﻤﻟﺎﻝ ﺍﳋﺎﺭﺟﻲ ﺃﻭ ﺍﻟﺪﺍﺧﻠﻲ ﺍﻟﻨﺎﺟﻢ ﻋﻦ ﻣﺸﻌﺎﻉ ﻛﻬﺮﻣﻐﻨﻄﻴﺴﻲ‪ .‬ﻭﺍﳊﺴﺎﺑﺎﺕ‬
‫ﻣﻔﻴﺪﺓ ﰲ ﺗﻘﺪﻳﺮ ﺳﻮﻳﺔ ﺷﺪﺓ ﺍﺠﻤﻟﺎﻝ ﰲ ﻇﺮﻭﻑ ﺗﻌﺮﺽ ﻣﻌﻴّﻨﺔ‪ ،‬ﺑﻐﻴﺔ ﲢﺪﻳﺪ ﻣﺎ ﺇﺫﺍ ﻛﺎﻧﺖ ﺍﻟﻘﻴﺎﺳﺎﺕ ﻻﺯﻣﺔ‪ ،‬ﻭﺃﻱ ﲡﻬﻴﺰ ﳚﺐ‬
‫ﺍﺳﺘﻌﻤﺎﻟﻪ ﻹﺟﺮﺍﺀ ﺍﻟﻘﻴﺎﺱ‪ .‬ﻭﻣﻦ ﻣﺰﺍﻳﺎ ﺍﳊﺴﺎﺑﺎﺕ ﺃﻳﻀﹰﺎ ﺃﻬﻧﺎ ﺗﻜﻤﻞ ﺍﻟﻘﻴﺎﺳﺎﺕ‪ ،‬ﻭﺗُﺴﺘﻌﻤَﻞ ﻟﻠﺘﺤﻘﻖ ﻣﻦ ﺃﻥ ﺍﻟﻨﺘﺎﺋﺞ ﺍﶈﺼﱠﻠﺔ ﺑﺎﻟﻘﻴﺎﺳﺎﺕ‬
‫ﻣﻌﻘﻮﻟﺔ‪.‬‬
‫ﻭﻣﻦ ﺷﺄﻥ ﺍﳊﺴﺎﺑﺎﺕ ﺃﻥ ﲢﻞ ﳏﻞ ﺍﻟﻘﻴﺎﺳﺎﺕ ﰲ ﺑﻌﺾ ﺍﳊﺎﻻﺕ‪ ،‬ﻣﺜﻞ ﻇﺮﻭﻑ ﺗﻌﺮﺽ ﻣﻌﻘﺪﺓ ﰲ ﺍﺠﻤﻟﺎﻝ ﺍﻟﻘﺮﻳﺐ‪ ،‬ﻻ ﻳﺘﻴﺴﺮ ﻣﻌﻬﺎ‬
‫ﲡﻬﻴﺰ ﺑﺎﻫﻆ ﺍﻟﺘﻜﻠﻔﺔ ﻟﻘﻴﺎﺱ ﻣﻌﺪﻝ ﺍﻻﻣﺘﺼﺎﺹ ﺍﻟﻨﻮﻋﻲ )‪.(SAR, specific absortion rate‬‬
‫ﻭﺗﻜﻮﻥ ﺟﻮﺩﺓ ﺍﳊﺴﺎﺑﺎﺕ ﻭﺩﻗﺘﻬﺎ ﻣﺮﻫﻮﻧﺔ ﺑﺎﻟﻄﺮﻳﻘﺔ ﺍﻟﺘﺤﻠﻴﻠﻴﺔ ﺃﻭ ﺍﻟﺮﻗﻤﻴﺔ ﺍﳌﺴﺘﻌﻤﻠﺔ‪ ،‬ﻭﺑﺪﻗﺔ ﻭﺻﻒ ﺍﳌﺼﺪﺭ ﺍﻟﻜﻬﺮﻣﻐﻨﻄﻴﺴﻲ‬
‫)ﺃﻭ ﺍﳌﺼﺎﺩﺭ(‪ ،‬ﻭﺍﻷﺷﻴﺎﺀ ﺍﳌﺎﺩﻳﺔ ﺍﶈﺘﻤﻞ ﺗﺄﺛﲑﻫﺎ ﻋﻠﻰ ﺷﺪﺓ ﺍﺠﻤﻟﺎﻟﲔ‪ ،‬ﺍﳌﻮﺟﻮﺩﺓ ﺑﲔ ﺍﳌﺸﻌﺎﻉ ﻭﺍﻟﻨﻘﻄﺔ ﺍﳌﻘﺼﻮﺩﺓ ﺑﺎﻟﺘﻮﻗﻊ‪ .‬ﻭﲞﺼﻮﺹ‬
‫ﺣﺴﺎﺑﺎﺕ ﺍﳌﻌﺪﻝ ‪ SAR‬ﺗﺘﺄﺛﺮ ﺟﻮﺩﺓ ﺍﻟﻨﺘﺎﺋﺞ ﺑﺪﻗﺔ ﺍﻟﻨﻤﻮﺫﺝ ﺍﻟﺒﺪﱐ‪.‬‬
‫ﻭﻻ ﺑﺪ ﻣﻦ ﻣﻌﺮﻓﺔ ﺃﻭ ﺗﻘﺪﻳﺮ ﻣﻌﻠﻤﺎﺕ ﺍﳌﺼﺪﺭ ﺃﻭﻻ‪ ،‬ﻟﻜﻲ ﳝﻜﻦ ﺇﺟﺮﺍﺀ ﺍﳊﺴﺎﺑﺎﺕ‪.‬‬
‫ﻭﻣﻦ ﺃﻣﺜﻠﺔ ﻫﺬﻩ ﺍﳌﻌﻠﻤﺎﺕ‪ :‬ﺍﻟﺘﺮﺩﺩ‪ ،‬ﻣﺘﻮﺳﻂ ﺍﻟﻘﺪﺭﺓ‪ ،‬ﺫﺭﻭﺓ ﺍﻟﻘﺪﺭﺓ‪ ،‬ﻋﺮﺽ ﺍﻟﻨﺒﻀﺔ‪ ،‬ﻃﻮﻝ ﺍﻟﻨﺒﻀﺔ‪ ،‬ﻣﻌﺪﻝ ﺗﻜﺮﺍﺭ ﺍﻟﻨﺒﻀﺎﺕ‪ ،‬ﻭﳐﻄﻂ‬
‫ﺍﳍﻮﺍﺋﻲ ﻭﻛﺴﺒﻪ ﻭﻫﻨﺪﺳﺘﻪ‪.‬‬
‫‪1.1.3‬‬
‫ﺣﻠﻮﻝ ﺍﳊﻠﻘﺔ ﺍﳌﻐﻠﻘﺔ‬
‫ﰲ ﻣﻨﻄﻘﺔ ﺍﺠﻤﻟﺎﻝ ﺍﻟﺒﻌﻴﺪ ﳌﺼﺪﺭ ﺇﺭﺳﺎﻝ‪ ،‬ﺣﻴﺚ ﻳﻐﻠﺐ ﺍﺗﺴﺎﻡ ﺍﺠﻤﻟﺎﻟﲔ ﺍﻟﻜﻬﺮﺑﺎﺋﻲ ﻭﺍﳌﻐﻨﻄﻴﺴﻲ ﺑﺎﺳﺘﻮﺍﺀ ﺍﳌﻮﺟﺔ‪ ،‬ﳝﻜﻦ ﺍﺳﺘﻌﻤﺎﻝ ﻋﺒﺎﺭﺍﺕ‬
‫ﺭﻳﺎﺿﻴﺔ ﲢﻠﻴﻠﻴﺔ ﻟﺘﻘﺪﻳﺮ ﺷﺪﺓ ﺍﺠﻤﻟﺎﻝ‪ .‬ﻓﻔﻲ ﺍﻻﲡﺎﻩ ﺍﻟﺮﺋﻴﺴﻲ ﻟﻠﻬﻮﺍﺋﻲ‪ ،‬ﳝﻜﻦ ﺍﺳﺘﻌﻤﺎﻝ ﻣﻌﺎﺩﻟﺔ ‪ Friis‬ﺍﳋﺎﺻﺔ ﺑﺎﻟﻔﻀﺎﺀ ﺍﳊﺮ‪ ،‬ﻣﻦ ﺃﺟﻞ‬
‫ﺣﺴﺎﺏ ﻛﺜﺎﻓﺔ ﺍﻟﻘﺪﺭﺓ‪:‬‬
‫‪PG‬‬
‫‪4π d 2‬‬
‫=‪S‬‬
‫ﺣﻴﺚ‪:‬‬
‫‪ :S‬ﻛﺜﺎﻓﺔ ﺍﻟﻘﺪﺭﺓ )‪(W/m2‬‬
‫‪ :P‬ﻣﺘﻮﺳﻂ ﻗﺪﺭﺓ ﺍﳋﺮﺝ )‪(W‬‬
‫ﺡ‬
‫‪ :G‬ﻛﺴﺐ ﺍﳍﻮﺍﺋﻲ ﰲ ﺍﺠﻤﻟﺎﻝ ﺍﻟﺒﻌﻴﺪ ﺑﺎﻟﻨﺴﺒﺔ ﺇﱃ ﻣﺸﻌﺎﻉ ﻣﺘﻨﺎ ﹴ‬
‫‪ :d‬ﺍﳌﺴﺎﻓﺔ ﻋﻦ ﺍﳌﺸﻌﺎﻉ )‪.(m‬‬
‫ﻭﺍﻟﻌﻼﻗﺔ ﺑﲔ ﻛﺜﺎﻓﺔ ﺍﻟﻘﺪﺭﺓ ﻭﺷﺪﺓ ﻛﻞ ﻣﻦ ﺍﺠﻤﻟﺎﻟﲔ ﺍﻟﻜﻬﺮﺑﺎﺋﻲ ﻭﺍﳌﻐﻨﻄﻴﺴﻲ ﺗﻌﻄﻴﻬﺎ ﺍﳌﻌﺎﺩﻟﺔ ﺍﻟﺘﺎﻟﻴﺔ‪:‬‬
‫‪E2‬‬
‫‪= H 2η‬‬
‫‪η‬‬
‫=‪S‬‬
‫ﺣﻴﺚ‪:‬‬
‫‪ :E‬ﺷﺪﺓ ﺍﺠﻤﻟﺎﻝ ﺍﻟﻜﻬﺮﺑﺎﺋﻲ ﺍﻟﻔﻌﺎﻟﺔ )‪(RMS) (V/m‬‬
‫‪ :H‬ﺷﺪﺓ ﺍﺠﻤﻟﺎﻝ ﺍﳌﻐﻨﻄﻴﺴﻲ ﺍﻟﻔﻌﺎﻟﺔ )‪(RMS) (A/m‬‬
‫‪ :η‬ﺍﳌﻌﺎﻭﻗﺔ ﺍﳌﻼﺯﻣﺔ ﻟﻠﻔﻀﺎﺀ ﺍﳊﺮ‪.Ω 377 ،‬‬
‫ﺍﻟﺘﻮﺻﻴﺔ‬
‫‪18‬‬
‫‪ITU-R BS.1698‬‬
‫ﻭﻋﻠﻴﻪ‪ ،‬ﳝﻜﻦ ﺣﺴﺎﺏ ﺷﺪﺓ ﻛﻞ ﻣﻦ ﺍﺠﻤﻟﺎﻟﲔ ﺑﺎﺳﺘﻌﻤﺎﻝ ﺍﻟﺼﻴﻐﺘﲔ ﺍﳌﺘﻘﺪﻣﺘﲔ ﻃﺒﻘﹰﺎ ﻟﻠﻤﻌﺎﺩﻟﺘﲔ ﺍﻟﺘﺎﻟﻴﺘﲔ‪:‬‬
‫‪5,5 P G‬‬
‫‪d‬‬
‫‪PG‬‬
‫‪68,8 d‬‬
‫=‬
‫=‬
‫‪P Gη‬‬
‫‪2‬‬
‫‪4π d‬‬
‫‪PG‬‬
‫‪4π d 2 η‬‬
‫=‪E‬‬
‫=‪H‬‬
‫ﻟﻜﻦ ﻫﺬﻩ ﺍﻟﻌﻼﻗﺎﺕ ﺗﺼﻠﺢ ﻓﻘﻂ ﰲ ﻣﻨﻄﻘﺔ ﺍﺠﻤﻟﺎﻝ ﺍﻟﺒﻌﻴﺪ ﳌﺼﺪﺭ ﺍﻹﺷﻌﺎﻉ‪ ،‬ﻳﻌﲏ ﺣﲔ ﺗﺼﺢ ﺍﻟﺼﻴﻐﺔ ‪ ،d > 2D2/λ‬ﺣﻴﺚ ‪ D‬ﻫﻲ‬
‫ﺸﻌّﺔ‪ ،‬ﻭ‪ λ‬ﻫﻲ ﻃﻮﻝ ﺍﳌﻮﺟﺔ‪ .‬ﻭﻻ ﻳُﺆﺧﺬ ﰲ ﺍﳊﺴﺎﺏ ﺷﻲﺀ ﻣﻦ ﺗﻮﻫﲔ ﺃﻭ ﺗﻘﻮﻳﺔ ﺷﺪﺓ ﺍﺠﻤﻟﺎﻝ ﺑﺴﺒﺐ‬
‫ﺃﻛﱪ ﺑﻌﺪ ﺑﲔ ﺃﺑﻌﺎﺩ ﺍﻟﺒﻨﻴﺔ ﺍﳌ ِ‬
‫ﺍﻻﻧﻌﻜﺎﺱ‪ ،‬ﻭﺍﻹﺭﺳﺎﻝ ﻋﱪ ﺍﳌﻮﺍﺩ‪ ،‬ﻭﺍﻻﻧﻌﺮﺍﺝ‪ .‬ﰒ ﺇﻥ ﺍﺳﺘﻌﻤﺎﻝ ﺍﻟﻌﻼﻗﺎﺕ ﺍﳌﺬﻛﻮﺭﺓ ﺃﻋﻼﻩ ﰲ ﻣﻨﻄﻘﺔ ﺍﺠﻤﻟﺎﻝ ﺍﻟﻘﺮﻳﺐ‪ ،‬ﺃﻭ ﰲ ﺍﲡﺎﻫﺎﺕ‬
‫ﻏﲑ ﺍﻻﲡﺎﻩ ﺍﻟﺮﺋﻴﺴﻲ‪ ،‬ﻳﻌﻄﻲ ﺑﻮﺟﻪ ﻋﺎﻡ ﻗﻴﻤﹰﺎ ﻣﻔﺮﻃﺔ ﰲ ﺍﻟﻜﱪ‪ ،‬ﻣﺎ ﱂ ﻳُﺪﺧَﻞ ﰲ ﺍﳊﺴﺎﺏ ﻋﺎﻣﻞ ﺗﺼﺤﻴﺢ ﲞﺼﻮﺹ ﺍﺠﻤﻟﺎﻝ ﺍﻟﻘﺮﻳﺐ ﺃﻭ‬
‫ﻋﺎﻣﻞ ﳐﻄﻂ ﺍﻹﺷﻌﺎﻉ‪.‬‬
‫‪2.1.3‬‬
‫ﺍﻹﺟﺮﺍﺀﺍﺕ ﺍﻟﺮﻗﻤﻴﺔ‬
‫ﻻ ﺗُﺴﺘﻌﻤَﻞ ﺍﻹﺟﺮﺍﺀﺍﺕ ﺍﻟﺘﺤﻠﻴﻠﻴﺔ ﺇﻻ ﳊﺴﺎﺏ ﺍﳋﻮﺍﺹ ﺍﻟﻜﻬﺮﻣﻐﻨﻄﻴﺴﻴﺔ ﻟﻠﻤﺠﺎﻝ ﰲ ﺑﻌﺾ ﺍﳊﺎﻻﺕ ﻭﺍﳍﻨﺪﺳﺎﺕ ﺍﳋﺎﺻﺔ‪ .‬ﺃﻣﺎ ﺣﻞ‬
‫ﺍﳌﺴﺎﺋﻞ ﺍﻟﻌﺎﻣﺔ ﻓﻴﺴﺘﻠﺰﻡ ﺗﻄﺒﻴﻖ ﺗﻘﻨﻴﺎﺕ ﺭﻗﻤﻴﺔ‪ .‬ﻭﻧﺬﻛﺮ ﻓﻴﻤﺎ ﻳﻠﻲ ﺍﻹﺟﺮﺍﺀﺍﺕ ﺍﻟﺮﻗﻤﻴﺔ ﺍﻷﻛﺜﺮ ﺷﻴﻮﻋﹰﺎ ﳊﺴﺎﺏ ﺷﺪﺓ ﺍﺠﻤﻟﺎﻝ‬
‫ﺍﻟﻜﻬﺮﻣﻐﻨﻄﻴﺴﻲ ﺍﻟﻨﺎﺟﻢ ﻋﻦ ﻣﺼﺪﺭ ﺇﺭﺳﺎﻝ ﺃﻭ ﺷﺪﺓ ﺍﺠﻤﻟﺎﻟﲔ ﺍﻟﺪﺍﺧﻠﻴﲔ‪ ،‬ﻭﻣﻌﺪﻝ ﺍﻻﻣﺘﺼﺎﺹ ﺍﻟﻨﻮﻋﻲ ﻟﻸﺟﺴﺎﻡ ﺍﻟﺒﻴﻮﻟﻮﺟﻴﺔ‪ .‬ﺃﻣﺎ‬
‫ﺍﺧﺘﻴﺎﺭ ﺍﻟﺘﻘﻨﻴﺔ ﺍﻟﺮﻗﻤﻴﺔ ﺍﻷﻛﺜﺮ ﻣﻼﺀﻣﺔ ﳊﻞ ﻣﺴﺎﺋﻞ ﺑﻌﻴﻨﻬﺎ‪ ،‬ﻓﺈﻧﻪ ﻳﺘﻮﻗﻒ ﻋﻠﻰ ﻣﺪﻯ ﺍﻟﺘﺮﺩﺩﺍﺕ ﻣﻮﺿﻊ ﺍﻟﻨﻈﺮ‪ ،‬ﻭﺍﻟﺒﲎ ﺍﳍﻨﺪﺳﻴﺔ‬
‫ﺍﳌﻘﺼﻮﺩﺓ ﳕﺬﺟﺘﻬﺎ‪ ،‬ﻭﺣﺎﻟﺔ ﺍﻟﺘﻌﺮﺽ ﺍﻟﻨﻤﻄﻴﺔ )ﰲ ﳎﺎﻝ ﻗﺮﻳﺐ ﺃﻭ ﳎﺎﻝ ﺑﻌﻴﺪ(‪.‬‬
‫ﻳﺄﰐ ﻓﻴﻤﺎ ﻳﻠﻲ ﺫﻛﺮ ﻃﺮﺍﺋﻖ ﺍﻟﻨﻤﺬﺟﺔ ﺍﻟﺮﻗﻤﻴﺔ‪:‬‬
‫ ﺍﻟﺒﺼﺮﻳﺎﺕ ﺍﻟﻄﺒﻴﻌﻴﺔ )‪(PO‬‬‫ ﻧﻈﺮﻳﺔ ﺍﻻﻧﻌﺮﺍﺝ ﺍﻟﻄﺒﻴﻌﻴﺔ )‪(PTD‬‬‫ ﺍﻟﺒﺼﺮﻳﺎﺕ ﺍﳍﻨﺪﺳﻴﺔ )‪(GO‬‬‫ ﻧﻈﺮﻳﺔ ﺍﻻﻧﻌﺮﺍﺝ ﺍﳍﻨﺪﺳﻴﺔ )‪(GTD‬‬‫ ﻧﻈﺮﻳﺔ ﺍﻻﻧﻌﺮﺍﺝ ﺍﳌﻨﺘﻈﻤﺔ )‪(UTD‬‬‫ ﻃﺮﻳﻘﺔ ﺍﻟﺘﻴﺎﺭﺍﺕ ﺍﳌﻜﺎﻓﺌﺔ )‪(MEC‬‬‫ ﻃﺮﻳﻘﺔ ﺍﻟﻌﺰﻭﻡ )‪(MOM, method of moments‬‬‫ ﻃﺮﻳﻘﺔ ﻣﺘﻌﺪﺩﺍﺕ ﺍﻷﻗﻄﺎﺏ ﺍﻟﻌﺪﻳﺪﺓ ) ‪(MMP, multiple multipole method‬‬‫ ﻃﺮﻳﻘﺔ ﺍﻟﻔﺮﻭﻕ ﺍﳌﻨﺘﻬﻴﺔ ﰲ ﺍﺠﻤﻟﺎﻝ ﺍﻟﺰﻣﲏ ) ‪(FDTD, finite-difference time-domain method‬‬‫ ﻃﺮﻳﻘﺔ ﺍﻟﻌﻨﺎﺻﺮ ﺍﳌﻨﺘﻬﻴﺔ ) ‪(FEM, finite element method‬‬‫ ﻃﺮﻳﻘﺔ ﺍﳌﻌﺎﻭَﻗﺎﺕ‪.‬‬‫ﰲ ﺻﺪﺩ ﻛﻞ ﺗﻄﺒﻴﻖ‪ ،‬ﳚﺐ ﺇﺟﺮﺍﺀ ﺗﻘﻴﻴﻢ ﻣﻦ ﺃﺟﻞ ﺗﻘﺮﻳﺮ ﺃﻱ ﻣﻦ ﻫﺬﻩ ﺍﻟﻄﺮﺍﺋﻖ ﻫﻲ ﺍﻷﻧﺴﺐ ﳊﻞ ﺍﳌﺴﺄﻟﺔ ﺍﳌﻄﺮﻭﺣﺔ‪.‬‬
‫ﻭﻛﻞ ﻣﻦ ﻫﺬﻩ ﺍﻟﻄﺮﺍﺋﻖ ﲤﻜﱢﻦ ﻣﻦ ﲢﺪﻳﺪ ﺍﻻﺗﺴﺎﻉ ﻭﺍﻟﻄﻮﺭ ﳌﻘﺎﺩﻳﺮ ﺍﺠﻤﻟﺎﻝ ﺍﻟﻜﻬﺮﻣﻐﻨﻄﻴﺴﻲ ﺍﻟﺘﺎﱄ ﺫﻛﺮﻫﺎ‪ ،‬ﰲ ﻛﻞ ﻧﻘﻄﺔ ﻣﻦ ﺍﳌﻜﺎﻥ‪،‬‬
‫ﺸﻌّﺔ ﻭﺍﻟﻨﺎﺛﺮﺓ ﺇﻣﺎ ﺃﺟﺴﺎﻣﹰﺎ ﻣﻮﺻﻠﺔ ﻣﺜﺎﻟﻴﺔ ﻭﺇﻣﺎ ﺃﺟﺴﺎﻣﹰﺎ ﻋﺎﺯﻟﺔ ﻟﻠﻜﻬﺮﺑﺎﺀ‪:‬‬
‫ﺣﻴﺚ ﻣﻦ ﺍﳉﺎﺋﺰ ﺃﻥ ﺗﻜﻮﻥ ﺍﻟﻌﻨﺎﺻﺮ ﺍﳌ ِ‬
‫ ﺷﺪﺓ ﺍﺠﻤﻟﺎﻝ ﺍﻟﻜﻬﺮﺑﺎﺋﻲ؛‬‫ ﺷﺪﺓ ﺍﺠﻤﻟﺎﻝ ﺍﳌﻐﻨﻄﻴﺴﻲ؛‬‫ ﻛﺜﺎﻓﺔ ﺍﻟﻘﺪﺭﺓ؛‬‫ ﺍﻟﺘﻴﺎﺭ؛‬‫ ﺍﻟﺘﻮﺗﺮ؛‬‫‪ -‬ﺍﳌﻌﺎﻭَﻗﺔ‪.‬‬
‫ﺍﻟﺘﻮﺻﻴﺔ‬
‫‪ITU-R BS.1698‬‬
‫‪19‬‬
‫ﻃﺮﻳﻘﺔ ﺍﻟﻌﺰﻭﻡ )‪(MOM, method of moments‬‬
‫ﻛﺜﲑﹰﺍ ﻣﺎ ﺗُﺴﺘﻌﻤَﻞ ﻃﺮﻳﻘﺔ ﺍﻟﻌﺰﻭﻡ ﰲ ﺗﺼﻤﻴﻢ ﺃﻧﻈﻤﺔ ﻫﻮﺍﺋﻴﺎﺕ ﺍﻹﺭﺳﺎﻝ ﺍﻟﺮﺍﺩﻳﻮﻱ )ﺧﺮﺝ ﺍﳌﺮﺳﻞ‪ ،‬ﻭﻗﺪﺭﺗﻪ‪ ،‬ﻭﻛﺴﺐ ﺍﳍﻮﺍﺋﻲ‪ ،‬ﺍﱁ‪(.‬‬
‫ﻭﰲ ﺣﺴﺎﺏ ﺷﺪﺩ ﺍﺠﻤﻟﺎﻻﺕ ﺍﻟﻜﻬﺮﻣﻐﻨﻄﻴﺴﻴﺔ ﺍﻟﻨﺎﲨﺔ ﻋﻨﻬﺎ‪ .‬ﻓﻬﻲ ﲤﻜﹼﻦ ﻣﻦ ﺇﺟﺮﺍﺀ ﺍﳊﺴﺎﺑﺎﺕ ﰲ ﻛﻼ ﻃﺮﰲ ﺍﻹﺭﺳﺎﻝ ﻭﺍﻻﺳﺘﻘﺒﺎﻝ‪،‬‬
‫ﻭﻛﺬﻟﻚ ﰲ ﺍﺠﻤﻟﺎﻟﲔ ﺍﻟﻘﺮﻳﺐ ﻭﺍﻟﺒﻌﻴﺪ ﻟﻠﻬﻮﺍﺋﻲ‪.‬‬
‫ﻭﳝﻜﻦ ﺑﻔﻀﻞ ﻫﺬﻩ ﺍﻟﻄﺮﻳﻘﺔ ﳕﺬﺟﺔ ﺍﻟﺒﲎ ﺍﻟﺘﻘﻨﻴﺔ ﺣﱴ ﺍﻟﺒﲎ ﺍﻟﺜﻼﺛﻴﺔ ﺍﻷﺑﻌﺎﺩ‪ ،‬ﲟﺮﺍﻋﺎﺓ ﻣﻌﻠﻤﺎﻬﺗﺎ ﺍﳌﺎﺩﻳﺔ )ﻣﺜﻞ ﺍﻟﺜﺎﺑﺖ ﺍﳌﻌﻘﺪ ﻟﻠﻌﺎﺯﻝ(‬
‫ﻭﻛﺬﻟﻚ ﻣﻌﻠﻤﺎﺕ ﺍﻷﺭﺽ‪ .‬ﺗﻌﺘﻤﺪ ﺍﻟﻨﻤﺬﺟﺔ ﻋﻠﻰ ﺃﺳﻼﻙ ﺩﻗﻴﻘﺔ ﺑﺎﻟﻨﻈﺮ ﺇﱃ ﻃﻮﻝ ﺍﳌﻮﺟﺔ‪ ،‬ﻭﺗﺴﺘﻄﻴﻊ ﻣﻦ ﺣﻴﺚ ﺍﳌﺒﺪﺃ ﲤﺜﻴﻞ‬
‫ﺍﳌﺴﺎﺣﺎﺕ ﺃﻳﻀﹰﺎ‪ .‬ﺃﻣﺎ ﳏﺪﻭﺩﻳﺔ ﻫﺬﻩ ﺍﻟﻄﺮﻳﻘﺔ ﻓﺘ ﹾﻜﻤُﻦ ﰲ ﺃﻥ ﳕﺬﺟﺔ ﺑﲎ ﻛﺒﲑﺓ ﻭﻣﻌﻘﺪﺓ ﺗﺴﺘﻬﻠﻚ ﺑﺼﻮﺭﺓ ﻣﻔﺮﻃﺔ ﻭﻗﺖ ﺍﳊﺎﺳﻮﺏ‬
‫ﻭﺫﺍﻛﺮﺗﻪ‪.‬‬
‫ﺇﻥ ﻃﺮﻳﻘﺔ ﺍﻟﻌﺰﻭﻡ ﺗﻘﻨﻴﺔ ﺃﺻﺒﺤﺖ ﺗُﺴﺘﻌﻤَﻞ ﻋﻠﻰ ﻧﻄﺎﻕ ﻭﺍﺳﻊ ﳊﻞ ﻣﺴﺎﺋﻞ ﻛﻬﺮﻣﻐﻨﻄﻴﺴﻴﺔ‪ ،‬ﻭﺇﺟﺮﺍﺀ ﺣﺴﺎﺑﺎﺕ ﻣﻌﺪﻝ ﺍﻻﻣﺘﺼﺎﺹ‬
‫ﺍﻟﻨﻮﻋﻲ )‪ ،(SAR, specific absortion rate‬ﻋﻠﻰ ﳕﺎﺫﺝ ﻓﺪﺭﻳﺔ ﻣﻦ ﺍﻷﺟﺴﺎﻡ ﺍﻟﺒﻴﻮﻟﻮﺟﻴﺔ‪ .‬ﻭﻬﺑﺬﻩ ﺍﻟﻄﺮﻳﻘﺔ ﺃﻳﻀﹰﺎ ﺗُﺤﺴﺐ ﺷﺪﺓ‬
‫ﺍﺠﻤﻟﺎﻝ ﺍﻟﻜﻬﺮﺑﺎﺋﻲ ﺩﺍﺧﻞ ﺟﺴﻢ ﺑﻴﻮﻟﻮﺟﻲ‪ ،‬ﻋﻦ ﻃﺮﻳﻖ ﺣﻞ ﻣﻌﺎﺩﻻﺕ ‪ Maxwell‬ﺍﻟﺘﻜﺎﻣﻠﻴﺔ ﺑﻮﺍﺳﻄﺔ ﺩﺍﻟﺔ ‪.Green‬‬
‫ﻃﺮﻳﻘﺔ ﺍﶈﻮﱠﻟﺔ ﺍﻟﺴﺮﻳﻌﺔ ﳏﻮﱠﻟﺔ ‪/Fourier‬ﻃﺮﻳﻘﺔ ﺍﻟﺘﺪﺭﺝ ﺍﻻﻗﺘﺮﺍﱐ )‪(FFT/CG‬‬
‫ﺍﻟﻄﺮﻳﻘﺔ ‪ FFT/CG‬ﻫﻲ ﺍﻣﺘﺪﺍﺩ ﺗﻄﻮﻳﺮﻱ ﻟﻄﺮﻳﻘﺔ ﺍﻟﻌﺰﻭﻡ‪ .‬ﻭﻗﺪ ﺑﻨُﻴﺖ ﻋﻠﻰ ﻫﺬﻩ ﺍﻟﻄﺮﻳﻘﺔ ﻭﻃﺮﻳﻘﺔ ﺍﻟﺘﺪﺭﺝ ﺍﻻﻗﺘﺮﺍﱐ ﺧﻮﺍﺭﺯﻣﻴﺎﺕ‬
‫ﺗﻜﺮﺍﺭﻳﺔ ﺗُﺴﺘﻌﻤَﻞ ﳊﻞ ﻣﻌﺎﺩﻻﺕ ﺧﻄﻴﺔ ﻣﺸﺘﻘﺔ ﻣﻦ ﻃﺮﻳﻘﺔ ﺍﻟﻌﺰﻭﻡ‪.‬‬
‫ﻃﺮﻳﻘﺔ ﺍﻟﻔﺮﻭﻕ ﺍﳌﻨﺘﻬﻴﺔ ﰲ ﺍﺠﻤﻟﺎﻝ ﺍﻟﺰﻣﲏ )‪(FDTD‬‬
‫ﻃﺮﻳﻘﺔ ‪ FDTD‬ﺭﻗﻤﻴﺔ ﺗُﺴﺘﻌﻤَﻞ ﳊﻞ ﻣﻌﺎﺩﻻﺕ ‪ Maxwell‬ﺍﻟﺘﺪﻭﻳﺮﻳﺔ ﺍﻟﺘﻔﺎﺿﻠﻴﺔ ﰲ ﺍﺠﻤﻟﺎﻝ ﺍﻟﺰﻣﲏ‪ .‬ﻭﳝﻜﻦ ﺍﺳﺘﻌﻤﺎﳍﺎ ﳊﺴﺎﺏ ﺷﺪﺓ‬
‫ﺍﺠﻤﻟﺎﻝ ﺍﻟﻜﻬﺮﻣﻐﻨﻄﻴﺴﻲ ﺍﻟﺪﺍﺧﻠﻲ ﻭﺍﳋﺎﺭﺟﻲ‪ ،‬ﻭﺗﻮﺯﻳﻊ ﺍﳌﻌﺪﻝ ‪ SAR‬ﰲ ﺍﻷﺟﺴﺎﻡ ﺍﻟﺒﻴﻮﻟﻮﺟﻴﺔ ﺍﳌﻌﺮﱠﺿﺔ ﰲ ﺍﺠﻤﻟﺎﻟﲔ ﺍﻟﻘﺮﻳﺐ ﻭﺍﻟﺒﻌﻴﺪ‪.‬‬
‫ﻼ‪ ،‬ﻭﻳُﻨﻤﺬﹶﺝ ﺍﳉﺴﻢ ﺍﻟﺒﻴﻮﻟﻮﺟﻲ ﺑﺘﺨﺼﻴﺺ ﻗﻴﻢ ﺍﻟﺴﻤﺎﺣﻴﺔ‬
‫ﻼ ﻻ ﻣﺘﺼ ﹰ‬
‫ﻭﲟﻘﺘﻀﻰ ﻫﺬﻩ ﺍﻟﻄﺮﻳﻘﺔ ﻳُﺠﻌَﻞ ﻛﻼ ﺍﻟﺰﻣﻦ ﻭﺍﳌﻜﺎﻥ ﻛﻤّﺎ ﻣﻨﻔﺼ ﹰ‬
‫ﻭﺍﻹﻳﺼﺎﻟﻴﺔ ﻟﻠﺨﻼﻳﺎ ﺍﻟﱵ ﻳﺸﻐﻠﻬﺎ ﻣﻦ ﺍﳌﻜﺎﻥ‪ .‬ﻭﺗﻜﻮﻥ ﺍﻟﺬﺍﻛﺮﺓ ﺍﳊﺎﺳﻮﺑﻴﺔ ﺍﻟﻼﺯﻣﺔ ﻟﺬﻟﻚ ﻣﺘﻨﺎﺳﺒﺔ ﻣﻊ ﻋﺪﺩ ﺍﳋﻼﻳﺎ ﺍﳌﻜﺎﻧﻴﺔ‪ .‬ﺗُﻌﺘﺒَﺮ‬
‫ﻫﺬﻩ ﺍﻟﻄﺮﻳﻘﺔ ﺃﻗﻮﻯ ﺍﻟﻄﺮﺍﺋﻖ ﻭﻋﺪﺍ ﻓﻴﻤﺎ ﻳﺘﻌﻠﻖ ﲝﺴﺎﺏ ﻣﻌﺪﻝ ﺍﻻﻣﺘﺼﺎﺹ ﺍﻟﻨﻮﻋﻲ )‪ ،(SAR‬ﻟﻜﻦ ﺍﳊﺴﺎﺑﺎﺕ ﺍﻟﺪﻗﻴﻘﺔ ﺗﺴﺘﻠﺰﻡ‬
‫ﺣﻮﺍﺳﻴﺐ ﻗﺪﻳﺮﺓ ﺟﺪﹰﺍ‪.‬‬
‫ﻃﺮﻳﻘﺔ ﻣﺘﻌﺪﺩﺍﺕ ﺍﻷﻗﻄﺎﺏ ﺍﻟﻌﺪﻳﺪﺓ ) ‪(MMP, multiple multipole method‬‬
‫ﺗﻌﺘﻤﺪ ﻃﺮﻳﻘﺔ ‪ MMP‬ﻋﻠﻰ ﺃﺳﺎﻟﻴﺐ ﲢﻠﻴﻠﻴﺔ ﳊﻞ ﻣﻌﺎﺩﻻﺕ ﺍﺠﻤﻟﺎﻻﺕ ﺍﻟﱵ ﳍﺎ ﻣﺘﻌﺪﺩ ﺃﻗﻄﺎﺏ ﰲ ﻧﻘﻄﺔ ﻣﻦ ﺍﳌﻜﺎﻥ‪ ،‬ﻭﺗﺴﺘﻌﻤَﻞ ﻣﻘﺘﺮﻧ ﹰﺔ‬
‫ﻣﻊ ﺗﻘﻨﻴﺔ ﻣﺘﻌﺪﺩ ﺍﻷﻗﻄﺎﺏ ﺍﳌﻌﻤﻤﺔ )‪ .(GMP‬ﻭﻃﺮﻳﻘﺔ ‪ MMP‬ﻣﻼﺋﻤﺔ ﺧﺼﻮﺻﹰﺎ ﶈﺎﻛﺎﺓ ﺍﻷﺟﺴﺎﻡ ﺍﳌﺴﻤﺎﺓ "ﺷﺪﻳﺪﺓ ﺍﻟﺘﻮﻫﲔ‬
‫ﺍﻟﺘﻨﺎﺛﺮﻱ"‪ ،‬ﺍﻟﱵ ﺗﻜﻮﻥ ﻗﺮﺏ ﻣﺼﺎﺩﺭ ﺍﻹﺷﻌﺎﻉ ﺃﻱ ﺿﻤﻦ ﺍﺠﻤﻟﺎﻝ ﺍﻟﻘﺮﻳﺐ‪.‬‬
‫ﻃﺮﻳﻘﺔ ﺍﳌﻌﺎﻭَﻗﺎﺕ‬
‫ﺍﺳﺘُﻌﻤِﻠﺖ ﻃﺮﻳﻘﺔ ﺍﳌﻌﺎﻭﻗﺎﺕ ﺑﻨﺠﺎﺡ ﳊﻞ ﻣﺴﺎﺋﻞ ﺗﺘﻌﻠﻖ ﺑﻘﻴﺎﺱ ﺍﳉﺮﻋﺎﺕ ﺍﻹﺷﻌﺎﻋﻴﺔ‪ ،‬ﺍﻟﱵ ﳝﻜﻦ ﺑﺼﺪﺩﻫﺎ ﺇﺟﺮﺍﺀ ﺣﺴﺎﺑﺎﺕ ﺷﺒﻪ‬
‫ﺳﻜﻮﻧﻴﺔ‪ .‬ﻭﺛﺒﺘﺖ ﻓﻌﺎﻟﻴﺔ ﻫﺬﻩ ﺍﻟﻄﺮﻳﻘﺔ ﰲ ﺣﺴﺎﺑﺎﺕ ﻣﻌﺪﻝ ﺍﻻﻣﺘﺼﺎﺹ ﺍﻟﻨﻮﻋﻲ )‪ (SAR‬ﰲ ﺟﺴﻢ ﺍﻹﻧﺴﺎﻥ ﲞﺼﻮﺹ ﺗﺮﺩﺩﺍﺕ ﻋﺎﻟﻴﺔ‬
‫ﺣﱴ ‪ .MHz 40‬ﰲ ﻫﺬﻩ ﺍﻟﻄﺮﻳﻘﺔ ﻳُﻨﻤﺬﹶﺝ ﺍﳉﺴﻢ ﺍﻟﺒﻴﻮﻟﻮﺟﻲ ﺑﻮﺍﺳﻄﺔ ﺷﺒﻜﺔ ﺛﻼﺛﻴﺔ ﺍﻷﺑﻌﺎﺩ ﻣﻦ ﺍﳌﻌﺎﻭﻗﺎﺕ ﺍﳌﻌﻘﺪﺓ‪.‬‬
‫‪ 1.2.1.3‬ﺣﺴﺎﺑﺎﺕ ﺷﺪﺓ ﺍﺠﻤﻟﺎﻝ‬
‫ﳝﻜﻦ ﺃﻥ ﺗُﺴﺘﻌﻤَﻞ ﺃﻛﺜﺮﻳﺔ ﺍﻟﻄﺮﺍﺋﻖ ﺍﳌﺬﻛﻮﺭﺓ ﺃﻋﻼﻩ ﳊﺴﺎﺏ ﺳﻮﻳﺎﺕ ﺷﺪﺩ ﺍﺠﻤﻟﺎﻻﺕ ﺍﻟﻨﺎﲨﺔ ﻋﻦ ﻣﺸﺎﻋﻴﻊ ﻛﻬﺮﻣﻐﻨﻄﻴﺴﻴﺔ‪ .‬ﻭﺗﺘﻮﻗﻒ‬
‫ﻼ(‪ .‬ﻓﺈﺫﺍ ﻭُﺟﺪﺕ ﺃﺷﻴﺎﺀ ﻗﺮﺏ ﺍﳌﺸﻌﺎﻉ‪ ،‬ﺃﻭ ﺑﲔ ﺍﳌﺸﻌﺎﻉ‬
‫ﺩﻗﺔ ﺍﻟﻨﺘﺎﺋﺞ ﺑﻘﺪﺭ ﻛﺒﲑ ﺟﺪﹰﺍ ﻋﻠﻰ ﺟﻮﺩﺓ ﳕﺬﺟﺔ ﺍﳌﺸﻌﺎﻉ )ﻛﺎﳍﻮﺍﺋﻲ ﻣﺜ ﹰ‬
‫ﻭﺍﻟﻨﻘﻄﺔ ﺍﻟﱵ ﻳُﺠﺮﻯ ﻓﻴﻬﺎ ﺗﻮﻗﻊ ﺷﺪﺓ ﺍﺠﻤﻟﺎﻝ‪ ،‬ﺃﻭ ﻗﺮﺏ ﻫﺬﻩ ﺍﻟﻨﻘﻄﺔ‪ ،‬ﻭﻛﺎﻥ ﻣﻦ ﺷﺄﻥ ﻫﺬﻩ ﺍﻷﺷﻴﺎﺀ ﺃﻥ ﺗﺆﺛﺮ ﺗﺄﺛﲑﹰﺍ ﻛﺒﲑﹰﺍ ﻋﻠﻰ ﺷﺪﺓ‬
‫ﺍﺠﻤﻟﺎﻝ‪ ،‬ﻭﺟﺒﺖ ﳕﺬﺟﺔ ﻫﺬﻩ ﺍﻷﺷﻴﺎﺀ ﺃﻳﻀﹰﺎ‪.‬‬
‫ﺍﻟﺘﻮﺻﻴﺔ‬
‫‪20‬‬
‫‪ITU-R BS.1698‬‬
‫‪ 2.2.1.3‬ﺣﺴﺎﺑﺎﺕ ﻣﻌﺪﻝ ﺍﻻﻣﺘﺼﺎﺹ ﺍﻟﻨﻮﻋﻲ‬
‫ﻧﻈﺮﹰﺍ ﻟﺼﻌﻮﺑﺔ ﻗﻴﺎﺱ ﻣﺘﻮﺳﻂ ﺍﳌﻌﺪﻝ ‪ SAR‬ﻟﻜﺎﻣﻞ ﺍﳉﺴﻢ ﺃﻭ ﺫﺭﻭﺗﻪ ﺍﳌﻜﺎﻧﻴﺔ ﰲ ﺍﻟﻜﺜﲑ ﻣﻦ ﺣﺎﻻﺕ ﺍﻟﺘﻌﺮﺽ‪ ،‬ﻳﻌﻮﱠﻝ ﻋﻠﻰ ﺍﳊﺴﺎﺑﺎﺕ‬
‫ﺍﻟﺮﻗﻤﻴﺔ‪ ،‬ﺃﻱ ﻋﻠﻰ ﻋﺪﺩ ﻣﻦ ﺍﻟﺘﻘﻨﻴﺎﺕ ﺍﻟﺮﻗﻤﻴﺔ ﺍﳌﺬﻛﻮﺭﺓ ﺃﻋﻼﻩ‪ ،‬ﻣﺜﻞ ﺍﻟﻄﺮﺍﺋﻖ ‪ FDTD‬ﻭ‪ MOM‬ﻭ‪ ،MMP‬ﻟﺘﻘﺪﻳﺮ ﺗﻮﺯﻳﻊ ﻣﻌﺪﻝ‬
‫ﺍﻻﻣﺘﺼﺎﺹ ﺍﻟﻨﻮﻋﻲ ﰲ ﺟﺴﻢ ﺑﻴﻮﻟﻮﺟﻲ ﻣﻌﺮّﺽ ﻟﻺﺷﻌﺎﻉ ﺇﻣﺎ ﰲ ﺍﺠﻤﻟﺎﻝ ﺍﻟﻜﻬﺮﻣﻐﻨﻄﻴﺴﻲ ﺍﻟﻘﺮﻳﺐ ﻭﺇﻣﺎ ﰲ ﺍﻟﺒﻌﻴﺪ‪.‬‬
‫ﻼ‪ ،‬ﻭﻇﺮﻭﻑ ﺍﻟﺘﻌﺮﺽ‪ ،‬ﻭﻗﺪ ﺍﻟﺸﻲﺀ ﺍﳌﻌﺮﱠﺽ‪،‬‬
‫ﺃﻣﺎ ﺍﺧﺘﻴﺎﺭ ﺍﻷﻧﺴﺐ ﻣﻦ ﺑﲔ ﻫﺬﻩ ﺍﻟﻄﺮﺍﺋﻖ ﳊﻞ ﻣﺴﺄﻟﺔ ﻣﻌﻴﱠﻨﺔ ﻓﻴﺘﻮﻗﻒ ﻋﻠﻰ ﺍﻟﺘﺮﺩﺩ‪ ،‬ﻣﺜ ﹰ‬
‫ﻭﺍﻟﺪﻗﺔ ﺍﳌﻄﻠﻮﺑﺔ‪ ،‬ﻭﻭﻗﺖ ﺍﳊﺴﺎﺏ ﺍﻷﻗﺼﻰ ﺍﳌﺴﻤﻮﺡ ﺑﻪ‪ .‬ﻭﻳﻘﺘﻀﻲ ﺍﺳﺘﻌﻤﺎﻝ ﺃﻱ ﻣﻦ ﻫﺬﻩ ﺍﻟﻄﺮﺍﺋﻖ ﺗﻮﻓﺮ ﺍﳋﱪﺓ ﰲ ﺍﻟﻔﻴﺰﻳﺎﺀ‬
‫ﺍﻟﺒﻴﻮﻟﻮﺟﻴﺔ ﻭﺍﻟﺘﺤﻠﻴﻞ ﺍﻟﺮﻗﻤﻲ‪.‬‬
‫ﻭﻳﻘﺘﻀﻲ ﺃﻳﻀﹰﺎ ﺍﺳﺘﻌﻤﺎﻝ ﺃﻱ ﻣﻦ ﻫﺬﻩ ﺍﻟﻄﺮﺍﺋﻖ ﻭﺟﻮﺩ ﳕﻮﺫﺝ ﻫﻨﺪﺳﻲ ﺛﻼﺛﻲ ﺍﻷﺑﻌﺎﺩ ﻟﻠﺠﺴﻢ ﺃﻭ ﺟﺰﺀ ﺍﳉﺴﻢ ﺍﳌﻌﺮﺽ‪ .‬ﻭﳚﺐ ﺃﻥ‬
‫ﺗﻜﻮﻥ ﻣﻌﺮﻭﻓﺔ ﺍﳋﻮﺍﺹ ﺍﻟﻜﻬﺮﺑﺎﺋﻴﺔ ﳌﺨﺘﻠﻒ ﺃﺟﺰﺍﺀ ﺍﳉﺴﻢ ﲢﺖ ﺍﻟﺘﺮﺩﺩ ﺍﳌﻌﺮﱠﺽ ﻟﻪ ﺍﳉﺴﻢ‪ .‬ﻭﺗﺒﻌﹰﺎ ﻟﻠﺪﻗﺔ ﺍﳌﻄﻠﻮﺑﺔ‪ ،‬ﳝﻜﻦ ﺍﺳﺘﻌﻤﺎﻝ‬
‫ﳕﺎﺫﺝ ﻣﺘﻔﺎﻭﺗﺔ ﰲ ﺍﻟﺘﻌﻘﻴﺪ‪ .‬ﻭﻳﻜﻔﻲ ﰲ ﺑﻌﺾ ﺍﳊﺎﻻﺕ ﺍﺳﺘﻌﻤﺎﻝ ﻗﻮﺍﻟﺐ ﺑﺴﻴﻄﺔ ﻛﺮﻭﻳﺔ ﺃﻭ ﺃﺳﻄﻮﺍﻧﻴﺔ ﺍﻟﺸﻜﻞ ﻟﻨﻤﺬﺟﺔ ﺍﳉﺴﻢ‪ .‬ﺃﻣﺎ‬
‫ﺧﻮﺍﺹ ﺍﻟﻌﺰﻝ ﺍﻟﻜﻬﺮﺑﺎﺋﻲ ﺍﻟﱵ ﻳﺘﺼﻒ ﻬﺑﺎ ﺍﳉﺴﻢ ﺍﻟﺒﺸﺮﻱ ﻓﻬﻲ ﻣﻮﺛﹼﻘﺔ ﺟﻴﺪﹰﺍ‪ .‬ﻭﻟﺬﺍ ﳝﻜﻦ ﻋﻦ ﻃﺮﻳﻖ ﺻﻮﺭ ﻟﻠﺠﺴﻢ ﺍﻟﺒﺸﺮﻱ ﻣﺄﺧﻮﺫﺓ‬
‫ﺑﺘﻘﻨﻴﺔ ﺍﻟﺮﻧﲔ ﺍﳌﻐﻨﻄﻴﺴﻲ‪ ،‬ﺇﺣﺮﺍﺯ ﳕﺎﺫﺝ ﳍﺬﺍ ﺍﳉﺴﻢ ﺭﻗﻤﻴﺔ ﻣﻌﻘﺪﺓ ﺟﺪﹰﺍ ﻭﺩﻗﻴﻘﺔ ﺟﺪﹰﺍ‪ .‬ﻭﺇﻥ ﳕﺎﺫﺝ ﻣﺴﺘﻤﺪﺓ ﻣﻦ ﺻﻮﺭ ﺍﻟﺮﻧﲔ‬
‫ﺍﳌﻐﻨﻄﻴﺴﻲ ﻷﻧﺴﺠﺔ ﻣﺘﻨﻮﻋﺔ‪ ،‬ﻭﺑﺎﺳﺘﺒﺎﻧﺔ ﺩﻗﻴﻘﺔ ﺣﱴ ﺑﻀﻊ ﻣﻠﻴﻤﺘﺮﺍﺕ‪ ،‬ﰎ ﺍﺳﺘﻌﻤﺎﳍﺎ ﺑﺎﻟﻄﺮﻳﻘﺔ ‪ FDTD‬ﺍﳌﺬﻛﻮﺭﺓ ﺃﻋﻼﻩ‪ ،‬ﳊﺴﺎﺏ‬
‫ﺗﻮﺯﻳﻊ ﺍﳌﻌﺪﻝ ‪ SAR‬ﰲ ﺟﺴﻢ ﺷﺨﺺ ﻣﻌﺮﺽ ﺠﻤﻟﺎﻻﺕ ﻛﻬﺮﻣﻐﻨﻄﻴﺴﻴﺔ ﻣﺘﻮﻟﹼﺪﺓ ﻋﻦ ﻣﺮﺳﻼﺕ ﺭﺍﺩﻳﻮﻳﺔ ﳏﻤﻮﻟﺔ‪.‬‬
‫‪4‬‬
‫ﺍﻟﻘﻴﺎﺳﺎﺕ‬
‫‪1.4‬‬
‫ﺍﻹﺟﺮﺍﺀﺍﺕ‬
‫ﻳﺴﺘﺮﻋﻰ ﺍﻻﻧﺘﺒﺎﻩ ﺇﱃ ﺃﻥ ﻃﺮﺍﺋﻖ ﺍﻟﻘﻴﺎﺱ ﳏﻔﻮﻓﺔ ﺑﺎﳌﺨﺎﻃﺮ‪ ،‬ﻭﻻ ﺳﻴﻤﺎ ﰲ ﺍﺠﻤﻟﺎﻻﺕ ﺍﻟﻘﺮﻳﺒﺔ ﻭﺍﳌﻨﺨﻔﻀﺔ ﺍﻟﺘﺮﺩﺩ‪ .‬ﻓﻔﻲ ﻧﻄﺎﻗﺎﺕ ﺍﻟﺘﺮﺩﺩﺍﺕ‬
‫ﺍﳌﻨﺨﻔﻀﺔ ﺗﻜﻮﻥ ﻃﺮﻳﻘﺔ ﺍﻟﻘﻴﺎﺱ ﺩﻗﻴﻘﺔ ﺟﺪﹰﺍ ﻭﻣﻌﻘﺪﺓ ﺟﺪﹰﺍ‪ ،‬ﺇﺫ ﺇﻥ ﻣﺴﺎﻓﺔ ﻧﻘﻄﺔ ﺍﻟﻘﻴﺎﺱ )ﻋﻦ ﻣﺼﺪﺭ ﺍﻹﺷﻌﺎﻉ( ﺗﻜﻮﻥ ﻋﺎﺩﺓ ﺃﻗﺼﺮ‬
‫ﺑﻜﺜﲑ ﻣﻦ ﻃﻮﻝ ﺍﳌﻮﺟﺔ‪ .‬ﻭﳍﺬﺍ ﺍﻟﺴﺒﺐ ﻳﻘﺴﻢ ﻣﺪﻯ ﺍﻟﺘﺮﺩﺩﺍﺕ ‪ GHz 30-kHz 10‬ﺇﱃ ﺃﺭﺑﻌﺔ ﺃﻗﺴﺎﻡ ﻧﻄﺎﻗﺎﺕ ﺑﺚ ﺭﺋﻴﺴﻴﺔ ﻫﻲ‪:‬‬
‫ﻧﻄﺎﻗﺎﺕ ﺍﻟﺘﺮﺩﺩﺍﺕ ﺍﻟﻜﻴﻠﻮﻣﺘﺮﻳﺔ‪/‬ﺍﳍﻜﺘﻮﻣﺘﺮﻳﺔ )‪ ،(LF/MF‬ﻭﻧﻄﺎﻗﺎﺕ ﺍﻟﺘﺮﺩﺩﺍﺕ ﺍﻟﺪﻳﻜﺎﻣﺘﺮﻳﺔ )‪ ،(HF‬ﻭﻧﻄﺎﻗﺎﺕ ﺍﻟﺘﺮﺩﺩﺍﺕ‬
‫ﺍﳌﺘﺮﻳﺔ‪/‬ﺍﻟﺪﻳﺴﻴﻤﺘﺮﻳﺔ )‪ ،(VHF/UHF‬ﻭﻧﻄﺎﻗﺎﺕ ﺍﻟﺘﺮﺩﺩﺍﺕ ﺍﻟﺴﻨﺘﻴﻤﺘﺮﻳﺔ )‪.(SHF‬‬
‫‪1.1.4‬‬
‫ﻧﻄﺎﻗﺎﺕ ﺍﳌﻮﺟﺎﺕ ﺍﻟﻜﻴﻠﻮﻣﺘﺮﻳﺔ‪/‬ﺍﳍﻜﺘﻮﻣﺘﺮﻳﺔ )‪(LF/MF‬‬
‫ﻟﻠﺘﺤﻘﻖ ﻣﻦ ﺍﻟﻨﺘﺎﺋﺞ ﺍﻟﻨﻈﺮﻳﺔ‪ ،‬ﺗُﺠﺮﻯ ﻗﻴﺎﺳﺎﺕ ﺷﺪﺓ ﺍﺠﻤﻟﺎﻝ ﰲ ﺍﳌﻨﻄﻘﺔ ﺍﻟﻘﺮﻳﺒﺔ ﺑﺎﺳﺘﻌﻤﺎﻝ ﺃﺩﻭﺍﺕ ﺧﺎﺻﺔ )ﻣﻘﺎﻳﻴﺲ ﺷﺪﺓ ﺍﺠﻤﻟﺎﻝ( ﻣﻜﻮﱠﻧﺔ‬
‫ﻼ ﻟﺘﺰﻭﻳﺪﻫﺎ ﺑﺎﻟﻘﺪﺭﺓ‪.‬‬
‫ﻣﻦ ﺛﻼﺛﺔ ﺛﻨﺎﺋﻴﺎﺕ ﻗﻄﺐ ﻗﺼﲑﺓ ﻣﻨﺼﻮﺑﺔ ﺑﺼﻮﺭﺓ ﻣﺘﻌﺎﻣﺪﺓ‪ .‬ﻭﻳﻮﺻﻰ ﺑﻌﺪﻡ ﺍﺳﺘﻌﻤﺎﻝ ﺃﻱ ﺃﺩﺍﺓ ﺗﺴﺘﻠﺰﻡ ﻛﺒ ﹰ‬
‫ﻭﲢﺎﺷﻴﹰﺎ ﻷﻱ ﺗﺄﺛﲑ ِﳐ ﱟﻞ ﺑﺎﻟﻘﻴﺎﺱ ﻣﻦ ﺟﻬﺔ ﺍﻟﺸﺨﺺ ﺍﻟﺬﻱ ﻳﻨﻔﱢﺬﻩ‪ ،‬ﺗُﺮﺑَﻂ ﺃﺩﺍﺓ ﺍﻟﻘﻴﺎﺱ ﺑﻌﺼﺎ ﻣﻌﺰﻭﻟﺔ‪ .‬ﻭﺍﳌﺴﺎﻓﺔ ﺑﲔ ﺍﻷﺩﺍﺓ ﻭﺍﳌﻨﻔﱢﺬ‬
‫ﳚﺐ ﲢﺪﻳﺪﻫﺎ ﻣﻊ ﻣﺮﺍﻋﺎﺓ ﻣﺎ ﺇﺫﺍ ﻛﺎﻥ ﳛﺪﺙ ﺃﻱ ﺗﻐﲑ ﰲ ﺳﻠﻢ ﺍﻷﺩﺍﺓ ﺑﺴﺒﺐ ﺃﻱ ﺣﺮﻛﺔ ﻣﻦ ﺍﳌﻨﻔﱢﺬ‪ .‬ﻭﻳﺘﻮﻗﻒ ﻣﻘﺪﺍﺭ ﻫﺬﻩ ﺍﳌﺴﺎﻓﺔ‬
‫ﻋﻠﻰ ﺗﺮﺩﺩ ﺍﻹﺷﺎﺭﺓ ﺍﳌﻘﺼﻮﺩﺓ ﺑﺎﻟﻘﻴﺎﺱ‪.‬‬
‫ﻭﻻ ﺑﺪ‪ ،‬ﻋﻨﺪ ﺇﺟﺮﺍﺀ ﻗﻴﺎﺱ ﻣﻦ ﻫﺬﺍ ﺍﻟﻨﻮﻉ‪ ،‬ﻣﻦ ﻣﺮﺍﻋﺎﺓ ﺍﻟﺘﺄﺛﲑﺍﺕ ﺍﳌﻤﻜﻨﺔ ﻣﻦ ﺟﻬﺔ ﲨﻴﻊ ﺍﻷﺷﻴﺎﺀ ﺍﻟﱵ ﰲ ﺍﳉﻮﺍﺭ‪ ،‬ﻭﻻ ﺳﻴﻤﺎ ﺍﻟﱵ ﻣﻦ‬
‫ﺷﺄﻬﻧﺎ ﺗﻮﻟﻴﺪ ﺁﺛﺎﺭ ﺇﻋﺎﺩﺓ ﺇﺷﻌﺎﻉ‪.‬‬
‫ﻭﻋﻨﺪﻣﺎ ﻳﻜﻮﻥ ﺍﳌﻘﺼﻮﺩ ﻣﻦ ﺍﻟﻘﻴﺎﺱ ﻫﻮ ﺍﻟﺘﺤﻘﻖ ﻣﻦ ﻧﺘﺎﺋﺞ ﺣﺴﺎﺏ ﻧﻈﺮﻱ‪ ،‬ﳚﺐ ﺍﺧﺘﻴﺎﺭ ﻧﻘﺎﻁ ﺍﻟﻘﻴﺎﺱ ﻋﻠﻰ ﺍﻣﺘﺪﺍﺩ ﺍﲡﺎﻩ ﺇﺷﻌﺎﻋﻲ‬
‫ﻭﻋﻠﻰ ﺍﺭﺗﻔﺎﻉ ﻳﺘﺮﺍﻭﺡ ﺑﲔ ‪ m 1‬ﻭ‪.m 2‬‬
‫ﻼ‪.‬‬
‫ﺡ ﺃﻛﺜﺮ ﺗﻔﺼﻴ ﹰ‬
‫ﻭﰲ ﺍﻟﺘﻮﺻﻴﺔ ‪ ITU-R BS.1386‬ﺷﺮ ٌ‬
‫ﺍﻟﺘﻮﺻﻴﺔ‬
‫‪2.1.4‬‬
‫‪ITU-R BS.1698‬‬
‫‪21‬‬
‫ﻧﻄﺎﻗﺎﺕ ﺍﳌﻮﺟﺎﺕ ﺍﻟﺪﻳﻜﺎﻣﺘﺮﻳﺔ )‪(HF‬‬
‫ﻳﺮﺩ ﺷﺮﺡ ﻣﻔﺼﻞ ﰲ ﺍﻟﺘﻮﺻﻴﺔ ‪.ITU-R BS.705‬‬
‫‪3.1.4‬‬
‫ﻧﻄﺎﻗﺎﺕ ﺍﳌﻮﺟﺎﺕ ﺍﳌﺘﺮﻳﺔ‪/‬ﺍﻟﺪﻳﺴﻴﻤﺘﺮﻳﺔ )‪(VHF/UHF‬‬
‫ﻳﺮﺩ ﺷﺮﺡ ﻣﻔﺼﻞ ﰲ ﺍﻟﺘﻮﺻﻴﺔ ‪.ITU-R BS.1195‬‬
‫‪4.1.4‬‬
‫ﻧﻄﺎﻗﺎﺕ ﺍﳌﻮﺟﺎﺕ ﺍﻟﺴﻨﺘﻴﻤﺘﺮﻳﺔ )‪(SHF‬‬
‫ﰲ ﻫﺬﻩ ﺍﳊﺎﻟﺔ ﺗُﻄﺒﱠﻖ ﺍﻟﻄﺮﻳﻘﺔ ﺍﳌﻌﻴﺎﺭﻳﺔ ﻟﻠﻘﻴﺎﺱ‪ ،‬ﻧﻈﺮﹰﺍ ﻟﻄﻮﻝ ﺍﳌﻮﺟﺔ ﻭﺍﳌﺴﺎﻓﺎﺕ ﻋﻦ ﻣﺼﺎﺩﺭ ﺍﻹﺷﻌﺎﻉ‪.‬‬
‫‪2.4‬‬
‫ﺍﻷﺩﻭﺍﺕ‬
‫‪1.2.4‬‬
‫ﻣﻘﺪﻣﺔ‬
‫ﻳﻘﺘﻀﻲ ﻗﻴﺎﺱ ﺷﺪﺓ ﺍﺠﻤﻟﺎﻝ‪ ،‬ﰲ ﻣﺪﻯ ﺍﻟﺘﺮﺩﺩﺍﺕ ‪ GHz 300-kHz 10‬ﺟﻬﺪﹰﺍ ﻛﺒﲑﹰﺍ ﻟﺘﺤﺪﻳﺪ ﺗﻐﲑ ﺍﺠﻤﻟﺎﻝ ﻣﻜﺎﻧﻴﹰﺎ ﻭﺯﻣﻨﻴﹰﺎ‪.‬‬
‫ﻭﻣﻦ ﺍﻟﻀﺮﻭﺭﻱ ﺍﺳﺘﻌﻤﺎﻝ ﺃﺩﻭﺍﺕ ﺗﻔﻲ ﺑﺎﻟﻐﺮﺽ‪ ،‬ﻭﺍﻟﺘﻘﻴﺪ ﺑﺎﻟﺘﺼﺮﻑ ﺍﻟﺼﺤﻴﺢ ﰲ ﺗﻨﻔﻴﺬ ﺍﻟﻘﻴﺎﺱ‪ .‬ﻓﻤﻦ ﺍﻷﳘﻴﺔ ﲟﻜﺎﻥ ﻣﻌﺮﻓﺔ‬
‫ﺧﺼﺎﺋﺺ ﺃﺩﻭﺍﺕ ﺍﻟﻘﻴﺎﺱ‪ ،‬ﻷﻥ ﻫﺬﻩ ﺍﳋﺼﺎﺋﺺ ﺗﻘﺮﺭ ﺍﺧﺘﻴﺎﺭ ﺍﻷﺩﺍﺓ ﺍﳌﻨﺎﺳﺒﺔ‪ .‬ﻭﺍﳋﺼﺎﺋﺺ ﺍﳌﺮﺗﺒﻄﺔ ﺑﺎﻟﺘﺮﺩﺩﺍﺕ‪ ،‬ﻣﺜﻞ ﺍﻟﺘﻔﺎﻋﻼﺕ‬
‫ﺍﻟﻜﺒﻠﻴﺔ‪ ،‬ﻭﺍﻻﺳﺘﺠﺎﺑﺎﺕ ﻏﲑ ﺍﳌﻌﺎﻳَﺮﺓ ﺧﺎﺭﺝ ﺍﻟﻨﻄﺎﻕ‪ ،‬ﻭﺍﻻﺳﺘﺠﺎﺑﺔ ﺍﻟﺘﺮﺩﺩﻳﺔ ﺍﳌ ﹶﻘﻮْﻟﺒﺔ‪ ،‬ﻛﻠﻬﺎ ﺑﺎﻟﻐﺔ ﺍﻷﳘﻴﺔ ﲞﺼﻮﺹ ﺍﻷﺩﻭﺍﺕ ﺍﻟﻌﺮﻳﻀﺔ‬
‫ﺍﻟﻨﻄﺎﻕ‪ .‬ﻭﺑﺎﳌﻘﺎﺑﻞ‪ ،‬ﻫﻨﺎﻙ ﺧﻮﺍﺹ ﻟﻠﻤﺠﺎﻝ ﳚﺐ ﻣﻮﺍﺀﻣﺘﻬﺎ ﳋﺼﺎﺋﺺ ﺍﻷﺩﻭﺍﺕ‪ ،‬ﻣﺜﻞ ﺗﻔﺎﻋﻠﻴﺔ ﺍﺠﻤﻟﺎﻝ ﺃﻭ ﺇﺷﻌﺎﻋﻴﺘﻪ‪ ،‬ﺃﻭ ﺍﻻﺳﺘﻘﻄﺎﺏ‬
‫ﻭﺍﻟﺘﺸﻜﻴﻞ ﻓﻴﻪ‪ ،‬ﺃﻭ ﻋﺪﺩ ﻣﺼﺎﺩﺭ ﺍﻹﺷﻌﺎﻉ ﺍﻟﻨﺎﺟﻢ ﻋﻨﻬﺎ ﺍﺠﻤﻟﺎﻝ‪.‬‬
‫ﺗﻘﺎﺱ ﻋﺎﺩﺓ ﺗﻌﺮﺿﺎﺕ ﺍﳉﺴﻢ ﺍﻟﺒﺸﺮﻱ ﻟﻠﻤﺠﺎﻻﺕ ﺍﻟﻜﻬﺮﻣﻐﻨﻄﻴﺴﻴﺔ ﺑﻮﺣﺪﺍﺕ ﻛﺜﺎﻓﺔ ﺍﻟﻘﺪﺭﺓ‪ ،‬ﻟﻜﻦ ﻗﻴﺎﺳﺎﺕ ﺃﺧﺮﻯ ﻣﺜﻞ‪ ،‬ﺍﻟﺘﻴﺎﺭ‬
‫ﺍﳌﺴﺘﺤَﺚ ﰲ ﺍﳉﺴﻢ‪ ،‬ﳝﻜﻦ ﺃﻥ ﺗﻜﻮﻥ ﺃﻧﺴﺐ‪ ،‬ﻭﻫﺬﻩ ﺟﻮﺍﻧﺐ ﻫﺎﻣﺔ ﰲ ﻣﺸﻜﻼﺕ ﺍﳊﻤﺎﻳﺔ ﺃﻭ ﺍﳌﺮﺍﻗﺒﺔ ﺍﻟﱵ ﻳﺘﻌﻴّﻦ ﻋﻠﻰ ﺍﳌﻬﻨﺪﺱ‬
‫ﺣﻠﻬﺎ‪ .‬ﻭﰲ ﻛﺜﲑ ﻣﻦ ﺍﳊﺎﻻﺕ‪ ،‬ﻻ ﺗﻮﺟﺪ ﻧﺴﺒﺔ ﺭﻳﺎﺿﻴﺔ ﺑﺴﻴﻄﺔ ﺑﲔ ﺍﺠﻤﻟﺎﻟﲔ ﺍﻟﻜﻬﺮﺑﺎﺋﻲ ﻭﺍﳌﻐﻨﻄﻴﺴﻲ‪ ،‬ﻓﻔﻲ ﻣﺜﻞ ﻫﺬﻩ ﺍﳊﺎﻻﺕ ﳚﺐ‬
‫ﻗﻴﺎﺱ ﻛﻞ ﳎﺎﻝ ﲟﻔﺮﺩﻩ‪.‬‬
‫ﻭﺃﺩﻭﺍﺕ ﺍﻟﻘﻴﺎﺱ ﺍﻟﻼﺯﻡ ﺍﺳﺘﻌﻤﺎﳍﺎ ﰲ ﻫﺬﻩ ﺍﳊﺎﻟﺔ ﻫﻲ‪:‬‬
‫‬‫ﺃﺩﻭﺍﺕ ﻗﻴﺎﺱ ﻗﻴﻤﺔ ﺷﺪﺓ ﺍﺠﻤﻟﺎﻝ ‪ E‬ﻭﻗﻴﻤﺔ ﺷﺪﺓ ﺍﺠﻤﻟﺎﻝ ‪H‬؛‬
‫ﺃﺩﻭﺍﺕ ﻗﻴﺎﺱ ﺍﻟﺘﻴﺎﺭ‪.‬‬
‫‬‫‪ 1.1.2.4‬ﺃﻣﻮﺭ ﻋﺎﻣﺔ‬
‫ﺍﻟﺘﺠﻬﻴﺰﺍﺕ ﺍﻷﺳﺎﺳﻴﺔ ﻫﻲ‪:‬‬
‫ﺍﳌﺴﺎﺑﲑ؛‬
‫‬‫ﻛﺒﻼﺕ ﺍﻟﺘﻮﺻﻴﻞ ﺍﻟﱵ ﺗﻨﻘﻞ ﺍﻹﺷﺎﺭﺓ ﻣﻦ ﺍﳌﺴﺒﺎﺭ ﺇﱃ ﻭﺣﺪﺓ ﺍﻟﻘﺮﺍﺀﺓ ﻭﺍﳊﺴﺎﺏ؛‬
‫‬‫ﻭﺣﺪﺓ ﺍﻟﻘﺮﺍﺀﺓ ﻭﺍﳊﺴﺎﺏ‪.‬‬
‫‬‫‪ 2.1.2.4‬ﺍﳌﺴﺎﺑﲑ‬
‫ﺸﻌﱠﺔ ﻣﻦ ﲨﻴﻊ ﺍﻻﲡﺎﻫﺎﺕ‪.‬‬
‫ﺃﻛﺜﺮﻳﺔ ﺍﳌﺴﺎﺑﲑ ﻣﺘﻨﺎﺣﻴﺔ ﺃﻭ ﺷﺎﻣﻠﺔ ﺍﻻﲡﺎﻩ ﰲ ﺛﻼﺛﺔ ﺃﺑﻌﺎﺩ‪ ،‬ﻣ َﻌﺪﱠﺓ ﻟﻘﻴﺎﺱ ﺍﻟﻄﺎﻗﺔ ﺍﳌ َ‬
‫ﻭﳚﺐ ﺃﻥ ﺗﺘﻮﺍﻓﺮ ﰲ ﺍﳌﺴﺎﺑﲑ ﺍﳋﺼﺎﺋﺺ ﺍﻟﺘﺎﻟﻴﺔ‪:‬‬
‫ﺍﻻﺳﺘﺠﺎﺑﺔ ﻟﻠﻤﺠﺎﻻﺕ ﺍﳌﻘﺼﻮﺩﺓ‪ ،‬ﺍﻟﻜﻬﺮﺑﺎﺋﻲ )‪ (E‬ﺃﻭ ﺍﳌﻐﻨﻄﻴﺴﻲ )‪ ،(H‬ﻭﻋﺪﻡ ﺍﻻﺳﺘﺠﺎﺑﺔ ﻟﻠﻤﺠﺎﻻﺕ ﻏﲑ ﺍﳌﻘﺼﻮﺩﺓ؛‬
‫‬‫ﻋﻠﻰ ﺍﻟﻌﻤﻮﻡ‪ ،‬ﻳﻜﻮﻥ ﺍﳌﺴﺒﺎﺭ ﺻﻐﲑﹰﺍ ﺑﺎﻟﻨﺴﺒﺔ ﺇﱃ ﻃﻮﻝ ﻣﻮﺟﺔ ﺍﺠﻤﻟﺎﻝ ﺍﻟﻜﻬﺮﺑﺎﺋﻲ‪ ،‬ﺃﻱ ﺃﻗﻞ ﻣﻦ ‪ λ/10‬ﻷﻗﺼﻰ ﺗﺮﺩﺩ ﺗﺸﻐﻴﻠﻲ؛‬
‫‬‫ﻟﻜﻦ ﺗﻘﻴﻴﻤﺎﺕ ﻣﻌﻴﱠﻨﺔ ﺃﻇﻬﺮﺕ ﺃﻥ ﺑﻌﺾ ﺍﳌﺴﺎﺑﲑ ﳝﻜﻦ ﺃﻥ ﺗﻜﻮﻥ ﺃﺑﻌﺎﺩﻫﺎ ﺃﻛﱪ ﺑﺎﻟﻨﺴﺒﺔ ﺇﱃ ﻃﻮﻝ ﻣﻮﺟﺔ ﺍﺠﻤﻟﺎﻝ ﺍﻟﻜﻬﺮﺑﺎﺋﻲ؛‬
‫ﺍﻻﺳﺘﺠﺎﺑﺔ ﻛﻤﺎ ﻫﻮ ﻣﺘﻮﻗﱠﻊ ﻟﺘﻐﲑﺍﺕ ﺍﻟﻈﺮﻭﻑ ﺍﻟﺒﻴﺌﻴﺔ‪ ،‬ﻣﺜﻞ ﺍﳊﺮﺍﺭﺓ ﻭﺍﻟﺮﻃﻮﺑﺔ‪.‬‬
‫‪-‬‬
‫ﺍﻟﺘﻮﺻﻴﺔ‬
‫‪22‬‬
‫‪ITU-R BS.1698‬‬
‫ﻭﺃﺛﻨﺎﺀ ﺍﻟﻘﻴﺎﺱ‪ ،‬ﻣﻦ ﺍﳌﻬﻢ ﺟﺪﹰﺍ ﺃﻥ ﺗﻮﺿﻊ ﺍﳌﺴﺎﺑﲑ ﺍﳌﺘﻨﺎﺣﻴﺔ ﰲ ﻣﻮﺿﻊ ﳚﻌﻞ ﺍﻟﺘﻮﺻﻴﻞ ﻳﻘﻠﻞ ﻋﻨﺪ ﺍﳌﺴﺒﺎﺭ ﺗﺸﻮﻳﺶ ﺍﺠﻤﻟﺎﻝ ﺑﺴﺒﺐ‬
‫ﻛﺒﻼﺕ ﺍﻟﺘﻮﺻﻴﻞ‪ .‬ﻭﺗﺸﻮﻳﺶ ﺍﺠﻤﻟﺎﻝ ﻫﺬﺍ ﻣﺸﻜﻠﺔ ﺃﻛﺜﺮ ﺷﻴﻮﻋﹰﺎ ﰲ ﻋﻤﻠﻴﺎﺕ ﻗﻴﺎﺱ ﺷﺪﺓ ﺍﺠﻤﻟﺎﻝ ﺍﻟﻜﻬﺮﺑﺎﺋﻲ ﺍﻟﻨﺎﺟﻢ ﻋﻦ ﺗﺮﺩﺩﺍﺕ‬
‫ﺍﳌﻮﺟﺎﺕ ﺍﳌﺘﻮﺳﻄﺔ ﺃﻭ ﺗﺮﺩﺩﺍﺕ ﺃﺧﻔﺾ‪.‬‬
‫‪ 3.1.2.4‬ﺍﻟﻜﺒﻼﺕ‬
‫ﻳُﺸﺘﺮﻁ ﰲ ﺍﻟﻜﺒﻼﺕ ﺍﳌﺴﺘﻌﻤﻠﺔ ﻟﺘﻮﺻﻴﻞ ﺍﳌﺴﺒﺎﺭ ﲜﻬﺎﺯ ﺍﻟﻘﺮﺍﺀﺓ ﻭﺍﳊﺴﺎﺏ ﺃﻥ ﺗﻜﻮﻥ ﻋﺪﳝﺔ ﺍﻟﻀﻮﺿﺎﺀ‪ ،‬ﻭﲤﻨﻊ ﺍﻗﺘﺮﺍﻥ ﺍﺠﻤﻟﺎﻝ ﺑﻮﺣﺪﺓ‬
‫ﺍﻟﻘﻴﺎﺱ‪.‬‬
‫ﻭﻣﻦ ﺍﳌﻬﻢ ﺟﺪﹰﺍ ﺍﳌﻼﺣﻈﺔ ﺃﻥ ﻣﻦ ﺍﳌﻤﻜﻦ ﺃﻥ ﺗﺸﺘﻐﻞ ﺍﻟﻜﺒﻼﺕ ﺷﻐﻞ ﻫﻮﺍﺋﻲ‪ ،‬ﻓﺘﻌﺪﱢﻝ ﺍﺠﻤﻟﺎﻝ ﻋﻨﺪ ﺍﳌﺴﺒﺎﺭ‪ ،‬ﲝﻴﺚ ﺗﺄﰐ ﻗﺮﺍﺀﺓ ﺍﻟﻘﻴﻤﺔ‬
‫ﻣﻐﻠﻮﻃﺔ‪ .‬ﻭﻫﺬﻩ ﺍﳌﺸﻜﻠﺔ ﳝﻜﻦ ﺣﻠﻬﺎ ﺃﺣﻴﺎﻧﹰﺎ‪ ،‬ﺑﺘﺜﺒﻴﺖ ﺍﻟﻜﺒﻼﺕ ﺃﺛﻨﺎﺀ ﺍﻻﺧﺘﺒﺎﺭ ﰲ ﻭﺿﻊ ﻋﻤﻮﺩﻱ ﻋﻠﻰ ﺍﺠﻤﻟﺎﻝ ﺍﻟﻜﻬﺮﺑﺎﺋﻲ‪.‬‬
‫‪2.2.4‬‬
‫ﺧﺼﺎﺋﺺ ﺃﺩﻭﺍﺕ ﺍﻟﻘﻴﺎﺱ ﻟﻜﻞ ﻣﻦ ﺍﺠﻤﻟﺎﻟﲔ ﺍﻟﻜﻬﺮﺑﺎﺋﻲ ﻭﺍﳌﻐﻨﻄﻴﺴﻲ‬
‫ﻋﻠﻰ ﺍﻟﻌﻤﻮﻡ‪ ،‬ﻳُﺠﺮﻯ ﻗﻴﺎﺱ ﺍﻟﺘﻌﺮﺽ ﻟﻠﻤﺠﺎﻝ ﺍﻟﻜﻬﺮﻣﻐﻨﻄﻴﺴﻲ ﰲ ﳎﺎﻝ ﺍﻟﺘﺮﺩﺩ‪ .‬ﻭﻫﻨﺎﻙ ﺯﻣﺮﺗﺎﻥ ﺭﺋﻴﺴﻴﺘﺎﻥ ﻣﻦ ﺍﻷﺩﻭﺍﺕ‪.‬‬
‫‪ 1.2.2.4‬ﺃﳕﺎﻁ ﻭﻣﻮﺍﺻﻔﺎﺕ ﺍﻷﺩﻭﺍﺕ ﺍﻟﻌﺮﻳﻀﺔ ﺍﻟﻨﻄﺎﻕ‬
‫ﻧﺴﺘﻄﻴﻊ ﺑﺎﻷﺩﻭﺍﺕ ﺍﻟﻌﺮﻳﻀﺔ ﺍﻟﻨﻄﺎﻕ )ﺍﻧﻈﺮ ﺍﻟﺸﻜﻞ ‪ (2‬ﻗﻴﺎﺱ ﳎﺎﻝ ﺑﻜﺎﻣﻠﻪ‪ ،‬ﰲ ﻣﺪﻯ ﺗﺮﺩﺩﻱ ﻣﻌﻴﱠﻦ )ﻣﺜﻞ ﻋﺮﺽ ﺍﻟﻨﻄﺎﻕ(‪ ،‬ﻭﻟﻜﻨﻪ‬
‫ﻳﺘﻌﺬﹼﺭ ﲤﻴﻴﺰ ﺇﺳﻬﺎﻡ ﻣﺼﺪﺭ ﺗﺮﺩﺩ ﻣﻌﻴﱠﻦ‪ ،‬ﺣﲔ ﺗﺸﻊ ﻋﺪﺓ ﻣﺼﺎﺩﺭ ﻣﻌﹰﺎ‪.‬‬
‫ﺍﻟﺸﻜﻞ‬
‫‪2‬‬
‫ﺍﻷﺩﻭﺍﺕ ﺍﻟﻌﺮﻳﻀﺔ ﺍﻟﻨﻄﺎﻕ‬
‫‪1698-02‬‬
‫ﺗﺘﻜﻮﻥ ﺍﻷﺩﻭﺍﺕ ﺍﻟﻌﺮﻳﻀﺔ ﺍﻟﻨﻄﺎﻕ ﻣﻦ ﳏﺎﺳﻴﺲ‪ ،‬ﻭﻫﺬﻩ ﳝﻜﻦ ﺃﻥ ﺗﻜﻮﻥ ﻏﲑ ﻣﺘﻨﺎﺣﻴﺔ ﻓﻴﻘﺎﺱ ﻬﺑﺎ ﻣﻜﻮﱢﻥ ﻓﻀﺎﺋﻲ ﻭﺣﻴﺪ ﻟﻠﻤﺠﺎﻝ‪،‬‬
‫ﻭﳝﻜﻦ ﺃﻥ ﺗﻜﻮﻥ ﻣﺘﻨﺎﺣﻴﺔ ﻓﺘﻘﺎﺱ ﻬﺑﺎ ﻣﻜﻮﱢﻧﺎﺕ ﺍﺠﻤﻟﺎﻝ ﺍﻟﺜﻼﺛﺔ ﰲ ﺍﻟﻮﻗﺖ ﻧﻔﺴﻪ‪ .‬ﻭﲤﻜﱢﻦ ﻫﺬﻩ ﺍﻷﺩﻭﺍﺕ ﻣﻦ ﻗﻴﺎﺱ ﺍﻟﺴﻮﻳﺔ ﺍﻟﻜﻠﻴﺔ‬
‫ﻟﻠﻤﺠﺎﻝ ﺍﻟﻜﻬﺮﺑﺎﺋﻲ ﺃﻭ ﺍﳌﻐﻨﻄﻴﺴﻲ ﺍﻵﱐ ﺃﻭ ﻗﻴﻤﺔ ﺷﺪﺓ ﺍﺠﻤﻟﺎﻝ ﺍﻟﻔﻌﺎﻟﺔ )‪ (RMS‬ﺃﻭ ﻗﻴﻤﺔ ﻣﺘﻮﺳﻂ ﻛﺜﺎﻓﺔ ﺍﻟﻘﺪﺭﺓ ﰲ ﻓﺘﺮﺓ ﺯﻣﻨﻴﺔ ﻣﻌﻴﱠﻨﺔ‪،‬‬
‫ﻭﻫﻲ ﻋﺎﺩﺓ ‪ 6‬ﺩﻗﺎﺋﻖ ﺗﺒﻌﹰﺎ ﳌﻌﺎﻳﲑ ﺍﻟﺘﻌﺮﺽ‪.‬‬
‫ﺍﻟﺘﻮﺻﻴﺔ‬
‫‪ITU-R BS.1698‬‬
‫‪23‬‬
‫ﻭﺗﻨﻘﺴﻢ ﺍﻷﺩﻭﺍﺕ ﺍﻟﻌﺮﻳﻀﺔ ﺍﻟﻨﻄﺎﻕ ﺇﱃ ﺍﻷﺻﻨﺎﻑ ﺍﻟﺘﺎﻟﻴﺔ‪ ،‬ﺗﺒﻌﹰﺎ ﻟﻠﻜﺎﺷﻒ ﺍﳌﺴﺘﻌﻤَﻞ‪:‬‬
‫ﺛﻨﺎﺋﻲ ﺍﳌﺴﺎﺭﻱ؛‬
‫‬‫ﻣﻘﻴﺎﺱ ﺷﻌّﻲ ﺣﺮﺍﺭﻱ )ﺑﻮﻟﻮﻣﺘﺮ(؛‬
‫‬‫ﻣﺰﺩﻭﺟﺔ ﺣﺮﺍﺭﻳﺔ‪.‬‬
‫‬‫ﻭﻫﺬﻩ ﺍﻷﺩﻭﺍﺕ ﳝﻜﻦ ﺍﺳﺘﻌﻤﺎﳍﺎ ﰲ ﻛﻼ ﺍﳊﻴﱢﺰﻳﻦ‪ ،‬ﺍﺠﻤﻟﺎﻝ ﺍﻟﻘﺮﻳﺐ ﻭﺍﺠﻤﻟﺎﻝ ﺍﻟﺒﻌﻴﺪ‪.‬‬
‫‪3.2.4‬‬
‫ﺃﳕﺎﻁ ﻭﻣﻮﺍﺻﻔﺎﺕ ﺍﻷﺩﻭﺍﺕ ﺍﻟﻀﻴﻘﺔ ﺍﻟﻨﻄﺎﻕ‬
‫ﺍﻷﺩﻭﺍﺕ ﺍﻟﻀﻴﻘﺔ ﺍﻟﻨﻄﺎﻕ ﺍﻧﺘﻘﺎﺋﻴﺔ ﲡﺎﻩ ﺍﻟﺘﺮﺩﺩﺍﺕ‪ ،‬ﻓﺘﻤﻜﹼﻦ ﻣﻦ ﻗﻴﺎﺱ ﺷﺪﺓ ﺍﺠﻤﻟﺎﻝ ﺍﻟﻜﻬﺮﻣﻐﻨﻄﻴﺴﻲ ﰲ ﻣﺪﻯ ﻣﻌﻴّﻦ ﻣﻦ ﺍﻟﺘﺮﺩﺩﺍﺕ‬
‫ﺡ ﺗﻘﺪﻳﺮ ﺍﲡﺎﻩ ﺍﺠﻤﻟﺎﻝ ﻭﺍﺳﺘﻘﻄﺎﺑﻪ‪ .‬ﻭﳚﺐ ﺍﻟﺘﻨﺒّﻪ ﻋﻨﺪ ﻧﺼﺐ‬
‫ﺡ ﺃﻭ ﻫﻮﺍﺋﻲ ﻻ ﻣﺘﻨﺎ ﹴ‬
‫ﺍﳌﺨﺘﻠﻔﺔ‪ .‬ﻓﻴﺴﺘﻄﺎﻉ ﺑﻮﺍﺳﻄﺔ ﳏﺴﺎﺱ ﻻ ﻣﺘﻨﺎ ﹴ‬
‫ﺍﻟﺘﺠﻬﻴﺰﺍﺕ ﺇﱃ ﺃﻥ ﺍﺠﻤﻟﺎﻻﺕ ﺍﻟﻨﺎﲨﺔ ﻋﻦ ﺗﺮﺩﺩﺍﺕ ﻋﺎﻟﻴﺔ ﺗﺘﻐﲑ ﺑﺴﺮﻋﺔ ﰲ ﺍﻟﻔﻀﺎﺀ ﺗﺒﻌﹰﺎ ﻟِﻘ ﱢﺪ ﺍﳍﻮﺍﺋﻲ‪ ،‬ﻭﻋﻠﻰ ﺍﳋﺼﻮﺹ ﰲ ﺣﻀﻮﺭ‬
‫ﺃﺷﻴﺎﺀ ﻋﺎﻛﺴﺔ ﻛﺎﳉﺪﺭﺍﻥ ﻭﺍﻷﺭﺽ ﻭﺍﻷﺑﺮﺍﺝ ﻭﺍﻟﺒﲎ ﺍﳌﻌﺪﻧﻴﺔ‪ .‬ﻭﻣﻦ ﺍﳌﻬﻢ ﺍﳌﻼﺣﻈﺔ ﺃﻥ ﺗﻐﻴﲑ ﻧﻘﻄﺔ ﺍﻟﻘﻴﺎﺱ ﳝﻜﻦ ﺃﻥ ﻳﺴﻔﺮ ﻋﻦ ﺗﻐﲑ‬
‫ﺷﺪﺓ ﺍﺠﻤﻟﺎﻝ ﻛﻠﻴﹰﺎ‪ .‬ﻭﻳﺘﺄﺛﺮ ﺍﻟﻘﻴﺎﺱ ﺃﻳﻀﹰﺎ ﺑﻮﺿﻊ ﺍﳍﻮﺍﺋﻲ ﻭﻛﺒﻼﺕ ﺍﻟﺘﻮﺻﻴﻞ‪.‬‬
‫ﻭﻣﻦ ﺍﻟﻀﺮﻭﺭﻱ‪ ،‬ﻋﻨﺪ ﺗﻨﻔﻴﺬ ﻗﻴﺎﺱ ﰲ ﺍﺠﻤﻟﺎﻝ ﺍﻟﺰﻣﲏ ﻟﺸﺪﺓ ﳎﺎﻝ ﻛﻬﺮﻣﻐﻨﻄﻴﺴﻲ ﻧﺎﺟﻢ ﻋﻦ ﺗﺮﺩﺩﺍﺕ ﻋﺎﻟﻴﺔ‪ ،‬ﺃﻥ ﺗُﺴﺘﻌﻤَﻞ ﺃﺩﻭﺍﺕ ﺫﺍﺕ‬
‫ﺧﻮﺍﺹ ﲢﻠﻴﻠﻴﺔ ﻣﻼﺋﻤﺔ )ﲞﺼﻮﺹ ﺍﻻﺳﺘﺠﺎﺑﺔ ﻣﻦ ﺣﻴﺚ ﺍﻟﺘﺮﺩﺩ ﻭﺍﻻﺳﺘﺒﺎﻧﺔ( ﻣﻦ ﺃﺟﻞ ﺍﳊﺼﻮﻝ ﻋﻠﻰ ﻧﺘﺎﺋﺞ ﺟﻴﺪﺓ ﻣﻦ ﲢﻠﻴﻞ ﺍﻟﻄﻴﻒ‬
‫ﺑﻮﺍﺳﻄﺔ ﳏﻮﱠﻟﺔ ‪. Fourier‬‬
‫ﻭﻳﻌﻄﻲ ﺍﻟﺸﻜﻞ ‪ 3‬ﺍﳌﺨﻄﻂ ﺍﻟﻔﺪﺭﻱ ﻟﻨﻈﺎﻡ ﻗﻴﺎﺱ ﺿﻴﻖ ﺍﻟﻨﻄﺎﻕ‪.‬‬
‫ﺍﻟﺸﻜﻞ‬
‫‪3‬‬
‫ﳐﻄﻂ ﻓﺪﺭﻱ ﻟﻨﻈﺎﻡ ﺍﻟﻘﻴﺎﺱ‬
‫‪antenna‬ﻟﻮﻏﺎﺭﻳﺘﻤﻲ ﺩﻭﺭﻱ‬
‫ﻫﻮﺍﺋﻲ‬
‫‪Log-periodic‬‬
‫‪A‬‬
‫‪B‬‬
‫ﻣﻮﻫﱢﻦ‬
‫‪Attenuator‬‬
‫‪C‬‬
‫ﻣﺮﺷﺎﺡ‬
‫‪Pass‬‬
‫‪band‬‬
‫ﺍﻟﻨﻄﺎﻕ‬
‫ﲤﺮﻳﺮ‪filter‬‬
‫‪D‬‬
‫ﻣﻨﺸﻂ ﺫﻭ ﻣﺮﺣّﻞ‬
‫‪Programmable‬‬
‫‪actuator‬ﻟﻠﱪﳎﺔ‬
‫ﻗﺎﺑﻞ‬
‫‪relay‬‬
‫‪Spectrum‬‬
‫ﳏﻠﻞ‬
‫ﻃﻴﻒ‬
‫‪analyser‬‬
‫‪Synthesized‬‬
‫ﻣﻮﹼﻟﺪ ﺗﺮﺩﺩﺍﺕ‬
‫ﺭﺍﺩﻳﻮﻳﺔ‬
‫ﺗﺮﻛﻴﱯ‬
‫‪RF‬‬
‫‪generator‬‬
‫‪IEE 488‬‬
‫ﻣﺰﻭﱢﺩ‬
‫‪Power‬‬
‫ﺑﺎﻟﻘﺪﺭﺓ‬
‫‪supply‬‬
‫‪1698-03‬‬
‫ﺣﺎﺳﻮﺏ‬
‫‪Pc‬‬
‫‪and‬‬
‫ﻭﻣﻄﺎﺭﻳﻔﻪ‬
‫‪peripherals‬‬
‫ﺍﻟﺘﻮﺻﻴﺔ‬
‫‪24‬‬
‫‪ITU-R BS.1698‬‬
‫ﻳﺘﺄﻟﻒ ﺍﻟﻨﻈﺎﻡ ﻣﻦ ﺍﳌﻜﻮﻧﺎﺕ ﺍﻷﺳﺎﺳﻴﺔ ﺍﻟﺘﺎﻟﻴﺔ‪:‬‬
‫‪-‬‬
‫ﻫﻮﺍﺋﻲ ﻣﻌﺎﻳَﺮ‪ ،‬ﳛﻮﱢﻝ ﺍﺠﻤﻟﺎﻝ ﺍﻟﻜﻬﺮﺑﺎﺋﻲ ﺍﳋﺎﺹ ﻬﺑﻮﺍﺋﻲ ﺛﻨﺎﺋﻲ ﺍﻟﻘﻄﺐ ﺃﻭ ﺍﺠﻤﻟﺎﻝ ﺍﳌﻐﻨﻄﻴﺴﻲ ﺍﳋﺎﺹ ﻬﺑﻮﺍﺋﻲ ﺇﻃﺎﺭﻱ‪ ،‬ﺇﱃ‬
‫ﻣﻮﺟﺔ ﻋﻠﻰ ﺧﻂ ﻧﻘﻞ؛‬
‫‪-‬‬
‫ﺧﻂ ﻧﻘﻞ ﻭﺗﻮﺻﻴﻞ ﻣﻌﺎﻳَﺮ ﺃﻭ ﻛﺒﻞ ﻣﺘﺤﺪ ﺍﶈﻮﺭ ﻣﻌﺎﻳﺮ؛‬
‫‪-‬‬
‫ﻣﺴﺘﻘﺒﹺﻞ ﺍﻧﺘﻘﺎﺋﻲ‪ ،‬ﻭﻫﻮ ﻋﻤﻮﻣﹰﺎ ﳏﻠﻞ ﻃﻴﻒ )ﺃﻧﻈﺮ ﺍﻟﺸﻜﻞ ‪ ،(4‬ﻳﻘﻴﺲ‪ ،‬ﺑﻮﺍﺳﻄﺔ ﺩﺍﺭﺓ ﺗﻮﻟﻴﻒ‪ ،‬ﺷﺪﺓ ﺍﻹﺷﺎﺭﺓ ﺍﳌﺴﺘﻘَﺒﻠﹶﺔ‬
‫ﺑﺎﻋﺘﺒﺎﺭﻫﺎ ﺗﺎﺑﻌﺔ ﻟﻠﺘﺮﺩﺩ‪ .‬ﻓﻴﻌﻄﻲ ﳏﻠﻞ ﺍﻟﻄﻴﻒ ﻗﻴﻢ ﺍﻟﺘﻮﺗﺮ ﺃﻭ ﺍﻟﻘﺪﺭﺓ ﰲ ﳎﺎﻝ ﺍﻟﺘﺮﺩﺩ‪.‬‬
‫ﺍﻟﺸﻜﻞ‬
‫‪4‬‬
‫ﻣﺴﺘﻘﺒﹺﻞ ﺍﻧﺘﻘﺎﺋﻲ ﻣﻊ ﳏﻠﻞ ﻃﻴﻒ‬
‫‪1698-04‬‬
‫ﺇﻧﻪ ﳌﻦ ﺍﳍﺎﻡ ﺟﺪﹰﺍ ﺍﻻﻋﺘﻨﺎﺀ ﺃﺛﻨﺎﺀ ﺇﺟﺮﺍﺀ ﻫﺬﻩ ﺍﻟﻘﻴﺎﺳﺎﺕ ﺑﺄﻻ ﺗﺸﻮﺵ ﺃﺩﻭﺍﺕ ﺍﻟﻘﻴﺎﺱ ﺍﺠﻤﻟﺎﻝ ﺍﳉﺎﺭﻱ ﻗﻴﺎﺳﻪ‪.‬‬
‫‪3.4‬‬
‫ﻣﻘﺎﺭﻧﺔ ﺑﲔ ﺍﻟﺘﻮﻗﻌﺎﺕ ﻭﺍﻟﻘﻴﺎﺳﺎﺕ‬
‫ﺗﺒﻴﱢﻦ ﺍﳌﻘﺎﺭﻧﺔ ﺑﲔ ﺍﻟﺘﻮﻗﻌﺎﺕ ﻭﺍﻟﻘﻴﺎﺳﺎﺕ ﺃﻥ ﻧﺘﺎﺋﺞ ﺍﻟﻘﻴﺎﺳﺎﺕ ﻣﺘﻮﺍﻓﻘﺔ ﺟﻴﺪﹰﺍ ﻣﻊ ﺍﻟﻨﺘﺎﺋﺞ ﺍﶈﺼﻠﺔ ﲝﺴﺎﺑﺎﺕ ﻧﻈﺮﻳﺔ‪ .‬ﻭﻳﺮﺟَﻊ ﺇﱃ ﺍﻟﺘﺬﻳﻴﻞ‬
‫‪ 2‬ﻟﻠﻮﻗﻮﻑ ﻋﻠﻰ ﻣﺰﻳﺪ ﻣﻦ ﺍﻟﺘﻔﺎﺻﻴﻞ‪.‬‬
‫‪5‬‬
‫ﺍﻟﺘﺪﺍﺑﲑ ﺍﻻﺣﺘﺮﺍﺳﻴﺔ ﺍﻟﻮﺍﺟﺒﺔ ﰲ ﳏﻄﺎﺕ ﺍﻹﺭﺳﺎﻝ ﻭﰲ ﺟﻮﺍﺭﻫﺎ‬
‫ﻫﺬﺍ ﺍﻟﻘﺴﻢ ﻳﻮﺟﺰ ﺍﻟﺘﺪﺍﺑﲑ ﺍﻻﺣﺘﺮﺍﺳﻴﺔ ﺍﻟﻮﺍﺟﺐ ﺍﲣﺎﺫﻫﺎ ﰲ ﳏﻄﺎﺕ ﺍﻹﺭﺳﺎﻝ ﺍﻹﺫﺍﻋﻲ ﺍﻟﻌﺎﻟﻴﺔ ﺍﻟﻘﺪﺭﺓ‪ ،‬ﻣﻦ ﺃﺟﻞ ﺗﻼﰲ ﺍﳌﺨﺎﻃﺮ‬
‫ﺍﶈﺘﻤﻠﺔ ﺑﺴﺒﺐ ﺇﺷﻌﺎﻉ ﺍﻟﺘﺮﺩﺩﺍﺕ ﺍﻟﺮﺍﺩﻳﻮﻳﺔ‪ .‬ﻭﺗﻨﻘﺴﻢ ﻫﺬﻩ ﺍﳌﺨﺎﻃﺮ ﺇﱃ ﻓﺌﺘﲔ ﺭﺋﻴﺴﻴﺘﲔ‪ ،‬ﺍﻷﻭﱃ ﻓﺌﺔ ﺍﻷﺧﻄﺎﺭ ﺍﳌﺒﺎﺷﺮﺓ ﻋﻠﻰ ﺍﻟﺼﺤﺔ‬
‫ﺍﻟﱵ ﺗﻘﻊ ﻋﻨﺪﻣﺎ ﻳﺘﻌﺮﺽ ﺍﻟﻨﺎﺱ ﻟﺴﻮﻳﺎﺕ ﻋﺎﻟﻴﺔ ﻣﻦ ﺇﺷﻌﺎﻉ ﺍﻟﺘﺮﺩﺩﺍﺕ ﺍﻟﺮﺍﺩﻳﻮﻳﺔ‪ ،‬ﻣﺜﻞ ﺍﻟﺼﺪﻣﺎﺕ‪ ،‬ﻭﺍﳊﺮﻭﻕ‪ ،‬ﻭﺇﻣﻜﺎﻥ ﺳﻮﺀ ﺃﺩﺍﺀ‬
‫ﺍﻟﻐﺮﺳﺎﺕ ﺍﻟﻄﺒﻴﺔ‪ .‬ﻭﺗﻀﻢ ﺍﻟﻔﺌﺔ ﺍﻟﺜﺎﻧﻴﺔ ﺍﻷﺧﻄﺎﺭ ﻏﲑ ﺍﳌﺒﺎﺷﺮﺓ ﻣﺜﻞ ﺃﻥ ﺗﺴﺒﺐ ﺍﻹﺷﻌﺎﻋﺎﺕ ﺍﻟﺮﺍﺩﻳﻮﻳﺔ ﺍﻧﻔﺠﺎﺭﺍﺕ ﺃﻭ ﺣﺮﺍﺋﻖ ﺃﻭ ﺗﺸﻮﻳﺶ‬
‫ﻭﻇﺎﺋﻒ ﺍﻵﻻﺕ ﻣﻦ ﺭﺍﻓﻌﺎﺕ ﻭﻣﺮﻛﺒﺎﺕ ﺍﱁ‪.‬‬
‫‪1.5‬‬
‫ﺍﻟﺘﺪﺍﺑﲑ ﺍﻻﺣﺘﺮﺍﺳﻴﺔ ﻟﻠﺘﺨﻔﻴﻒ ﻣﻦ ﺍﻵﺛﺎﺭ ﺍﳌﺒﺎﺷﺮﺓ ﻹﺷﻌﺎﻋﺎﺕ ﺍﻟﺘﺮﺩﺩﺍﺕ ﺍﻟﺮﺍﺩﻳﻮﻳﺔ ﻋﻠﻰ ﺍﻟﺼﺤﺔ‬
‫ﲣﺺ ﻫﺬﻩ ﺍﻻﺣﺘﻴﺎﻃﺎﺕ ﻓﺌﺘﲔ ﻣﻦ ﺍﻟﻨﺎﺱ‪ .‬ﺗﻀﻢ ﺍﻟﻔﺌﺔ ﺍﻷﻭﱃ ﺍﻟﻌﺎﻣﻠﲔ ﰲ ﳏﻄﺎﺕ ﺍﻹﺭﺳﺎﻝ ﻭﺍﻟﺰﺍﺋﺮﻳﻦ ﺍﻟﺮﲰﻴﲔ ﺍﻟﺬﻳﻦ ﻳﺄﺗﻮﻥ ﺇﻟﻴﻬﺎ‬
‫ﺑﺼﻮﺭﺓ ﻣﻨﺘﻈﻤﺔ‪ .‬ﻫﺬﻩ ﺍﻟﻔﺌﺔ ﺗﺘﻌﺮﺽ ﻛﺜﲑﹰﺍ ﻟﻠﺨﻄﺮ‪ ،‬ﻭﻳﻠﺰﻡ ﺑﺸﺄﻬﻧﺎ ﺍﲣﺎﺫ ﺍﺣﺘﻴﺎﻃﺎﺕ ﺃﺷﺪ ﺑﻜﺜﲑ ﳑﺎ ﻳﻠﺰﻡ ﲞﺼﻮﺹ ﺍﻟﻔﺌﺔ ﺍﻟﺜﺎﻧﻴﺔ ﺍﻟﱵ‬
‫ﺗﻀﻢ ﺃﻓﺮﺍﺩﹰﺍ ﻣﻦ ﻋﺎﻣﺔ ﺍﳉﻤﻬﻮﺭ‪.‬‬
‫ﺍﻟﺘﻮﺻﻴﺔ‬
‫‪1.1.5‬‬
‫‪ITU-R BS.1698‬‬
‫‪25‬‬
‫ﺍﻟﺘﺪﺍﺑﲑ ﺍﻻﺣﺘﺮﺍﺳﻴﺔ ﲞﺼﻮﺹ ﺍﳌﻮﻇﻔﲔ )ﺍﻟﻌﺎﻣﻠﲔ(‬
‫‪ 1.1.1.5‬ﺍﻟﺘﺪﺍﺑﲑ ﺍﳌﺎﺩﻳﺔ‬
‫ﻳﻨﺒﻐﻲ ﺗﻮﻓﲑ ﺣﻮﺍﺟﺰ ﻭﻗﺎﺋﻴﺔ‪ ،‬ﺇﺫﺍ ﺃﻣﻜﻦ‪ ،‬ﻟﺘﻘﻴﻴﺪ ﺍﻟﻨﻔﺎﺫ ﺇﱃ ﺃﻱ ﻣﺴﺎﺣﺔ ﳛﺼﻞ ﻓﻴﻬﺎ ﲡﺎﻭﺯ ﳊﺪﻭﺩ ﺍﻟﺘﻌﺮﺽ ﺃﻭ ﳝﻜﻦ ﻓﻴﻬﺎ ﳌﺲ‬
‫ﻣﻮﺻﻼﺕ ﺍﻟﺘﺮﺩﺩﺍﺕ ﺍﻟﺮﺍﺩﻳﻮﻳﺔ ﺍﳌﻌﺮﱠﺿﺔ‪ .‬ﻓﻴﺠﺐ ﺃﻥ ﻻ ﻳﻜﻮﻥ ﺍﻟﻨﻔﺎﺫ ﺇﱃ ﻣﺜﻞ ﻫﺬﻩ ﺍﳌﺴﺎﺣﺎﺕ ﳑﻜﻨﹰﺎ ﺇﻻ ﺑﺎﺳﺘﻌﻤﺎﻝ ﻣﻔﺘﺎﺡ ﺃﻭ ﺃﺩﺍﺓ‬
‫ﻣﺎ‪ .‬ﻭﻳﻨﺒﻐﻲ ﺗﻮﻓﲑ ﺇﺭﺗﺎﺝ ﻣﻴﻜﺎﻧﻴﻜﻲ ﺃﻭ ﻛﻬﺮﺑﺎﺋﻲ ﻷﺑﻮﺍﺏ ﺍﻷﺳﻴﺠﺔ ﺍﻟﱵ ﺗُﻔﺘَﺢ ﻷﻏﺮﺍﺽ ﺍﻟﺼﻴﺎﻧﺔ‪.‬‬
‫ﻼ ﻋﻨﻬﺎ‪.‬‬
‫ﻭﻳﻨﺒﻐﻲ ﺍﲣﺎﺫ ﺗﺪﺍﺑﲑ ﻣﺎﺩﻳﺔ ﺃﺧﺮﻯ ﻣﺜﻞ ﺍﺳﺘﻌﻤﺎﻝ ﺍﻷﺿﻮﺍﺀ ﺃﻭ ﺍﻟﻌﻼﻣﺎﺕ‪ ،‬ﺑﺎﻹﺿﺎﻓﺔ ﺇﱃ ﺍﳊﻮﺍﺟﺰ ﺍﻟﻮﺍﻗﻴﺔ‪ ،‬ﻻ ﺑﺪﻳ ﹰ‬
‫ﰒ ﳚﺐ ﺍﻟﺘﻘﻠﻴﻞ ﺇﱃ ﺃﺩﱏ ﺣﺪ ﳑﻜﻦ ﻣﻦ ﺍﺣﺘﻤﺎﻻﺕ ﺍﻟﺼﺪﻣﺔ ﺍﻟﻜﻬﺮﺑﺎﺋﻴﺔ ﺃﻭ ﺍﻹﺻﺎﺑﺔ ﲝﺮﻭﻕ ﻣﻦ ﺍﻟﺘﻮﺗﺮﺍﺕ ﺍﻟﻨﺎﲨﺔ ﻋﻦ ﺍﻟﺘﺮﺩﺩﺍﺕ‬
‫ﺍﻟﺮﺍﺩﻳﻮﻳﺔ ﻭﺍﳌﺴﺘﺤﺜﺔ ﰲ ﺍﻷﺷﻴﺎﺀ ﺍﳌﻮﺻﻠﺔ‪ ،‬ﻛﺎﻷﺳﻴﺠﺔ ﻭﺍﳍﻴﺎﻛﻞ ﺍﳊﺎﻣﻠﺔ‪ ،‬ﻭﺫﻟﻚ ﻋﻦ ﻃﺮﻳﻖ ﺗﺮﺗﻴﺒﺎﺕ ﺗﺄﺭﻳﺾ ﺃﻭ ﺗﻘﻴﻴﺪ ﻓﻌﺎﻟﺔ ﻭﻣﺼﻮﻧﺔ‬
‫ﺑﺼﻮﺭﺓ ﻭﺍﻓﻴﺔ‪ .‬ﻭﻳﻨﺒﻐﻲ ﺗﻮﺟﻴﻪ ﻋﻨﺎﻳﺔ ﺧﺎﺻﺔ ﻟﺘﺄﺭﻳﺾ ﺃﻱ ﻛﺒﻞ ﻣﺆﻗﺖ ﺃﻭ ﺃﻱ ﺣﺒﻞ ﻣﻌﺪﱐ ﻣﺜﻞ ﺃﺭﺑﻄﺔ ﺍﻟﺸﺪ ﻭﺍﻟﺮﻓﻊ‪ ،‬ﻭﻏﲑ ﺫﻟﻚ‪.‬‬
‫ﻭﺇﺫﺍ ﻟﺰﻡ ﺗﻨﺎﻭﻝ ﻣﺜﻞ ﻫﺬﻩ ﺍﻷﺷﻴﺎﺀ ﺿﻤﻦ ﳎﺎﻝ ﺍﻟﺘﺮﺩﺩﺍﺕ ﺍﻟﺮﺍﺩﻳﻮﻳﺔ‪ ،‬ﺗﻮﻓﱠﺮ ﻭﺳﺎﺋﻞ ﺇﺿﺎﻓﻴﺔ ﻻﺗﻘﺎﺀ ﺍﻟﺼﺪﻣﺎﺕ ﻭﺍﳊﺮﻭﻕ‪ ،‬ﻣﺜﻞ ﺍﻟ ﹸﻘﻔﱠﺎﺯﺍﺕ‬
‫ﺍﻟﻮﺍﻗﻴﺔ ﻭﺍﻟﻌﻼﻣﺎﺕ ﺍﳌﻨﺒﱢﻬﺔ ﺍﻟﻔﻌﺎﻟﺔ‪.‬‬
‫‪ 2.1.1.5‬ﺍﻹﺟﺮﺍﺀﺍﺕ ﺍﻟﺘﺸﻐﻴﻠﻴﺔ‬
‫ﻋﻨﺪ ﺑﺪﺀ ﺗﺸﻐﻴﻞ ﳏﻄﺔ ﺍﻹﺭﺳﺎﻝ ﻭﻛﺬﻟﻚ ﻋﻨﺪ ﺇﺩﺧﺎﻝ ﺃﻱ ﺗﻐﻴﲑ ﻫﺎﻡ ﻋﻠﻴﻬﺎ‪ ،‬ﳚﺐ ﺗﻨﻔﻴﺬ ﻋﻤﻠﻴﺎﺕ ﺗﻘﺪﻳﺮ ﳌﺨﺎﻃﺮ ﺍﻹﺷﻌﺎﻋﺎﺕ ﺍﻟﻨﺎﲨﺔ‬
‫ﻋﻦ ﺍﻟﺘﺮﺩﺩﺍﺕ ﺍﻟﺮﺍﺩﻳﻮﻳﺔ ﻋﻠﻰ ﻳﺪ ﻣﻬﻨﻴﲔ ﻣﺪﺭﺑﲔ ﻛﻔﺎﻳﺔ ﺍﻟﺘﺪﺭﻳﺐ ﻭﺫﻭﻱ ﺧﱪﺓ‪ .‬ﻭﺃﻭﻝ ﻣﺎ ﻳﻨﺒﻐﻲ ﺃﻥ ﻳﺴﺘﻬﺪﻓﻪ ﺍﻟﺘﺪﻗﻴﻖ ﻫﻮ ﺍﻷﺷﻴﺎﺀ‬
‫ﺍﻟﺘﺎﻟﻴﺔ‪:‬‬
‫‪-‬‬
‫ﺍﳌﺴﺎﺣﺎﺕ ﺍﳌﻤﻜﻦ ﺃﻥ ﻳﺘﻌﺮﺽ ﻓﻴﻬﺎ ﺍﻟﻨﺎﺱ ﻟﺴﻮﻳﺎﺕ ﺗﻮﺗﺮ "ﻣﺸﺘﻘﺔ" ﺃﻭ ﻟﺴﻮﻳﺎﺕ "ﺍﺳﺘﻘﺼﺎﺀ"؛‬
‫‪-‬‬
‫ﳐﺘﻠﻒ ﻓﺌﺎﺕ ﺍﻟﻨﺎﺱ ﺍﶈﺘﻤﻞ ﺗﻌﺮﺿﻬﻢ‪ ،‬ﻣﺜﻞ ﺍﳌﻮﻇﻔﲔ‪ ،‬ﻭﺍﻟﺸﺮﻛﺎﺀ ﰲ ﺍﳌﻮﻗﻊ‪ ،‬ﻭﺃﻓﺮﺍﺩ ﻋﺎﻣﺔ ﺍﳉﻤﻬﻮﺭ‪ ،‬ﻭﻏﲑﻫﻢ؛‬
‫‪-‬‬
‫ﻋﻮﺍﻗﺐ ﺍﺧﺘﻼﻝ ﺷﺮﻭﻁ ﺍﻟﺘﺸﻐﻴﻞ‪ ،‬ﻣﺜﻞ ﺍﻟﺘﺴﺮﺏ ﻣﻦ ﺣﻮﺍﻑ ﺍﻟﺘﺮﺩﺩﺍﺕ ﺍﻟﺮﺍﺩﻳﻮﻳﺔ‪ ،‬ﻭﺳﻮﺀ ﺗﺮﺍﺻﻒ ﺍﳍﻮﺍﺋﻲ‪ ،‬ﻭﺃﺧﻄﺎﺀ‬
‫ﺍﻟﺘﺸﻐﻴﻞ‪.‬‬
‫ﻭﳝﻜﻦ ﺇﺟﺮﺍﺀ ﺗﺪﻗﻴﻖ ﺃﻭﱄ ﻟﺴﻮﻳﺎﺕ ﺇﺷﻌﺎﻉ ﺍﻟﺘﺮﺩﺩﺍﺕ ﺍﻟﺮﺍﺩﻳﻮﻳﺔ ﺑﻮﺍﺳﻄﺔ ﺍﳊﺴﺎﺏ ﺃﻭ ﺍﻟﻨﻤﺬﺟﺔ ﺍﻟﺮﻳﺎﺿﻴﺔ‪ ،‬ﻭﻟﻜﻦ ﳚﺐ ﺇﺟﺮﺍﺀ ﻗﻴﺎﺱ‬
‫ﻟﺒﻌﺾ ﺍﻟﻌﻴﱢﻨﺎﺕ ﻷﻏﺮﺍﺽ ﺍﻟﺘﺤﻘﻖ‪ .‬ﻭﻟﻜﻦ ﰲ ﺃﻛﺜﺮﻳﺔ ﺍﳊﺎﻻﺕ‪ ،‬ﻳﻠﺰﻡ ﺇﺟﺮﺍﺀ ﻗﻴﺎﺳﺎﺕ ﻟﺘﺤﺪﻳﺪ ﺳﻮﻳﺎﺕ ﺍﻹﺷﻌﺎﻉ ﺑﻮﺟﻪ ﺃﺩﻕ‪.‬‬
‫ﺚ( ﳚﺐ ﲢﺪﻳﺪﻫﺎ‬
‫ﺤ ﹼ‬
‫ﻭﺍﳌﻘﺎﺩﻳﺮ ﺍﻟﻔﻌﻠﻴﺔ ﺍﻟﻮﺍﺟﺐ ﻗﻴﺎﺳﻬﺎ )ﺷﺪﺓ ﺍﺠﻤﻟﺎﻝ ﺍﻟﻜﻬﺮﺑﺎﺋﻲ‪ ،‬ﺷﺪﺓ ﺍﺠﻤﻟﺎﻝ ﺍﳌﻐﻨﻄﻴﺴﻲ‪ ،‬ﻛﺜﺎﻓﺔ ﺍﻟﻘﺪﺭﺓ‪ ،‬ﺍﻟﺘﻴﺎﺭ ﺍﳌﺴﺘ َ‬
‫ﺑﺎﻻﺳﺘﻨﺎﺩ ﺇﱃ ﺍﻟﻈﺮﻭﻑ ﺍﳌﻌﻴﱠﻨﺔ‪ .‬ﻭﻳﺸﻤﻞ ﻫﺬﺍ ﺍﻟﻘﻴﺎﺱ ﺗﺮﺩﺩﺍﺕ ﺍﶈﻄﺔ‪ ،‬ﻭﻣﻨﻄﻘﺔ ﺍﺠﻤﻟﺎﻝ )ﺍﺠﻤﻟﺎﻝ ﺍﻟﻘﺮﻳﺐ‪/‬ﺍﻟﺒﻌﻴﺪ(‪ ،‬ﻭﺍﻟﺘﺤﻘﻖ ﻣﻦ ﺍﻻﻟﺘﺰﺍﻡ‬
‫ﺑﺎﻟﺘﻘﻴﻴﺪﺍﺕ ﺍﻷﺳﺎﺳﻴﺔ )ﻛﺎﳌﻌﺪﻝ ‪ (SAR‬ﺃﻭ ﻓﻘﻂ ﺑﺎﻟﺴﻮﻳﺎﺕ "ﺍﳌﺸﺘﻘﺔ‪/‬ﺍﻻﺳﺘﻘﺼﺎﺋﻴﺔ"‪ .‬ﻭﻋﻠﻰ ﺿﻮﺀ ﺫﻟﻚ ﻳﺘﻘﺮﺭ ﺑﺴﻬﻮﻟﺔ ﻣﺎ ﺇﺫﺍ ﻛﺎﻥ‬
‫ﻳﻨﺒﻐﻲ ﻗﻴﺎﺱ ﻣﻜﻮﱢﻧﺎﺕ ﺍﺠﻤﻟﺎﻝ ﺍﻟﺜﻼﺙ ﻓﺮﺍﺩﻯ ﺃﻭ ﻳﻨﺒﻐﻲ ﺍﺳﺘﻌﻤﺎﻝ ﺃﺩﻭﺍﺕ ﻗﻴﺎﺱ ﻣﺘﻨﺎﺣﻴﺔ‪ .‬ﻭﻋﻨﺪﺋﺬ ﻳﻨﺒﻐﻲ ﺇﺟﺮﺍﺀ ﻋﻤﻠﻴﺎﺕ ﻣﺴﺢ‬
‫ﻹﺷﻌﺎﻉ ﺍﻟﺘﺮﺩﺩﺍﺕ ﺍﻟﺮﺍﺩﻳﻮﻳﺔ ﻋﻠﻰ ﺃﻳﺪﻱ ﻣﻮﻇﻔﲔ ﻣﺪﺭﺑﲔ ﻋﻠﻰ ﺍﺳﺘﻌﻤﺎﻝ ﻣﺜﻞ ﻫﺬﻩ ﺍﻷﺩﻭﺍﺕ‪ ،‬ﻳﺘّﺒﻌﻮﻥ ﻓﻴﻬﺎ ﺇﺟﺮﺍﺀﺍﺕ ﺍﻟﻘﻴﺎﺱ‬
‫ﺍﳌﻔﺮﻭﺿﺔ‪ ،‬ﻭﻳﺴﺠﻠﻮﻥ ﺍﻟﻨﺘﺎﺋﺞ ﺑﻨﺴﻖ ﳏﺪﺩ‪.‬‬
‫ﻭﺩﺍﺧﻞ ﻛﻞ ﻣﻨﻈﻤﺔ ﺃﻭ ﺷﺮﻛﺔ‪ ،‬ﳚﺐ ﺃﻥ ﺗُﺴﻨَﺪ ﻣﺴﺆﻭﻟﻴﺔ ﺗﻌﺮﻑ ﺃﺩﻭﺍﺕ ﺍﻟﻘﻴﺎﺱ ﺍﳌﻨﺎﺳﺒﺔ ﻭﺗﻮﻓﲑﻫﺎ ﺇﱃ ﺷﺨﺺ ﻛﻔﺆ ﻣﻌﻴﱠﻦ‪ .‬ﻭﳚﺐ‬
‫ﺍﺳﺘﻌﻤﺎﻝ ﻫﺬﻩ ﺍﻷﺩﻭﺍﺕ ﺩﺍﺋﻤﹰﺎ ﻃﺒﻘﹰﺎ ﻟﺘﻌﻠﻴﻤﺎﺕ ﺍﻟﺼﺎﻧﻊ‪ ،‬ﻭﺇﺧﻀﺎﻋﻬﺎ ﺑﺼﻮﺭﺓ ﺩﻭﺭﻳﺔ ﻟﻌﻤﻠﻴﺎﺕ ﺗﺪﻗﻴﻖ ﻭﻇﻴﻔﻲ )ﻣﻘﺎﺭﻧﺔ ﺑﺎﳌﺼﺪﺭ(‬
‫ﻭﻣﻌﺎﻳﺮﺓ‪ .‬ﻭﳚﺐ‪ ،‬ﻋﻠﻰ ﺃﺛﺮ ﻋﻤﻠﻴﺎﺕ ﺍﻟﺘﺪﻗﻴﻖ ﻭﺍﳌﻌﺎﻳﺮﺓ‪ ،‬ﺃﻥ ﺗُﻠﺼَﻖ ﻋﻠﻰ ﻫﺬﻩ ﺍﻷﺩﻭﺍﺕ ﺑﻄﺎﻗﺎﺕ ﺗﺒﻴﱢﻦ ﺗﻮﺍﺭﻳﺦ ﺍﻧﺘﻬﺎﺀ ﺍﻟﻌﻤﻞ ﻬﺑﺎ‪ ،‬ﻭﺃﻥ‬
‫ﺗُﺤﻔﻆ ﺳﺠﻼﺕ ﻣﻌﺎﻳﺮﺓ ﺗﺘﻀﻤﻦ ﻣﺎ ﺇﺫﺍ ﻛﺎﻥ ﻟﺰﻡ ﺇﺩﺧﺎﻝ ﺗﻌﺪﻳﻼﺕ ﻭ‪/‬ﺃﻭ ﺗﺼﻠﻴﺤﺎﺕ ﻋﻠﻰ ﻫﺬﻩ ﺍﻷﺩﻭﺍﺕ‪ .‬ﰒ ﺗُﺴﺘﻌﻤَﻞ ﻫﺬﻩ‬
‫ﺍﳌﻌﻠﻮﻣﺎﺕ ﻟﺘﺤﺪﻳﺪ ﺍﻟﻔﺘﺮﺍﺕ ﺍﻟﻔﺎﺻﻠﺔ ﺑﲔ ﻋﻤﻠﻴﺎﺕ ﺍﳌﻌﺎﻳﺮﺓ‪.‬‬
‫ﺍﻟﺘﻮﺻﻴﺔ‬
‫‪26‬‬
‫‪ITU-R BS.1698‬‬
‫ﻭﳚﺪﺭ ﺍﻷﺧﺬ ﺑﻄﺮﺍﺋﻖ ﻋﻤﻞ ﺗﻀﻤﻦ ﻋﺪﻡ ﲡﺎﻭﺯ ﺇﺷﻌﺎﻉ ﺍﻟﺘﺮﺩﺩﺍﺕ ﺍﻟﺮﺍﺩﻳﻮﻳﺔ ﺍﳊﺪﻭﺩ ﺍﳌﻔﺮﻭﺿﺔ‪ .‬ﻭﻳﻨﺒﻐﻲ ﺗﺪﺭﻳﺐ ﺍﳌﻮﻇﻔﲔ ﻋﻠﻰ ﻣﺎ‬
‫ﻳﻨﺎﺳﺐ ﻣﻦ ﺇﺟﺮﺍﺀﺍﺕ ﺍﻟﺴﻼﻣﺔ ﻣﻦ ﻫﺬﻩ ﺍﻹﺷﻌﺎﻋﺎﺕ‪ .‬ﺃﻣﺎ ﺃﻋﻤﺎﻝ ﺍﻟﺼﻴﺎﻧﺔ ﰲ ﺍﳌﺴﺎﺣﺎﺕ ﺍﳌﻘﻴﱠﺪ ﺍﻟﻨﻔﺎﺫ ﺇﻟﻴﻬﺎ ﺑﺴﺒﺐ ﺍﻟﺴﻮﻳﺎﺕ ﺍﻟﻌﺎﻟﻴﺔ‬
‫ﻹﺷﻌﺎﻉ ﺍﻟﺘﺮﺩﺩﺍﺕ ﺍﻟﺮﺍﺩﻳﻮﻳﺔ‪ ،‬ﻓﻴﺠﺐ ﲣﻄﻴﻄﻬﺎ ﲝﻴﺚ ﲡﺮﻯ‪ ،‬ﻗﺪﺭ ﺍﻹﻣﻜﺎﻥ‪ ،‬ﰲ ﻓﺘﺮﺍﺕ ﺍﻧﻘﻄﺎﻉ ﺍﻹﺭﺳﺎﻝ ﺃﻭ ﻓﺘﺮﺍﺕ ﺗﻐﲑ ﳐﻄﻂ‬
‫ﻼ ﰲ ﺃﺑﺮﺍﺝ ﻧﻘﻞ‬
‫ﺍﻹﺷﻌﺎﻉ‪ .‬ﺇﻻ ﺃﻧﻪ ﻳﻨﺒﻐﻲ ﺃﻳﻀﹰﺎ ﺍﳌﻮﺍﺯﻧﺔ ﰲ ﺍﻻﻫﺘﻤﺎﻡ ﺑﲔ ﺃﺧﻄﺎﺭ ﺍﻹﺷﻌﺎﻋﺎﺕ ﻭﻏﲑﻫﺎ ﻣﻦ ﺍﻷﺧﻄﺎﺭ‪ ،‬ﻣﺜﻞ ﺍﻟﻌﻤﻞ ﻟﻴ ﹰ‬
‫ﺍﻟﻘﺪﺭﺓ‪ ،‬ﻭﻟﻮ ﰲ ﻇﺮﻭﻑ ﺇﺿﺎﺀﺓ ﻭﺍﻓﻴﺔ‪ .‬ﻓﻌﻨﺪ ﺍﻟﻠﺰﻭﻡ ﳚﺐ ﺗﻨﻔﻴﺬ ﻋﻤﻠﻴﺔ ﺗﺒﺪﻳﻞ ﰲ ﺗﻴﺎﺭ ﺍﳌﺮﺳِﻼﺕ ﻟﺘﺨﻔﻴﻒ ﺍﻟﻘﺪﺭﺓ ﺃﻭ ﻗﻄﻊ ﺍﻟﺘﻴﺎﺭ‬
‫ﻋﻨﻬﺎ‪ ،‬ﺿﻤﺎﻧﹰﺎ ﻟﻠﺴﻼﻣﺔ ﰲ ﻋﻤﻞ ﺍﻟﺼﻴﺎﻧﺔ ﺃﻭ ﺍﻟﺘﺼﻠﻴﺢ‪.‬‬
‫ﻭﳚﺐ ﺃﻥ ﺗُﺤﺪﱠﺩ ﻭﺗﻌﻠﱠﻢ ﺑﻮﺿﻮﺡ ﺍﳌﺴﺎﺣﺎﺕ ﺍﶈﻈﻮﺭ ﺩﺧﻮﳍﺎ ﰲ ﳏﻄﺎﺕ ﺍﻹﺭﺳﺎﻝ‪ ،‬ﻭﺃﻥ ﻳﻘﺎﻡ ﻧﻈﺎﻡ "ﺇﺫﻥ ﺑﺎﻟﻌﻤﻞ" ﻟﺪﺧﻮﳍﺎ‪ .‬ﻭﻳﻨﺒﻐﻲ ﻭﺿﻊ‬
‫ﺍﻟﺘﺮﺗﻴﺒﺎﺕ ﺍﳌﻼﺋﻤﺔ ﲞﺼﻮﺹ ﺃﻳﺔ ﻣﻨﻈﻮﻣﺎﺕ ﺃﻭ ﻫﻮﺍﺋﻴﺎﺕ ﺃﻭ ﻣﻀﺎﻣﻴﻢ ﺃﻭ ﻣﺴﺎﺣﺎﺕ ﻣﺘﻘﺎ َﺳﻤَﺔ ﻣﻊ ﻣﻨﻈﻤﺎﺕ ﺃﺧﺮﻯ‪ .‬ﻭﺍﳌﻮﻇﻔﻮﻥ ﺍﻟﺬﻳﻦ ﻳﻌﻤﻠﻮﻥ‬
‫ﺑﺼﻮﺭﺓ ﻣﻨﺘﻈﻤﺔ ﰲ ﺍﳌﻨﺎﻃﻖ ﺍﻟﻌﺎﻟﻴﺔ ﻓﻴﻬﺎ ﺳﻮﻳﺎﺕ ﺍﻹﺷﻌﺎﻉ ﻳﻠﺰﻡ ﺗﺰﻭﻳﺪﻫﻢ ﲨﻴﻌﹰﺎ ﲜﻬﺎﺯ ﺷﺨﺼﻲ ﻟﻺﻧﺬﺍﺭ ﺃﻭ ﻟﻘﻴﺎﺱ ﺧﻄﺮ ﺍﻹﺷﻌﺎﻋﺎﺕ‪.‬‬
‫ﻭﳚﺐ ﺃﻥ ﺗُﺪﻭﱠﻥ ﰲ ﺳﺠﻼﺕ ﺣﺎﻻﺕ ﺍﻟﺘﻌﺮﺽ ﻟﺴﻮﻳﺎﺕ ﺇﺷﻌﺎﻉ ﻣﻦ ﺍﻟﺘﺮﺩﺩﺍﺕ ﺍﻟﺮﺍﺩﻳﻮﻳﺔ ﺗﻔﻮﻕ ﺍﻟﺴﻮﻳﺔ ﺍﶈﺪﺩﺓ‪ .‬ﻭﻳﺘﻌﻴﱠﻦ ﻋﻠﻰ‬
‫ﺍﻟﺸﺮﻛﺎﺕ ﺃﻭ ﺍﳌﻨﻈﻤﺎﺕ ﺍﳌﺴﺆﻭﻟﺔ ﻋﻦ ﺗﺸﻐﻴﻞ ﳏﻄﺎﺕ ﺍﻹﺭﺳﺎﻝ ﺃﻥ ﺗﺮﺍﻗﺐ ﺻﺤﺔ ﺍﳌﻮﻇﻔﲔ ﻟﺪﻳﻬﺎ ﺍﻟﺬﻳﻦ ﻳﻌﻤﻠﻮﻥ ﰲ ﺍﳌﺴﺎﺣﺎﺕ‬
‫ﺍﻟﻌﺎﻟﻴﺔ ﻓﻴﻬﺎ ﺳﻮﻳﺎﺕ ﺇﺷﻌﺎﻉ ﺍﻟﺘﺮﺩﺩﺍﺕ ﺍﻟﺮﺍﺩﻳﻮﻳﺔ‪ ،‬ﻭﺃﻥ ﺗﺸﺎﺭﻙ ﰲ ﺍﻻﺳﺘﻘﺼﺎﺀﺍﺕ ﺍﻟﻮﺑﺎﺋﻴﺔ ﺣﺴﺒﻤﺎ ﻳﻼﺋﻢ‪.‬‬
‫ﻭﻳﻨﺒﻐﻲ ﺇﺻﺪﺍﺭ ﺗﻌﻠﻴﻤﺎﺕ ﻣﻜﺘﻮﺑﺔ ﺑﺸﺄﻥ ﺍﻟﺴﻼﻣﺔ ﰲ ﻧﻄﺎﻕ ﺍﻟﻌﻤﻞ‪ ،‬ﺗﺘﻀﻤﻦ ﺗﻔﺎﺻﻴﻞ ﺍﻟﺴﻴﺎﺳﺎﺕ ﻭﺍﻹﺟﺮﺍﺀﺍﺕ ﺍﻟﻌﺎﻣﺔ ﺍﳌﺘﻌﻠﻘﺔ ﺑﺎﻟﻮﻗﺎﻳﺔ‬
‫ﻣﻦ ﺇﺷﻌﺎﻋﺎﺕ ﺍﻟﺘﺮﺩﺩﺍﺕ ﺍﻟﺮﺍﺩﻳﻮﻳﺔ‪ ،‬ﻭﺗﻮﺯﻳﻌﻬﺎ ﻋﻠﻰ ﲨﻴﻊ ﺍﻟﻌﺎﻣﻠﲔ ﺍﳌﻌﻨﻴﲔ‪ .‬ﻭﺑﺎﻹﺿﺎﻓﺔ ﺇﱃ ﺫﻟﻚ‪ ،‬ﳚﺐ ﺇﺻﺪﺍﺭ ﺗﻌﻠﻴﻤﺎﺕ ﳏﻠﻴﺔ ﲣﺺ‬
‫ﻛﻞ ﳏﻄﺔ ﺇﺭﺳﺎﻝ ﺑﻌﻴﻨﻬﺎ‪ ،‬ﻟﻀﻤﺎﻥ ﺍﻻﻣﺘﺜﺎﻝ ﻟﺘﻠﻚ ﺍﻟﺴﻴﺎﺳﺎﺕ ﻭﺍﻹﺟﺮﺍﺀﺍﺕ‪.‬‬
‫ﻭﻳُﻔﺘﺮﺽ ﰲ ﺍﻟﺘﺪﺭﻳﺐ ﻋﻠﻰ ﺗﺪﺍﺑﲑ ﺍﻟﺴﻼﻣﺔ ﺃﻥ ﻳﺸﺘﻤﻞ ﺃﻳﻀﹰﺎ ﻋﻠﻰ ﻣﻮﺿﻮﻉ ﻃﺒﻴﻌﺔ ﺇﺷﻌﺎﻋﺎﺕ ﺍﻟﺘﺮﺩﺩﺍﺕ ﺍﻟﺮﺍﺩﻳﻮﻳﺔ ﻭﺁﺛﺎﺭﻫﺎ‪ ،‬ﻭﻋﻠﻰ‬
‫ﺍﳉﻮﺍﻧﺐ ﺍﻟﻄﺒﻴﺔ ﻭﻣﻌﺎﻳﲑ ﺍﻟﺴﻼﻣﺔ‪.‬‬
‫‪2.1.5‬‬
‫ﺍﻟﺘﺪﺍﺑﲑ ﺍﻻﺣﺘﺮﺍﺳﻴﺔ ﲞﺼﻮﺹ ﻋﺎﻣﺔ ﺍﳉﻤﻬﻮﺭ‬
‫‪ 1.2.1.5‬ﺍﻟﺘﺪﺍﺑﲑ ﺍﳌﺎﺩﻳﺔ‬
‫ﺗﻨﻄﺒﻖ ﻋﻠﻰ ﻋﺎﻣﺔ ﺍﳉﻤﻬﻮﺭ ﺍﻋﺘﺒﺎﺭﺍﺕ ﳑﺎﺛﻠﺔ ﳌﺎ ﺗﻘﺪﻡ ﺗﻔﺼﻴﻠﻪ ﰲ ﺍﻟﻔﻘﺮﺓ ‪ 1.1.1.5‬ﲞﺼﻮﺹ ﺍﻟﻌﺎﻣﻠﲔ‪ .‬ﻳﻨﺒﻐﻲ ﺇﻳﻼﺀ ﺍﻫﺘﻤﺎﻡ ﺧﺎﺹ‬
‫ﳌﺴﺎﺣﺎﺕ ﻣﻌﻴﱠﻨﺔ ﳝﻜﻦ ﻓﻴﻬﺎ ﺃﻥ ﺗﺘﺠﺎﻭﺯ ﺇﺷﻌﺎﻋﺎﺕ ﺍﻟﺘﺮﺩﺩﺍﺕ ﺍﻟﺮﺍﺩﻳﻮﻳﺔ ﺍﳊﺪﻭﺩ ﺍﳌﻘﺮﺭﺓ‪ ،‬ﺑﺴﺒﺐ ﺣﺎﻻﺕ ﺍﻟﻌﻄﺐ‪ .‬ﻭﻳُﻔﺘﺮﺽ ﻭﺿﻊ‬
‫ﺣﻮﺍﺟﺰ ﻭﺍﻗﻴﺔ ﺑﺸﻜﻞ ﺃﺳﻴﺠﺔ ﳏﻴﻄﺔ‪ ،‬ﻣﺆﺭﺿﺔ ﻛﻤﺎ ﻳﻠﺰﻡ ﺣﻴﺜﻤﺎ ﹸﻟﻤِﺴﺖ ﺣﺎﺟﺔ ﻟﺘﺄﺭﻳﻀﻬﺎ‪ .‬ﻭﺭﲟﺎ ﻟﺰﻡ ﺇﺿﺎﻓﺔ ﻋﻼﻣﺎﺕ ﲢﺬﻳﺮ ﻣﻦ ﺍﳋﻄﺮ‪.‬‬
‫‪ 2.2.1.5‬ﺍﻹﺟﺮﺍﺀﺍﺕ ﺍﻟﺘﺸﻐﻴﻠﻴﺔ‬
‫ﺃﺛﻨﺎﺀ ﻋﻤﻠﻴﺎﺕ ﺗﻘﺪﻳﺮ ﺍﳌﺨﺎﻃﺮ ﺍﳌﻄﻠﻮﺏ ﰲ ﺍﻟﻔﻘﺮﺓ ‪ 2.1.1.5‬ﺇﺟﺮﺍﻭﻫﺎ‪ ،‬ﳚﺐ ﺃﻥ ﻳﺆﺧﺬ ﰲ ﺍﻻﻋﺘﺒﺎﺭ ﺍﺣﺘﻤﺎﻝ ﺃﻥ ﻳﻜﻮﻥ ﺃﻓﺮﺍﺩ ﻣﻦ‬
‫ﻋﺎﻣﺔ ﺍﳉﻤﻬﻮﺭ ﻣﺰﻭﱠﺩﻳﻦ ﺑﻐﺮﺳﺎﺕ ﻃﺒﻴﺔ‪ .‬ﻓﻴﻠﺰﻡ ﺍﻋﺘﻤﺎﺩ ﺇﺟﺮﺍﺀﺍﺕ ﺗﻮﻓﺮ ﻣﻌﻠﻮﻣﺎﺕ ﻋﻦ ﺍﳌﺨﺎﻃﺮ ﺍﻟﺼﺤﻴﺔ ﳌﺜﻞ ﻫﺆﻻﺀ ﺍﻟﺰﺍﺋﺮﻳﻦ‬
‫ﺍﶈﺘﻤﻠﲔ‪ ،‬ﻛﻤﺎ ﻳﻠﺰﻡ ﺍﻋﺘﻤﺎﺩ ﺍﻹﺟﺮﺍﺀﺍﺕ ﺍﳌﻨﺎﺳﺒﺔ ﲞﺼﻮﺹ ﻧﻔﺎﺫﻫﻢ ﺇﱃ ﺍﳌﺴﺎﺣﺎﺕ ﺍﳋﻄﺮﺓ‪ .‬ﻭﻳﻔﺘﺮَﺽ ﺃﻥ ﺗﻮﻓﱠﺮ ﳌﻦ ﻳﺰﻭﺭﻭﻥ ﺍﳌﻮﻗﻊ‬
‫ﺑﺼﻮﺭﺓ ﻣﺘﻮﺍﺗﺮﺓ ﺍﻟﺘﻌﻠﻴﻤﺎﺕ ﺍﻷﺳﺎﺳﻴﺔ ﺑﺸﺄﻥ ﺍﻟﺴﻼﻣﺔ ﻣﻦ ﺇﺷﻌﺎﻋﺎﺕ ﺍﻟﺘﺮﺩﺩﺍﺕ ﺍﻟﺮﺍﺩﻳﻮﻳﺔ‪.‬‬
‫ﻭﳚﺐ ﺃﻥ ﻳُﺪﺭﺱ ﻣﻮﺿﻮﻉ ﺇﺟﺮﺍﺀ ﻣﺴﻮﺡ ﻹﺷﻌﺎﻋﺎﺕ ﺍﻟﺘﺮﺩﺩﺍﺕ ﺍﻟﺮﺍﺩﻳﻮﻳﺔ ﺧﺎﺭﺝ ﺣﺪﻭﺩ ﻣﻮﻗﻊ ﺍﶈﻄﺔ‪ ،‬ﻭﻋﻠﻰ ﺍﳋﺼﻮﺹ ﺣﻴﺚ‬
‫ﻳُﺤﺘﻤﻞ ﺃﻥ ﺗﺴﺒﺐ ﺍﻟﺘﻮﺗﺮﺍﺕ ﺍﳌﺴﺘﺤﺜﱠﺔ ﰲ ﺍﻟﺒﲎ ﺍﳌﻌﺪﻧﻴﺔ ﺍﳋﺎﺭﺟﻴﺔ )ﻣﻦ ﻣﺮﺍﻓﻴﻊ ﻭﺟﺴﻮﺭ ﻭﻣﺒﺎ ٍﻥ ﻭﻏﲑﻫﺎ( ﺣﺮﻭﻗﹰﺎ ﺃﻭ ﺻﺪﻣﺎﺕ ﻃﻔﻴﻔﺔ‬
‫ﻟﻠﻨﺎﺱ‪ .‬ﻭﻋﻨﺪ ﺇﺟﺮﺍﺀ ﻣﺜﻞ ﻫﺬﻩ ﺍﳌﺴﻮﺡ‪ ،‬ﻳﻨﺒﻐﻲ ﺃﻥ ﻳﺮﺍﻋﻰ ﺇﻣﻜﺎﻥ ﺗﺰﺍﻳﺪ ﺷﺪﺓ ﺍﺠﻤﻟﺎﻝ ﻣﻊ ﺍﳌﺴﺎﻓﺔ‪ ،‬ﺑﺴﺒﺐ ﻣﻴﻼﻥ ﺍﻷﺭﺽ ﻋﺎﺩﺓ‪ .‬ﻭﻳﻨﺒﻐﻲ‬
‫ﻋﻨﺪ ﺍﻟﻠﺰﻭﻡ ﺍﲣﺎﺫ ﺇﺟﺮﺍﺀﺍﺕ ﻣﺮﺍﻗﺒﺔ ﻟﺘﻄﺒﻴﻘﺎﺕ ﺍﻟﺘﺨﻄﻴﻂ ﺃﻭ ﺗﻨﻔﻴﺬ ﻣﻘﺘﺮﺣﺎﺕ ﺃﺧﺮﻯ ﺗﻄﻮﻳﺮﻳﺔ‪.‬‬
‫ﻭﻳُﻌﻄﻰ ﻣﺜﺎﻝ ﻹﻳﻀﺎﺡ ﻣﺎ ﺗﻘﺪﻡ ﰲ ﺍﻟﺘﺬﻳﻴﻞ ‪) 3‬ﺍﻟﺸﻜﻠﲔ ‪ 43‬ﻭ‪.(44‬‬
‫‪2.5‬‬
‫ﺍﻟﺘﺪﺍﺑﲑ ﺍﻻﺣﺘﺮﺍﺳﻴﺔ ﻟﻠﺘﺨﻔﻴﻒ ﻣﻦ ﺍﻵﺛﺎﺭ ﻏﲑ ﺍﳌﺒﺎﺷﺮﺓ ﻟﻺﺷﻌﺎﻋﺎﺕ ﺍﻟﺮﺍﺩﻳﻮﻳﺔ‬
‫ﳝﻜﻦ ﺃﻥ ﲢﺪﺙ ﺍﻵﺛﺎﺭ ﻏﲑ ﺍﳌﺒﺎﺷﺮﺓ ﻋﻦ ﺍﻹﺷﻌﺎﻋﺎﺕ ﺍﻟﺮﺍﺩﻳﻮﻳﺔ‪ ،‬ﻣﺜﻞ ﺍﻧﺪﻻﻉ ﺍﻟﻨﺎﺭ ﰲ ﻣﻮﺍﺩ ﻗﺎﺑﻠﺔ ﻟﻼﺷﺘﻌﺎﻝ‪ ،‬ﻣﻊ ﺳﻮﻳﺎﺕ ﺃﺩﱏ ﺑﻜﺜﲑ‬
‫ﻣﻦ ﺍﻟﺴﻮﻳﺎﺕ "ﺍﳌﺸﺘﻘﺔ‪/‬ﺍﻻﺳﺘﻘﺼﺎﺋﻴﺔ"‪ ،‬ﻭﺧﺼﻮﺻﹰﺎ ﰲ ﺣﺎﻻﺕ ﺍﻹﺭﺳﺎﻝ ﺑﺎﳌﻮﺟﺎﺕ ﺍﳍﻜﺘﻮﻣﺘﺮﻳﺔ‪/‬ﺍﻟﺪﻳﻜﺎﻣﺘﺮﻳﺔ )‪ .(MF/HF‬ﻭﺫﻟﻚ‪،‬‬
‫ﺍﻟﺘﻮﺻﻴﺔ‬
‫‪ITU-R BS.1698‬‬
‫‪27‬‬
‫ﻷﻥ ﺍﳌﻮﺍﺩ ﺍﻟﻘﺎﺑﻠﺔ ﻟﻼﺷﺘﻌﺎﻝ ﻗﺪ ﺗﻜﻮﻥ ﳐﺰﱠﻧﺔ ﰲ ﻣﻮﻗﻊ ﻓﻴﻪ ﺑﲎ ﻣﻮﺻﻠﺔ‪ ،‬ﻣﺜﻞ ﺷﺒﻜﺔ ﺃﻧﺎﺑﻴﺐ ﺗﺆﺩﻱ ﻭﻇﻴﻔﺔ ﻫﻮﺍﺋﻲ ﺍﺳﺘﻘﺒﺎﻝ ﻓﻌﺎﻝ ﲟﺎ‬
‫ﻓﻴﻪ ﺍﻟﻜﻔﺎﻳﺔ‪ .‬ﻟﻜﻦ ﺍﻷﺧﻄﺎﺭ ﺍﻟﻔﻌﻠﻴﺔ ﻧﺎﺩﺭﺓ‪ ،‬ﻭﺇﻥ ﻛﺎﻧﺖ ﻬﺗﺪﺩ ﻣﻨﺸﺂﺕ ﺍﳌﻌﺎﳉﺔ ﺍﻟﺼﻨﺎﻋﻴﺔ‪ ،‬ﻭﻣﺴﺘﻮﺩﻋﺎﺕ ﺍﶈﺮﻭﻗﺎﺕ‪ ،‬ﻭﳏﻄﺎﺕ ﺍﻟﺘﺰﻭّﺩ‬
‫ﺑﺎﻟﻮﻗﻮﺩ‪ .‬ﺑﻴﺪ ﺃﻥ ﺍﻟﺘﻘﻴﻴﻢ ﺍﳌﻔﺼﱠﻞ ﺑﻌﻴﺪ ﻋﻦ ﺍﻟﺒﺴﺎﻃﺔ‪ .‬ﻭﻟﺬﺍ ﻓﺈﻥ ﺍﻹﺟﺮﺍﺀﺍﺕ ﺍﳌﻮﺻﻰ ﻬﺑﺎ ﺃﺩﻧﺎﻩ ﺗﺴﺘﻨﺪ ﺇﱃ ﺇﺯﺍﻟﺔ ﺍﻷﺳﺒﺎﺏ ﺗﺪﺭﳚﻴﹰﺎ‪ .‬ﻭﻣﻊ‬
‫ﺫﻟﻚ ﻳﻠﺰﻡ‪ ،‬ﰲ ﺍﻟﺘﺪﺍﺑﲑ ﺍﻻﺣﺘﺮﺍﺳﻴﺔ ﺍﻟﺘﻔﺼﻴﻠﻴﺔ ﺍﻟﱵ ﺗُﻌﺘﻤَﺪ‪ ،‬ﻣﺮﺍﻋﺎﺓ ﺍﳌﻌﺎﻳﲑ ﺃﻭ ﺍﻟﺘﺸﺮﻳﻌﺎﺕ ﺍﻟﻮﻃﻨﻴﺔ ﺍﻟﺴﺎﺭﻳﺔ ﰲ ﺍﻟﺒﻠﺪ ﺍﳌﻌﲏ‪.‬‬
‫ﻳُﻔﺘﺮَﺽ ﺃﻥ ﳚﺮﻯ ﺗﻘﻴﻴﻢ ﺃﻭﱄ‪ ،‬ﻳﺴﺘﻨﺪ ﺇﱃ ﺗﻘﺪﻳﺮﺍﺕ ﻋﻤﻠﻴﺔ ﺗﺘﻨﺎﻭﻝ ﺃﺳﻮﺃ ﺍﳊﺎﻻﺕ‪ ،‬ﻭﻳﺘﺤﻘﻖ ﻓﻴﻬﺎ ﺣﺪ ﺃﺩﱏ ﻣﻦ ﺍﻟﻔﺼﻞ ﺑﲔ ﳕﻂ ﻣﻌﻴﱠﻦ‬
‫ﻣﻦ ﺍﳌﺮﺳﻼﺕ ﻭﺍﻟﺒﻨﻴﺔ ﺍﳌﻮﺻﻠﺔ‪ ،‬ﲡﻨﺒﺎ ﻟﻠﺨﻄﺮ‪ .‬ﻭﺗﻘﻮﻡ ﺍﳋﻄﻮﺓ ﺍﻷﻭﱃ ﰲ ﻫﺬﺍ ﺍﻟﺘﻘﻴﻴﻢ ﻋﻠﻰ ﲢﺪﻳﺪ ﺃﺩﱏ ﻗﻴﻤﺔ ﻟﺸﺪﺓ ﺍﺠﻤﻟﺎﻝ ﳝﻜﻦ ﺃﻥ‬
‫ﻳﺘﻤﺜﻞ ﻓﻴﻬﺎ ﺧﻄﺮ ﺍﻧﺪﻻﻉ ﺣﺮﻳﻖ‪ ،‬ﻧﻈﺮﹰﺍ ﻟﺘﺮﺩﺩﺍﺕ ﺍﳌﺮﺳﻞ ﺍﳌﻌﻴﱠﻦ ﺍﳌﺴﺘﻌﻤﻠﺔ‪ .‬ﻭﻫﺬﺍ ﺍﻟﺘﺤﺪﻳﺪ ﻳﺘﺒﻊ ﺃﻳﻀﹰﺎ ﻧﻮﻉ ﺍﳌﺎﺩﺓ ﺍﻟﻘﺎﺑﻠﺔ ﻟﻼﺷﺘﻌﺎﻝ‪،‬‬
‫ﻭﳏﻴﻂ ﺍﻟﻌﺮﻭﺓ ﺍﻟﱵ ﺗﺸﻜﻠﻬﺎ ﺍﻟﺒﲎ ﺍﳌﻌﺪﻧﻴﺔ‪ ،‬ﺷﺒﻜﺎﺕ ﺍﻷﻧﺎﺑﻴﺐ ﻋﺎﺩﺓ‪ ،‬ﻭﻳﺘﺴﻨّﻰ ﺇﺣﺮﺍﺯﻩ ﺑﻜﺜﲑ ﻣﻦ ﺍﻟﺴﻬﻮﻟﺔ ﻋﻦ ﻃﺮﻳﻖ ﺟﺪﺍﻭﻝ‬
‫ﻭﺑﻴﺎﻧﻴﺎﺕ‪ .‬ﰒ ﺗُﺤﺪﺩ ﺍﳌﻨﻄﻘﺔ ﺍﳌﻌﺮﺿﺔ ﻟﻠﺨﻄﺮ ﺑﺴﺒﺐ ﺷﺪﺓ ﺍﺠﻤﻟﺎﻝ ﺍﻟﺪﻧﻴﺎ ﻫﺬﻩ‪ ،‬ﺑﻮﺍﺳﻄﺔ ﺍﳊﺴﺎﺏ ﻭﺍﻟﻨﻤﺬﺟﺔ ﺍﻟﺮﻳﺎﺿﻴﺔ ﺃﻭ ﺑﻮﺍﺳﻄﺔ‬
‫ﺟﺪﺍﻭﻝ‪/‬ﺑﻴﺎﻧﻴﺎﺕ‪.‬‬
‫ﻓﺈﺫﺍ ﻛﺎﻧﺖ ﺍﳌﺴﺎﺣﺔ ﺍﳌﻌﺮﺿﺔ‪ ،‬ﺍﻟﱵ ﰎ ﲢﺪﻳﺪﻫﺎ ﻛﻤﺎ ﺗﻘﺪﻡ‪ ،‬ﺗﺸﺘﻤﻞ ﻋﻠﻰ ﻣﻮﺍﻗﻊ ﳐﺰّﻧﺔ ﻓﻴﻬﺎ ﻣﻮﺍﺩ ﻗﺎﺑﻠﺔ ﻟﻼﺷﺘﻌﺎﻝ‪ ،‬ﺃﻭ ﻛﺎﻥ ﺟﺎﺭﻳﹰﺎ‬
‫ﻼ‪ .‬ﻭﻳﻨﺒﻐﻲ ﺃﻥ ﻳﺴﺘﻨﺪ ﻫﺬﺍ ﺍﻟﺘﻘﻴﻴﻢ ﺇﱃ ﺍﻷﺑﻌﺎﺩ ﺍﻟﻔﻌﻠﻴﺔ ﻷﻱ ﺑﲎ‬
‫ﺍﻟﺘﺨﻄﻴﻂ ﳌﺜﻞ ﺫﻟﻚ ﻓﻴﻬﺎ‪ ،‬ﻟﺰﻡ ﻋﻨﺪﺋﺬ ﺇﺟﺮﺍﺀ ﺗﻘﻴﻴﻢ ﺃﻛﺜﺮ ﺗﻔﺼﻴ ﹰ‬
‫ﻣﻌﺪﻧﻴﺔ‪ ،‬ﻭﻧﻮﻉ ﻏﺎﺯ ﺍﳌﺎﺩﺓ )ﺃﻭ ﺍﳌﻮﺍﺩ( ﺍﻟﻘﺎﺑﻠﺔ ﻟﻼﺷﺘﻌﺎﻝ ﺍﳌﺨﺰّﻧﺔ‪ ،‬ﻭﺷﺪﺓ ﺍﺠﻤﻟﺎﻝ ﺍﶈﺼﻠﺔ ﻗﻴﻤﺘﻬﺎ ﺑﺎﻟﻘﻴﺎﺱ‪ .‬ﻭﻳُﻔﺘﺮَﺽ ﺃﻥ ﳚﺮﻯ ﻫﺬﺍ‬
‫ﺍﻟﺘﻘﻴﻴﻢ ﺍﳌﻔﺼﻞ ﲝﺴﺎﺏ ﺍﻟﻘﺪﺭﺓ ﺍﳌﻤﻜﻦ ﺍﺳﺘﺨﺮﺍﺟﻬﺎ ﻣﻦ ﺍﻟﺒﻨﻴﺔ ﺍﳌﻌﺪﻧﻴﺔ‪ ،‬ﻣﻦ ﺃﺟﻞ ﺗﻘﺮﻳﺮ ﻣﺎ ﺇﺫﺍ ﻛﺎﻧﺖ ﻫﺬﻩ ﺍﻟﻘﺪﺭﺓ ﺗﺘﺠﺎﻭﺯ ﺍﳌﻘﺪﺍﺭ‬
‫ﺍﻷﺩﱏ ﺍﻟﻼﺯﻡ ﻣﻦ ﺍﻟﻄﺎﻗﺔ ﻻﻧﺪﻻﻉ ﺍﻟﻨﺎﺭ ﰲ ﺍﳌﺎﺩﺓ ﺍﻟﻘﺎﺑﻠﺔ ﻟﻼﺷﺘﻌﺎﻝ‪ .‬ﻓﺈﺫﺍ ﲡﺎﻭﺯﺕ ﺍﳌﻘﺪﺍﺭ ﺍﻷﺩﱏ ﻫﺬﺍ‪ ،‬ﻟﺰﻡ ﻋﻨﺪﺋﺬ ﻗﻴﺎﺱ ﺍﻟﻘﺪﺭﺓ‬
‫ﺍﳌﻤﻜﻦ ﺍﺳﺘﺨﺮﺍﺟﻬﺎ‪ ،‬ﻭﺇﺩﺧﺎﻝ ﺃﻱ ﺗﻌﺪﻳﻞ ﺿﺮﻭﺭﻱ ﻋﻠﻰ ﺍﻟﺒﻨﻴﺔ ﺍﳌﻌﺪﻧﻴﺔ‪ ،‬ﻭ‪/‬ﺃﻭ ﺗﻨﻔﻴﺬ ﻏﲑ ﺫﻟﻚ ﻣﻦ ﺗﺪﺍﺑﲑ ﺍﻟﺴﻼﻣﺔ‪.‬‬
‫ﻭﰲ ﻓﺌﺔ ﳑﺎﺛﻠﺔ ﻷﺧﻄﺎﺭ ﺍﳊﺮﺍﺋﻖ‪ ،‬ﺗﻨﺪﺭﺝ ﺍﳌﻮﺍﺩ ﺍﻟﻘﺎﺑﻠﺔ ﻟﻼﻧﻔﺠﺎﺭ‪ .‬ﻭﻟﻜﻦ ﻳﻨﺪﺭ ﺟﺪﹰﺍ ﺃﻥ ﺗﺼﺪﻑ ﻣﺜﻞ ﻫﺬﻩ ﺍﳊﺎﻟﺔ‪ ،‬ﻭﺍﻹﺭﺷﺎﺩﺍﺕ‬
‫ﺍﳌﻔﺼﻠﺔ ﻣﺘﻴﺴﺮﺓ ﰲ ﺍﳌﻌﺎﻳﲑ ﺍﻟﻮﻃﻨﻴﺔ‪ ،‬ﻣﺜﻞ ﺍﳌﻌﻴﺎﺭ ‪ BS 6657‬ﺍﳌﻌﻤﻮﻝ ﺑﻪ ﰲ ﺍﳌﻤﻠﻜﺔ ﺍﳌﺘﺤﺪﺓ‪ .‬ﻭﻣﻦ ﺍﻵﺛﺎﺭ ﻏﲑ ﺍﳌﺒﺎﺷﺮﺓ ﺍﻷﺧﺮﻯ ﺍﻟﱵ‬
‫ﻳﻨﺒﻐﻲ ﺃﺧﺬﻫﺎ ﰲ ﺍﻻﻋﺘﺒﺎﺭ ﺗﺪﺍﺧﻞ ﺍﻟﺘﺮﺩﺩﺍﺕ ﺍﻟﺮﺍﺩﻳﻮﻳﺔ ﰲ ﺃﻧﻈﻤﺔ ﺍﻟﺴﻼﻣﺔ ﺍﳌﻌﺘﻤَﺪﺓ ﰲ ﺍﳌﺮﻛﺒﺎﺕ‪ ،‬ﻭﺍﻵﻟﻴﺎﺕ‪ ،‬ﻭﺍﳌﺮﺍﻓﻴﻊ‪ ،‬ﻭﻏﲑﻫﺎ‪ ،‬ﺍﻟﱵ‬
‫ﻗﺪ ﺗﻮﺟﺪ ﺿﻤﻦ ﺣﺪﻭﺩ ﺗﺄﺛﲑ ﳏﻄﺎﺕ ﺍﻹﺭﺳﺎﻝ‪ .‬ﻭﺇﻥ ﺣﺼﺎﻧﺔ ﻫﺬﻩ ﺍﻷﻧﻈﻤﺔ ﻣﺸﻤﻮﻟﺔ ﺑﻠﻮﺍﺋﺢ ﺍﳌﻼﺀﻣﺔ ﺍﻟﻜﻬﺮﻣﻐﻨﻄﻴﺴﻴﺔ )‪(EMC‬‬
‫)ﺍﻧﻈﺮ ﺍﻟﺘﺬﻳﻴﻞ ‪.(3‬‬
‫ﰒ ﳚﺐ‪ ،‬ﺣﻴﺜﻤﺎ ﺍﻗﺘﻀﺖ ﺍﻟﻀﺮﻭﺭﺓ‪ ،‬ﺃﻥ ﺗﺘﺨﺬ ﺗﺪﺍﺑﲑ ﺍﺣﺘﺮﺍﺳﻴﺔ ﺷﺒﻴﻬﺔ ﻣﻦ ﺣﻴﺚ ﺍﳌﺒﺪﺃ ﲟﺎ ﺗﻘﺪﻡ ﻭﺻﻔﻪ ﰲ ﺍﻟﻔﻘﺮﺓ ‪.2.1.5‬‬
‫ﺍﻟﺘﺬﻳﻴﻞ‬
‫ﻟﻠﻤﻠﺤﻖ ‪1‬‬
‫‪1‬‬
‫ﺃﻣﺜﻠﺔ ﻋﻠﻰ ﺷﺪﺩ ﳎﺎﻝ ﻗﺮﻳﺐ ﻣﻦ ﻫﻮﺍﺋﻴﺎﺕ ﺍﻹﺭﺳﺎﻝ‪ ،‬ﻗﻴﻤﻬﺎ ﳏﺼﱠﻠﺔ ﺑﺎﳊﺴﺎﺏ‬
‫‪1‬‬
‫ﺍﳌﺜﺎﻝ ‪ - A‬ﻣﻨﺤﻨﻴﺎﺕ ﺷﺪﺓ ﺍﺠﻤﻟﺎﻝ ﺍﻟﻜﻬﺮﺑﺎﺋﻲ ﻭﺍﺠﻤﻟﺎﻝ ﺍﳌﻐﻨﻄﻴﺴﻲ‬
‫ﺣﺴﺒﻤﺎ ﺟﺎﺀ ﰲ ﺍﻟﻘﺴﻢ ‪ 3‬ﺃﻋﻼﻩ‪ ،‬ﳝﻜﻦ ﺇﺟﺮﺍﺀ ﺣﺴﺎﺑﺎﺕ ﺭﻗﻤﻴﺔ ﻟﺘﻮﺯﻳﻊ ﺷﺪﺓ ﻛﻞ ﻣﻦ ﺍﺠﻤﻟﺎﻟﲔ ﺍﻟﻜﻬﺮﺑﺎﺋﻲ ﻭﺍﳌﻐﻨﻄﻴﺴﻲ ﻗﺮﺏ‬
‫ﻫﻮﺍﺋﻴﺎﺕ ﺍﻹﺭﺳﺎﻝ ﺍﻹﺫﺍﻋﻲ‪ ،‬ﻣﻦ ﺃﺟﻞ ﲢﺪﻳﺪ ﻗﻴﻢ ﺷﺪﺓ ﺍﺠﻤﻟﺎﻝ ﰲ ﺑﻌﺾ ﺍﻟﻨﻘﺎﻁ ﺃﻭ ﺍﳌﺴﺎﺣﺎﺕ‪ ،‬ﻭﻻ ﺳﻴﻤﺎ ﻣﻨﻄﻘﺔ ﺍﺠﻤﻟﺎﻝ ﺍﻟﻘﺮﻳﺐ‬
‫ﺣﻴﺚ ﺗﻜﻮﻥ ﺑﻨﻴﺔ ﺍﺠﻤﻟﺎﻝ ﻣﻌﻘﺪﺓ ﺟﺪﹰﺍ ﻋﻠﻰ ﺍﻟﻌﻤﻮﻡ‪ .‬ﻭﳝﻜﻦ ﺇﺟﺮﺍﺀ ﺣﺴﺎﺑﺎﺕ ﺃﻳﻀﹰﺎ ﻣﻦ ﺃﺟﻞ ﺍﻟﺘﺤﻘﻖ ﻣﻦ ﺧﻄﻮﻁ ﺍﻟﻜﻔﺎﻑ )ﺍﳋﻄﻮﻁ‬
‫ﺍﻟﺘﻮﺻﻴﺔ‬
‫‪28‬‬
‫‪ITU-R BS.1698‬‬
‫ﺃﻭ ﺍﻟﺴﻄﻮﺡ ﺍﻟﺜﺎﺑﺘﺔ ﻓﻴﻬﺎ ﺷﺪﺓ ﺍﺠﻤﻟﺎﻝ( ﺣﻴﺚ ﻳﺘﻢ ﺍﻟﺘﻘﻴﺪ ﺑﺎﻟﻘﻴﻢ ﺍﳊﺪﻭﺩﻳﺔ ﺍﳌﻨﺎﺳﺒﺔ )ﺍﻟﺴﻮﻳﺎﺕ( ﻟﻠﻤﺠﺎﻝ ﺍﻟﻜﻬﺮﻣﻐﻨﻄﻴﺴﻲ‪ .‬ﻭﻋﻠﻰ ﻫﺬﺍ‬
‫ﻼ( ﺗﻘﺪﻳﺮ ﺍﻣﺘﺪﺍﺩ ﺍﳌﺴﺎﺣﺎﺕ ﺍﻟﱵ ﳝﻜﻦ ﺃﻭ ﳚﺐ ﺃﻥ ﺗُﻨﻔﱠﺬ ﻓﻴﻬﺎ ﺗﺪﺍﺑﲑ ﲪﺎﻳﺔ‪.‬‬
‫ﺍﻟﻨﺤﻮ ﳝﻜﻦ )ﻷﻏﺮﺍﺽ ﺍﻟﺘﺨﻄﻴﻂ‪ ،‬ﻣﺜ ﹰ‬
‫ﻭﰲ ﻭﺛﻴﻘﺔ ﺗﻘﻨﻴﺔ ﺻﺎﺩﺭﺓ ﻋﻦ ﺍﻻﲢﺎﺩ ﺍﻹﺫﺍﻋﻲ ﺍﻷﻭﺭﰊ )‪ [2] (EBU‬ﻣﻌﻄﻰ ﻛﺜﲑ ﻣﻦ ﻧﺘﺎﺋﺞ ﺍﳊﺴﺎﺑﺎﺕ‪ .‬ﻓﺎﻷﺷﻜﺎﻝ ﺍﻟﺘﺎﻟﻴﺔ ﺗﻌﺮﺽ‬
‫ﺑﺼﻮﺭﺓ ﻣﻨﺤﻨﻴﺎﺕ ﺑﻴﺎﻧﻴﺔ‪ ،‬ﺑﻌﺾ ﻧﺘﺎﺋﺞ ﺍﳊﺴﺎﺑﺎﺕ ﳍﺬﻩ ﺍﻷﻣﺜﻠﺔ )ﻫﻮﺍﺋﻴﺎﺕ ﺑﺚ ﺇﺫﺍﻋﻲ ﺑﺎﳌﻮﺟﺎﺕ ﺍﳍﻜﺘﻮﻣﺘﺮﻳﺔ )‪ (MF‬ﻭﺍﻟﺪﻳﻜﺎﻣﺘﺮﻳﺔ‬
‫)‪.((HF‬‬
‫ﺍﻟﺸﻜﻞ‬
‫‪5‬‬
‫ﻫﻮﺍﺋﻲ ﺃﺣﺎﺩﻱ ﺍﻟﻘﻄﺐ ﻳﺒﺚ ﺑﺎﳌﻮﺟﺎﺕ ﺍﳍﻜﺘﻮﻣﺘﺮﻳﺔ؛ ﺧﻄﻮﻁ ﺍﻟﻜﻔﺎﻑ‬
‫ﻟﺸﺪﺓ ﺍﺠﻤﻟﺎﻝ ﺍﻟﻜﻬﺮﺑﺎﺋﻲ )ﺍﻟﻘﻴﻤﺔ ﺍﻟﻔﻌﺎﻟﺔ( ﳑﺜﻠ ﹰﺔ ﺑﻌﺾ ﺍﻟﺴﻮﻳﺎﺕ‬
‫‪200‬‬
‫‪100‬‬
‫‪2‬‬
‫‪–100‬‬
‫‪–200‬‬
‫‪–300‬‬
‫‪300‬‬
‫‪200‬‬
‫‪100‬‬
‫‪0‬‬
‫ﳏﻮﺭ ‪(m) X‬‬
‫)‪X axis (m‬‬
‫‪–100‬‬
‫‪–200‬‬
‫‪–300‬‬
‫‪) ICNIRP :1‬ﺍﻟﻠﺠﻨﺔ ﺍﻟﺪﻭﻟﻴﺔ ﻟﻠﺤﻤﺎﻳﺔ ﻣﻦ ﺍﻹﺷﻌﺎﻋﺎﺕ ﻏﲑ ﺍﳌﺆﻳﱢﻨﺔ( )ﻣﻄﺒﻮﻉ ﻋﺎﻡ( = ‪V/m 60‬‬
‫‪1: ICNIRP (general publication) = 60 V/m‬‬
‫‪V/m 158 :2‬‬
‫‪2: 158 V/m‬‬
‫‪V/m 449,8 :Emax‬‬
‫‪Emax: 449.8 V/m‬‬
‫ﺍﻟﺘﺮﺩﺩ‪kHz 1 422 :‬‬
‫‪Frequency: 1 422 kHz‬‬
‫ﺍﻟﻘﺪﺭﺓ‪kW 600 :‬‬
‫‪Power: 600 kW‬‬
‫ﺳﻮﻳﺔ ﺍﻷﺭﺽ‬
‫‪Evaluation height: 1.5 m above ground‬‬
‫ﻓﻮﻕ ‪level‬‬
‫ﺍﺭﺗﻔﺎﻉ ﻧﻘﻄﺔ ﺍﻟﺘﻘﻴﻴﻢ‪(agl)m 1,5 :‬‬
‫‪1698-05‬‬
‫‪Y‬‬
‫‪axis‬‬
‫)‪(m‬‬
‫)‪Y (m‬‬
‫ﳏﻮﺭ‬
‫‪1‬‬
‫‪0‬‬
‫ﺍﻟﺘﻮﺻﻴﺔ‬
‫‪29‬‬
‫‪ITU-R BS.1698‬‬
‫ﺍﻟﺸﻜﻞ‬
‫‪6‬‬
‫ﻫﻮﺍﺋﻲ ﺃﺣﺎﺩﻱ ﺍﻟﻘﻄﺐ ﻳﺒﺚ ﺑﺎﳌﻮﺟﺎﺕ ﺍﳍﻜﺘﻮﻣﺘﺮﻳﺔ؛ ﺧﻄﻮﻁ ﺍﻟﻜﻔﺎﻑ‬
‫ﻟﺸﺪﺓ ﺍﺠﻤﻟﺎﻝ ﺍﳌﻐﻨﻄﻴﺴﻲ )ﺍﻟﻘﻴﻤﺔ ﺍﻟﻔﻌﺎﻟﺔ( ﳑﺜﻠ ﹰﺔ ﺑﻌﺾ ﺍﻟﺴﻮﻳﺎﺕ‬
‫‪200‬‬
‫‪100‬‬
‫‪1‬‬
‫‪–100‬‬
‫‪–200‬‬
‫‪–300‬‬
‫‪300‬‬
‫‪200‬‬
‫‪100‬‬
‫‪0‬‬
‫‪–100‬‬
‫‪–200‬‬
‫‪–300‬‬
‫)‪(m‬‬
‫)‪X (m‬‬
‫ﳏﻮﺭ‬
‫‪X‬‬
‫‪axis‬‬
‫‪) ICNIRP :1‬ﺍﻟﻠﺠﻨﺔ ﺍﻟﺪﻭﻟﻴﺔ ﻟﻠﺤﻤﺎﻳﺔ ﻣﻦ ﺍﻹﺷﻌﺎﻋﺎﺕ ﻏﲑ ﺍﳌﺆﻳﱢﻨﺔ( )ﻣﻄﺒﻮﻉ ﻋﺎﻡ( = ‪A/m 0,16‬‬
‫‪1: ICNIRP (general publication) = 0.16 A/m‬‬
‫‪A/m 1,3 :2‬‬
‫‪2: 1.3 A/m‬‬
‫‪A/m‬‬
‫‪1,6 :Hmax‬‬
‫‪Hmax: 1.6 A/m‬‬
‫‪kHz‬‬
‫‪1‬‬
‫‪422‬‬
‫ﺍﻟﺘﺮﺩﺩ‪:‬‬
‫‪Frequency: 1 422 kHz‬‬
‫ﺍﻟﻘﺪﺭﺓ‪kW 600 :‬‬
‫‪Power: 600 kW‬‬
‫ﺍﺭﺗﻔﺎﻉ ﻧﻘﻄﺔ ﺍﻟﺘﻘﻴﻴﻢ‪ m 1,5 :‬ﻓﻮﻕ ﺳﻮﻳﺔ ﺍﻷﺭﺽ‬
‫‪Evaluation height: 1.5 m agl‬‬
‫‪1698-06‬‬
‫)‪(m‬‬
‫ﳏﻮﺭ ‪Y‬‬
‫‪Y axis‬‬
‫)‪(m‬‬
‫‪2‬‬
‫‪0‬‬
‫ﺍﻟﺘﻮﺻﻴﺔ‬
‫‪30‬‬
‫‪ITU-R BS.1698‬‬
‫ﺍﻟﺸﻜﻞ‬
‫ﳎﻤﻮﻋﺔ ﻫﻮﺍﺋﻴﺎﺕ ﺳﺘﺎﺭﻳﺔ ﺗﺒﺚ ﺑﺎﳌﻮﺟﺎﺕ ﺍﻟﺪﻳﻜﺎﻣﺘﺮﻳﺔ؛ ﻣﻨﺤﲏ ﺧﻂ ﺍﻟﺘﺴﺪﻳﺪ ﻟﺸﺪﺓ ﺍﺠﻤﻟﺎﻝ ﺍﻟﻜﻬﺮﺑﺎﺋﻲ‬
‫)ﺍﻟﻘﻴﻤﺔ ﺍﻟﻔﻌﺎﻟﺔ( ﻭﺍﻟﻘﻴﻢ ‪ MHz 6‬ﻭ‪) kW 500‬ﺍﺭﺗﻔﺎﻉ ﻧﻘﻄﺔ ﺍﻟﺘﻘﻴﻴﻢ ‪ m 1,5‬ﻓﻮﻕ ﺳﻮﻳﺔ ﺍﻷﺭﺽ(‬
‫‪7‬‬
‫‪80‬‬
‫‪70‬‬
‫‪50‬‬
‫‪40‬‬
‫‪30‬‬
‫‪20‬‬
‫‪Electric‬‬
‫‪field-strength‬‬
‫ﺍﻟﻜﻬﺮﺑﺎﺋﻲ )‪(V/m‬‬
‫)‪ (V/m‬ﺍﺠﻤﻟﺎﻝ‬
‫ﺷﺪﺓ‬
‫‪60‬‬
‫‪10‬‬
‫‪0‬‬
‫‪350‬‬
‫‪250‬‬
‫‪300‬‬
‫‪200‬‬
‫‪100‬‬
‫‪150‬‬
‫‪0‬‬
‫‪50‬‬
‫‪Distance‬‬
‫)‪(m‬‬
‫ﺍﳌﺴﺎﻓﺔ )‪(m‬‬
‫‪1698-07‬‬
‫ﺍﻟﺸﻜﻞ‬
‫ﳎﻤﻮﻋﺔ ﻫﻮﺍﺋﻴﺎﺕ ﺳﺘﺎﺭﻳﺔ ﺗﺒﺚ ﺑﺎﳌﻮﺟﺎﺕ ﺍﻟﺪﻳﻜﺎﻣﺘﺮﻳﺔ )‪(HF‬؛ ﻣﻨﺤﲏ ﺍﳋﻂ ﺍﻟﻜﻔﺎﰲ ﻟﺸﺪﺓ ﺍﺠﻤﻟﺎﻝ‬
‫ﻼ ﺑﻌﺾ ﺍﻟﺴﻮﻳﺎﺕ‬
‫ﺍﻟﻜﻬﺮﺑﺎﺋﻲ )ﺍﻟﻘﻴﻤﺔ ﺍﻟﻔﻌﺎﻟﺔ( )‪ (V/m‬ﳑﺜ ﹰ‬
‫‪8‬‬
‫‪200‬‬
‫‪150‬‬
‫‪100‬‬
‫‪50‬‬
‫‪5‬‬
‫‪10‬‬
‫‪37‬‬
‫‪–50‬‬
‫‪–100‬‬
‫‪–150‬‬
‫‪–200‬‬
‫‪350‬‬
‫‪300‬‬
‫‪250‬‬
‫‪200‬‬
‫‪150‬‬
‫‪100‬‬
‫‪50‬‬
‫‪0‬‬
‫‪–50‬‬
‫‪–100‬‬
‫ﺍﳌﺴﺎﻓﺔ )‪(m‬‬
‫‪Distance‬‬
‫)‪(m‬‬
‫ﺍﻟﻘﺪﺭﺓ‪kW 500 :‬‬
‫ﺍﻟﺘﺮﺩﺩ‪MHz 6 :‬‬
‫‪1698-08‬‬
‫ﺍﺭﺗﻔﺎﻉ ﻧﻘﻄﺔ ﺍﻟﺘﻘﻴﻴﻢ‪) m 1,5 :‬ﻓﻮﻕ‬
‫‪Power: 500 kW‬‬
‫‪Frequency: 6 MHz‬‬
‫ﺍﻷﺭﺽ(‬
‫‪Evaluation height: 1.5‬‬
‫ﺳﻮﻳﺔ‪m agl‬‬
‫ﺍﳌﺴﺎﻓﺔ )‪(m‬‬
‫‪Distance‬‬
‫)‪(m‬‬
‫‪28‬‬
‫‪0‬‬
‫ﺍﻟﺘﻮﺻﻴﺔ‬
‫‪31‬‬
‫‪ITU-R BS.1698‬‬
‫ﺍﻟﺸﻜﻞ‬
‫ﳎﻤﻮﻋﺔ ﻫﻮﺍﺋﻴﺎﺕ ﺳﺘﺎﺭﻳﺔ ﺗﺒﺚ ﺑﺎﳌﻮﺟﺎﺕ ﺍﻟﺪﻳﻜﺎﻣﺘﺮﻳﺔ )‪(HF‬؛ ﻣﻨﺤﲏ ﺧﻂ ﺍﻟﺘﺴﺪﻳﺪ ﻟﺸﺪﺓ ﺍﺠﻤﻟﺎﻝ‬
‫ﺍﳌﻐﻨﻄﻴﺴﻲ )ﺍﻟﻘﻴﻤﺔ ﺍﻟﻔﻌﺎﻟﺔ( ﺑﻘﻴﻢ ‪ MHz 6‬ﻭ‪) kW 500‬ﺍﺭﺗﻔﺎﻉ ﻧﻘﻄﺔ ﺍﻟﺘﻘﻴﻴﻢ ‪ m 1,5‬ﻓﻮﻕ ﺳﻮﻳﺔ ﺍﻷﺭﺽ(‬
‫‪9‬‬
‫‪0.8‬‬
‫‪0.7‬‬
‫‪Magnetic‬‬
‫‪field-strength‬‬
‫ﺍﳌﻐﻨﻄﻴﺴﻲ )‪(A/m‬‬
‫)‪ (A/m‬ﺍﺠﻤﻟﺎﻝ‬
‫ﺷﺪﺓ‬
‫‪0.6‬‬
‫‪0.5‬‬
‫‪0.4‬‬
‫‪0.3‬‬
‫‪0.2‬‬
‫‪0.1‬‬
‫‪0‬‬
‫‪300‬‬
‫‪350‬‬
‫‪200‬‬
‫‪250‬‬
‫‪100‬‬
‫‪150‬‬
‫‪0‬‬
‫‪50‬‬
‫ﺍﳌﺴﺎﻓﺔ )‪(m‬‬
‫‪Distance‬‬
‫)‪(m‬‬
‫‪1698-09‬‬
‫ﺍﻟﺸﻜﻞ‬
‫ﳎﻤﻮﻋﺔ ﻫﻮﺍﺋﻴﺎﺕ ﺳﺘﺎﺭﻳﺔ ﺗﺒﺚ ﺑﺎﳌﻮﺟﺎﺕ ﺍﻟﺪﻳﻜﺎﻣﺘﺮﻳﺔ )‪(HF‬؛ ﺍﳋﻄﻮﻁ ﺍﻟﻜﻔﺎﻓﻴﺔ ﻟﺸﺪﺓ ﺍﺠﻤﻟﺎﻝ‬
‫ﺍﳌﻐﻨﻄﻴﺴﻲ )ﺍﻟﻘﻴﻤﺔ ﺍﻟﻔﻌﺎﻟﺔ( )‪ (V/m‬ﳑﺜﻠﺔ ﺑﻌﺾ ﺍﻟﺴﻮﻳﺎﺕ‬
‫‪10‬‬
‫‪200‬‬
‫‪150‬‬
‫‪0.03‬‬
‫‪0.05‬‬
‫‪100‬‬
‫‪0.08‬‬
‫‪50‬‬
‫‪0.3‬‬
‫‪0.67‬‬
‫‪–50‬‬
‫‪–100‬‬
‫‪–150‬‬
‫‪–200‬‬
‫‪350‬‬
‫‪300‬‬
‫‪250‬‬
‫‪200‬‬
‫‪150‬‬
‫‪100‬‬
‫‪50‬‬
‫‪0‬‬
‫‪–50‬‬
‫‪–100‬‬
‫ﺍﳌﺴﺎﻓﺔ )‪(m‬‬
‫‪Distance‬‬
‫)‪(m‬‬
‫ﺍﻟﻘﺪﺭﺓ‪kW 500 :‬‬
‫ﺍﻟﺘﺮﺩﺩ‪MHz 6 :‬‬
‫ﺍﺭﺗﻔﺎﻉ ﻧﻘﻄﺔ ﺍﻟﺘﻘﻴﻴﻢ‪) m 1,5 :‬ﻓﻮﻕ‬
‫‪1698-10‬‬
‫‪Power: 500 kW‬‬
‫‪Frequency: 6 MHz‬‬
‫ﺍﻷﺭﺽ(‬
‫‪Evaluation height: 1.5‬‬
‫ﺳﻮﻳﺔ‪m agl‬‬
‫‪Distance‬‬
‫)‪(m‬‬
‫ﺍﳌﺴﺎﻓﺔ )‪(m‬‬
‫‪0.5‬‬
‫‪0‬‬
‫ﺍﻟﺘﻮﺻﻴﺔ‬
‫‪32‬‬
‫‪2‬‬
‫‪ITU-R BS.1698‬‬
‫ﺍﳌﺜﺎﻝ ‪ - B‬ﲢﺪﻳﺪ ﺷﺪﺓ ﺍﺠﻤﻟﺎﻝ ﺍﳌﻐﻨﻄﻴﺴﻲ ﰲ ﻣﻨﻄﻘﺔ ﺍﺠﻤﻟﺎﻝ ﺍﻟﻘﺮﻳﺐ ﳍﻮﺍﺋﻴﺎﺕ ﻋﺎﻟﻴﺔ ﺍﻟﻘﺪﺭﺓ ﺗﺒﺚ ﺑﺎﳌﻮﺟﺎﺕ‬
‫ﺍﳍﻜﺘﻮﻣﺘﺮﻳﺔ‪/‬ﺍﻟﻜﻴﻠﻮﻣﺘﺮﻳﺔ )‪(MF/LF‬‬
‫ﺍﻟﻐﺮﺽ ﻣﻦ ﻫﺬﺍ ﺍﳌﺜﺎﻝ ﲢﺪﻳﺪ ﺷﺪﺓ ﺍﺠﻤﻟﺎﻝ ﺍﳌﻐﻨﻄﻴﺴﻲ ﰲ ﻣﻨﻄﻘﺔ ﺍﺠﻤﻟﺎﻝ ﺍﻟﻘﺮﻳﺐ ﳍﻮﺍﺋﻴﺎﺕ ﻣﺮﻓﻮﻋﺔ ﻋﻠﻰ ﺳﻮﺍ ﹴﺭ )ﺃﺣﺎﺩﻳﺔ ﺍﻟﻘﻄﺐ(‪ ،‬ﺗﺒﺚ‬
‫ﺑﺎﳌﻮﺟﺎﺕ ﺍﳍﻜﺘﻮﻣﺘﺮﻳﺔ )‪ (MF‬ﻭﺍﻟﻜﻴﻠﻮﻣﺘﺮﻳﺔ )‪ ،(LF‬ﻭﺫﻟﻚ ﻋﻦ ﻃﺮﻳﻖ ﺣﻞ ﻣﻌﺎﺩﻟﺔ ‪ Hallen‬ﺍﻟﺘﻜﺎﻣﻠﻴﺔ‪.‬‬
‫ﰲ ﺣﺎﻟﺔ ﺍﻟﺒﺚ ﰲ ﻧﻄﺎﻗﺎﺕ ﺍﻟﺘﺮﺩﺩﺍﺕ ﺍﻷﻗﻞ ﻣﻦ ‪ MHz 10‬ﺗﻜﻮﻥ ﺍﻟﻌﻼﻗﺎﺕ ﺍﻟﻔﻴﺰﻳﺎﺋﻴﺔ ﺩﺍﺧﻞ ﺍﺠﻤﻟﺎﻝ ﺍﻟﻜﻬﺮﻣﻐﻨﻄﻴﺴﻲ ﺃﻛﺜﺮ ﺗﻌﻘﻴﺪﹰﺍ‬
‫ﺑﻜﺜﲑ ﻣﻨﻬﺎ ﻣﻊ ﻧﻄﺎﻗﺎﺕ ﺃﺧﺮﻯ‪ .‬ﺇﺫ ﺇﻧﻪ‪ ،‬ﺧﻼﻓﹰﺎ ﳊﺎﻟﺔ ﺗﺮﺩﺩﺍﺕ ﺍﳌﻮﺟﺎﺕ ﺍﻟﺼﻐﺮﻳﺔ ﺣﻴﺚ ﺍﺠﻤﻟﺎﻝ ﺍﻟﻜﻬﺮﻣﻐﻨﻄﻴﺴﻲ ﻟﻪ ﺧﺼﺎﺋﺺ ﻣﻨﻄﻘﺔ‬
‫ﺸﻌﱠﺔ )ﺷﺪﺓ ﻣﺘﱠﺠﻪ‬
‫ﺍﺠﻤﻟﺎﻝ ﺍﻟﺒﻌﻴﺪ ﺣﱴ ﻋﻠﻰ ﻣﺴﺎﻓﺎﺕ ﻗﺮﻳﺒﺔ ﺟﺪﹰﺍ ﻣﻦ ﻣﺼﺪﺭ ﺍﻹﺷﻌﺎﻉ‪ ،‬ﻭﺣﻴﺚ ﻳﻜﻮﻥ ﻣﻔﻬﻮﻡ ﻛﺜﺎﻓﺔ ﺍﻟﻘﺪﺭﺓ ﺍﳌ َ‬
‫‪ (Poynting‬ﻣﻔﻴﺪﹰﺍ ﺟﺪﹰﺍ‪ ،‬ﻳﺘﺴﻢ ﺍﺠﻤﻟﺎﻝ ﻗﺮﺏ ﺍﳍﻮﺍﺋﻲ ﺑﺘﻌﻘﻴﺪ ﺷﺪﻳﺪ ﰲ ﺣﺎﻟﺔ ﺍﻹﺭﺳﺎﻝ ﺑﺎﻟﺘﺮﺩﺩﺍﺕ ﺍﳍﻜﺘﻮﻣﺘﺮﻳﺔ‪/‬ﺍﻟﻜﻴﻠﻮﻣﺘﺮﻳﺔ‬
‫)‪ .(MF/LF‬ﻓﺒﺎﻟﻮﺍﻗﻊ‪ ،‬ﺗﺰﻭﻝ ﺍﻟﻌﻼﻗﺔ ﺍﻟﺒﺴﻴﻄﺔ ﺑﲔ ﺍﺠﻤﻟﺎﻝ ﺍﻟﻜﻬﺮﺑﺎﺋﻲ ﻭﺍﺠﻤﻟﺎﻝ ﺍﳌﻐﻨﻄﻴﺴﻲ‪ ،‬ﰲ ﻣﻨﻄﻘﺔ ﺍﺠﻤﻟﺎﻝ ﺍﻟﻘﺮﻳﺐ‪ :‬ﺇﺫ ﺇﻥ ﺍﺠﻤﻟﺎﻟﲔ‬
‫ﻟﻴﺴﺎ ﻫﻨﺎ ﻣﻄﺎ َﻭ َﺭﻳْﻦ‪ ،‬ﻭﻟﻴﺴﺖ ﻧﺴﺒﺘﻬﻤﺎ ‪ .Ω 377‬ﻭﻫﺬﺍ ﺍﻟﻮﺍﻗﻊ ﻳﺰﻳﺪ ﰲ ﺗﻌﻘﻴﺪ ﺍﻟﻌﻼﻗﺎﺕ ﺩﺍﺧﻞ ﺍﺠﻤﻟﺎﻝ ﺍﻟﻜﻬﺮﻣﻐﻨﻄﻴﺴﻲ ﰲ ﺣﺎﻟﺔ‬
‫ﺍﻟﺘﺮﺩﺩﺍﺕ ﳑﺎ ﲢﺖ ‪.MHz 10‬‬
‫ﻓﻤﻦ ﺍﻟﻮﺍﺿﺢ ﺃﻥ ﻗﻴﻢ ﺷﺪﺓ ﺍﺠﻤﻟﺎﻝ ﺍﶈﺼﱠﻠﺔ ﺑﺎﻟﻘﻴﺎﺱ ﺗﺘﻮﻗﻒ ﻋﻠﻰ ﳕﻂ ﻫﻮﺍﺋﻲ ﺍﻹﺭﺳﺎﻝ‪ ،‬ﻭﻗﺪﺭﺓ ﺍﻹﺭﺳﺎﻝ‪ ،‬ﻭﺍﳌﺴﺎﻓﺔ ﻋﻦ ﺍﳍﻮﺍﺋﻲ‬
‫ﻼ‪ :‬ﰲ ﺣﺎﻟﺔ ﻣﺮﺳِﻞ ﻋﺎﱄ ﺍﻟﻘﺪﺭﺓ‪ ،‬ﳝﻜﻦ ﻟﻘﻴﻢ ﺷﺪﺓ ﺍﺠﻤﻟﺎﻝ ﻟﻠﻤﻜﻮﱢﻥ ‪ ،E‬ﰲ ﻣﻮﻗﻊ ﻣﺮﺳﻼﺕ ﳕﻄﻴﺔ ﺗﺒﺚ ﺑﺎﳌﻮﺟﺎﺕ‬
‫ﺍﳌﺮﺳِﻞ‪ .‬ﻣﺜ ﹰ‬
‫‪ ،LF/MF‬ﺃﻥ ﺗﺘﺮﺍﻭﺡ ﻣﻦ ﺑﻀﻊ ‪ V/m‬ﺇﱃ ﺃﻛﺜﺮ ﻣﻦ ‪ .V/m 250‬ﻭﰲ ﺍﳌﻮﺍﺿﻊ ﺍﻟﻘﺮﻳﺒﺔ ﺟﺪﹰﺍ ﻣﻦ ﻫﻮﺍﺋﻲ ﺍﻹﺭﺳﺎﻝ ﻗﺪ ﺗﺼﻞ ﺷﺪﺓ‬
‫ﺍﺠﻤﻟﺎﻝ ﺍﻟﻜﻬﺮﺑﺎﺋﻲ ﺣﱴ ﺇﱃ ‪.V/m 1 000‬‬
‫‪3‬‬
‫ﺍﳌﺜﺎﻝ ‪ - C‬ﺍﺠﻤﻟﺎﻝ ﺍﻟﻜﻬﺮﻣﻐﻨﻄﻴﺴﻲ ﰲ ﻣﻨﻄﻘﺔ ﺍﺠﻤﻟﺎﻝ ﺍﻟﻘﺮﻳﺐ ﳍﻮﺍﺋﻴﺎﺕ ﺳﺘﺎﺭﻳﺔ ﺗﺒﺚ ﺑﺎﳌﻮﺟﺎﺕ ﺍﻟﺪﻳﻜﺎﻣﺘﺮﻳﺔ )‪(HF‬‬
‫‪1.3‬‬
‫ﻣﻘﺪﻣﺔ‬
‫ﻳﺘﻌﻠﻖ ﻫﺬﺍ ﺍﳌﺜﺎﻝ ﺑﺒﲎ ﻫﻮﺍﺋﻴﺎﺕ ﺃﻛﺜﺮ ﺗﻌﻘﻴﺪﹰﺍ ﺑﻜﺜﲑ‪ ،‬ﺗﺴﻤﻰ ﺍﳍﻮﺍﺋﻴﺎﺕ ﺍﻟﺴﺘﺎﺭﻳﺔ‪ .‬ﻫﺬﻩ ﺍﳍﻮﺍﺋﻴﺎﺕ ﻫﺎﻣﺔ ﺟﺪﹰﺍ ﻷﻏﺮﺍﺽ ﺍﻹﺭﺳﺎﻝ ﺍﻟﻌﺎﱄ‬
‫ﺍﻟﻘﺪﺭﺓ ﺑﺎﳌﻮﺟﺎﺕ ﺍﻟﻘﺼﲑﺓ )ﺍﻟﺪﻳﻜﺎﻣﺘﺮﻳﺔ‪ .(HF ،‬ﺇﻬﻧﺎ ﺑﺎﻟﻮﺍﻗﻊ ﺻﻔﻴﻔﺎﺕ ﻣﻦ ﺍﳍﻮﺍﺋﻴﺎﺕ ﺍﻟﺜﻨﺎﺋﻴﺔ ﺍﻟﻘﻄﺐ ﺍﻷﻓﻘﻴﺔ ﺍﳌﺮﺗﺒﺔ ﰲ ﻣﺴﺘ ﹴﻮ ﻋﻤﻮﺩﻱ‪.‬‬
‫ﺇﻥ ﺍﻟﻨـﺰﻋﺔ ﺍﻟﻌﺎﻣﺔ ﳓﻮ ﺯﻳﺎﺩﺓ ﺍﻟﻘﺪﺭﺓ ﻭﻛﺴﺐ ﻫﻮﺍﺋﻴﺎﺕ ﺍﻹﺭﺳﺎﻝ ﻗﻮﻳﺔ ﺟﺪﹰﺍ ﰲ ﳎﺎﻝ ﺍﻹﺫﺍﻋﺔ ﺑﺎﳌﻮﺟﺎﺕ ﺍﻟﻘﺼﲑﺓ‪ .‬ﻭﻗﺪ ﺃﺻﺒﺢ ﻣﻦ‬
‫ﺍﻷﻣﻮﺭ ﺍﳌﻌﻴﺎﺭﻳﺔ‪ ،‬ﰲ ﻣﺮﺍﻛﺰ ﺍﻹﺭﺳﺎﻝ ﺍﻟﻜﱪﻯ ﺫﺍﺕ ﺍﻟﺘﻐﻄﻴﺔ ﺍﻟﻌﺎﳌﻴﺔ‪ ،‬ﺃﻥ ﺗﻜﻮﻥ ﻗﺪﺭﺓ ﺍﳌﺮﺳﻞ ‪ ،kW 500‬ﻭﻛﺴﺐ ﺍﳍﻮﺍﺋﻲ )ﰲ ﺍﲡﺎﻩ‬
‫ﺍﻹﺷﻌﺎﻉ ﺍﻷﻗﻮﻯ( ﺃﻛﺜﺮ ﻣﻦ ‪) dB 20‬ﺑﺎﻟﻨﺴﺒﺔ ﻟﺜﻨﺎﺋﻲ ﺍﻟﻘﻄﺐ ﻧﺼﻒ ﺍﳌﻮﺟﻲ(‪ .‬ﻓﺎﳌﺮﺳﻞ ﺍﳌﺸﺘﻐﻞ ﺑﻘﺪﺭﺓ ‪ kW 500‬ﻭﻫﻮﺍﺋﻲ ﻛﺴﺒﻪ‬
‫‪ dB 20‬ﻳُﺤﺪِﺙ ﻗﺪﺭﺓ ﻣﺸﻌﱠﺔ ﻓﻌﻠﻴﺔ )‪ (ERP‬ﻗﻴﻤﺘﻬﺎ ‪.MW 50‬‬
‫ﻭﰲ ﺍﻟﻔﻘﺮﺓ ‪ 2.3‬ﺗﻮﺻﻒ ﺑﺈﳚﺎﺯ ﺍﻟﺘﻘﻨﻴﺔ ﺍﻟﺮﻗﻤﻴﺔ ﺍﻟﱵ ﺍﺳﺘﻌﻤﻠﺖ ﳊﺴﺎﺏ ﺷﺪﺓ ﻛﻞ ﻣﻦ ﺍﺠﻤﻟﺎﻟﲔ ﺍﻟﻘﺮﻳﺒﲔ ﺍﻟﻜﻬﺮﺑﺎﺋﻲ ﻭﺍﳌﻐﻨﻄﻴﺴﻲ‬
‫ﻟﻠﻬﻮﺍﺋﻴﺎﺕ ﺍﻟﻌﺎﻟﻴﺔ ﺍﻟﻘﺪﺭﺓ‪ .‬ﻭﰲ ﺍﻟﻔﻘﺮﺓ ‪ 3.3‬ﺗُﻌﻄﻰ ﻧﺘﺎﺋﺞ ﻫﺬﻩ ﺍﳊﺴﺎﺑﺎﺕ ﲞﺼﻮﺹ ﺍﺠﻤﻟﺎﻟﲔ ﻗﺮﺏ ﺍﳍﻮﺍﺋﻴﺎﺕ ﺍﻟﺴﺘﺎﺭﻳﺔ ﺍﳌﺮﺳِﻠﺔ‬
‫ﺑﺎﳌﻮﺟﺎﺕ ﺍﻟﺪﻳﻜﺎﻣﺘﺮﻳﺔ )‪.(HF‬‬
‫‪2.3‬‬
‫ﺍﻟﺘﺤﻠﻴﻞ ﺍﻟﺮﻗﻤﻲ ﻟﻠﺒﲎ ﺍﻷﺳﻼﻛﻴﺔ‬
‫ﺃﹸﺟﺮﻳﺖ ﺣﺴﺎﺑﺎﺕ ﺍﺠﻤﻟﺎﻟﲔ ﺍﻟﻘﺮﻳﺒﲔ ﻟﻠﻬﻮﺍﺋﻴﺎﺕ ﺍﻟﺴﺘﺎﺭﻳﺔ ﺑﺎﺳﺘﻌﻤﺎﻝ ﺑﺮﻧﺎﻣﺞ ﲢﻠﻴﻞ ﺍﳍﻮﺍﺋﻴﺎﺕ ﻭﺍﻟﻨﺎﺛﺮﺍﺕ ﺍﻷﺳﻼﻛﻴﺔ )‬
‫‪ ،(Analysis of Wire Antennas and Scatterers‬ﻭﻫﻮ ﺃﺣﺪ ﻋﺪﺓ ﺑﺮﺍﻣﺞ ﺃﻋﺪّﻬﺗﺎ ﻣﺪﺭﺳﺔ ﺍﳍﻨﺪﺳﺔ ﺍﻟﻜﻬﺮﺑﺎﺋﻴﺔ ﲜﺎﻣﻌﺔ ﺑﻠﻐﺮﺍﺩ‪ ،‬ﻣﻦ‬
‫ﺃﺟﻞ ﲢﻠﻴﻞ ﺍﳍﻮﺍﺋﻴﺎﺕ ﻭﺍﻟﻨﺎﺛﺮﺍﺕ ﺍﻷﺳﻼﻛﻴﺔ‪ .‬ﻭﺑﺎﺧﺘﺼﺎﺭ‪ ،‬ﻳﻌﺘﻤﺪ ﻫﺬﺍ ﺍﻟﱪﻧﺎﻣﺞ ﻋﻠﻰ ﺻﻴﺎﻏﺔ ﻣﺎ ﻳﺴﻤّﻰ ﺑﺎﳌﻌﺎﺩﻟﺔ ﺫﺍﺕ ﺍﻟﻜﻤﻮَﻧﻴْﻦ‬
‫ﺤﻞﹼ ﻫﺬﻩ ﺍﳌﻌﺎﺩﻟﺔ ﺑﺎﺳﺘﻌﻤﺎﻝ ﻃﺮﻳﻘﺔ ﺍﻟﻌﺰﻭﻡ )‪ (MOM‬ﻣﻊ ﺗﻘﺮﻳﺐ ﻣﺘﻌﺪﺩ ﺍﳊﺪﻭﺩ‬
‫ﺍﳌﺘﻌﻠﻘﺔ ﺑﺘﻮﺯﻉ ﺍﻟﺘﻴﺎﺭ ﻋﻠﻰ ﻃﻮﻝ ﺍﻷﺳﻼﻙ‪ .‬ﻭُﺗ َ‬
‫ﲞﺼﻮﺹ ﺍﻟﺘﻴﺎﺭ‪.‬‬
‫‪AWAS,‬‬
‫ﻟﻨﻔﺘﺮﺽ ﺃﻥ ﺑﻨﻴﺔ ﻣﺎ ﻣﻮﺟﻮﺩﺓ ﰲ ﺍﻟﻔﺮﺍﻍ‪ ،‬ﻭﻣﺆﻟﻔﺔ ﻣﻦ ﻗﻄﻊ ﺃﺳﻼﻙ ﻣﺴﺘﻘﻴﻤﺔ ﻣﻮﺻﻠﺔ ﲤﺎﻡ ﺍﻹﻳﺼﺎﻟﻴﺔ‪ .‬ﻭﻃﺒﻘﹰﺎ ﻟﻠﺸﺮﻭﻁ ﺍﳊﺪﻭﺩﻳﺔ‪،‬‬
‫ﻋﻠﻰ ﺳﻄﻮﺡ ﺍﻷﺳﻼﻙ‪ ،‬ﳚﺐ ﺃﻥ ﻳﺴﺎﻭﻱ ﺍﳌﻜﻮﱢﻥ ﺍﳌﻤﺎﺳّﻲ ﻟﻠﻤﺠﺎﻝ ﺍﻟﻜﻬﺮﺑﺎﺋﻲ ﺍﻟﻜﻠﻲ ﻗﻴﻤﺔ ﺻﻔﺮ‪ ،‬ﻳﻌﲏ‪:‬‬
‫‪(E + Ei )tan = 0‬‬
‫)‪(13‬‬
‫ﺍﻟﺘﻮﺻﻴﺔ‬
‫ﺣﻴﺚ‪:‬‬
‫‪33‬‬
‫‪ITU-R BS.1698‬‬
‫‪ :E‬ﺍﺠﻤﻟﺎﻝ ﺍﻟﻜﻬﺮﺑﺎﺋﻲ ﺍﳌﺘﻮﻟﱢﺪ ﻋﻦ ﺗﻴﺎﺭﺍﺕ ﻭﺷﺤﻨﺎﺕ ﺍﻟﺒﻨﻴﺔ ﺍﻷﺳﻼﻛﻴﺔ‬
‫‪ :Ei‬ﺍﺠﻤﻟﺎﻝ ﺍﻟﻜﻬﺮﺑﺎﺋﻲ ﺍﳌﺴﻠﱠﻂ‪ ،‬ﺍﻟﺬﻱ ُﻳﻨَﻤﺬِﺝ ﺇﺛﺎﺭﺓ ﺍﻟﻨﻈﺎﻡ‪.‬‬
‫ﻭﺍﺠﻤﻟﺎﻝ ﺍﳌﺴﻠﱠﻂ ﳝﻜﻦ ﺃﻥ ﻳﻜﻮﻥ‪ ،‬ﻋﻠﻰ ﺳﺒﻴﻞ ﺍﳌﺜﺎﻝ‪ ،‬ﻫﻮ ﺍﺠﻤﻟﺎﻝ ﺍﻟﻜﻬﺮﺑﺎﺋﻲ ﺍﳌﺘﻮﻟﺪ ﻋﻦ ﻣﻮﺟﺔ ﻣﺴﺘﻮﻳﺔ ﺳﺎﻗﻄﺔ ﻋﻠﻰ ﺍﻟﺒﻨﻴﺔ )ﰲ ﲢﻠﻴﻞ‬
‫ﺍﻟﻨﺎﺛﺮﺍﺕ ﺃﻭ ﺍﳍﻮﺍﺋﻴﺎﺕ ﺍﳌﺴﺘﻘﺒﹺﻠﺔ(‪ ،‬ﺃﻭ ﺍﺠﻤﻟﺎﻝ ﺍﻟﻮﺍﻗﻊ ﰲ ﻣﻨﻄﻘﺔ ﺻﻐﲑﺓ ﻣﻦ ﻣﻄﺎﺭﻳﻒ ﺍﳍﻮﺍﺋﻲ‪ ،‬ﻭﺍﻟﺬﻱ ُﻳﻨَﻤﺬِﺝ ﺍﳌﻮﻟﱢﺪ ﺍﳊﺎﻓﺰ ﻟﻠﻬﻮﺍﺋﻲ‬
‫)ﰲ ﲢﻠﻴﻞ ﺍﳍﻮﺍﺋﻴﺎﺕ ﺍﳌﺮﺳِﻠﺔ(‪.‬‬
‫ﻭﺍﺠﻤﻟﺎﻝ ﺍﻟﻜﻬﺮﺑﺎﺋﻲ ﺍﳌﺘﻮﻟﱢﺪ ﻋﻦ ﺗﻴﺎﺭﺍﺕ ﻭﺷﺤﻨﺎﺕ ﺍﻟﺒﻨﻴﺔ ﺍﻷﺳﻼﻛﻴﺔ ﳝﻜﻦ ﺍﻟﺘﻌﺒﲑ ﻋﻨﻪ ﲝﺪﻭﺩ ﺍﻟﻜﻤﻮﻥ ﺍﻻﲡﺎﻫﻲ ﺍﳌﻐﻨﻄﻴﺴﻲ‪،A ،‬‬
‫ﻭﺍﻟﻜﻤﻮﻥ ﺍﻟﻼ ﺍﲡﺎﻫﻲ ﺍﻟﻜﻬﺮﺑﺎﺋﻲ‪ ،V ،‬ﻛﻤﺎ ﻳﻠﻲ‪:‬‬
‫‪E = − jω A − gradV‬‬
‫ﺣﻴﺚ‪:‬‬
‫)‪(14‬‬
‫ﻱ )‪.(ω = 2π f‬‬
‫‪ :ω‬ﺍﻟﺘﺮﺩﺩ ﺍﻟﺰﺍﻭ ّ‬
‫ﻭﻫﺬﺍﻥ ﺍﻟﻜﻤﻮﻧﺎﻥ ﳝﻜﻦ ﺍﻟﺘﻌﺒﲑ ﻋﻨﻬﻤﺎ ﺑﺪﻭﺭﳘﺎ ﲝﺪﻭﺩ ﻛﺜﺎﻓﺎﺕ ﺍﻟﺘﻴﺎﺭﺍﺕ )‪ (Js‬ﻭﺍﻟﺸﺤﻨﺎﺕ )‪ (ρs‬ﺍﻟﺴﻄﺤﻴﺔ‪ ،‬ﻭﻫﺬﻩ ﺍﳊﺪﻭﺩ ﻣﺮﺗﺒﻄﺔ‬
‫ﲟﻌﺎﺩﻟﺔ ﺍﻻﺳﺘﻤﺮﺍﺭ‪ .‬ﰒ ﻳُﺠﺮﻯ ﺗﻘﺮﻳﺐ ﺍﻟﺘﻴﺎﺭﺍﺕ ﻭﺍﻟﺸﺤﻨﺎﺕ ﺍﻟﺴﻄﺤﻴﺔ ﺑﻮﺍﺳﻄﺔ ﺗﻴﺎﺭﺍﺕ ﻭﺷﺤﻨﺎﺕ ﺍﳋﻄﻮﻁ )ﺗﻘﺮﻳﺐ ﺑﻮﺍﺳﻄﺔ‬
‫ﺍﻟﺴﻠﻚ ﺍﻟﺪﻗﻴﻖ(‪ ،‬ﻭﺗُﻘﺴﻢ ﺍﻟﺒﻨﻴﺔ ﺍﻷﺳﻼﻛﻴﺔ ﺇﱃ ﻋﺪﺩ ‪ N‬ﻣﻦ ﺍﻟﻘﻄﻊ )ﻟﻜﻞ ﻣﻨﻬﺎ ﳏﻮﺭ ﳏﻠﻲ‪ .(sm ،‬ﻭﺃﺧﲑﹰﺍ ﲢﺼﻞ ﻣﻌﺎﺩﻟﺔ ﺍﻟﻜﻤﻮَﻧﻴْﻦ‬
‫)ﻭﺗﺴﻤﻰ ﺃﻳﻀﹰﺎ ﻣﻌﺎﺩﻟﺔ ﺍﻟﻜﻤﻮﻥ ﺍﻻﲡﺎﻫﻲ ﻭﺍﻟﻜﻤﻮﻥ ﺍﻟﻼﺍﲡﺎﻫﻲ( ﺍﳋﺎﺻﺔ ﺑﺘﻮﺯﱡﻉ ﺍﻟﺘﻴﺎﺭ‪ ،‬ﻋﻠﻰ ﺍﻟﺸﻜﻞ ﺍﻟﺘﺎﱄ‪:‬‬
‫‪hm‬‬
‫‪N‬‬
‫‪up ⋅ Ei‬‬
‫‪‬‬
‫‪‬‬
‫) ‪1 d Im ( sm‬‬
‫= ‪grad g ( ra )  dsm‬‬
‫‪ up ⋅ um Im ( sm) g ( ra ) + 2‬‬
‫‪d sm‬‬
‫‪j ω µ0‬‬
‫‪k‬‬
‫‪‬‬
‫‪m =1 0 ‬‬
‫∫ ∑‬
‫ﺣﻴﺚ‪:‬‬
‫)‪(15‬‬
‫‪ : I m‬ﺷﺪﺓ ﺍﻟﺘﻴﺎﺭ ﻋﻠﻰ ﻃﻮﻝ ﺍﻟﻘﻄﻌﺔ‬
‫‪ : k = ω ε0 µ0‬ﻣﻌﺎﻣﻞ ﺍﻟﻄﻮﺭ ﰲ ﺍﻟﻔﻀﺎﺀ ﺍﳊﺮ‬
‫) ‪1 exp (− j k ra‬‬
‫‪4π‬‬
‫‪ra‬‬
‫= ) ‪ : g (ra‬ﺩﺍﻟﺔ ‪ Green‬ﺍﳌﻄﺎﺑﻘﺔ‬
‫‪ :ra‬ﺍﳌﺘﻮﺳﻂ ﺍﻟﺘﻘﺮﻳﺒـﻲ ﻟﻠﻤﺴﺎﻓﺔ ﺑﲔ ﺍﻟﻨﻘﻄﺔ ﻋﻠﻰ ﺳﻄﺢ ﺍﻟﻌﻨﺼﺮ ﺍﻟﺴﻠﻜﻲ ‪ dsm‬ﻭﺍﻟﻨﻘﻄﺔ ﻣﻦ ﺍﺠﻤﻟﺎﻝ‪.‬‬
‫ﻭﺍﳌﻌﺎﺩﻟﺔ )‪ (15‬ﺗﻜﺎﻣﻠﻴﺔ ﻭﺗﻔﺎﺿﻠﻴﺔ ﻣﻦ ﺃﺟﻞ ﺗﻮﺯﻉ ﺍﻟﺘﻴﺎﺭ‪ ،‬ﻭﻻ ﳝﻜﻦ ﺣﻠﻬﺎ ﺇﻻ ﺭﻗﻤﻴﹰﺎ‪ .‬ﻭﳍﺬﺍ ﺍﻟﻐﺮﺽ‪ ،‬ﺗُﺘﺒﻊ ﺍﳋﻄﻮﻁ ﺍﻟﺘﻮﺟﻴﻬﻴﺔ ﺍﻟﻌﺎﻣﺔ‬
‫ﲞﺼﻮﺹ ﻃﺮﻳﻘﺔ ﺍﻟﻌﺰﻭﻡ‪ ،‬ﻭﺗُﻘﺮﱠﺏ ﺍﻟﺪﺍﻟﺔ ﺍﺠﻤﻟﻬﻮﻟﺔ )‪ Im (sm‬ﺑﻮﺍﺳﻄﺔ ﺳﻠﺴﻠﺔ ﻣﻦ ﺍﻟﺪﻭﺍ ﹼﻝ ﺍﳌﻌﻠﻮﻣﺔ )ﺍﻟﺪﻭﺍ ﹼﻝ ﺍﻷﺳﺎﺳﻴﺔ(‪ ،‬ﻣﻊ ﻣﻌﺎﻣﻼﺕ‬
‫ﺗﺮﺟﻴﺢ ﳎﻬﻮﻟﺔ‪ .‬ﻭﻣﺜﻞ ﺍﻟﺪﻭﺍﻝ ﺍﻷﺳﺎﺳﻴﺔ‪ ،‬ﺗُﺨﺘﺎﺭ ﺍﻟﺪﻭﺍﻝ ﺍﻟﺒﺴﻴﻄﺔ ﻟﻠﻘﺪﺭﺓ‪ ،‬ﺍﻟﱵ ﺗﺆﻭﻝ ﺇﱃ ﺗﻘﺮﻳﺐ ﻣﺘﻌﺪﺩ ﺍﳊﺪﻭﺩ ﻟﺘﻮﺯﻉ ﺍﻟﺘﻴﺎﺭ‪،‬‬
‫ﻳﻌﲏ‪:‬‬
‫‪i‬‬
‫ﺣﻴﺚ‪:‬‬
‫‪nm‬‬
‫‪s ‬‬
‫= ) ‪I m ( sm‬‬
‫‪I mi  m ‬‬
‫‪ hm ‬‬
‫‪i=0‬‬
‫∑‬
‫)‪(16‬‬
‫‪ :hm‬ﻃﻮﻝ ﺍﻟﻘﻄﻌﺔ‬
‫‪ :Imi‬ﻣﻌﺎﻣﻼﺕ ﺍﻟﺘﺮﺟﻴﺢ‪.‬‬
‫ﻼ ﻣﺮﺿﻴﹰﺎ ﰲ ﲨﻴﻊ ﺍﻟﻨﻘﺎﻁ ﻋﻠﻰ ﻃﻮﻝ ﺍﻟﻘﻄﻊ ﺍﻟﺴﻠﻜﻴﺔ‪ ،‬ﻭﻟﻜﻦ ﺗﻘﺮﻳﺒﻴﹰﺎ ﻓﻘﻂ‪ .‬ﻓﻄﺒﻘﹰﺎ ﻟﻄﺮﻳﻘﺔ ﺍﻟﻌﺰﻭﻡ‬
‫ﺤﻞﹼ ﺍﳌﻌﺎﺩﻟﺔ )‪ (15‬ﺣ ﹰ‬
‫ﻻ ﳝﻜﻦ ﺃﻥ ُﺗ َ‬
‫)‪ (MOM‬ﺗُﺨﺘﺎﺭ ﳎﻤﻮﻋﺔ ﻣﻦ ﺩﻭﺍﻝ ﺍﻟﺘﺮﺟﻴﺢ‪ ،‬ﻭﺗﻘﻴﱠﻢ ﻫﺬﻩ ﺍﻟﺪﻭﺍ ﹼﻝ ﻭﺣﻮﺍﺻﻞ ﺍﻟﻀﺮﺏ ﺍﻟﺪﺍﺧﻠﻴﺔ ﻟﻠﻤﻌﺎﺩﻟﺔ )‪ .(15‬ﻭﺗُﻌﺘﱪ ﺍﻟﺪﻭﺍﻝ‬
‫ﺍﻟﺘﻮﺻﻴﺔ‬
‫‪34‬‬
‫‪ITU-R BS.1698‬‬
‫ﻧﺒﻀﺎﺕ‪ .‬ﻭﻛﻞ ﻧﺒﻀﺔ ﺗﻌﺘﺒَﺮ ﺛﺎﺑﺘﹰﺎ ﻟﻠﻮﺣﺪﺓ ﺍﳌﻌﻴﱠﻨﺔ‪ ،‬ﳏﺪﺩﹰﺍ ﰲ ﻗﻄﻌﺔ ﻓﺮﻋﻴﺔ ﻗﺼﲑﺓ‪ ،‬ﻭﺻﻔﺮﹰﺍ ﰲ ﻏﲑ ﻣﻮﺿﻊ‪ .‬ﻭﻳﺒﻴﱢﻦ ﺍﻟﺸﻜﻞ ‪ 11‬ﺍﻟﺘﻮﺯﻉ‬
‫ﺍﻟﻨﻤﻄﻲ ﻟﻠﻨﺒﻀﺎﺕ‪.‬‬
‫ﺍﻟﺸﻜﻞ‬
‫‪11‬‬
‫ﺍﻟﺘﻮﺯﻳﻊ ﺍﻟﻨﻤﻄﻲ ﻟﺪﻭﺍﻝ ﺍﻟﺘﺮﺟﻴﺢ ﺍﳌﺴﺘﻌﻤﻠﺔ‬
‫ﺑﺸﻜﻞ ﻧﺒﻀﺎﺕ ﰲ ﺍﻟﱪﻧﺎﻣﺞ ‪AWAS‬‬
‫‪1698-11‬‬
‫ﻭﻣﻦ ﺗﻘﻴﻴﻢ ﺣﻮﺍﺻﻞ ﺍﻟﻀﺮﺏ ﺍﻟﺪﺍﺧﻠﻴﺔ‪ ،‬ﲞﺼﻮﺹ ﻧﺒﻀﺔ ﻣﺎ ﳏﺪﺩﺓ ﰲ ﺍﻟﻘﻄﻌﺔ ﺍﻟﻔﺮﻋﻴﺔ )‪ (sp1, sp2‬ﻋﻠﻰ ﻃﻮﻝ ﳏﻮﺭ ﺍﻟﻘﻄﻌﺔ ﺍﻟﺴﻠﻜﻴﺔ‬
‫‪ ،p‬ﺗﻨﺘﺞ ﺍﳌﻌﺎﺩﻟﺔ )‪ (17‬ﺍﻟﺘﺎﻟﻴﺔ‪:‬‬
‫‪ sp 2 hm‬‬
‫‪‬‬
‫‪i‬‬
‫‪i −1‬‬
‫‪h‬‬
‫‪ sm ‬‬
‫‪1 i m  sm ‬‬
‫‪‬‬
‫‪‬‬
‫‪‬‬
‫‪‬‬
‫‪‬‬
‫‪‬‬
‫‪I‬‬
‫‪g‬‬
‫‪r‬‬
‫‪s‬‬
‫‪s‬‬
‫‪g‬‬
‫‪r‬‬
‫‪g‬‬
‫‪r‬‬
‫‪s‬‬
‫[‬
‫]‬
‫‪u‬‬
‫‪u‬‬
‫‪−‬‬
‫(‬
‫)‬
‫‪d‬‬
‫‪d‬‬
‫(‬
‫)‬
‫(‬
‫)‬
‫‪d‬‬
‫‪+‬‬
‫⋅‬
‫‪∑ ∑ mi  ∫ ∫ p m  h  a m p k 2 h ∫  h ‬‬
‫‪a sp 2‬‬
‫‪a sp1‬‬
‫‪m‬‬
‫‪m 0  m‬‬
‫‪ m‬‬
‫‪ sp1 0‬‬
‫‪‬‬
‫‪m =1 i = 0‬‬
‫‪‬‬
‫‪‬‬
‫‪nm‬‬
‫‪i‬‬
‫‪s‬‬
‫‪p2‬‬
‫‪u p ⋅ Ei‬‬
‫‪Z ′( s p )  s p ‬‬
‫= ‪  d sp‬‬
‫‪d sp‬‬
‫∫‬
‫‪j ω µ 0  h p ‬‬
‫‪j ω µ0‬‬
‫‪sp1‬‬
‫‪sp 2‬‬
‫‪np‬‬
‫‪sp1‬‬
‫‪i=0‬‬
‫∫ ‪∑ Ipi‬‬
‫‪N‬‬
‫)‪(17‬‬
‫‪+‬‬
‫ﻭﰲ ﻫﺬﻩ ﺍﳌﻌﺎﺩﻟﺔ‪ up ،‬ﻫﻲ ﻣﺘﱠﺠﻪ ﺍﻟﻮﺣﺪﺓ ﻟﻠﻘﻄﻌﺔ ﺍﻟﺴﻠﻜﻴﺔ ‪ ،p‬ﻭ‪ Z′‬ﻫﻲ ﺍﳌﻌﺎﻭﻗﺔ ﰲ ﺍﻟﻮﺣﺪﺓ ﺍﻟﻄﻮﻟﻴﺔ ﻣﻦ ﺷﺤﻨﺔ ﻣﻌﺎﻭﻗﺔ ﳑﻜﻨﺔ ﻣﻮﺯﻋﺔ‬
‫ﻋﻠﻰ ﻃﻮﻝ ﺍﻟﻘﻄﻌﺔ‪ .‬ﻭﺣﲔ ﳚﺮﻯ ﺗﻘﻴﻴﻢ ﺍﳌﻌﺎﺩﻻﺕ ﺍﻟﱵ ﻣﻦ ﺍﻟﺸﻜﻞ )‪ (17‬ﲞﺼﻮﺹ ﲨﻴﻊ ﺍﻟﻨﺒﻀﺎﺕ‪ ،‬ﻓﻬﻲ ﺗﺸﺘﻤﻞ ﻋﻠﻰ ﻣﻨﻈﻮﻣﺔ ﻣﻦ‬
‫ﺍﳌﻌﺎﺩﻻﺕ ﺍﳋﻄﻴﺔ ﰲ ‪ Imi‬ﳝﻜﻦ ﺣﻠﻬﺎ ﺭﻗﻤﻴﺎ‪.‬‬
‫ﻭﻣﱴ ُﻋﺮﹺﻓﺖ ﺍﳌﻌﺎﻣﻼﺕ ‪ ،Imi‬ﻳﺘﺤﺪﺩ ﺍﻟﺘﻮﺯﻳﻊ ﺍﻟﺘﻘﺮﻳﱯ ﻟﻠﺘﻴﺎﺭ ﻋﻠﻰ ﻃﻮﻝ ﺍﻟﻘﻄﻊ ﺍﻟﺴﻠﻜﻴﺔ‪ ،‬ﻭﻳﺼﲑ ﺑﺎﻹﻣﻜﺎﻥ ﺗﻘﻴﻴﻢ ﺧﺼﺎﺋﺺ ﳐﺘﻠﻔﺔ‬
‫ﻟﺒﻨﻴﺔ ﺍﻟﺴﻠﻚ‪ .‬ﻭﻫﺬﺍ ﺍﳉﺰﺀ ﻣﻦ ﺍﻟﺘﻮﺻﻴﺔ ﻳﻌﺎﰿ ﺑﺎﻟﺪﺭﺟﺔ ﺍﻷﻭﱃ ﻣﻮﺿﻮﻉ ﺍﺠﻤﻟﺎﻟﲔ ﺍﻟﻘﺮﻳﺒﲔ ﺍﻟﻜﻬﺮﺑﺎﺋﻲ ﻭﺍﳌﻐﻨﻄﻴﺴﻲ‪ .‬ﻓﺎﺠﻤﻟﺎﻝ ﺍﻟﻜﻬﺮﺑﺎﺋﻲ‬
‫ﳝﻜﻦ ﺗﻘﻴﻴﻤﻪ ﲝﺪﻭﺩ ﺍﻟﻜﻤﻮَﻧﻴْﻦ‪ ،‬ﺑﻨﻔﺲ ﺍﻟﻄﺮﻳﻘﺔ ﺍﳌﺘﺒﱠﻌﺔ ﰲ ﺍﺷﺘﻘﺎﻕ ﻣﻌﺎﺩﻟﺔ ﺍﻟﻜﻤﻮَﻧﻴْﻦ‪ ،‬ﺃﻱ‪:‬‬
‫‪‬‬
‫‪grad g ( ra )  d sm‬‬
‫‪‬‬
‫‪‬‬
‫‪i –1‬‬
‫‪ sm ‬‬
‫‪ ‬‬
‫‪ hm ‬‬
‫‪hm ‬‬
‫‪i‬‬
‫‪nm‬‬
‫‪N‬‬
‫‪s ‬‬
‫‪1 i‬‬
‫‪E = − j ω µ0‬‬
‫‪Imi um  m  g ( ra ) + 2‬‬
‫‪  hm ‬‬
‫‪k hm‬‬
‫‪m =1 i = 0‬‬
‫‪0 ‬‬
‫∑∑‬
‫∫‬
‫)‪(18‬‬
‫ﻭﺍﺠﻤﻟﺎﻝ ﺍﳌﻐﻨﻄﻴﺴﻲ ﻳﻜﻦ ﺍﻟﺘﻌﺒﲑ ﻋﻨﻪ ﲝﺪﻭﺩ ﺍﻟﻜﻤﻮﻥ ﺍﻻﲡﺎﻫﻲ ﺍﳌﻐﻨﻄﻴﺴﻲ ﻛﺎﻟﺘﺎﱄ‪:‬‬
‫‪1‬‬
‫‪rot A‬‬
‫‪µ0‬‬
‫=‪H‬‬
‫)‪(19‬‬
‫ﻭﻣﱴ ﻋﺒّﺮﻧﺎ ﻋﻦ ﻫﺬﺍ ﺍﻟﻜﻤﻮﻥ ﲝﺪﻭﺩ ﺍﻟﺘﻴﺎﺭﺍﺕ ﺍﻟﺴﻠﻜﻴﺔ‪ ،‬ﺣﺼﻠﻨﺎ ﻋﻠﻰ ﻣﺎ ﻳﻠﻲ‪:‬‬
‫‪i‬‬
‫‪hm‬‬
‫‪nm‬‬
‫‪N‬‬
‫‪s ‬‬
‫‪H=−‬‬
‫‪Imi  m  um × grad g ( ra ) d sm‬‬
‫‪h‬‬
‫‪m =1 i = 0‬‬
‫‪0  m‬‬
‫∫‬
‫∑∑‬
‫)‪(20‬‬
‫ﺍﻟﺘﻮﺻﻴﺔ‬
‫‪3.3‬‬
‫‪35‬‬
‫‪ITU-R BS.1698‬‬
‫ﺍﺠﻤﻟﺎﻻﻥ ﺍﻟﻘﺮﻳﺒﺎﻥ ﺍﻟﻜﻬﺮﺑﺎﺋﻲ ﻭﺍﳌﻐﻨﻄﻴﺴﻲ ﻟﻠﻬﻮﺍﺋﻴﺎﺕ ﺍﻟﺴﺘﺎﺭﻳﺔ‬
‫ﺗﺘﻨﻮﻉ ﻫﻮﺍﺋﻴﺎﺕ ﺍﻹﺭﺳﺎﻝ ﺍﻟﻌﺎﻟﻴﺔ ﺍﻟﻘﺪﺭﺓ ﺍﳌﺴﺘﻌﻤﻠﺔ ﰲ ﻣﺪﻯ ﺍﳌﻮﺟﺎﺕ ﺍﻟﺪﻳﻜﺎﻣﺘﺮﻳﺔ )‪) (HF‬ﺍﳌﻮﺟﺎﺕ ﺍﻟﻘﺼﲑﺓ(‪ ،‬ﻓﻤﻨﻬﺎ ﺛﻨﺎﺋﻴﺎﺕ ﺍﻟﻘﻄﺐ‬
‫ﺍﻷﻓﻘﻴﺔ )ﺍﻟﱵ ﺗﺸﻜﻞ ﻋﺎﺩﺓ ﺻﻔﻴﻔﹰﺎ ﺗﻮﺟﻴﻬﻴﹰﺎ(‪ ،‬ﻭﺍﳍﻮﺍﺋﻴﺎﺕ ﺍﳌﻌﻴﱠﻨﻴﺔ‪ ،‬ﻭﺃﹸﺣﺎﺩﻳﺎﺕ ﺍﻟﻘﻄﺐ ﺍﻟﻌﻤﻮﺩﻳﺔ‪ .‬ﻭﻣﻮﺿﻮﻉ ﺍﻟﺒﺤﺚ ﻫﻨﺎ ﻫﻮ ﺛﻨﺎﺋﻴﺎﺕ‬
‫ﺍﻟﻘﻄﺐ ﺍﻷﻓﻘﻴﺔ‪ ،‬ﺍﻟﱵ ﺗُﺮﺗﱠﺐ ﰲ ﻣﺴﺘ ﹴﻮ ﻋﻤﻮﺩﻱ‪ ،‬ﻭﺗُﻌﺮَﻑ ﺑﺎﳍﻮﺍﺋﻴﺎﺕ ﺍﻟﺴﺘﺎﺭﻳﺔ‪ ،‬ﻋﻠﻰ ﺍﻋﺘﺒﺎﺭ ﺃﻥ ﻫﺬﺍ ﺍﻟﻨﻮﻉ ﻣﻦ ﺍﻟﺼﻔﺎﺋﻒ ﻣﻨﻮﻱ‬
‫ﺍﺳﺘﻌﻤﺎﻟﻪ ﰲ ﻣﺮﻛﺰ ﺇﺫﺍﻋﺔ ﻳﻮﻏﻮﺳﻼﻓﻴﺎ ﺍﳉﺪﻳﺪ ﺑﺎﳌﻮﺟﺔ ﺍﻟﻘﺼﲑﺓ‪ ،‬ﺍﻟﻮﺍﻗﻊ ﰲ ﺍﺳﺘﻮﺑﻠﲔ ﻗﺮﻳﺒﹰﺎ ﻣﻦ ﺑﻠﻐﺮﺍﺩ‪ .‬ﻭﺛﻨﺎﺋﻴﺎﺕ ﺍﻟﻘﻄﺐ ﺍﳌﺴﺘﻌﻤﻠﺔ ﰲ‬
‫ﺻﻔﻴﻒ ﺳﺘﺎﺭﻱ ﻫﻲ ﻋﺎﺩﺓ ﺛﻨﺎﺋﻴﺔ ﻗﻄﺐ ﻧﺼﻒ ﻣﻮﺟﻴﺔ‪ ،‬ﺇﻣﺎ ﺑﺴﻴﻄﺔ ﻭﺇﻣﺎ ﻣﻄﻮﻳﺔ‪ ،‬ﺗُﻐﺬﹼﻯ ﺑﺘﻴﺎﺭﺍﺕ ﻛﻬﺮﺑﺎﺋﻴﺔ ﻣﺘﺴﺎﻭﻳﺔ ﺍﻻﺗﺴﺎﻉ ﺗﻘﺮﻳﺒﹰﺎ‬
‫)ﻭﻟﻜﻦ ﳐﺘﻠﻔﺔ ﺍﻟﻄﻮﺭ ﺃﺣﻴﺎﻧﹰﺎ(‪ ،‬ﻟﻜﻲ ﺗﻮﻟﺪ ﺇﺷﻌﺎﻋﹰﺎ ﺣﺴﺐ ﺍﳌﺨﻄﻂ ﺍﳌﺮﻏﻮﺏ‪ .‬ﻭﻳُﺠﻬﱠﺰ ﺍﻟﺼﻔﻴﻒ ﻋﺎﺩﺓ ﺑﻌﺎﻛﺲ ﻣﻨﻔﻌﻞ‪ ،‬ﻳﺘﻜﻮﻥ ﰲ‬
‫ﺃﻛﺜﺮﻳﺔ ﺍﳊﺎﻻﺕ ﺍﻟﻌﻤﻠﻴﺔ ﻣﻦ ﺷﺒﻜﺔ ﺃﺳﻼﻙ )ﻋﺎﻛﺲ ﻻ ﺩﻭﺭﻱ(‪ ،‬ﻭﻟﻜﻦ ﳝﻜﻦ ﺃﻳﻀﹰﺎ ﺃﻥ ﻳﻜﻮﻥ ﺻﻔﻴﻔﹰﺎ ﻣﻦ ﺛﻨﺎﺋﻴﺎﺕ ﺍﻟﻘﻄﺐ ﺍﳌﻮﻟﱠﻔﺔ‪.‬‬
‫ﻭﺗﻮﺳﻢ ﺍﻟﺼﻔﺎﺋﻒ ﺍﻟﺴﺘﺎﺭﻳﺔ ﺑﺎﻟﺴﻤﺎﺕ ﺍﻟﺘﺎﻟﻴﺔ‪ ،H(R)(S) m/n/h :‬ﺣﻴﺚ ‪ H‬ﺗﺪﻝ ﻋﻠﻰ ﺻﻔﻴﻒ ﻣﻦ ﺛﻨﺎﺋﻴﺎﺕ ﺍﻟﻘﻄﺐ ﺍﳌﺮﺗّﺒﺔ ﰲ ﻣﺴﺘ ﹴﻮ‬
‫ﻋﻤﻮﺩﻱ؛ ﻭ‪ R‬ﺗﺪﻝ ﻋﻠﻰ ﻋﺎﻛﺲ )ﺇﻥ ﻭُﺟﺪ(؛ ﻭ‪ S‬ﺗﺪﻝ ﻋﻠﻰ ﺯﺣﺰﺣﺔ ﺍﻟﻄﻮﺭ )ﺇﻥ ﻭﺟﺪﺕ( ﺑﲔ ﺍﻟﺘﻴﺎﺭﺍﺕ ﺍﻟﱵ ﺗﻐﺬﻱ ﺍﻟﺜﻨﺎﺋﻴﺎﺕ‬
‫ﺍﳌﺘﺠﺎﻭﺭﺓ ﺍﻟﻮﺍﻗﻌﺔ ﻋﻠﻰ ﻣﺴﺘﻘﻴﻢ ﻭﺍﺣﺪ ﻣﻦ ﺃﺟﻞ ﺯﺣﺰﺣﺔ ﲰﺖ ﺍﳊﺰﻣﺔ ﺍﻟﺮﺋﻴﺴﻴﺔ؛ ﻭ‪ m‬ﺗﺪﻝ ﻋﻠﻰ ﻋﺪﺩ ﺛﻨﺎﺋﻴﺎﺕ ﺍﻟﻘﻄﺐ ﺍﻟﻮﺍﻗﻌﺔ ﻋﻠﻰ‬
‫ﻣﺴﺘﻘﻴﻢ ﻭﺍﺣﺪ ﰲ ﻛﻞ ﺻﻒ؛ ﻭ‪ n‬ﺗﺪﻝ ﻋﻠﻰ ﻋﺪﺩ ﺛﻨﺎﺋﻴﺎﺕ ﺍﻟﻘﻄﺐ ﺍﳌﺘﻮﺍﺯﻳﺔ ﺍﳌﻨﻀﱠﺪﺓ ﻋﻤﻮﺩﻳﹰﺎ )ﻋﻠﻰ ﻣﺴﺎﻓﺔ ﺗﺴﺎﻭﻱ ﻋﺎﺩﺓ ﻧﺼﻒ ﻃﻮﻝ‬
‫ﺍﳌﻮﺟﺔ(‪ ،‬ﻳﻌﲏ ﻋﺪﺩ ﺍﻟﺼﻔﻮﻑ )ﺍﻟﻔﺴﺤﺎﺕ(؛ ﻭ‪ h‬ﺗﺪﻝ ﻋﻠﻰ ﺍﺭﺗﻔﺎﻉ ﺃﻭﻃﺄ ﺻﻒ ﻓﻮﻕ ﺳﻮﻳﺔ ﺍﻷﺭﺽ )ﺑﻄﻮﻝ ﺍﳌﻮﺟﺔ(‪.‬‬
‫ﻟﻠﺼﻔﺎﺋﻒ ﺍﻟﺴﺘﺎﺭﻳﺔ ﺧﻮﺍﺹ ﳑﺘﺎﺯﺓ‪ ،‬ﻣﻨﻬﺎ ﻋﻠﻰ ﺍﳋﺼﻮﺹ ﺍﻟﻜﺴﺐ ﺍﻟﻌﺎﱄ )ﺃﻛﺜﺮ ﻣﻦ ‪ ،(dB 20‬ﻳﻌﲏ ﳐﻄﻂ ﺇﺷﻌﺎﻉ ﻳﺘﺼﻒ ﺑﺘﻮﺟﻴﻬﻴﺔ‬
‫ﻋﺎﻟﻴﺔ؛ ﻭﺍﳌﻘﺪﺭﺍﺕ ﺍﻟﻌﺎﻟﻴﺔ ﻟﺘﻨﺎﻭﻝ ﺍﻟﻘﺪﺭﺓ )ﺣﱴ ﺳﻮﻳﺔ ‪ .(kW 500‬ﻓﻬﻲ ﺑﺎﻟﺘﺎﱄ ﺗﺆﺩﻱ ﺩﻭﺭﹰﺍ ﻫﺎﻣﹰﺎ ﺟﺪﹰﺍ ﰲ ﺍﳌﺮﺍﻛﺰ ﺍﻟﻜﺒﲑﺓ ﻟﻺﺭﺳﺎﻝ‬
‫ﺑﺎﳌﻮﺟﺎﺕ ﺍﻟﺪﻳﻜﺎﻣﺘﺮﻳﺔ )‪ .(HF‬ﻭﺗﻘﻮﻡ ﺍﳌﺴﺄﻟﺔ ﺍﳌﺮﻛﺰﻳﺔ ﰲ ﻫﺬﻩ ﺍﻟﺘﻮﺻﻴﺔ ﻋﻠﻰ ﺇﻋﺪﺍﺩ ﺗﻘﻨﻴﺔ ﺩﻗﻴﻘﺔ ﻭﻓﻌﺎﻟﺔ ﻟﺘﻘﻴﻴﻢ ﻫﺬﻩ ﺍﺠﻤﻟﺎﻻﺕ‪.‬‬
‫ﰲ ﺍﳌﺮﻛﺰ ﺍﻟﻴﻮﻏﻮﺳﻼﰲ ﺍﳉﺪﻳﺪ ﻟﻺﺫﺍﻋﺔ ﺑﺎﳌﻮﺟﺎﺕ ﺍﻟﺪﻳﻜﺎﻣﺘﺮﻳﺔ )‪ 15 (HF‬ﻫﻮﺍﺋﻴﹰﺎ ﺍﺳﺘﻘﻄﺎﻬﺑﺎ ﺃﻓﻘﻲ‪ .‬ﺍﺛﻨﺎﻥ ﻣﻨﻬﺎ ﺑﺸﻜﻞ ﺭﺑﻌﻴﺔ‪ ،‬ﺷﺎﻣﻠﺔ‬
‫ﺍﻻﲡﺎﻩ‪ ،‬ﻭﺍﻟﺜﻼﺛﺔ ﻋﺸﺮ ﻫﻮﺍﺋﻴﹰﺎ ﺍﻟﺒﺎﻗﻴﺔ ﺳﺘﺎﺭﻳﺔ ﻣﺆﻟﻔﺔ ﻣﻦ ﺛﻨﺎﺋﻴﺎﺕ ﺍﻟﻘﻄﺐ )ﺍﻟﺸﻜﻞ ‪ .(12‬ﺳﺒﻌﺔ ﻣﻦ ﺍﳍﻮﺍﺋﻴﺎﺕ ﺍﻟﺴﺘﺎﺭﻳﺔ ﳛﺘﻮﻱ ﻛﻞ‬
‫ﻣﻨﻬﺎ ‪ 16‬ﻣﻦ ﺛﻨﺎﺋﻴﺎﺕ ﺍﻟﻘﻄﺐ ﻣﺮﺗﺒﺔ ﰲ ﺃﺭﺑﻊ ﻓﺴﺤﺎﺕ ﻣﻦ ﺃﺭﺑﻌﺔ ﻋﻨﺎﺻﺮ )‪ ،(HRS 4/4/h‬ﻭﺳﺘﺔ ﻣﻦ ﺍﳍﻮﺍﺋﻴﺎﺕ ﺍﻟﺴﺘﺎﺭﻳﺔ ﳛﺘﻮﻱ ﻛﻞ‬
‫ﻣﻨﻬﺎ ﺍﺛﻨﲔ ﻣﻦ ﺛﻨﺎﺋﻴﺎﺕ ﺍﻟﻘﻄﺐ ﺍﳌﻄﻮﻳﺔ‪ ،‬ﻣﺮﺗﺒﺔ ﰲ ﻓﺴﺤﺔ ﻭﺍﺣﺪﺓ )‪ .(HR 2/1/h‬ﻭﻟﻜﻞ ﻣﻦ ﺍﳍﻮﺍﺋﻴﺎﺕ ﺍﻟﺴﺘﺎﺭﻳﺔ ﻋﺎﻛﺲ ﻻ ﺩﻭﺭﻱ‪،‬‬
‫ﻣﺼﻨﻮﻉ ﻣﻦ ﺃﺳﻼﻙ ﺩﻗﻴﻘﺔ ﺃﻓﻘﻴﺔ‪ .‬ﻭﺍﳌﺮﻛﺰ ﻣﺰﻭﱠﺩ ﲟﺮ ِﺳﹶﻠﻴْﻦ‪ ،‬ﻗﺪﺭﺓ ﻛﻞ ﻣﻨﻬﻤﺎ ‪) kW 500‬ﺍﳌﻮﺟﺔ ﺍﳊﺎﻣﻠﺔ ﻏﲑ ﻣﺸﻜﱠﻠﺔ(‪ ،‬ﻭﻳﺴﺘﻄﻴﻊ‬
‫ﺍﳌﺮﻛﺰ ﺇﺭﺳﺎﻝ ﺑﺮﻧﺎ َﳎﻴْﻦ ﻣﺘﺂﻭﻧﲔ ﺇﱃ ﻣﻘﺎﺻﺪ ﳐﺘﻠﻔﺔ‪ .‬ﻭﺍﳌﺮﺳِﻼﻥ ﻣﻮﺻﱠﻼﻥ ﺑﺎﳍﻮﺍﺋﻴﺎﺕ ﺍﳌﻨﺎﻇﺮﺓ ﻋﻦ ﻃﺮﻳﻖ ﺟﻬﺎﺯ ﺗﺒﺪﻳﻞ‪ ،‬ﺧﺎﺹ‬
‫ﺑﺎﳍﻮﺍﺋﻴﺎﺕ‪ ،‬ﻣﻮﺿﻮﻉ ﰲ ﻏﺮﻓﺔ ﳎﺎﻭﺭﺓ ﳌﻮﺿﻊ ﺍﳌﺮﺳﻠﲔ‪ .‬ﻭﻳﻌﺮﺽ ﺍﻟﺸﻜﻞ ‪ 13‬ﳐﻄﻄﹰﺎ ﳊﻘﻞ ﺍﳍﻮﺍﺋﻴﺎﺕ ﻣﻊ ﺍﳌﺒﲎ ﺍﻟﺬﻱ ﻳﺆﻭﻱ‬
‫ﺍﳌﺮﺳﹶﻠﻴْﻦ‪ .‬ﺑﻴﻨﻤﺎ ﻳﻌﺮﺽ ﺍﻟﺸﻜﻞ ‪ 14‬ﺑﺎﻟﺘﻔﺼﻴﻞ ﺗﺮﻛﻴﺐ ﺃﺣﺪ ﺍﳍﻮﺍﺋﻴﺎﺕ )‪.(B12‬‬
‫ﺍﻟﺸﻜﻞ‬
‫‪12‬‬
‫ﻫﻮﺍﺋﻴﺎﺕ ﺳﺘﺎﺭﻳﺔ ﳕﻄﻴﺔ ﻣﺴﺘﻌﻤﻠﺔ ﰲ ﻣﺮﻛﺰ ﺭﺍﺩﻳﻮ ﻳﻮﻏﻮﺳﻼﻓﻴﺎ ﺍﳌﺸﺘﻐﻞ ﺑﺎﳌﻮﺟﺎﺕ ﺍﻟﺪﻳﻜﺎﻣﺘﺮﻳﺔ‬
‫‪1698-12‬‬
‫‪HR 2/1/h‬‬
‫‪HR 4/4/h‬‬
‫)‪(HF‬‬
‫ﺍﻟﺘﻮﺻﻴﺔ‬
‫‪36‬‬
‫‪ITU-R BS.1698‬‬
‫ﺍﻟﺸﻜﻞ‬
‫‪13‬‬
‫ﳐﻄﻂ ﺣﻘﻞ ﺍﳍﻮﺍﺋﻴﺎﺕ ﰲ ﻣﺮﻛﺰ ﺭﺍﺩﻳﻮ ﻳﻮﻏﻮﺳﻼﻓﻴﺎ ﺍﳌﺸﺘﻐﻞ ﺑﺎﳌﻮﺟﺎﺕ ﺍﻟﺪﻳﻜﺎﻣﺘﺮﻳﺔ‬
‫‪1 6 9 8 -1 3‬‬
‫)‪(HF‬‬
‫ﺍﻟﺘﻮﺻﻴﺔ‬
‫‪ITU-R BS.1698‬‬
‫ﺍﻟﺸﻜﻞ‬
‫‪37‬‬
‫‪14‬‬
‫ﺭﺳﻢ ﲣﻄﻴﻄﻲ ﻣﻔﺼﻞ ﻟﺘﺮﻛﻴﺐ ﻫﻮﺍﺋﻲ ﺳﺘﺎﺭﻱ ﻣﻦ ﺛﻨﺎﺋﻴﺎﺕ ﺍﻟﻘﻄﺐ‪ ،‬ﺍﳍﻮﺍﺋﻲ ‪(HRS 4/4/1) B12‬‬
‫ﰲ ﻣﺮﻛﺰ ﺇﺫﺍﻋﺔ ﻳﻮﻏﻮﺳﻼﻓﻴﺎ ﺍﳌﺸﺘﻐﻠﺔ ﺑﺎﳌﻮﺟﺎﺕ ﺍﻟﺪﻳﻜﺎﻣﺘﺮﻳﺔ )‪(HF‬‬
‫‪1698-14‬‬
‫ﻣﻦ ﺑﲔ ﺍﻟﺒﺤﻮﺙ ﺍﳌﺘﺨﺼﺼﺔ‪ ،‬ﻗﻠﻴﻠﺔ ﻫﻲ ﺍﻟﺒﺤﻮﺙ ﺍﻟﱵ ﺗﻨﺎﻭﻟﺖ ﻣﻮﺿﻮﻉ ﺣﺴﺎﺏ ﺷﺪﺓ ﻛﻞ ﻣﻦ ﺍﺠﻤﻟﺎﻟﲔ ﺍﻟﻜﻬﺮﺑﺎﺋﻲ ﻭﺍﳌﻐﻨﻄﻴﺴﻲ‬
‫ﻟﻠﻬﻮﺍﺋﻴﺎﺕ ﺍﻟﺴﺘﺎﺭﻳﺔ ﺍﳌﺮﺳِﻠﺔ ﺑﺎﳌﻮﺟﺎﺕ ﺍﻟﺪﻳﻜﺎﻣﺘﺮﻳﺔ )‪ ،(HF‬ﻟﻜﻨﻬﺎ ﺗﺴﺘﻨﺪ ﻛﻠﻬﺎ ﺇﱃ ﺍﻟﺘﻘﺮﻳﺐ ﺍﳉﻴﺒـﻲ ﻟﺘﻮﺯﻉ ﺍﻟﺘﻴﺎﺭ ﻋﻠﻰ ﻃﻮﻝ‬
‫ﺛﻨﺎﺋﻴﺎﺕ ﺍﻟﻘﻄﺐ‪ ،‬ﻛﻤﺎ ﺗﺴﺘﻨﺪ ﺇﱃ ﺍﻓﺘﺮﺍﺽ ﺃﻥ ﺍﻟﺘﻴﺎﺭﺍﺕ ﺍﻟﱵ ﺗﻐﺬﻱ ﺛﻨﺎﺋﻴﺎﺕ ﺍﻟﻘﻄﺐ ﳍﺎ ﻧﻔﺲ ﺍﻻﺗﺴﺎﻉ‪ .‬ﻭﺍﳍﺪﻑ ﻫﻨﺎ ﻫﻮ ﺗﻮﻓﲑ ﲢﻠﻴﻞ‬
‫ﺃﺷﺪ ﺻﺮﺍﻣﺔ‪ ،‬ﺑﺎﺳﺘﻌﻤﺎﻝ ﻃﺮﻳﻘﺔ ﺗﻘﺮﻳﺐ ﺃﺩﻕ ﲞﺼﻮﺹ ﺗﻮﺯﻉ ﺍﻟﺘﻴﺎﺭ‪ ،‬ﻣﻊ ﻣﺮﺍﻋﺎﺓ ﺍﻻﻗﺘﺮﺍﻥ ﺑﲔ ﻋﻨﺎﺻﺮ ﺍﻟﺼﻔﻴﻒ‪ ،‬ﻳﻌﲏ ﻋﻦ ﻃﺮﻳﻖ‬
‫ﺗﻐﺬﻳﺔ ﺍﻟﻌﻨﺎﺻﺮ ﺑﺘﻮﺗﺮﺍﺕ ﻣﺘﺴﺎﻭﻳﺔ ﺍﻻﺗﺴﺎﻉ‪.‬‬
‫ﺍﻟﺘﻮﺻﻴﺔ‬
‫‪38‬‬
‫‪ITU-R BS.1698‬‬
‫ﻟﻘﺪ ﺃﹸﻗﻴﻢ ﺍﻟﱪﻫﺎﻥ ﲡﺮﻳﺒﻴﹰﺎ )ﻭﰎ ﺗﺄﻛﻴﺪﻩ ﻧﻈﺮﻳﹰﺎ ﺑﺎﺳﺘﻌﻤﺎﻝ ﻃﺮﻳﻘﺔ ﺍﻟﺘﻘﺮﻳﺐ ﺍﳉﻴﱯ ﲞﺼﻮﺹ ﺗﻮﺯﻉ ﺍﻟﺘﻴﺎﺭ(‪ ،‬ﻋﻠﻰ ﺃﻥ ﺗﻘﺮﻳﺒﹰﺎ ﲤﺜﻴﻠﻴﹰﺎ‬
‫ﻟﻸﺭﺽ ﲟﺴﺘ ﹴﻮ ﺟﻴﺪ ﺍﻟﺘﻮﺻﻴﻞ ﻳﺄﰐ ﺑﻨﺘﺎﺋﺞ ﺩﻗﻴﻘﺔ‪ .‬ﻭﻫﺬﺍ ﺍﻟﺘﺒﺴﻴﻂ ﻫﺎﻡ‪ ،‬ﻷﻧﻪ ﻳﺴﻤﺢ ﺑﺎﺳﺘﻌﻤﺎﻝ ﺍﻟﱪﻧﺎﻣﺞ ‪ AWAS‬ﻣﺒﺎﺷﺮﺓ‪ ،‬ﺩﻭﻥ‬
‫ﺇﺩﺧﺎﻝ ﺃﻱ ﺗﻌﺪﻳﻞ ﻋﻠﻴﻪ‪ ،‬ﻟﻜﻮﻧﻪ ﻻ ﻳﻌﺎﰿ ﺍﳍﻮﺍﺋﻴﺎﺕ ﺇﻻ ﻓﻮﻕ ﺃﺭﺿﻴﺔ ﻻ ﻋﻴﺐ ﻓﻴﻬﺎ‪ .‬ﻭﻗﺪ ﺃﹸﺟﺮﻱ ﺍﻟﺘﺤﻠﻴﻞ ﺍﻟﺬﻱ ﳓﻦ ﺑﺼﺪﺩﻩ ﺳﺮﻳﻌﹰﺎ‬
‫ﺑﻔﻀﻞ ﺍﻋﺘﻤﺎﺩ ﺛﻨﺎﺋﻴﺎﺕ ﻗﻄﺐ ﺑﺴﻴﻄﺔ ﺑﺪ ﹰﻻ ﻣﻦ ﺍﳌﻄﻮﻳﺔ‪ ،‬ﻷﻥ ﻫﺬﻩ ﺍﻟﻌﻤﻠﻴﺔ ﺍﻟﺘﻘﺮﻳﺒﻴﺔ ﺇﳕﺎ ﻭﺿﻌﺖ ﻣﻦ ﺃﺟﻞ ﲢﺼﻴﻞ ﻧﺘﺎﺋﺞ ﺩﻗﻴﻘﺔ‪.‬‬
‫ﻓﻄﻮﻝ ﺛﻨﺎﺋﻲ ﺍﻟﻘﻄﺐ ﺍﻟﺒﺴﻴﻂ ﻣﺄﺧﻮﺫ ﻋﻠﻰ ﺃﻧﻪ ﺃﻗﺼﺮ ﺑﻌﺾ ﺍﻟﺸﻲﺀ ﻣﻦ ﻃﻮﻝ ﻧﺼﻒ ﺍﳌﻮﺟﺔ ﰲ ﺍﻟﺘﺮﺩﺩ ﺍﻻﲰﻲ‪ ،‬ﺑﺎﻻﺳﺘﻨﺎﺩ ﺇﱃ‬
‫ﺍﳌﻌﻄﻴﺎﺕ ﺍﳌﺴﺘﻤﺪﺓ ﻣﻦ ﺃﺑﻌﺎﺩ ﺍﳍﻮﺍﺋﻴﺎﺕ ﺍﻟﺴﺘﺎﺭﻳﺔ ﺍﻟﻔﻌﻠﻴﺔ‪ .‬ﻭﺍﳌﺴﺎﻓﺔ ﺍﻟﻔﺎﺻﻠﺔ ﺑﲔ ﻧﻘﺎﻁ ﺗﻐﺬﻳﺔ ﺍﳍﻮﺍﺋﻴﺎﺕ ﺍﳌﺘﺠﺎﻭﺭﺓ ﺗﺴﺎﻭﻱ ﺑﺎﺳﺘﻤﺮﺍﺭ‬
‫ﻧﺼﻒ ﻃﻮﻝ ﺍﳌﻮﺟﺔ‪ ،‬ﰲ ﻛﻼ ﺍﻻﲡﺎﻫﲔ ﺍﻷﻓﻘﻲ ﻭﺍﻟﻌﻤﻮﺩﻱ‪ .‬ﻭﺍﳌﺴﺎﻓﺔ ﺑﲔ ﺛﻨﺎﺋﻴﺎﺕ ﺍﻟﻘﻄﺐ ﻭﺍﻟﻌﺎﻛﺲ ﺗﺴﺎﻭﻱ ﺑﺎﻟﻀﺒﻂ ﺭﺑﻊ ﻃﻮﻝ‬
‫ﺍﳌﻮﺟﺔ‪ .‬ﻭﺟﺮﺕ ﳕﺬﺟﺔ ﺍﻟﻌﺎﻛﺲ ﺑﺈﺩﺧﺎﻝ ﺻﻮﺭ ﺳﻠﺒﻴﺔ ﻋﻦ ﺛﻨﺎﺋﻴﺎﺕ ﺍﻟﻘﻄﺐ ﺍﻷﺻﻠﻴﺔ ﰲ ﺍﳌﺴﺘﻮﻱ ﺍﻟﻌﻤﻮﺩﻱ‪ .‬ﻭﻋﻠﻴﻪ‪ ،‬ﻓﺎﳌﺴﺎﻓﺔ ﺑﲔ‬
‫ﺛﻨﺎﺋﻴﺎﺕ ﺍﻟﻘﻄﺐ ﺍﻷﺻﻠﻴﺔ ﻭﺻﻮﺭﻫﺎ ﺍﻟﺴﻠﺒﻴﺔ ﺍﳌﻨﺎﻇﺮﺓ ﺗﺴﺎﻭﻱ ﻧﺼﻒ ﻃﻮﻝ ﺍﳌﻮﺟﺔ‪ .‬ﻭﻳﺒﻴّﻦ ﺍﻟﺸﻜﻞ ‪ 15‬ﺍﻟﻨﻤﺎﺫﺝ ﺍﳌﻨﺘَﺠﺔ ﺑﻔﻀﻞ‬
‫ﺍﻟﱪﻧﺎﻣﺞ ‪ AWAS‬ﻋﻦ ﺍﳍﻮﺍﺋﻴﺎﺕ ﺍﻟﺴﺘﺎﺭﻳﺔ ﺍﻟﻨﻤﻄﻴﺔ ﰲ ﻣﺮﻛﺰ ﺇﺫﺍﻋﺔ ﻳﻮﻏﻮﺳﻼﻓﻴﺎ ﺍﳌﺸﺘﻐﻠﺔ ﺑﺎﳌﻮﺟﺎﺕ ﺍﻟﺪﻳﻜﺎﻣﺘﺮﻳﺔ )‪.(HF‬‬
‫ﺍﻟﺸﻜﻞ‬
‫‪15‬‬
‫ﺍﻟﻨﻤﻮﺫﺝ ﺍﶈﺼﻞ ﺑﻔﻀﻞ ﺍﻟﱪﻧﺎﻣﺞ ‪ AWAS‬ﻋﻦ ﺍﳍﻮﺍﺋﻲ ﺃ( ‪ HRS 4/4/h‬ﻭﺍﳍﻮﺍﺋﻲ ﺏ(‬
‫‪1698-15‬‬
‫)‪b‬‬
‫‪HR 2/1/h‬‬
‫)‪a‬‬
‫ﻭﺟﺮﻯ ﺗﻘﻴﻴﻢ ﺷﺪﺓ ﻛﻞ ﻣﻦ ﺍﺠﻤﻟﺎﻟﲔ ﺍﻟﻘﺮﻳﺒﲔ‪ ،‬ﺍﻟﻜﻬﺮﺑﺎﺋﻲ ﻭﺍﳌﻐﻨﻄﻴﺴﻲ‪ ،‬ﰲ ﺍﲡﺎﻩ ﺍﻟﻘﻮﺓ ﺍﻟﻌﻈﻤﻰ ﰲ ﳐﻄﻂ ﺍﻹﺷﻌﺎﻉ )ﺇﺫ ﻭُﺟﺪ ﺍﺠﻤﻟﺎﻝ‬
‫ﰲ ﺍﲡﺎﻩ ﺍﻟﻔﺼﲔ ﺍﳉﺎﻧﺒﻴﲔ ﺃﺿﻌﻒ ﺑﻜﺜﲑ(‪ .‬ﻭﰎ ﺍﻟﺘﻘﻴﻴﻢ ﻣﻦ ﻧﻘﻄﺔ ﻋﻠﻰ ﺍﺭﺗﻔﺎﻉ ‪ m 2 = z‬ﻣﻦ ﺃﺟﻞ ﺗﻘﻴﻴﻢ ﳐﺎﻃﺮ ﺍﻹﺷﻌﺎﻉ ﻋﻠﻰ‬
‫ﺍﻟﻌﺎﻣﻠﲔ ﰲ ﺍﳌﺮﻛﺰ‪ ،‬ﺇﺫ ﻳُﺤﺘﻤﻞ ﺃﻥ ﻳﺘﻨﻘﻠﻮﺍ ﺿﻤﻦ ﳎﺎﻝ ﺍﳌﺮﻛﺰ‪ ،‬ﻭﻣﻦ ﻧﻘﻄﺔ ﻋﻠﻰ ﺍﺭﺗﻔﺎﻉ ‪ m 5 = z‬ﻣﻦ ﺃﺟﻞ ﻋﺎﻣﺔ ﺍﻟﺴﻜﺎﻥ‪ ،‬ﺇﺫ‬
‫ﺃﹸﺧﺬ ﰲ ﺍﳊﺴﺒﺎﻥ ﺇﻣﻜﺎﻥ ﻗﻴﺎﻡ ﻣﺴﺎﻛﻦ ﺑﻄﺎﺑﻘﲔ ﰲ ﺟﻮﺍﺭ ﺍﳌﺮﻛﺰ‪.‬‬
‫ﻭﻗﻮﺭﻧﺖ ﻧﺘﺎﺋﺞ ﺍﻟﺘﺤﻠﻴﻞ ﺃﻭ ﹰﻻ ﺑﺎﻟﻨﺘﺎﺋﺞ ﺍﶈﺼﻠﺔ ﰲ ﺻﺪﺩ ﺍﳍﻮﺍﺋﻲ ‪ .HRS 4/4/1‬ﺍﻟﺘﺮﺩﺩ ﺍﻟﺬﻱ ﻳﺸﺘﻐﻞ ﺑﻪ ﺍﳍﻮﺍﺋﻲ ﻫﻮ ‪،MHz 15,245‬‬
‫ﻭﻗﺪﺭﺓ ﺗﻐﺬﻳﺘﻪ ‪ .kW 500‬ﻭﻳﻌﺮﺽ ﺍﻟﺸﻜﻞ ‪16‬ﺃ( ﺍﻟﻨﺘﺎﺋﺞ ﺍﶈﺼﻠﺔ ﲞﺼﻮﺹ ﻣﱠﺘﺠﹺﻪ ‪" Poynting‬ﺍﳌﻜﺎﻓﺊ"‪ ،‬ﺑﺘﻘﻴﻴﻢ ﺍﻟﱪﻧﺎﻣﺞ ‪،AWAS‬‬
‫ﻋﻠﻰ ﺍﻓﺘﺮﺍﺽ ﺃﻥ ﺛﻨﺎﺋﻴﺎﺕ ﺍﻟﻘﻄﺐ ﺗﺘﻐﺬﻯ ﺑﺘﻴﺎﺭﻳﻦ ﻣﺘﻤﺎﺛﻠﲔ ﲤﺎﻣﹰﺎ‪ .‬ﻭﻳﻌﺮﺽ ﺍﻟﺸﻜﻞ ‪16‬ﺏ( ﻧﻔﺲ ﺍﻟﻨﺘﺎﺋﺞ ﻭﻟﻜﻦ ﻋﻠﻰ ﺍﻓﺘﺮﺍﺽ ﺃﻥ‬
‫ﺛﻨﺎﺋﻴﺎﺕ ﺍﻟﻘﻄﺐ ﺗﺘﻐﺬﻯ ﺑﺘﻮﺗ َﺮﻳْﻦ ﻣﺘﻤﺎﺛﻠﲔ ﲤﺎﻣﹰﺎ‪ ،‬ﻣﻊ ﻣﻌﻄﻴﺎﺕ ﻣﺴﺘﻤﺪﺓ ﻣﻦ ﺍﻟﻘﻴﺎﺱ ﻋﻠﻰ ‪ .m 2 = z‬ﻭﺗﺒﻴﱠﻦ ﺃﻥ ﺍﻟﺘﻮﺍﻓﻖ ﺑﲔ‬
‫ﺍﳌﻌﻄﻴﺎﺕ ﺍﻟﻨﻈﺮﻳﺔ ﻭﺍﳌﻌﻄﻴﺎﺕ ﺍﻟﺘﺠﺮﻳﺒﻴﺔ ﺣﺴﻦ‪ .‬ﻭﻟﺬﺍ ﻓﻤﻦ ﺍﻟﺒﺪﻳﻬﻲ ﺃﻥ ﺗﻐﺬﻳﺔ ﺍﳍﻮﺍﺋﻲ ﺑﺘﻮﺗﺮﺍﺕ ﻣﺘﺴﺎﻭﻳﺔ ﺗﻌﻄﻲ ﻧﺘﺎﺋﺞ ﺗﻮﻗﻌﻴﺔ ﺃﻓﻀﻞ‬
‫ﺑﺸﺄﻥ ﺍﺠﻤﻟﺎﻝ ﺍﻟﻔﻌﻠﻲ‪ ،‬ﻭﻋﻠﻰ ﺍﳋﺼﻮﺹ ﻗﺮﺏ ﺛﻨﺎﺋﻴﺎﺕ ﺍﻟﻘﻄﺐ ﻋﻠﻰ ﻣﺴﺎﻓﺔ ‪ m 70‬ﻣﻦ ﺍﳍﻮﺍﺋﻲ‪.‬‬
‫ﺍﻟﺘﻮﺻﻴﺔ‬
‫‪39‬‬
‫‪ITU-R BS.1698‬‬
‫ﺍﻟﺸﻜﻞ‬
‫‪16‬‬
‫ﻧﺘﻴﺠﺔ ﺗﻘﻴﻴﻢ ﻣﺘﱠﺠﻪ ‪ Poynting‬ﺍﳌﻜﺎﻓﺊ ﲞﺼﻮﺹ ﺍﳍﻮﺍﺋﻲ ‪ HRS 4/4/1‬ﲝﺴﺐ ﺍﻟﱪﻧﺎﻣﺞ‬
‫ﻋﻠﻰ ﺍﻓﺘﺮﺍﺽ‪ :‬ﺃ ( ﺗﻐﺬﻳﺔ ﺛﻨﺎﺋﻴﺎﺕ ﺍﻟﻘﻄﺐ ﺑﺘﻴﺎﺭﻳﻦ ﻣﺘﻤﺎﺛﻠﲔ ﲤﺎﻣﺎ‪ ،‬ﻭﺏ( ﺗﻐﺬﻳﺔ ﺛﻨﺎﺋﻴﺎﺕ ﺍﻟﻘﻄﺐ‬
‫ﺑﺘﻮﺗﺮﻳﻦ ﻣﺘﻤﺎﺛﻠﲔ ﲤﺎﻣﺎ‪ ،‬ﻣﻊ ﻧﺘﻴﺠﺔ ﺍﳌﻌﻄﻴﺎﺕ ﺍﻟﺘﺠﺮﻳﺒﻴﺔ )ﺍﳌﻨﺤﻨﻴﺎﺕ ﺍﳌﻨﻘﻮﻃﺔ(‬
‫‪AWAS‬‬
‫‪1 000‬‬
‫‪SH5‬‬
‫‪100‬‬
‫‪SE5‬‬
‫‪SE2‬‬
‫‪1‬‬
‫)‪S (W/m2‬‬
‫‪SH2‬‬
‫‪10‬‬
‫‪0.1‬‬
‫‪1 000‬‬
‫‪10‬‬
‫‪100‬‬
‫‪1‬‬
‫‪0.01‬‬
‫)‪D (m‬‬
‫)‪a‬‬
‫‪1 000‬‬
‫‪SH5‬‬
‫‪100‬‬
‫‪SE5‬‬
‫‪SE2‬‬
‫‪1‬‬
‫‪0.1‬‬
‫‪1 000‬‬
‫‪10‬‬
‫‪100‬‬
‫)‪D (m‬‬
‫‪1698-16‬‬
‫)‪b‬‬
‫‪1‬‬
‫‪0.01‬‬
‫)‪S (W/m2‬‬
‫‪SH2‬‬
‫‪10‬‬
‫ﺍﻟﺘﻮﺻﻴﺔ‬
‫‪40‬‬
‫‪ITU-R BS.1698‬‬
‫ﻋﻠﻰ ﺃﺛﺮ ﺛﺒﻮﺕ ﺍﻋﺘﻤﺎﺩﻳﺔ ﺍﻟﺘﻘﻨﻴﺔ ﺍﻟﺮﻗﻤﻴﺔ ﺍﳌﺴﺘﻌﻤﻠﺔ ﳊﺴﺎﺏ ﺍﺠﻤﻟﺎﻟﲔ ﺍﻟﻘﺮﻳﺒﲔ‪ ،‬ﺟﺮﻯ ﺗﻄﺒﻴﻘﻬﺎ ﰲ ﺗﻘﻴﻴﻢ ﳎﺎﻻﺕ ﲨﻴﻊ ﺍﳍﻮﺍﺋﻴﺎﺕ‬
‫ﺍﻟﺴﺘﺎﺭﻳﺔ ﺍﳌﻨﺼﻮﺑﺔ ﰲ ﻣﺮﻛﺰ ﺇﺫﺍﻋﺔ ﻳﻮﻏﻮﺳﻼﻓﻴﺎ ﺍﳉﺪﻳﺪ‪ .‬ﻭﻳﻌﺮﺽ ﺍﻟﺸﻜﻼﻥ ‪ 17‬ﻭ‪ 18‬ﻣﺜﺎﻟﲔ ﻣﻔﻴﺪﻳﻦ ﻋﻦ ﺫﻟﻚ‪.‬‬
‫ﺍﻟﺸﻜﻞ‬
‫‪17‬‬
‫ﻣﺘﺠﻪ ‪" Poynting‬ﺍﳌﻜﺎﻓﺊ" ﲞﺼﻮﺹ ﺍﳍﻮﺍﺋﻲ )‪ A51(HRS 4/4/0,5‬ﺍﳌﺸﺘﻐﻞ ﺑﺘﺮﺩﺩ‬
‫ﻣﺴﺎﻓﺔ ﺍﻷﻣﺎﻥ ﺍﻟﻔﺎﺻﻠﺔ ﻋﻦ ﺍﳍﻮﺍﺋﻲ ﻫﻲ ‪ m 50‬ﻟﻠﻌﺎﻣﻠﲔ ﰲ ﺍﳌﺮﻛﺰ‪ ،‬ﻭ‪ m 300‬ﻟﻌﺎﻣﺔ ﺍﳉﻤﻬﻮﺭ‬
‫‪9,63701‬‬
‫‪1 000‬‬
‫‪100‬‬
‫‪SH5‬‬
‫‪SH2‬‬
‫‪SE2‬‬
‫‪1‬‬
‫)‪S (W/m2‬‬
‫‪SE5‬‬
‫‪10‬‬
‫‪0.1‬‬
‫‪1 000‬‬
‫‪10‬‬
‫‪100‬‬
‫‪1‬‬
‫‪0.01‬‬
‫)‪D (m‬‬
‫‪1698-17‬‬
‫ﺍﻟﺸﻜﻞ‬
‫‪18‬‬
‫ﻣﺘﺠﻪ ‪" Poynting‬ﺍﳌﻜﺎﻓﺊ" ﲞﺼﻮﺹ ﺍﳍﻮﺍﺋﻲ )‪ C34 (HR 2/1/0,5‬ﺍﳌﺸﺘﻐﻞ ﺑﺘﺮﺩﺩ‬
‫ﻣﺴﺎﻓﺔ ﺍﻷﻣﺎﻥ ﺍﻟﻔﺎﺻﻠﺔ ﻋﻦ ﺍﳍﻮﺍﺋﻲ ﻫﻲ ‪ m 70‬ﻟﻠﻌﺎﻣﻠﲔ ﰲ ﺍﳌﺮﻛﺰ‪ ،‬ﻭ‪ m 130‬ﻟﻌﺎﻣﺔ ﺍﳉﻤﻬﻮﺭ‬
‫‪MHz 10,67996‬‬
‫‪1 000‬‬
‫‪100‬‬
‫‪SH5‬‬
‫‪SH2‬‬
‫‪SE2‬‬
‫‪1‬‬
‫)‪S (W/m2‬‬
‫‪SE5‬‬
‫‪10‬‬
‫‪0.1‬‬
‫‪1 000‬‬
‫‪1698-18‬‬
‫‪4‬‬
‫‪10‬‬
‫‪100‬‬
‫‪1‬‬
‫‪0.01‬‬
‫)‪D (m‬‬
‫ﺍﳋﻼﺻﺔ‬
‫ﺟﺮﻯ ﲝﺚ ﻧﻈﺮﻱ‪ ،‬ﻣﺴﺘﻌﲔ ﺑﺎﻟﱪﻧﺎﻣﺞ ‪ ،AWAS‬ﻟﺸﺪﺓ ﺍﺠﻤﻟﺎﻟﲔ ﺍﻟﻜﻬﺮﺑﺎﺋﻲ ﻭﺍﳌﻐﻨﻄﻴﺴﻲ ﰲ ﺟﻮﺍﺭ ﻫﻮﺍﺋﻴﺎﺕ ﺇﺭﺳﺎﻝ‪ ،‬ﺳﺘﺎﺭﻳﺔ‪ ،‬ﻋﺎﻟﻴﺔ‬
‫ﺍﻟﻘﺪﺭﺓ‪ ،‬ﻣﺸﺘﻐﻠﺔ ﺑﺎﳌﻮﺟﺎﺕ ﺍﻟﺪﻳﻜﺎﻣﺘﺮﻳﺔ )‪ .(HF‬ﻭﰎ ﺗﻄﺒﻴﻖ ﺍﻟﻨﻈﺮﻳﺔ ﺧﺼﻮﺻﹰﺎ ﻋﻠﻰ ﻫﻮﺍﺋﻴﺎﺕ ﺍﳌﺮﻛﺰ ﺍﳉﺪﻳﺪ ﻹﺫﺍﻋﺔ ﻳﻮﻏﻮﺳﻼﻓﻴﺎ‪.‬‬
‫ﻭﺣُﺪﺩﺕ ﻣﺴﺎﺣﺎﺕ ﺍﻷﻣﺎﻥ ﻟﻸﺷﺨﺎﺹ ﰲ ﺟﻮﺍﺭ ﻫﺬﻩ ﺍﳍﻮﺍﺋﻴﺎﺕ‪ .‬ﻭﹸﻗﺪﱢﻣﺖ ﺍﻟﻨﺘﺎﺋﺞ ﺍﳌﺘﻌﻠﻘﺔ ﺑﺎﺠﻤﻟﺎﻟﲔ ﺍﻟﻘﺮﻳﺒﲔ ﻟﻠﻬﻮﺍﺋﻴﺎﺕ ﺍﻟﺴﺘﺎﺭﻳﺔ‪،‬‬
‫ﺑﺎﺳﺘﻌﻤﺎﻝ ﻧﻈﺮﻳﺔ ﺻﺎﺭﻣﺔ ﻷﻭﻝ ﻣﺮﺓ‪ ،‬ﻭﺛﺒﺖ ﺃﻬﻧﺎ ﻋﻠﻰ ﺗﻮﺍﻓﻖ ﺟﻴﺪ ﻣﻊ ﺍﳌﻌﻄﻴﺎﺕ ﺍﻟﺘﺠﺮﻳﺒﻴﺔ ﺍﳌﻨﺸﻮﺭﺓ ﰲ ﻏﲑ ﻫﺬﺍ ﺍﳌﻮﺿﻊ‪.‬‬
‫ﺍﻟﺘﻮﺻﻴﺔ‬
‫‪41‬‬
‫‪ITU-R BS.1698‬‬
‫ﺍﻟﺘﺬﻳﻴﻞ‬
‫ﻟﻠﻤﻠﺤﻖ ‪1‬‬
‫‪2‬‬
‫ﻣﻘﺎﺭﻧﺔ ﺑﲔ ﻧﺘﺎﺋﺞ ﺍﻟﺘﻮﻗﻌﺎﺕ ﻭﻧﺘﺎﺋﺞ ﺍﻟﻘﻴﺎﺳﺎﺕ‬
‫‪1‬‬
‫ﲤﻬﻴﺪ‬
‫ﺃﺟﺮﻳﺖ ﺍﶈﺎﻛﺎﺓ ﻭﺍﻟﻘﻴﺎﺳﺎﺕ ﺑﺼﻮﺭﺓ ﻣﺴﺘﻘﻠﺔ‪ ،‬ﻋﻠﻲ ﻳﺪ ﺃﺷﺨﺎﺹ ﻟﻴﺲ ﺑﻴﻨﻬﻢ ﺍﺗﺼﺎﻝ‪ ،‬ﲢﺎﺷﻴﹰﺎ ﻟﻠﺘﺄﺛﲑ ﻭﺍﻟﺘﺄﺛﺮ ﰲ ﺍﻟﻌﻤﻞ ﻭﺍﻟﻨﺘﺎﺋﺞ‪.‬‬
‫ﺣﻮﻛﻲ ﻧﻈﺎﻡ ﺍﳍﻮﺍﺋﻴﺎﺕ ﳏﺎﻛﺎﺓ ﺟﺰﺋﻴﺔ ﻓﻘﻂ‪ ،‬ﻧﻈﺮﹰﺍ ﻟﺘﻌﻘﻴﺪﻫﺎ )ﺍﻧﻈﺮ ﳕﻮﺫﺝ ﻧﻈﺎﻡ ﺍﳍﻮﺍﺋﻴﺎﺕ ﰲ ﺍﻟﻔﻘﺮﺓ ‪.(1.1‬‬
‫ﺃﺟﺮﻳﺖ ﺍﻟﻘﻴﺎﺳﺎﺕ ﻭﺍﻟﺘﻮﻗﻌﺎﺕ ﻋﻠﻰ ﻧﻈﺎﻡ ﻫﻮﺍﺋﻴﺎﺕ‪ ،‬ﳑﺜﱠﻠﺔ ﰲ ﺍﻟﺸﻜﻠﲔ‬
‫ﺍﻟﻘﺼﲑﺓ‪ ،‬ﻭﻗﺪ ﺟﺮﺕ ﺍﳌﻘﺎﺭﻧﺔ ﲞﺼﻮﺹ ﺍﻟﺘﺮﺩﺩﻳﻦ ‪ MHz 13‬ﻭ‪.MHz 18‬‬
‫ﺍﻟﺸﻜﻞ‬
‫‪19‬‬
‫ﻧﻈﺎﻡ ﺍﳍﻮﺍﺋﻴﺎﺕ‬
‫‪1698-19‬‬
‫‪19‬‬
‫ﻭ‪ ،20‬ﻗﺎﺩﺭﺓ ﻋﻠﻰ ﺍﻻﺷﺘﻐﺎﻝ ﰲ ﻧﻄﺎﻕ ﺍﳌﻮﺟﺎﺕ‬
‫ﺍﻟﺘﻮﺻﻴﺔ‬
‫‪42‬‬
‫‪1.1‬‬
‫‪ITU-R BS.1698‬‬
‫ﳕﻮﺫﺝ ﻧﻈﺎﻡ ﺍﳍﻮﺍﺋﻴﺎﺕ ﺍﳌﺴﺘﻌﻤﻞ‬
‫ﳕﻮﺫﺝ ﻧﻈﺎﻡ ﺍﳍﻮﺍﺋﻴﺎﺕ ﺍﳌﻤﺜﻞ ﰲ ﺍﻟﺸﻜﻞ ‪ 19‬ﻣﻜﻮﱠﻥ ﻣﻦ ﺻﻔﻴﻒ ﺃﻓﻘﻲ ﺍﻻﺳﺘﻘﻄﺎﺏ ﻗﻮﺍﻣﻪ ‪ 16‬ﻣﻦ ﺛﻨﺎﺋﻴﺎﺕ ﺍﻟﻘﻄﺐ ﺍﳌﻄﻮﻳﺔ‪ ،‬ﺍﳌﺮﺗﺒﺔ‬
‫ﻗﺒﺎﻟﺔ ﻋﺎﻛﺲ ﻣﺼﻨﻮﻉ ﻣﻦ ﺷﺒﻜﺔ ﺃﺳﻼﻙ‪ .‬ﻭﺗﺴﺘﻤﺪ ﺛﻨﺎﺋﻴﺎﺕ ﺍﻟﻘﻄﺐ ﺗﻐﺬﻳﺘﻬﺎ ﻋﻦ ﻃﺮﻳﻖ ﺧﻄﻮﻁ ﺛﻨﺎﺋﻴﺔ ﺍﻟﺴﻠﻚ ﺗﺸﻜﻞ ﺷﺒﻜﺔ ﻣﻮﺍﺀﻣﺔ‬
‫ﻟﻠﻤﻌﺎﻭﻗﺔ ﻣﻌﻘﺪﺓ؛ ﻭﲨﻴﻊ ﺍﳋﻄﻮﻁ ﺍﻟﺜﻨﺎﺋﻴﺔ ﺍﻟﺴﻠﻚ ﻟﺸﺒﻜﺔ ﻣﻮﺍﺀﻣﺔ ﺍﳌﻌﺎﻭﻗﺔ‪ ،‬ﺍﳌﻤﺜﻠﺔ ﰲ ﺍﻟﺸﻜﻞ ‪ ،20‬ﻣﺮﺗّﺒﺔ ﲟﻌﻈﻤﻬﺎ ﻋﻠﻰ ﳓﻮ ﻋﻤﻮﺩﻱ‬
‫)ﻋﻤﻮﺩﻳﹰﺎ ﻋﻠﻰ ﺛﻨﺎﺋﻴﺎﺕ ﺍﻟﻘﻄﺐ(؛ ﻭﺑﻌﺾ ﺍﳋﻄﻮﻁ ﺍﻷﻓﻘﻴﺔ ﻗﺼﲑﺓ ﻧﺴﺒﻴﹰﺎ‪ ،‬ﻭﻣﺮﺗﺒﺔ ﻋﻤﻮﺩﻳﹰﺎ ﻋﻠﻰ ﺛﻨﺎﺋﻴﺎﺕ ﺍﻟﻘﻄﺐ ﻭﻋﻠﻰ ﺃﻧﻈﻤﺔ‬
‫ﺍﻟﺘﻐﺬﻳﺔ‪ ،‬ﰲ ﺍﲡﺎﻩ ﺍﻻﻧﺘﺸﺎﺭ‪ .‬ﻭﰲ ﻗﺎﻋﺪﺓ ﻧﻈﺎﻡ ﺍﳍﻮﺍﺋﻴﺎﺕ ﺧﻄﻮﻁ ﺛﻨﺎﺋﻴﺔ ﺍﻟﺴﻠﻚ ﺃﺧﺮﻯ‪ ،‬ﻣﺮﺗﺒﺔ ﲝﻴﺚ ﺗﻔﻠﻖ ﺍﻟﻘﺪﺭﺓ ﺍﳌﺴﺘﻌﻤﻠﺔ‬
‫ﻟﻠﺘﺮﺩﺩﺍﺕ ﺍﻟﺮﺍﺩﻳﻮﻳﺔ ﻭﺗﻮﺯﻋﻬﺎ ﺑﲔ ﺍﻟـ "ﺃﻋﻤﺪﺓ" ﺍﻷﺭﺑﻌﺔ ﻟﺜﻨﺎﺋﻴﺎﺕ ﺍﻟﻘﻄﺐ‪.‬‬
‫ﺍﻟﺸﻜﻞ‬
‫‪20‬‬
‫ﺷﺒﻜﺔ ﺍﳌﻮﺍﺀﻣﺔ ﻭﺷﺒﻜﺔ ﺍﻟﺘﻐﺬﻳﺔ‬
‫‪1698-20‬‬
‫ﺗﻮﺧﻴﹰﺎ ﻟﺘﺒﺴﻴﻂ ﺍﻟﻨﻤﻮﺫﺝ ﻭﲡﻨﺐ ﺍﻟﺘﻔﺎﺻﻴﻞ ﻏﲑ ﺍﻟﻼﺯﻣﺔ ﻭﻣﺎ ﻳﻨﺠﻢ ﻋﻨﻬﺎ ﻣﻦ ﺗﻄﻮﻳﻞ ﻭﻗﺖ ﺍﳊﺴﺎﺑﺎﺕ‪ ،‬ﺟﺮﺕ ﳕﺬﺟﺔ ﺍﻟﻨﻈﺎﻡ ﺑﻜﺎﻣﻠﻪ‬
‫ﻋﻠﻰ ﺃﺳﺎﺱ ﺃﻧﻪ ﺻﻔﻴﻒ ﺑﺴﻴﻂ ﻗﻮﺍﻣﻪ ‪ 16‬ﻣﻦ ﺛﻨﺎﺋﻴﺎﺕ ﺍﻟﻘﻄﺐ‪ ،‬ﻛﻤﺎ ﻫﻮ ﻣﺒﻴﱠﻦ ﰲ ﺍﻟﺸﻜﻞ ‪ ،21‬ﻭﻛﻞ ﻣﻨﻪ ﻳﺴﺘﻤﺪ ﺗﻐﺬﻳﺘﻪ ﻣﻦ ﻣﻮﻟﺪ‬
‫ﺗﻮﺗﺮ ﺧﺎﺹ ﺑﻪ ﻣﻄﺎﻭَﺭ ﻋﻠﻰ ﳓﻮ ﺻﺤﻴﺢ ﻣﻊ ﺳﺎﺋﺮ ﺍﳌﻮﻟﺪﺍﺕ‪ ،‬ﺩﻭﻥ ﺣﺎﺟﺔ ﺇﱃ ﳕﺬﺟﺔ ﺷﺒﻜﺔ ﺍﳌﻮﺍﺀﻣﺔ‪/‬ﺍﻟﺘﻐﺬﻳﺔ‪ .‬ﺇﺿﺎﻓﺔ ﺇﱃ ﺫﻟﻚ‪،‬‬
‫ﺟﺮﺕ ﳕﺬﺟﺔ ﻛﻞ ﻣﻦ ﺛﻨﺎﺋﻴﺎﺕ ﺍﻟﻘﻄﺐ ﺍﳌﻄﻮﻳﺔ‪ ،‬ﺍﶈﻘﻘﺔ ﻣﺎﺩﻳﹰﺎ ﻣﻦ ﺳﻠﻜﲔ ﻣﺘﻮﺍﺯﻳﲔ ﻣﻄﻮﻳﲔ ﰲ ﺍﻟﻄﺮﻓﲔ‪ ،‬ﻋﻠﻰ ﺃﺳﺎﺱ ﺃﻧﻪ ﺛﻨﺎﺋﻲ‬
‫ﺍﻟﻘﻄﺐ ﺃﺣﺎﺩﻱ ﺍﻟﺴﻠﻚ‪ ،‬ﺫﻭ ﻣﻘﻄﻊ ﻋﺮﺿﺎﱐ ﻣﻼﺋﻢ ﻟﻠﺤﺼﻮﻝ ﻋﻠﻰ ﻧﻔﺲ ﺍﻟﻘﻴﻤﺔ ﻟﻠﻤﻌﺎﻭﻗﺔ‪.‬‬
‫ﺃﺧﲑﹰﺍ ﺟﺮﻯ ﲤﺜﻴﻞ ﻛﻞ ﻣﻦ ﺛﻨﺎﺋﻴﺎﺕ ﺍﻟﻘﻄﺐ ﺑـ ‪ 24‬ﻗﻄﻌﺔ‪ ،‬ﻻ ﻳﺘﺠﺎﻭﺯ ﻃﻮﻝ ﺍﻟﻮﺍﺣﺪﺓ ‪ ، λ /20‬ﻛﻤﺎ ﻳﺒﻴّﻨﻪ ﺍﻟﺸﻜﻞ ‪.22‬‬
‫‪2.1‬‬
‫ﳏﺎﺳﻦ ﻭﻣﺴﺎﻭﺉ ﳕﻮﺫﺝ ﻧﻈﺎﻡ ﺍﳍﻮﺍﺋﻴﺎﺕ ﺍﳌﻨﻔﱠﺬ‬
‫ﺍﳌﺰﻳﱠﺔ ﺍﻷﻫﻢ ﻫﻲ ﺃﻥ ﺍﻟﻨﻤﻮﺫﺝ ﺍﳌﻨﻔﱠﺬ ﰲ ﻏﺎﻳﺔ ﺍﻟﺒﺴﺎﻃﺔ ﺇﺯﺍﺀ ﺗﻌﻘﻴﺪ ﻧﻈﺎﻡ ﺍﳍﻮﺍﺋﻴﺎﺕ ﺍﳊﻘﻴﻘﻴﺔ‪ .‬ﻓﺒﻔﻀﻞ ﻫﺬﺍ ﺍﻟﻨﻤﻮﺫﺝ ﳝﻜﻦ ﺇﳒﺎﺯ‬
‫ﺍﳊﺴﺎﺑﺎﺕ ﰲ ﻭﻗﺖ ﻗﺼﲑ ﻧﺴﺒﻴﹰﺎ )ﳓﻮ ﻋﺸﺮ ﺩﻗﺎﺋﻖ ﺑﻮﺍﺳﻄﺔ ﺣﺎﺳﻮﺏ ﻣﻦ ﳕﻂ ﺑﻨﺘﻴﻮﻡ ‪ 4‬ﺑﺴﺮﻋﺔ ‪.(GHz 2‬‬
‫ﺍﻟﺘﻮﺻﻴﺔ‬
‫‪ITU-R BS.1698‬‬
‫‪43‬‬
‫ﻭﺍﳌﺰﻳﺔ ﺍﻟﺜﺎﻧﻴﺔ ﺍﻟﻜﺒﲑﺓ ﻫﻲ ﺇﻣﻜﺎﻥ ﺗﻌﺪﻳﻞ ﺍﻟﻨﻤﻮﺫﺝ ﺑﺴﻬﻮﻟﺔ‪ ،‬ﻋﻨﺪ ﺍﻟﻠﺰﻭﻡ‪ ،‬ﺗﻮﺧﻴﹰﺎ ﻟﺘﻤﺜﻴﻞ ﺍﻟﻨﻈﺎﻡ ﺍﳊﻘﻴﻘﻲ ﻋﻠﻰ ﻭﺟﻪ ﺃﻓﻀﻞ‪ .‬ﻭﺑﺎﻟﻔﻌﻞ‪،‬‬
‫ﻋﻠﻰ ﻭﺟﻪ ﺍﻟﻌﻤﻮﻡ ﲤﺜﻞ ﻧﺘﻴﺠﺔ ﺍﳌﻘﺎﺭﻧﺔ ﺍﻷﻭﱃ ﺑﲔ ﺍﶈﺎﻛﹶﻴﺎﺕ ﻭﺍﻟﻘﻴﺎﺳﺎﺕ ﻣﻨﻄﻠﻘﹰﺎ ﺟﻴﺪﹰﺍ ﻹﺩﺧﺎﻝ ﺑﻌﺾ ﺍﻟﺘﻌﺪﻳﻼﺕ ﻋﻠﻰ ﺍﻟﻨﻤﻮﺫﺝ‬
‫ﺍﻷﻭﻝ‪ .‬ﻭﺃﻫﻢ ﺳﻴﺌﺔ ﰲ ﺍﻟﻨﻤﻮﺫﺝ ﺍﻟﺒﺴﻴﻂ ﺍﳌﻌﺘﻤﺪ ﻫﻲ ﺍﺳﺘﺤﺎﻟﺔ ﺃﻥ ﻳﺆﺧﺬ ﰲ ﺍﳊﺴﺎﺏ ﺑﺼﻮﺭﺓ ﺻﺤﻴﺤﺔ ﺇﺳﻬﺎﻡ ﺷﺒﻜﺔ‬
‫ﺸﻌﱡﻪ ﺧﻄﻮﻁ ﺍﳌﻮﺍﺀﻣﺔ ﺍﻟﺜﻨﺎﺋﻴﺔ ﺍﻟﺴﻠﻚ‪ ،‬ﺧﻄﻮﻁ‬
‫ﺍﳌﻮﺍﺀﻣﺔ‪/‬ﺍﻟﺘﻐﺬﻳﺔ ﺍﳌﻌﻘﺪﺓ ﰲ ﺍﳌﻜﻮﱢﻧﺎﺕ ‪ x‬ﻭ‪ y‬ﻭ‪ z‬ﻟﻠﻤﺠﺎﻟﲔ‪ .‬ﺇﺫ ﺇﻥ ﻛﻤ‪‬ﺎ ﻣﻦ ﺍﻟﻘﺪﺭﺓ ُﺗ ِ‬
‫ﺗﺸﺘﻐﻞ ﺑﺎﳌﻮﺟﺎﺕ ﺍﳌﺴﺘﻘﺮﺓ‪ .‬ﻓﻠﻬﺬﺍ ﺍﻟﺴﺒﺐ ﻻ ﻳﻈﻬﺮ ﰲ ﻧﺘﻴﺠﺔ ﺍﻟﺘﻮﻗﻊ ﺍﳌﻜﻮﱢﻥ ﺍﻟﻌﻤﻮﺩﻱ )ﺍﳌﻜﻮﱢﻥ ‪ (z‬ﻟﻠﻤﺠﺎﻝ ﺍﻟﻜﻬﺮﺑﺎﺋﻲ )‪،(E‬‬
‫ﻭﻻ ﺍﳌﻜﻮﻥ ﺍﻷﻓﻘﻲ ﰲ ﺍﲡﺎﻩ ﺍﻻﻧﺘﺸﺎﺭ )ﺍﳌﻜﻮﻥ ‪ (y‬ﺇﻻ ﰲ ﺑﻌﺾ ﺍﳊﺎﻻﺕ ﺣﲔ ﺗﻜﻮﻥ ﺍﻟﻘﻴﻢ ﻣﻨﺨﻔﻀﺔ ﺟﺪﹰﺍ؛ ﻭﻳﻼﺣﻆ ﻧﻔﺲ ﺍﻟﺴﻠﻮﻙ‬
‫ﻉ ﻓﻴﻪ ﺍﳌﺸﺎﻋﻴﻊ ﺍﻟﻌﻤﻮﺩﻳﺔ ﻭﻻ ﺍﳌﺸﺎﻋﻴﻊ ﺍﳌﺸﺘﻐﻠﺔ‬
‫ﻣﻦ ﺟﺎﻧﺐ ﺍﳌﻜﻮﱢﻥ ‪ x‬ﻟﻠﻤﺠﺎﻝ ﺍﳌﻐﻨﻄﻴﺴﻲ )‪ .(H‬ﻭﺍﻟﺴﺒﺐ ﻫﻮ ﺃﻥ ﺍﻟﺘﻮﻗﻊ ﱂ ﻳُﺮﺍ َ‬
‫ﺍﻟﻌﺎﻣﻠﺔ ﰲ ﺍﲡﺎﻩ ﺍﻻﻧﺘﺸﺎﺭ‪ .‬ﺃﻣﺎ ﰲ ﻧﺘﺎﺋﺞ ﺍﻟﻘﻴﺎﺳﺎﺕ ﻓﻌﻠﻰ ﻋﻜﺲ ﺫﻟﻚ ﻳُﺴﺠﱠﻞ ﺣﻀﻮﺭ ﻛﻼ ﺍﳌﻜﻮﱢﻧﲔ‪ ،‬ﺍﻟﻌﻤﻮﺩﻱ )‪ (z‬ﻭﺍﻷﻓﻘﻲ )‪(y‬‬
‫ﻟﻠﻤﺠﺎﻝ ‪ ،E‬ﻭﻛﺬﻟﻚ ﺣﻀﻮﺭ ﺍﳌﻜﻮﱢﻥ ﺍﻷﻓﻘﻲ )‪ (x‬ﻟﻠﻤﺠﺎﻝ ‪ ،H‬ﻭﻫﺬﺍ ﺍﻻﺧﺘﻼﻑ ﻳﺴﺒﺐ ﺑﻌﺾ ﺍﳌﺸﻜﻼﺕ ﰲ ﺍﳌﻘﺎﺭﻧﺔ ﺍﳌﺒﺎﺷﺮﺓ‪.‬‬
‫ﻭﺍﻟﺘﺼﺮﻑ ﺍﻷﺭﺷَﺪ ﻟﺘﺬﻟﻴﻞ ﺍﻟﺼﻌﻮﺑﺔ ﻫﻮ ﺍﻋﺘﺒﺎﺭ ﺃﻥ ﻫﺬﻳﻦ ﺍﳌﻜﻮﱢﻧﻴْﻦ ﻳﺘﻮﻟﹼﺪﺍﻥ ﻋﻦ ﻛﻢ ﺍﻟﻘﺪﺭﺓ ﺍﻟﺬﻱ ﻻ ﻳﺒﻠﻎ ﺇﱃ ﺻﻔﻴﻔﺎﺕ ﺛﻨﺎﺋﻴﺎﺕ‬
‫ﺍﻟﻘﻄﺐ؛ ﻭﻣﻦ ﰒ ﻓﺈﻥ ﺇﺳﻬﺎﻣﻬﻤﺎ ﰲ ﺷﺪﺓ ﺍﺠﻤﻟﺎﻝ ﺍﳌﻘﺼﻮﺩ ﻗﻴﺎﺳﻬﺎ ﻳﻨﺒﻐﻲ ﺃﻥ ﻳﺮﺍﻋﻰ ﰲ ﺇﺳﻬﺎﻡ ﺍﳌﻜﻮﱢﻥ ﺍﻷﻓﻘﻲ )‪ (x‬ﰲ ﻧﺘﻴﺠﺔ ﺍﶈﺎﻛﺎﺓ‪.‬‬
‫ﻭﺑﻌﺒﺎﺭﺓ ﺃﺧﺮﻯ‪ ،‬ﺇﻥ ﺇﺳﻬﺎﻡ ﺍﳌﻜﻮﱢﻥ ﺍﻷﻓﻘﻲ )‪ (x‬ﺍﶈﺼﱠﻞ ﺑﺎﶈﺎﻛﺎﺓ ﲡﺐ ﻣﻘﺎﺭﻧﺘﻪ ﺑﺎﻟﻨﺘﻴﺠﺔ ﺍﻹﲨﺎﻟﻴﺔ ﻟﻠﻘﻴﺎﺳﺎﺕ‪ ،‬ﻭﻫﺬﻩ ﺍﻟﻨﺘﻴﺠﺔ ﻫﻲ‬
‫ﺍﳉﺬﺭ ﺍﻟﺘﺮﺑﻴﻌﻲ ﺠﻤﻟﻤﻮﻉ ﺍﻟﻘﻴﻢ ﺍﳌﺮﺑﱠﻌﺔ ﻟﻺﺳﻬﺎﻣﺎﺕ ﺍﶈﺼﻠﺔ ﺑﺎﻟﻘﻴﺎﺱ ﻋﻠﻰ ﺍﶈﺎﻭﺭ ‪ x‬ﻭ‪ y‬ﻭ‪.z‬‬
‫ﺍﻟﺸﻜﻞ‬
‫‪21‬‬
‫ﳕﻮﺫﺝ ﻟﺼﻔﻴﻒ ﻣﻦ ﺛﻨﺎﺋﻴﺎﺕ ﺍﻟﻘﻄﺐ ﻭﺗﻮﺟﻬﻪ ﰲ ﻧﻈﺎﻡ ﺛﻼﺛﻲ ﺍﶈﺎﻭﺭ ‪ X‬ﻭ‪ Y‬ﻭ‪ .Z‬ﻛﻞ ﻣﻦ ﺛﻨﺎﺋﻴﺎﺕ ﺍﻟﻘﻄﺐ‬
‫ﻳﺘﻐﺬﻯ ﻣﻦ ﻣﻮﻟﺪ ﺗﻮﺗﺮ ﺧﺎﺹ ﺑﻪ‪ ،‬ﻣﻄﺎﻭَﺭ ﻣﻊ ﺳﺎﺋﺮ ﺍﳌﻮﻟﺪﺍﺕ‪ .‬ﻭﺍﲡﺎﻩ ﺇﺳﻬﺎﻡ ﺍﳌﻜﻮﱢﻧﺎﺕ ‪ Ez ،Ey ،Ex‬ﻭ‪Hz ،Hy ،Hx‬‬
‫ﻟﻠﻤﺠﺎﻟﲔ ‪ E‬ﻭ‪ H‬ﰲ ﻧﻘﻄﺔ ﺍﻟﺘﻘﻴﻴﻢ ﻫﻮ ﺍﲡﺎﻩ ﺍﶈﺎﻭﺭ ‪ X‬ﻭ‪ Y‬ﻭ‪ Z‬ﻧﻔﺴﻪ‬
‫‪1698-21‬‬
‫ﺍﻟﺘﻮﺻﻴﺔ‬
‫‪44‬‬
‫‪ITU-R BS.1698‬‬
‫ﺍﻟﺸﻜﻞ‬
‫ﳕﻮﺫﺝ ﻟﻮﺍﺣﺪ ﻣﻦ ﺛﻨﺎﺋﻴﺎﺕ ﺍﻟﻘﻄﺐ‪ .‬ﺟﺮﺕ ﳕﺬﺟﺘﻪ ﻋﻠﻰ ‪ 24‬ﻗﻄﻌﺔ ﻃﻮﻝ ﺍﻟﻮﺍﺣﺪﺓ ﺃﻗﺼﺮ ﻣﻦ ‪. λ /20‬‬
‫ﺗُﺴﻠﱠﻂ ﺍﻹﺛﺎﺭﺓ ﻋﻠﻰ ﻣﺮﻛﺰ ﺍﻟﺴﺎﻋﺪ ﺍﻟﻌﻠﻮﻱ ﺃﻭ ﺍﻟﺴﺎﻋﺪ ﺍﻟﺴﻔﻠﻲ‬
‫ﰲ ﻧﻘﻄﺔ ﺍﻟﻮﺳﻂ ﻣﻦ ﺍﻟﻘﻄﻌﺔ ﺍﳌﺮﻛﺰﻳﺔ‬
‫‪22‬‬
‫‪1698-22‬‬
‫‪2‬‬
‫ﻣﻘﺎﺭﻧﺔ ﺑﲔ ﺍﻟﺘﻮﻗﻌﺎﺕ ﻭﺍﻟﻘﻴﺎﺳﺎﺕ‬
‫‪1.2‬‬
‫‪MHz 13‬‬
‫‪1.1.2‬‬
‫ﺍﻟﺘﻮﻗﻌﺎﺕ‬
‫‪1.1.1.2‬‬
‫ﻣﻼﺣﻈﺎﺕ ﻋﻠﻰ ﺍﻟﻨﻤﻮﺫﺝ‬
‫ﻻ ﺑﺪ‪ ،‬ﻟﻜﻲ ﻳﻜﻮﻥ ﺍﻟﺘﻨﺎﻇﺮ ﻋﻠﻰ ﺃﻣﺜﻞ ﻭﺟﻪ ﺑﲔ ﺍﻟﻨﻤﻮﺫﺝ ﺍﳌﺘﻘﺪﻡ ﻭﺻﻔﻪ ﻭﻧﻈﺎﻡ ﺍﳍﻮﺍﺋﻴﺎﺕ ﺍﳊﻘﻴﻘﻴﺔ‪ ،‬ﻣﻦ ﻣﻌﺮﻓﺔ ﺩﻗﻴﻘﺔ ﻟﻜﻢ ﺍﻟﻘﺪﺭﺓ ﰲ‬
‫ﺩﺧﻞ ﻛﻞ ﺛﻨﺎﺋﻲ ﻗﻄﺐ‪ ،‬ﻧﻈﺮﹰﺍ ﻟﻠﺨﺴﺎﺭﺓ ﺍﳊﺎﺻﻠﺔ ﰲ ﺧﻂ ﺍﻟﻨﻘﻞ‪.‬‬
‫ﻭﺗﻮﺧﻴﹰﺎ ﻹﻣﺪﺍﺩ ﻛﻞ ﻣﻦ ﺛﻨﺎﺋﻴﺎﺕ ﺍﻟﻘﻄﺐ ﺑﻘﻴﻤﺔ ﺍﻟﺘﻮﺗﺮ ﺍﳌﻨﺎﺳﺒﺔ‪ ،‬ﺟﺮﻯ ﰲ ﺍﶈﺎﻛﺎﺓ ﺣﺴﺎﺏ ﻣﻌﺎﻭﻗﺔ ﺍﻟﺪﺧﻞ ﻟﻜﻞ ﻭﺍﺣﺪ ﻣﻦ ﺛﻨﺎﺋﻴﺎﺕ‬
‫ﺍﻟﻘﻄﺐ ﻫﺬﻩ‪ .‬ﻭﺍﻟﻘﻴﻢ ﻣﻌﺮﻭﺿﺔ ﰲ ﺍﻟﺸﻜﻞ ‪.23‬‬
‫ﺍﻟﺸﻜﻞ ‪23‬‬
‫ﺍﻟﻘﻴﻢ ﺍﶈﺼﱠﻠﺔ ﺑﺎﶈﺎﻛﺎﺓ ﳌﻌﺎﻭﻗﺔ ﺩﺧﻞ ﺛﻨﺎﺋﻴﺎﺕ ﺍﻟﻘﻄﺐ‪ ،‬ﻣﻌﺎﻭﻗﺔ ﻣُﻘﻴﱠﺴﺔ ﺑـ ‪.Ω 600‬‬
‫ﻳﺴﺘﺮﻋﻰ ﺍﻻﻧﺘﺒﺎﻩ ﺇﱃ ﺍﻟﺘﺸﺘﺖ ﺍﻟﻀﺌﻴﻞ ‪ -‬ﻟﻜﻨﻪ ﻏﲑ ﻣﻌﺪﻭﻡ ‪ -‬ﰲ ﻗﻴﻢ ﺍﳌﻘﺎﻭﻣﺔ ﻗﺮﺏ ‪Ω 600‬‬
‫‪ ،MHz 13‬ﺛﻨﺎﺋﻴﺎﺕ ﺍﻟﻘﻄﺐ )ﻣﻌﺎﻭﻗﺔ ﻣﻘﻴﺴﺔ ‪(Ω 600‬‬
‫‪1.0‬‬
‫‪0.5‬‬
‫‪2.0‬‬
‫‪0.2‬‬
‫‪5.0‬‬
‫‪5.0‬‬
‫‪2.0‬‬
‫‪1.0‬‬
‫‪0.5‬‬
‫‪0.2‬‬
‫‪5.0‬‬
‫‪0.2‬‬
‫‪2.0‬‬
‫‪0.5‬‬
‫‪1.0‬‬
‫‪1698-23‬‬
‫ﺍﻟﺘﻮﺻﻴﺔ‬
‫‪ITU-R BS.1698‬‬
‫‪45‬‬
‫ﰒ ﺍﻋُﺘﻤِﺪ ﺑﺸﺄﻥ ﻛﻞ ﺛﻨﺎﺋﻲ ﻗﻄﺐ ﻗﻴﻤﺔ ﻭﺍﺣﺪﺓ ﻟﻠﻤﻘﺎﻭﻣﺔ ﺗﺴﺎﻭﻱ ‪ ،Ω 600‬ﻭﻫﺬﻩ ﻫﻲ ﺍﻟﻘﻴﻤﺔ ﺍﻟﻮﺳﻄﻴﺔ ﺍﶈﺼﻠﺔ ﺑﺎﶈﺎﻛﺎﺓ‪ .‬ﻭﻳﺴﺘﺮﻋﻰ‬
‫ﺍﻻﻧﺘﺒﺎﻩ ﺇﱃ ﺃﻥ ﻫﺬﺍ ﺍﻟﻘﺮﺍﺭ ﻗﺪ ﻳﻜﻮﻥ ﻫﻮ ﺳﺒﺐ ﻋﺪﻡ ﺍﻟﺪﻗﺔ ﰲ ﻧﺘﺎﺋﺞ ﺍﻟﺘﻮﻗﻌﺎﺕ‪.‬‬
‫ﻭﺗﻌﻮﻳﻀﹰﺎ ﻋﻦ ﻋﺪﻡ ﺍﳌﻮﺍﺀﻣﺔ ﺍﻟﻨﺎﺟﻢ ﲟﻌﻈﻤﻪ ﻋﻦ ﺍﳌﻜﻮﱢﻥ ﺍﻟﺘﻔﺎﻋﻠﻲ ﻭﻣﺎ ﻳﺘﺒﻌﻪ ﻣﻦ ﻋﻜﺲ ﺍﻟﻘﺪﺭﺓ ﳓﻮ ﺍﳌﺮﺳِﻞ‪ ،‬ﺍﺭﺗُﺌ َﻲ ﺃﻥ ﺗﺰﺍﺩ ﺍﻟﻘﺪﺭﺓ‬
‫ﺍﻟﺰﻳﺎﺩﺓ ﺍﻟﻮﺍﻓﻴﺔ‪ .‬ﻭﻋﻠﻴﻪ‪ ،‬ﻓﻘﺪ ﹸﻃﺒﱢﻖ ﺍﻟﺘﻮﺗﺮ ﺍﳌﻨﺎﺳﺐ ﻋﻠﻰ ﻛﻞ ﺛﻨﺎﺋﻲ ﻗﻄﺐ‪.‬‬
‫‪2.1.1.2‬‬
‫ﺗﻘﻴﻴﻤﺎﺕ ﺍﺠﻤﻟﺎﻝ ﺍﻟﺒﻌﻴﺪ‬
‫ﺗﻮﺧﻴﹰﺎ ﻟﻠﻤﻘﺎﺭﻧﺔ ﻋﻠﻰ ﺃﻓﻀﻞ ﻭﺟﻪ ﺑﲔ ﺍﻟﻨﻤﻮﺫﺝ ﻭﺍﳍﻮﺍﺋﻴﺎﺕ ﺍﳊﻘﻴﻘﻴﺔ ﺍﳌﻤﺜﻠﺔ ﰲ ﺍﻟﺸﻜﻠﲔ ‪ 19‬ﻭ‪ُ ،20‬ﺣﺴِﺒﺖ ﳐﻄﻄﺎﺕ ﺍﻹﺷﻌﺎﻉ‪،‬‬
‫ﻓﻜﺎﻧﺖ ﺍﻟﻨﺘﺎﺋﺞ ﻣﺎ ﻳﺮﺩ ﲤﺜﻴﻠﻪ ﰲ ﺍﻟﺸﻜﻞ ‪) 24‬ﺍﳌﺴﺘﻮﻱ ﺍﻷﻓﻘﻲ(‪ ،‬ﻭﺍﻟﺸﻜﻞ ‪) 25‬ﺍﳌﺴﺘﻮﻱ ﺍﻟﻌﻤﻮﺩﻱ(‪ ،‬ﻭﺍﻟﺸﻜﻞ ‪) 26‬ﺍﳌﺸﻬﺪ‬
‫ﺍﻷﻣﺎﻣﻲ(‪.‬‬
‫ﺍﻟﺸﻜﻞ‬
‫ﳐﻄﻂ ﺍﻹﺷﻌﺎﻉ ﻋﻠﻰ ﺍﳌﺴﺘﻮﻯ ﺍﻷﻓﻘﻲ‬
‫‪24‬‬
‫‪1698-24‬‬
‫ﺍﻟﺸﻜﻞ‬
‫ﳐﻄﻂ ﺍﻹﺷﻌﺎﻉ ﻋﻠﻰ ﺍﳌﺴﺘﻮﻯ ﺍﻟﻌﻤﻮﺩﻱ‬
‫‪25‬‬
‫‪1698-25‬‬
‫ﺍﻟﺘﻮﺻﻴﺔ‬
‫‪46‬‬
‫‪ITU-R BS.1698‬‬
‫ﺍﻟﺸﻜﻞ‬
‫ﳐﻄﻂ ﺍﻹﺷﻌﺎﻉ‪ ،‬ﺍﳌﺸﻬﺪ ﺍﻷﻣﺎﻣﻲ‬
‫‪26‬‬
‫‪1698-26‬‬
‫‪3.1.1.2‬‬
‫ﻧﺘﺎﺋﺞ ﺗﻮﻗﻊ ﺷﺪﺓ ﺍﺠﻤﻟﺎﻝ ﰲ ﺍﳌﻨﻄﻘﺔ ﺍﻟﻘﺮﻳﺒﺔ‬
‫ُﺣﻘﱢﻘﺖ ﺍﻟﺘﻮﻗﻌﺎﺕ ﻋﻦ ﻃﺮﻳﻖ ﺣﺴﺎﺏ ﺍﳌﻜﻮﱢﻧﺎﺕ ‪ x‬ﻭ‪ y‬ﻭ‪ z‬ﻟﻠﻤﺠﺎﻟﲔ ‪ E‬ﻭ‪ ،H‬ﰲ ﺍﲡﺎﻩ ﺍﻟﻜﺴﺐ ﺍﻷﻗﺼﻰ ﻟﻠﻬﻮﺍﺋﻲ )ﺍﶈﻮﺭ ‪،(Y‬‬
‫ﻭﻋﻠﻰ ﺍﺭﺗﻔﺎﻉ ‪ m 2‬ﻓﻮﻕ ﺳﻮﻳﺔ ﺍﻷﺭﺽ )ﺍﶈﻮﺭ ‪ .(2 = Z‬ﻭﺍﻟﻘﻴﻢ ﺍﶈﺼﱠﻠﺔ ﺑﺎﳊﺴﺎﺏ ﳑﺜﻠﺔ ﰲ ﺍﻟﺸﻜﻞ ‪) 27‬ﺍﺠﻤﻟﺎﻝ ‪ (E‬ﻭﺍﻟﺸﻜﻞ ‪28‬‬
‫)ﺍﺠﻤﻟﺎﻝ ‪ .(H‬ﰒ ﺇﻥ ﺍﻟﺘﺄﺛﲑ ﺍﻟﻘﻮﻱ ﻟﺘﻀﺎﺭﻳﺲ ﺍﻷﺭﺽ ﻋﻠﻰ ﻋﻤﻠﻴﺎﺕ ﺍﻟﺘﻘﻴﻴﻢ ﻛﻤﺎ ﻋﻠﻰ ﻋﻤﻠﻴﺎﺕ ﺍﻟﻘﻴﺎﺱ ﻣﻦ ﺷﺄﻧﻪ ﺃﻥ ﻳُﺪﺧِﻞ ﻓﺮﻗﹰﺎ‬
‫ﺇﺿﺎﻓﻴﹰﺎ ﺑﲔ ﻧﺘﺎﺋﺠﻬﻤﺎ‪ .‬ﻓﺘﻮﺧﻴﹰﺎ ﻹﻇﻬﺎﺭ ﺗﺄﺛﲑ ﺍﻟﺘﻀﺎﺭﻳﺲ ﺍﻟﺸﺪﻳﺪ‪ُ ،‬ﺣﺴِﺒﺖ ﺃﻳﻀﹰﺎ ﻗﻴﻢ ﺍﺠﻤﻟﺎﻟﲔ ‪ E‬ﻭ‪ H‬ﻣﻊ ﺗﻐﻴﲑ ﺍﺭﺗﻔﺎﻉ ﻧﻘﻄﺔ ﺍﻟﺘﻘﻴﻴﻢ‬
‫ﻓﻮﻕ ﺳﻮﻳﺔ ﺍﻷﺭﺽ )ﺍﶈﻮﺭ ‪ (Z‬ﻣﻦ ‪ 0‬ﺇﱃ ‪ m 9‬ﻋﻠﻰ ﻣﺴﺎﻓﺔ ﺛﺎﺑﺘﺔ ﻃﻮﳍﺎ ‪ .(60 = Y) m 60‬ﻭﺗﺄﺛﱡﺮ ﺍﻟﻨﺘﺎﺋﺞ ﺑﺘﻐﻴﲑ ﺍﺭﺗﻔﺎﻉ ﻧﻘﻄﺔ‬
‫ﺍﻟﺘﻘﻴﻴﻢ ﳝﺜﻠﻪ ﺍﻟﺸﻜﻞ ‪) 29‬ﲞﺼﻮﺹ ﺍﺠﻤﻟﺎﻝ ‪ (E‬ﻭﺍﻟﺸﻜﻞ ‪) 30‬ﲞﺼﻮﺹ ﺍﺠﻤﻟﺎﻝ ‪.(H‬‬
‫ﺍﻟﺘﻮﺻﻴﺔ‬
‫‪47‬‬
‫‪ITU-R BS.1698‬‬
‫ﺍﻟﺸﻜﻞ‬
‫ﻗﻴﻤﺔ ﺷﺪﺓ ﺍﺠﻤﻟﺎﻝ ﺍﻟﻜﻬﺮﺑﺎﺋﻲ ﰲ ﺍﳌﻨﻄﻘﺔ ﺍﻟﻘﺮﻳﺒﺔ‪ ،‬ﳏﺼﻠﺔ ﺑﺎﳊﺴﺎﺏ‬
‫‪27‬‬
‫‪90‬‬
‫‪80‬‬
‫‪70‬‬
‫‪50‬‬
‫‪40‬‬
‫‪30‬‬
‫)‪(V/m‬‬
‫ﺍﻟﻜﻬﺮﺑﺎﺋﻲ ﺍﻟﻘﺮﻳﺐ‬
‫ﺍﺠﻤﻟﺎﻝ‬
‫‪Near electric‬‬
‫)‪field (V/m‬‬
‫‪60‬‬
‫‪20‬‬
‫‪10‬‬
‫‪250‬‬
‫‪225‬‬
‫‪200‬‬
‫‪175‬‬
‫‪150‬‬
‫‪125‬‬
‫‪100‬‬
‫‪75‬‬
‫‪50‬‬
‫‪25‬‬
‫‪0‬‬
‫‪0‬‬
‫)‪(m‬‬
‫)‪ (m‬ﻋﻠﻰ‬
‫ﻛﻨﺲ‬
‫‪YY‬‬
‫‪sweep‬‬
‫ﺍﳍﻮﺍﺋﻲ‪.‬‬
‫‪ distance.‬ﰲ ﻣﻮﺻ‬
‫‪kW 225 Transmitter‬‬
‫ﻟﻠﻤﺴﺎﻓﺔ‪ .‬ﻗﺪﺭﺓ ﺍﳌﺮﺳﻞ‬
‫ﺍﻟﻘﺮﻳﺐ ﺗﺒﻌ‬
‫‪ connector.‬ﺷﺪﺓ‬
‫‪،MHz 13‬‬
‫‪13 MHz, near electric‬‬
‫‪versus‬ﱢﻞ‪field‬‬
‫‪225‬ﺎﹰ ‪power:‬‬
‫ﺍﺠﻤﻟﺎﻝ‪kW at‬‬
‫‪antenna‬‬
‫‪Height: 2 m over terrain‬‬
‫ﺍﻻﺭﺗﻔﺎﻉ ﻋﻦ ﺳﻮﻳﺔ ﺍﻷﺭﺽ‪m 2 :‬‬
‫‪Near‬‬
‫‪electric‬‬
‫‪Y sweep,‬‬
‫‪constants:‬‬
‫ﺍﻟﻘﺮﻳﺐ‪0, Z ،‬‬
‫‪= 2; CORT13‬‬
‫‪CORT13‬‬
‫‪2 =field,‬؛‬
‫‪Z ،0mag‬‬
‫‪= X(X),‬‬
‫ﺍﻟﺜﻮﺍﺑﺖ‪:‬‬
‫ﻋﻠﻰ ‪،Y‬‬
‫ﻣﻘﺪﺍﺭ=)‪ ،(XX‬ﻛﻨﺲ‬
‫ﺍﻟﻜﻬﺮﺑﺎﺋﻲ‬
‫ﺍﺠﻤﻟﺎﻝ‬
‫ﺍﺠﻤﻟﺎﻝ ﺍﻟﻜﻬﺮﺑﺎﺋﻲ‬
‫‪CORT13‬‬
‫‪2 =field,‬؛‬
‫‪Z ،0mag‬‬
‫‪= X(Y),‬‬
‫ﺍﻟﺜﻮﺍﺑﺖ‪:‬‬
‫ﻋﻠﻰ ‪،Y‬‬
‫ﻣﻘﺪﺍﺭ=)‪ ،(YX‬ﻛﻨﺲ‬
‫‪Near‬‬
‫‪electric‬‬
‫‪Y sweep,‬‬
‫‪constants:‬‬
‫ﺍﻟﻘﺮﻳﺐ‪0, Z ،‬‬
‫‪= 2; CORT13‬‬
‫‪CORT13‬‬
‫‪2 field,‬؛‬
‫‪= Z ،0mag‬‬
‫‪= X(Z),‬‬
‫ﺍﻟﺜﻮﺍﺑﺖ‪:‬‬
‫ﻋﻠﻰ ‪،Y‬‬
‫ﻣﻘﺪﺍﺭ=)‪ ،(XZ‬ﻛﻨﺲ‬
‫ﺍﻟﻘﺮﻳﺐ‪،‬‬
‫ﺍﺠﻤﻟﺎﻝ ﺍﻟﻜﻬﺮﺑﺎﺋﻲ‬
‫‪Near‬‬
‫‪electric‬‬
‫‪Y sweep,‬‬
‫‪constants:‬‬
‫= ‪0, Z‬‬
‫‪2; CORT13‬‬
‫‪1698-27‬‬
‫ﻳﻌﻮﺩ ﺍﻹﺳﻬﺎﻡ ﺍﻷﻫﻢ ﺇﱃ ﺍﳌﻜﻮﱢﻥ ‪ .x‬ﳝﺜﻞ ﺍﶈﻮﺭ ﺍﻷﻓﻘﻲ ﺍﳌﺴﺎﻓﺔ ﺑﺎﻷﻣﺘﺎﺭ ﻋﻦ ﺍﳍﻮﺍﺋﻲ )ﻛﻨﺲ ﻋﻠﻰ ‪ .(Y‬ﻗﻴﻤﺔ‬
‫)ﺍﻻﺭﺗﻔﺎﻉ ﻋﻦ ﺳﻮﻳﺔ ﺍﻷﺭﺽ(‪ .‬ﺷﺪﺓ ﻣﻜﻮﻧﺎﺕ ﺍﺠﻤﻟﺎﻝ ﺍﻟﻜﻬﺮﺑﺎﺋﻲ )‪ (E‬ﻣﻌﺒﱠﺮ ﻋﻨﻬﺎ ﺑـ‪ V/m‬ﻋﻠﻰ ﺍﶈﻮﺭ ﺍﻟﻌﻤﻮﺩﻱ‪.‬‬
‫‪Z‬‬
‫ﺛﺎﺑﺘﺔ ﻋﻠﻰ‬
‫‪m 2‬‬
‫ﺍﻟﺘﻮﺻﻴﺔ‬
‫‪48‬‬
‫‪ITU-R BS.1698‬‬
‫ﺍﻟﺸﻜﻞ‬
‫ﻗﻴﻤﺔ ﺷﺪﺓ ﺍﺠﻤﻟﺎﻝ ﺍﳌﻐﻨﻄﻴﺴﻲ ﰲ ﺍﳌﻨﻄﻘﺔ ﺍﻟﻘﺮﻳﺒﺔ‪ ،‬ﳏﺼﻠﺔ ﺑﺎﳊﺴﺎﺏ‬
‫‪28‬‬
‫‪0.30‬‬
‫‪0.25‬‬
‫‪0.15‬‬
‫‪0.10‬‬
‫‪Near magnetic‬‬
‫)‪field (A/m‬‬
‫)‪(A/m‬‬
‫ﺍﳌﻐﻨﻄﻴﺴﻲ ﺍﻟﻘﺮﻳﺐ‬
‫ﺍﺠﻤﻟﺎﻝ‬
‫‪0.20‬‬
‫‪0.05‬‬
‫‪225‬‬
‫‪250‬‬
‫‪200‬‬
‫‪175‬‬
‫‪150‬‬
‫‪125‬‬
‫‪100‬‬
‫‪75‬‬
‫‪50‬‬
‫‪25‬‬
‫‪0‬‬
‫‪0.00‬‬
‫)‪(m‬‬
‫)‪ (m‬ﻋﻠﻰ ‪Y‬‬
‫ﻛﻨﺲ‬
‫‪Y sweep‬‬
‫‪field‬ﺍﳍﻮﺍﺋﻲ‪.‬‬
‫ﻣﻮﺻﱢﻞ‬
‫‪ kW‬ﰲ‬
‫ﺍﳌﺮﺳﻞ ‪225‬‬
‫ﻟﻠﻤﺴﺎﻓﺔ‪ .‬ﻗﺪﺭﺓ‬
‫‪225‬ﺗﺒﻌﺎﹰ‬
‫ﺍﻟﻘﺮﻳﺐ‬
‫‪ ،MHz 13‬ﺷﺪﺓ‬
‫‪13 MHz, near magnetic‬‬
‫‪versus‬‬
‫‪distance.‬‬
‫‪Transmitter‬‬
‫‪power:‬‬
‫ﺍﺠﻤﻟﺎﻝ ‪kW‬‬
‫‪at antenna‬‬
‫‪connector. Height: 2 m over terrain‬‬
‫ﺍﻻﺭﺗﻔﺎﻉ ﻋﻦ ﺳﻮﻳﺔ ﺍﻷﺭﺽ‪m 2 :‬‬
‫ﺍﺠﻤﻟﺎﻝ‬
‫ﺍﺠﻤﻟﺎﻝ‬
‫ﺍﺠﻤﻟﺎﻝ‬
‫‪CORT13‬‬
‫‪2 = field,‬؛‬
‫‪Z ،0 mag‬‬
‫‪= X (X),‬‬
‫ﺍﻟﺜﻮﺍﺑﺖ‪:‬‬
‫‪constants:‬ﻋﻠﻰ ‪،Y‬‬
‫ﻣﻘﺪﺍﺭ‪ ،(X)X‬ﻛﻨﺲ‬
‫ﺍﻟﻘﺮﻳﺐ‪،‬‬
‫ﺍﳌﻐﻨﻄﻴﺴﻲ‬
‫‪Near‬‬
‫‪magnetic‬‬
‫‪Y sweep,‬‬
‫‪= 0, Z‬‬
‫‪= 2; CORT13‬‬
‫‪CORT13‬‬
‫‪2 = field,‬؛‬
‫‪Z ،0 mag‬‬
‫‪= X (Y),‬‬
‫ﺍﻟﺜﻮﺍﺑﺖ‪:‬‬
‫‪constants:‬ﻋﻠﻰ ‪،Y‬‬
‫ﻣﻘﺪﺍﺭ‪ ،(Y)X‬ﻛﻨﺲ‬
‫ﺍﻟﻘﺮﻳﺐ‪،‬‬
‫ﺍﳌﻐﻨﻄﻴﺴﻲ‬
‫‪Near‬‬
‫‪magnetic‬‬
‫‪Y sweep,‬‬
‫‪= 0, Z‬‬
‫‪= 2; CORT13‬‬
‫‪CORT13‬‬
‫؛‬
‫‪2‬‬
‫=‬
‫‪Z‬‬
‫‪،‬‬
‫‪0‬‬
‫=‬
‫‪X‬‬
‫‪:‬‬
‫ﺍﻟﺜﻮﺍﺑﺖ‬
‫‪،‬‬
‫‪Y‬‬
‫ﻋﻠﻰ‬
‫ﻛﻨﺲ‬
‫‪،‬‬
‫(‬
‫‪Z‬‬
‫)‬
‫ﻣﻘﺪﺍﺭ‬
‫ﺍﻟﻘﺮﻳﺐ‪،‬‬
‫ﺍﳌﻐﻨﻄﻴﺴﻲ‬
‫‪Near magnetic field, mag (Z), Y sweep, constants: X = 0, Z = 2; CORT13‬‬
‫‪1698-28‬‬
‫ﻳﻌﻮﺩ ﺍﻹﺳﻬﺎﻡ ﺍﻷﻫﻢ ﺇﱃ ﺍﳌﻜﻮﱢﻥ ‪ .y‬ﺍﳌﻜﻮﱢﻥ ‪ z‬ﺃﻗﻞ‪ ،‬ﰲ ﺣﲔ ﺍﳌﻜﻮﱢﻥ ‪ x‬ﻫﻮ ‪ .0‬ﳝﺜﻞ ﺍﶈﻮﺭ ﺍﻷﻓﻘﻲ ﺍﳌﺴﺎﻓﺔ ﺑﺎﻷﻣﺘﺎﺭ ﻋﻦ ﺍﳍﻮﺍﺋﻲ‬
‫)ﻛﻨﺲ ﻋﻠﻰ ‪ .(Y‬ﻗﻴﻤﺔ ‪ Z‬ﺛﺎﺑﺘﺔ ﻋﻠﻰ ‪) m 2‬ﺍﻻﺭﺗﻔﺎﻉ ﻋﻦ ﺳﻮﻳﺔ ﺍﻷﺭﺽ(‪ .‬ﺷﺪﺓ ﻣﻜﻮﻧﺎﺕ ﺍﺠﻤﻟﺎﻝ ﺍﳌﻐﻨﻄﻴﺴﻲ )‪ (H‬ﻣﻌﺒﱠﺮ ﻋﻨﻬﺎ‬
‫ﺑـ ‪ A/m‬ﻋﻠﻰ ﺍﶈﻮﺭ ﺍﻟﻌﻤﻮﺩﻱ‪.‬‬
‫ﺍﻟﺘﻮﺻﻴﺔ‬
‫‪49‬‬
‫‪ITU-R BS.1698‬‬
‫ﺍﻟﺸﻜﻞ‬
‫ﻗﻴﻤﺔ ﺷﺪﺓ ﺍﺠﻤﻟﺎﻝ ﺍﻟﻜﻬﺮﺑﺎﺋﻲ ﰲ ﺍﳌﻨﻄﻘﺔ ﺍﻟﻘﺮﻳﺒﺔ‪ ،‬ﳏﺼﻠﺔ ﺑﺎﳊﺴﺎﺏ ﻋﻠﻰ ﻣﺴﺎﻓﺔ ‪ m 60‬ﻣﻦ ﺍﳍﻮﺍﺋﻲ )‪،(60 = Y‬‬
‫ﻭﻋﻠﻰ ﺍﺭﺗﻔﺎﻋﺎﺕ ﳐﺘﻠﻔﺔ ﺑﲔ ‪ 0‬ﻭ‪) 9‬ﻛﻨﺲ ﻋﻠﻰ ‪(Z‬‬
‫‪29‬‬
‫‪80‬‬
‫‪70‬‬
‫‪40‬‬
‫‪30‬‬
‫‪10‬‬
‫‪9‬‬
‫‪8‬‬
‫‪7‬‬
‫‪6‬‬
‫‪5‬‬
‫‪4‬‬
‫‪3‬‬
‫‪2‬‬
‫‪1‬‬
‫‪0‬‬
‫)‪(m‬‬
‫)‪(m‬ﻋﻠﻰ ‪Z‬‬
‫ﻛﻨﺲ‬
‫‪Z sweep‬‬
‫ﺍﳍﻮﺍﺋﻲ‪.‬‬
‫‪ height‬ﻣﻦ‬
‫ﻣﺴﺎﻓﺔ ‪m 60‬‬
‫ﻟﻼﺭﺗﻔﺎﻉ‪،‬‬
‫‪ ،MHz 13‬ﺷﺪﺓ ﺍﺠﻤﻟﺎﻝ ﺍﻟﻘﺮﻳﺐ ﺗﺒﻌﹰﺎ‬
‫‪13 MHz, near electric field‬‬
‫‪versus‬‬
‫ﻋﻠﻰ‪@ 60‬‬
‫‪m from‬‬
‫‪antenna.‬‬
‫‪Transmitter power: 225 kW at antenna connector.‬‬
‫ﻗﺪﺭﺓ ﺍﳌﺮﺳﻞ ‪ kW 225‬ﰲ ﻣﻮﺻﱢﻞ ﺍﳍﻮﺍﺋﻲ‪.‬‬
‫ﺍﺠﻤﻟﺎﻝ‬
‫ﺍﺠﻤﻟﺎﻝ‬
‫ﺍﺠﻤﻟﺎﻝ‬
‫‪CORT13‬‬
‫‪60 =field,‬؛‬
‫‪Y ،0mag‬‬
‫‪= X(X),‬‬
‫ﺍﻟﺜﻮﺍﺑﺖ‪:‬‬
‫ﻋﻠﻰ ‪،Z‬‬
‫ﻣﻘﺪﺍﺭ= )‪ ،(XX‬ﻛﻨﺲ‬
‫ﺍﻟﻜﻬﺮﺑﺎﺋﻲ‬
‫‪Near electric‬‬
‫‪Z sweep,‬‬
‫‪constants:‬‬
‫ﺍﻟﻘﺮﻳﺐ=‪0, Y،‬‬
‫‪60; CORT13‬‬
‫‪CORT13‬‬
‫؛‬
‫‪60‬‬
‫=‬
‫‪Y‬‬
‫‪،‬‬
‫‪0‬‬
‫=‬
‫‪X‬‬
‫‪:‬‬
‫ﺍﻟﺜﻮﺍﺑﺖ‬
‫‪،‬‬
‫‪Z‬‬
‫ﻋﻠﻰ‬
‫ﻛﻨﺲ‬
‫‪،‬‬
‫(‬
‫‪Y‬‬
‫)‬
‫ﻣﻘﺪﺍﺭ‬
‫ﺍﻟﻘﺮﻳﺐ‪،‬‬
‫ﺍﻟﻜﻬﺮﺑﺎﺋﻲ‬
‫‪Near electric field, mag (Y), Z sweep, constants: X = 0, Y = 60; CORT13‬‬
‫‪CORT13‬‬
‫‪60 =field,‬؛‬
‫‪Y ،0mag‬‬
‫‪= X(Z),‬‬
‫ﺍﻟﺜﻮﺍﺑﺖ‪:‬‬
‫ﻋﻠﻰ ‪،Z‬‬
‫‪ ،(X‬ﻛﻨﺲ‬
‫ﻣﻘﺪﺍﺭ=)‪Z‬‬
‫ﺍﻟﻜﻬﺮﺑﺎﺋﻲ‬
‫‪Near electric‬‬
‫‪Z sweep,‬‬
‫‪constants:‬‬
‫ﺍﻟﻘﺮﻳﺐ‪0, Y ،‬‬
‫‪= 60; CORT13‬‬
‫‪1698-29‬‬
‫ﺍﻟﻌﻼﻗﺔ ﺍﻟﻘﻮﻳﺔ ﺑﲔ ﻗﻴﻢ ‪ E‬ﻭﺍﻻﺭﺗﻔﺎﻉ ﻇﺎﻫﺮﺓ )ﻟﻴﺲ ﺣﺎﺿﺮﹰﺍ ﺇﻻ ﺍﳌﻜﻮﻥ ‪ x‬ﻟﻠﻤﺠﺎﻝ ‪.(E‬‬
‫‪0‬‬
‫)‪(V/m‬‬
‫‪20‬‬
‫)‪Near electric field (V/m‬‬
‫‪50‬‬
‫ﺍﺠﻤﻟﺎﻝ ﺍﻟﻜﻬﺮﺑﺎﺋﻲ ﺍﻟﻘﺮﻳﺐ‬
‫‪60‬‬
‫ﺍﻟﺘﻮﺻﻴﺔ‬
‫‪50‬‬
‫‪ITU-R BS.1698‬‬
‫ﺍﻟﺸﻜﻞ‬
‫ﻗﻴﻤﺔ ﺷﺪﺓ ﺍﺠﻤﻟﺎﻝ ﺍﳌﻐﻨﻄﻴﺴﻲ ﰲ ﺍﳌﻨﻄﻘﺔ ﺍﻟﻘﺮﻳﺒﺔ‪ ،‬ﳏﺼﻠﺔ ﺑﺎﳊﺴﺎﺏ ﻋﻠﻰ ﻣﺴﺎﻓﺔ ‪ m 60‬ﻣﻦ ﺍﳍﻮﺍﺋﻲ )‪،(60 = Y‬‬
‫ﻭﻋﻠﻰ ﺍﺭﺗﻔﺎﻋﺎﺕ ﳐﺘﻠﻔﺔ ﺑﲔ ‪ 0‬ﻭ‪) 9‬ﻛﻨﺲ ﻋﻠﻰ ‪(Z‬‬
‫‪30‬‬
‫‪0.20‬‬
‫‪0.10‬‬
‫‪0.05‬‬
‫‪9‬‬
‫‪8‬‬
‫‪7‬‬
‫‪6‬‬
‫‪5‬‬
‫‪4‬‬
‫‪3‬‬
‫‪1‬‬
‫‪2‬‬
‫‪0‬‬
‫‪Near magnetic‬‬
‫)‪field (A/m‬‬
‫)‪(A/m‬‬
‫ﺍﳌﻐﻨﻄﻴﺴﻲ ﺍﻟﻘﺮﻳﺐ‬
‫ﺍﺠﻤﻟﺎﻝ‬
‫‪0.15‬‬
‫‪0.00‬‬
‫)‪(m‬‬
‫)‪(m‬ﻋﻠﻰ ‪Z‬‬
‫ﻛﻨﺲ‬
‫‪Z sweep‬‬
‫ﺍﳍﻮﺍﺋﻲ‪.‬‬
‫‪ mfield‬ﻣﻦ‬
‫ﻣﺴﺎﻓﺔ ‪60‬‬
‫‪height‬ﻋﻠﻰ‬
‫ﻟﻼﺭﺗﻔﺎﻉ‪،‬‬
‫‪ antenna.‬ﺍﻟﻘﺮ‬
‫‪ ،MHz 13‬ﺷﺪﺓ ﺍﺠﻤﻟﺎﻝ ﺍﳌﻐﻨﻄﻴﺴﻲ‬
‫‪13 MHz, near‬‬
‫‪magnetic‬‬
‫‪versus‬‬
‫ﻳﺐ‪m‬ﺗﺒﻌﹰﺎ‪@ 60‬‬
‫‪from‬‬
‫ﻗﺪﺭﺓ ﺍﳌﺮﺳﻞ ‪ kW 225‬ﰲ ﻣﻮﺻﱢﻞ ﺍﳍﻮﺍﺋﻲ‪Transmitter power: 225 kW at antenna connector. .‬‬
‫‪CORT13‬‬
‫‪60 = Yfield,‬؛‬
‫‪،0 =mag‬‬
‫‪X :(X),‬‬
‫ﺍﻟﺜﻮﺍﺑﺖ‬
‫‪constants:‬ﻋﻠﻰ ‪،Z‬‬
‫ﻣﻘﺪﺍﺭ‪ ،(X)X‬ﻛﻨﺲ‬
‫‪Near magnetic‬‬
‫‪Z sweep,‬‬
‫ﺍﻟﻘﺮﻳﺐ‪= 0, ،‬‬
‫ﺍﳌﻐﻨﻄﻴﺴﻲ;‪Y = 60‬‬
‫ﺍﺠﻤﻟﺎﻝ‪CORT13‬‬
‫‪CORT13‬‬
‫‪60 = Yfield,‬؛‬
‫‪،0 =mag‬‬
‫‪X :(Y),‬‬
‫ﺍﻟﺜﻮﺍﺑﺖ‬
‫‪constants:‬ﻋﻠﻰ ‪،Z‬‬
‫ﻣﻘﺪﺍﺭ‪ ،(Y)X‬ﻛﻨﺲ‬
‫‪Near magnetic‬‬
‫‪Z sweep,‬‬
‫ﺍﻟﻘﺮﻳﺐ‪= 0, ،‬‬
‫ﺍﳌﻐﻨﻄﻴﺴﻲ;‪Y = 60‬‬
‫ﺍﺠﻤﻟﺎﻝ‪CORT13‬‬
‫‪CORT13‬‬
‫؛‬
‫‪60‬‬
‫=‬
‫‪Y‬‬
‫‪،‬‬
‫‪0‬‬
‫=‬
‫‪X‬‬
‫‪:‬‬
‫ﺍﻟﺜﻮﺍﺑﺖ‬
‫‪،‬‬
‫‪Z‬‬
‫ﻋﻠﻰ‬
‫ﻛﻨﺲ‬
‫‪،‬‬
‫(‬
‫‪Z‬‬
‫)‬
‫ﻣﻘﺪﺍﺭ‬
‫ﺍﻟﻘﺮﻳﺐ‪،‬‬
‫ﺍﳌﻐﻨﻄﻴﺴﻲ‬
‫ﺍﺠﻤﻟﺎﻝ‪Near magnetic field, mag (Z), Z sweep, constants: X = 0, Y = 60; CORT13‬‬
‫‪1698-30‬‬
‫ﺍﻟﻌﻼﻗﺔ ﺍﻟﻘﻮﻳﺔ ﺑﲔ ﻗﻴﻢ ‪ H‬ﻭﺍﻻﺭﺗﻔﺎﻉ ﻇﺎﻫﺮﺓ ﺃﻳﻀﹰﺎ )ﻛﻼ ﺍﳌﻜﻮﱢﻧﲔ ‪ z‬ﻭ‪ y‬ﻟﻠﻤﺠﺎﻝ ‪ H‬ﺣﺎﺿﺮ‪ ،‬ﻭﻗﻴﻤﺔ ﺍﳌﻜﻮﱢﻥ ‪ y‬ﺛﺎﺑﺘﺔ(‪.‬‬
‫‪2.1.2‬‬
‫ﺍﻟﻘﻴﺎﺳﺎﺕ‬
‫ﺃﹸﺟﺮﻳﺖ ﺍﻟﻘﻴﺎﺳﺎﺕ ﺑﺎﺳﺘﻌﻤﺎﻝ ﻣﻘﻴﺎﺱ ﻟﺸﺪﺓ ﳎﺎﻝ ﺍﻟﻨﻄﺎﻗﺎﺕ ﺍﻟﻌﺮﻳﻀﺔ‪ ،‬ﻣﻨﺼﻮﺏ ﻋﻠﻰ ﻋﺮﺑﺔ ﻣﻌﺰﻭﻟﺔ ﻋﻦ ﺍﻟﻜﻬﺮﺑﺎﺀ ﳛﺮﻛﻬﺎ ﻣﺸﻐﱢﻞ‬
‫ﻣﺘﻤﺮﻛﺰ ﺑﻌﻴﺪﹰﺍ ﻋﻦ ﻣﻮﻗﻊ ﺍﳍﻮﺍﺋﻲ‪ .‬ﻭﻬﺑﺬﻩ ﺍﻟﻮﺳﻴﻠﺔ ﰎ ﲡﻨّﺐ ﺃﻱ ﺗﺸﻮﻳﺶ ﻟﻠﻤﺠﺎﻟﲔ ﺍﻟﻜﻬﺮﺑﺎﺋﻲ ﻭﺍﳌﻐﻨﻄﻴﺴﻲ‪.‬‬
‫‪ 1.2.1.2‬ﻧﺘﺎﺋﺞ ﺍﻟﻘﻴﺎﺳﺎﺕ‬
‫ﺍﻟﻘﻴﻢ ﺍﶈﺼﻠﺔ ﺑﺎﻟﻘﻴﺎﺱ ﻣﻌﺮﻭﺿﺔ ﰲ ﺍﻟﺸﻜﻠﲔ ‪) 31‬ﺍﺠﻤﻟﺎﻝ ‪ (E‬ﻭ‪) 32‬ﺍﺠﻤﻟﺎﻝ ‪ .(H‬ﻭﺍﻟﺸﻜﻼﻥ‬
‫ﺍﻟﺸﻜﻠﲔ ‪ 27‬ﻭ‪ 28‬ﻋﻠﻰ ﺗﺮﺗﻴﺐ ﺍﻟﺘﻮﺍﱄ‪.‬‬
‫‪ 31‬ﻭ‪32‬‬
‫ﻗﺎﺑﻼﻥ ﻟﻠﻤﻘﺎﺭﻧﺔ ﺍﳌﺒﺎﺷﺮﺓ ﻣﻊ‬
‫ﺍﻟﺘﻮﺻﻴﺔ‬
‫‪51‬‬
‫‪ITU-R BS.1698‬‬
‫ﺍﻟﺸﻜﻞ‬
‫ﻗﻴﻢ ﺷﺪﺓ ﺍﺠﻤﻟﺎﻝ ﺍﻟﻜﻬﺮﺑﺎﺋﻲ ﳏﺼﻠﺔ ﺑﺎﻟﻘﻴﺎﺱ‬
‫‪31‬‬
‫‪60‬‬
‫‪50‬‬
‫‪40‬‬
‫)‪(V/m‬‬
‫‪30‬‬
‫‪20‬‬
‫‪10‬‬
‫‪250‬‬
‫‪200‬‬
‫‪150‬‬
‫‪100‬‬
‫‪90‬‬
‫‪80‬‬
‫‪70‬‬
‫‪50‬‬
‫‪60‬‬
‫‪30‬‬
‫‪40‬‬
‫‪20‬‬
‫‪10‬‬
‫‪0‬‬
‫‪0‬‬
‫)‪(m‬‬
‫)‪(m‬ﻋﻠﻰ ‪Y‬‬
‫ﻛﻨﺲ‬
‫‪Y sweep‬‬
‫ﺍﻟﻔﻌﻠﻲ‬
‫ﺍﻟﻜﻬﺮﺑﺎﺋﻲ‬
‫‪field‬ﺍﺠﻤﻟﺎﻝ‬
‫‪Effective‬‬
‫‪electric‬‬
‫ﺍﺠﻤﻟﺎﻝ ‪X‬‬
‫‪X field‬‬
‫ﺍﺠﻤﻟﺎﻝ ‪Y‬‬
‫‪Y field‬‬
‫ﺍﺠﻤﻟﺎﻝ ‪Z‬‬
‫‪Z field‬‬
‫‪1698-31‬‬
‫ﳝﺜﻞ ﺍﶈﻮﺭ ﺍﻷﻓﻘﻲ ﺍﳌﺴﺎﻓﺔ ﻋﻦ ﺍﳍﻮﺍﺋﻲ ﺑﺎﳌﺘﺮ )ﻛﻨﺲ ﻋﻠﻰ ‪ .(Y‬ﻭﺷﺪﺓ ﻣﻜﻮّﻧﺎﺕ ﺍﺠﻤﻟﺎﻝ‬
‫ﺍﳌﻜﻮّﻧﺎﺕ ﺍﻟﺜﻼﺛﺔ ‪ x‬ﻭ‪ y‬ﻭ‪ z‬ﻟﻠﻤﺠﺎﻝ ‪ E‬ﺣﺎﺿﺮﺓ‪ ،‬ﻭﺍﳋﻂ ﺍﻟﻌﻠﻮﻱ ﳝﺜﻞ ﺍﻟﻘﻴﻤﺔ ﺍﻹﲨﺎﻟﻴﺔ‪.‬‬
‫‪E‬‬
‫ﳑﺜﻠﺔ‬
‫ﺑـ ‪V/m‬‬
‫ﻋﻠﻰ ﺍﶈﻮﺭ ﺍﻟﻌﻤﻮﺩﻱ‪.‬‬
‫ﺍﻟﺸﻜﻞ‬
‫ﻗﻴﻤﺔ ﺷﺪﺓ ﺍﺠﻤﻟﺎﻝ ﺍﳌﻐﻨﻄﻴﺴﻲ ﳏﺼﻠﺔ ﺑﺎﻟﻘﻴﺎﺱ‬
‫‪32‬‬
‫‪0.25‬‬
‫‪0.20‬‬
‫‪0.10‬‬
‫‪0.05‬‬
‫‪250‬‬
‫‪200‬‬
‫‪150‬‬
‫‪100‬‬
‫‪90‬‬
‫‪80‬‬
‫‪70‬‬
‫‪60‬‬
‫)‪(m‬‬
‫)‪(m‬ﻋﻠﻰ ‪Y‬‬
‫ﻛﻨﺲ‬
‫‪Y sweep‬‬
‫‪50‬‬
‫‪40‬‬
‫‪30‬‬
‫‪20‬‬
‫‪Xْprobe‬‬
‫ﻧﺘﻴﺠﺔ ﺳﲑ‬
‫‪X‬‬
‫ﻧﺘﻴﺠﺔ ﺳﲑ‬
‫‪Y probe‬‬
‫ﻧﺘﻴﺠﺔ ﺳﲑ‬
‫‪ZZ probe‬‬
‫‪1698-32‬‬
‫‪field‬ﺍﺠﻤﻟﺎﻝ ﺍﻟﻔﻌﻠﻲ‬
‫‪Effective‬‬
‫‪10‬‬
‫‪0‬‬
‫‪0.00‬‬
‫)‪(A/m‬‬
‫‪0.15‬‬
‫ﺍﻟﺘﻮﺻﻴﺔ‬
‫‪52‬‬
‫‪ITU-R BS.1698‬‬
‫ﳝﺜﻞ ﺍﶈﻮﺭ ﺍﻷﻓﻘﻲ ﺍﳌﺴﺎﻓﺔ ﻋﻦ ﺍﳍﻮﺍﺋﻲ ﺑﺎﳌﺘﺮ )ﻛﻨﺲ ﻋﻠﻰ ‪ .(Y‬ﻭﺷﺪﺓ ﻣﻜﻮّﻧﺎﺕ ﺍﺠﻤﻟﺎﻝ‬
‫ﺍﳌﻜﻮّﻧﺎﺕ ﺍﻟﺜﻼﺛﺔ ‪ x‬ﻭ‪ y‬ﻭ‪ z‬ﻟﻠﻤﺠﺎﻝ ‪ H‬ﺣﺎﺿﺮﺓ‪ ،‬ﻭﺍﳋﻂ ﺍﻟﻌﻠﻮﻱ ﳝﺜﻞ ﺍﻟﻘﻴﻤﺔ ﺍﻹﲨﺎﻟﻴﺔ‪.‬‬
‫‪2.2‬‬
‫‪MHz 18‬‬
‫‪1.2.2‬‬
‫ﺍﻟﺘﻮﻗﻌﺎﺕ‬
‫‪1.1.2.2‬‬
‫ﻣﻼﺣﻈﺎﺕ ﻋﻠﻰ ﺍﻟﻨﻤﻮﺫﺝ‬
‫‪H‬‬
‫ﳑﺜﻠﺔ‬
‫ﺑـ‪A/m‬‬
‫ﻋﻠﻰ ﺍﶈﻮﺭ ﺍﻟﻌﻤﻮﺩﻱ‪.‬‬
‫ﻻ ﺑﺪ‪ ،‬ﻟﻜﻲ ﻳﻜﻮﻥ ﺍﻟﺘﻨﺎﻇﺮ ﻋﻠﻰ ﺃﻣﺜﻞ ﻭﺟﻪ ﺑﲔ ﺍﻟﻨﻤﻮﺫﺝ ﺍﳌﺘﻘﺪﻡ ﻭﺻﻔﻪ ﻭﻧﻈﺎﻡ ﺍﳍﻮﺍﺋﻴﺎﺕ ﺍﳊﻘﻴﻘﻲ‪ ،‬ﻣﻦ ﻣﻌﺮﻓﺔ ﺩﻗﻴﻘﺔ ﻟﻜﻢ ﺍﻟﻘـﺪﺭﺓ‬
‫ﰲ ﺩﺧﻞ ﻛﻞ ﺛﻨﺎﺋﻲ ﻗﻄﺐ‪ ،‬ﻧﻈﺮﹰﺍ ﻟﻠﺨﺴﺎﺭﺓ ﺍﳊﺎﺻﻠﺔ ﰲ ﺧﻂ ﺍﻟﻨﻘﻞ ﻭﺑﺴﺒﺐ ﻋﺪﻡ ﺍﳌﻮﺍﺀﻣﺔ‪.‬‬
‫ﻭﺗﻮﺧﻴﹰﺎ ﻹﻣﺪﺍﺩ ﻛﻞ ﻣﻦ ﺛﻨﺎﺋﻴﺎﺕ ﺍﻟﻘﻄﺐ ﺑﻘﻴﻤﺔ ﺍﻟﺘﻮﺗﺮ ﺍﳌﻨﺎﺳﺒﺔ‪ ،‬ﺟﺮﻯ ﰲ ﺍﶈﺎﻛﺎﺓ ﺣﺴﺎﺏ ﻣﻌﺎﻭﻗﺔ ﺍﻟﺪﺧﻞ ﻟﻜﻞ ﻭﺍﺣﺪ ﻣﻦ ﺛﻨﺎﺋﻴﺎﺕ‬
‫ﺍﻟﻘﻄﺐ‪ .‬ﻭﺍﻟﻘﻴﻢ ﻣﻌﺮﻭﺿﺔ ﰲ ﺍﻟﺸﻜﻞ ‪.33‬‬
‫ﺍﻟﺸﻜﻞ‬
‫‪33‬‬
‫ﺍﻟﻘﻴﻢ ﺍﶈﺼﱠﻠﺔ ﺑﺎﶈﺎﻛﺎﺓ ﳌﻌﺎﻭﻗﺔ ﺩﺧﻞ ﺛﻨﺎﺋﻴﺎﺕ ﺍﻟﻘﻄﺐ‪ ،‬ﻣﻌﺎﻭﻗﺔ ﻣُﻘﻴﱠﺴﺔ‬
‫ﺑـ ‪Ω 180‬‬
‫‪ ،MHz 18‬ﺛﻨﺎﺋﻴﺎﺕ ﺍﻟﻘﻄﺐ )ﻣﻌﺎﻭﻗﺔ ﻣﻘﻴﺴﺔ ‪(Ω 180‬‬
‫‪1.0‬‬
‫‪0.5‬‬
‫‪2.0‬‬
‫‪0.2‬‬
‫‪5.0‬‬
‫‪5.0‬‬
‫‪2.0‬‬
‫‪1.0‬‬
‫‪0.5‬‬
‫‪0.2‬‬
‫‪5.0‬‬
‫‪0.2‬‬
‫‪2.0‬‬
‫‪1698-33‬‬
‫‪0.5‬‬
‫‪1.0‬‬
‫ﰒ ﺍﻋُﺘﻤِﺪ ﺑﺸﺄﻥ ﻛﻞ ﺛﻨﺎﺋﻲ ﻗﻄﺐ ﻗﻴﻤﺔ ﻭﺍﺣﺪﺓ ﻟﻠﻤﻘﺎﻭﻣﺔ ﺗﺴﺎﻭﻱ ‪ ،Ω 180‬ﻭﻫﺬﻩ ﻫﻲ ﺍﻟﻘﻴﻤﺔ ﺍﻟﻮﺳﻄﻴﺔ ﺍﶈﺼﻠﺔ ﺑﺎﶈﺎﻛﺎﺓ‪ .‬ﻭﻳﺴﺘﺮﻋﻰ‬
‫ﺍﻻﻧﺘﺒﺎﻩ ﺇﱃ ﺃﻥ ﻫﺬﺍ ﺍﻟﻘﺮﺍﺭ ﻗﺪ ﻳﻜﻮﻥ ﻫﻮ ﺳﺒﺐ ﻋﺪﻡ ﺍﻟﺪﻗﺔ ﰲ ﻧﺘﺎﺋﺞ ﺍﻟﺘﻮﻗﻌﺎﺕ‪.‬‬
‫ﺍﻟﺘﻮﺻﻴﺔ‬
‫‪ITU-R BS.1698‬‬
‫‪53‬‬
‫ﻧﻈﺮﹰﺍ ﻻﳔﻔﺎﺽ ﺍﳌﻜﻮّﻧﺎﺕ ﺍﻟﺘﻔﺎﻋﻠﻴﺔ ﳌﻌﺎﻭﻗﺔ ﺍﻟﺪﺧﻞ ﺍﳌﻌﻘﺪﺓ‪ ،‬ﻻ ﻳﻠﺰﻡ ﺇﺩﺧﺎﻝ ﺗﻌﺪﻳﻼﺕ ﻋﻠﻰ ﻗﺪﺭﺓ ﺍﳌﺮﺳﻞ ﻟﻠﺘﻌﻮﻳﺾ ﻋﻦ ﺧﺴﺎﺭﺓ‬
‫ﺍﻟﻘﺪﺭﺓ ﺑﺴﺒﺐ ﻋﺪﻡ ﺍﳌﻮﺍﺀﻣﺔ ﻭﺍﻻﻧﻌﻜﺎﺱ ﺍﻟﻨﺎﺟﻢ ﻋﻨﻪ‪ ،‬ﺑﲔ ﺍﳌﺮﺳﻞ ﻭﺍﳍﻮﺍﺋﻲ‪.‬‬
‫ﻳﺴﺘﺮﻋﻰ ﺍﻻﻧﺘﺒﺎﻩ ﺇﱃ ﺍﻟﺘﺸﺘﺖ ﺍﻟﻀﺌﻴﻞ ‪ -‬ﻟﻜﻨﻪ ﻏﲑ ﻣﻌﺪﻭﻡ ‪ -‬ﰲ ﻗﻴﻢ ﺍﳌﻘﺎﻭﻣﺔ ﻗﺮﺏ ‪ ،Ω 180‬ﻭﺍﻟﻐﻴﺎﺏ ﺍﻟﻜﺒﲑ ﻟﻠﻤﻜ ّﻮﻧﺎﺕ ﺍﻟﺘﻔﺎﻋﻠﻴﺔ‪.‬‬
‫‪2.1.2.2‬‬
‫ﺗﻘﻴﻴﻤﺎﺕ ﺍﺠﻤﻟﺎﻝ ﺍﻟﺒﻌﻴﺪ‬
‫ﺗﻮﺧﻴﹰﺎ ﻟﻠﻤﻘﺎﺭﻧﺔ ﻋﻠﻰ ﺃﻓﻀﻞ ﻭﺟﻪ ﺑﲔ ﺍﻟﻨﻤﻮﺫﺝ ﻭﺍﳍﻮﺍﺋﻴﺎﺕ ﺍﳊﻘﻴﻘﻴﺔ ﺍﳌﻤﺜﻠﺔ ﰲ ﺍﻟﺸﻜﻠﲔ ‪ 19‬ﻭ‪ُ ،20‬ﺣﺴِﺒﺖ ﳐﻄﻄﺎﺕ ﺍﻹﺷﻌﺎﻉ‪،‬‬
‫ﻓﻜﺎﻧﺖ ﺍﻟﻨﺘﺎﺋﺞ ﻣﺎ ﻳﺮﺩ ﲤﺜﻴﻠﻪ ﰲ ﺍﻟﺸﻜﻞ ‪) 34‬ﺍﳌﺴﺘﻮﻱ ﺍﻷﻓﻘﻲ(‪ ،‬ﻭﺍﻟﺸﻜﻞ ‪) 35‬ﺍﳌﺴﺘﻮﻱ ﺍﻟﻌﻤﻮﺩﻱ(‪ ،‬ﻭﺍﻟﺸﻜﻞ ‪) 36‬ﺍﳌﺸﻬﺪ‬
‫ﺍﻷﻣﺎﻣﻲ(‪.‬‬
‫ﺍﻟﺸﻜﻞ‬
‫‪34‬‬
‫ﳐﻄﻂ ﺍﻹﺷﻌﺎﻉ ﻋﻠﻰ ﺍﳌﺴﺘﻮﻱ ﺍﻷﻓﻘﻲ‬
‫‪1698-34‬‬
‫ﺍﻟﺘﻮﺻﻴﺔ‬
‫‪54‬‬
‫‪ITU-R BS.1698‬‬
‫ﺍﻟﺸﻜﻞ‬
‫‪35‬‬
‫ﳐﻄﻂ ﺍﻹﺷﻌﺎﻉ ﻋﻠﻰ ﺍﳌﺴﺘﻮﻱ ﺍﻟﻌﻤﻮﺩﻱ‬
‫‪Rap 2037-35‬‬
‫ﺍﻟﺸﻜﻞ‬
‫‪36‬‬
‫ﳐﻄﻂ ﺍﻹﺷﻌﺎﻉ‪ ،‬ﺍﳌﺸﻬﺪ ﺍﻷﻣﺎﻣﻲ‬
‫‪1698-36‬‬
‫‪ 3.1.2.2‬ﻧﺘﺎﺋﺞ ﺗﻮﻗﻊ ﺷﺪﺓ ﺍﺠﻤﻟﺎﻝ ﰲ ﺍﳌﻨﻄﻘﺔ ﺍﻟﻘﺮﻳﺒﺔ‬
‫ُﺣﻘﱢﻘﺖ ﺍﻟﺘﻮﻗﻌﺎﺕ ﻋﻦ ﻃﺮﻳﻖ ﺣﺴﺎﺏ ﺍﳌﻜﻮﱢﻧﺎﺕ ‪ x‬ﻭ‪ y‬ﻭ‪ z‬ﻟﻠﻤﺠﺎﻟﲔ ‪ E‬ﻭ‪ ،H‬ﰲ ﺍﲡﺎﻩ ﺍﻟﻜﺴﺐ ﺍﻷﻗﺼﻰ ﻟﻠﻬﻮﺍﺋﻲ )ﺍﶈﻮﺭ ‪،(Y‬‬
‫ﻭﻋﻠﻰ ﺍﺭﺗﻔﺎﻉ ‪ m 2‬ﻓﻮﻕ ﺳﻮﻳﺔ ﺍﻷﺭﺽ )ﺍﶈﻮﺭ ‪ .(2 = Z‬ﻭﺍﻟﻘﻴﻢ ﺍﶈﺼﱠﻠﺔ ﺑﺎﳊﺴﺎﺏ ﳑﺜﻠﺔ ﰲ ﺍﻟﺸﻜﻞ ‪) 37‬ﺍﺠﻤﻟﺎﻝ ‪ (E‬ﻭﺍﻟﺸﻜﻞ ‪38‬‬
‫)ﺍﺠﻤﻟﺎﻝ ‪ .(H‬ﰒ ﺇﻥ ﺍﻟﺘﺄﺛﲑ ﺍﻟﻘﻮﻱ ﻟﺘﻀﺎﺭﻳﺲ ﺍﻷﺭﺽ‪ ،‬ﻋﻠﻰ ﻋﻤﻠﻴﺎﺕ ﺍﻟﺘﻘﻴﻴﻢ ﻛﻤﺎ ﻋﻠﻰ ﻋﻤﻠﻴﺎﺕ ﺍﻟﻘﻴﺎﺱ‪ ،‬ﻣﻦ ﺷﺄﻧﻪ ﺃﻥ ﻳُﺪﺧِﻞ ﻓﺮﻗﹰﺎ‬
‫ﺇﺿﺎﻓﻴﹰﺎ ﺑﲔ ﻧﺘﺎﺋﺠﻬﻤﺎ‪ .‬ﻓﺘﻮﺧﻴﹰﺎ ﻹﻇﻬﺎﺭ ﺗﺄﺛﲑ ﺍﻟﺘﻀﺎﺭﻳﺲ ﺍﻟﺸﺪﻳﺪ‪ُ ،‬ﺣﺴِﺒﺖ ﺃﻳﻀﹰﺎ ﻗﻴﻢ ﺍﺠﻤﻟﺎﻟﲔ ‪ E‬ﻭ‪ H‬ﻣﻊ ﺗﻐﻴﲑ ﺍﺭﺗﻔﺎﻉ ﻧﻘﻄﺔ ﺍﻟﺘﻘﻴﻴﻢ‬
‫ﻓﻮﻕ ﺳﻮﻳﺔ ﺍﻷﺭﺽ )ﺍﶈﻮﺭ ‪ (Z‬ﻣﻦ ‪ 0‬ﺇﱃ ‪ m 9‬ﻋﻠﻰ ﻣﺴﺎﻓﺔ ﺛﺎﺑﺘﺔ ﻃﻮﳍﺎ ‪ .(60 = Y) m 60‬ﻭﺗﺄﺛﺮ ﺍﻟﻨﺘﺎﺋﺞ ﺑﺘﻐﻴﲑ ﺍﺭﺗﻔﺎﻉ ﻧﻘﻄﺔ‬
‫ﺍﻟﺘﻘﻴﻴﻢ ﳝﺜﻠﻪ ﺍﻟﺸﻜﻞ ‪) 39‬ﲞﺼﻮﺹ ﺍﺠﻤﻟﺎﻝ ‪ (E‬ﻭﺍﻟﺸﻜﻞ ‪) 40‬ﲞﺼﻮﺹ ﺍﺠﻤﻟﺎﻝ ‪.(H‬‬
‫ﺍﻟﺘﻮﺻﻴﺔ‬
‫‪55‬‬
‫‪ITU-R BS.1698‬‬
‫ﺍﻟﺸﻜﻞ‬
‫‪37‬‬
‫ﻗﻴﻤﺔ ﺷﺪﺓ ﺍﺠﻤﻟﺎﻝ ﺍﻟﻜﻬﺮﺑﺎﺋﻲ ﰲ ﺍﳌﻨﻄﻘﺔ ﺍﻟﻘﺮﻳﺒﺔ‬
‫‪80‬‬
‫‪70‬‬
‫‪50‬‬
‫‪40‬‬
‫‪30‬‬
‫‪20‬‬
‫)‪(V/m‬‬
‫ﺍﻟﻜﻬﺮﺑﺎﺋﻲ ﺍﻟﻘﺮﻳﺐ‬
‫ﺍﺠﻤﻟﺎﻝ‬
‫‪Near electric‬‬
‫)‪field (V/m‬‬
‫‪60‬‬
‫‪10‬‬
‫‪225‬‬
‫‪250‬‬
‫‪200‬‬
‫‪175‬‬
‫‪150‬‬
‫‪125‬‬
‫‪100‬‬
‫‪75‬‬
‫‪50‬‬
‫‪25‬‬
‫‪0‬‬
‫‪0‬‬
‫)‪(m‬‬
‫)‪ (m‬ﻋﻠﻰ ‪Y‬‬
‫ﻛﻨﺲ‬
‫‪Y sweep‬‬
‫ﺍﳍﻮﺍﺋﻲ‪.‬‬
‫‪distance.‬ﰲ ﻣﻮﺻ‬
‫‪kW 200 Transmitter‬‬
‫‪ .power:‬ﻗﺪﺭﺓ ﺍﳌﺮﺳﻞ‬
‫‪200‬ﺎﹰ ﻟﻠﻤﺴﺎﻓﺔ‬
‫ﺍﻟﻘﺮﻳﺐ ﺗﺒﻌ‬
‫‪ connector.‬ﺷﺪﺓ‬
‫‪،MHz 18‬‬
‫‪18 MHz, near electric‬‬
‫‪versus‬ﱢﻞ‪field‬‬
‫ﺍﺠﻤﻟﺎﻝ ‪kW at‬‬
‫‪antenna‬‬
‫‪Height: 2 m over terrain‬‬
‫ﺍﻻﺭﺗﻔﺎﻉ ﻋﻦ ﺳﻮﻳﺔ ﺍﻷﺭﺽ‪m 2 :‬‬
‫‪Near‬‬
‫‪electric‬‬
‫‪(X),‬‬
‫‪Y sweep,‬‬
‫‪constants:‬‬
‫ﺍﻟﻘﺮﻳﺐ‪0, Z =،‬‬
‫‪2; CORT18‬‬
‫‪CORT18‬‬
‫‪2 field,‬؛‬
‫‪= Z ،mag‬‬
‫‪0=X‬‬
‫ﺍﻟﺜﻮﺍﺑﺖ‪:‬‬
‫ﻋﻠﻰ ‪،Y‬‬
‫ﻣﻘﺪﺍﺭ=) ‪ ،(X‬ﻛﻨﺲ‬
‫ﺍﻟﻜﻬﺮﺑﺎﺋﻲ‬
‫ﺍﺠﻤﻟﺎﻝ‬
‫‪CORT18‬‬
‫‪2 field,‬؛‬
‫‪= Z ،mag‬‬
‫‪0=X‬‬
‫ﺍﻟﺜﻮﺍﺑﺖ‪:‬‬
‫ﻋﻠﻰ ‪،Y‬‬
‫‪ ،(X‬ﻛﻨﺲ‬
‫ﻣﻘﺪﺍﺭ=)‪Y‬‬
‫ﺍﺠﻤﻟﺎﻝ ﺍﻟﻜﻬﺮﺑﺎﺋﻲ‬
‫‪Near‬‬
‫‪electric‬‬
‫‪(Y),‬‬
‫‪Y sweep,‬‬
‫‪constants:‬‬
‫ﺍﻟﻘﺮﻳﺐ‪0, Z =،‬‬
‫‪2; CORT18‬‬
‫‪CORT18‬‬
‫‪2 field,‬؛‬
‫‪= Z ،mag‬‬
‫‪0=X‬‬
‫ﻋﻠﻰ ‪،Y‬‬
‫ﻣﻘﺪﺍﺭ =)‪ ،(XZ‬ﻛﻨﺲ‬
‫ﺍﺠﻤﻟﺎﻝ ﺍﻟﻜﻬﺮﺑﺎﺋﻲ‬
‫‪Near‬‬
‫‪electric‬‬
‫ﺍﻟﺜﻮﺍﺑﺖ‪(Z),:‬‬
‫‪Y sweep,‬‬
‫‪constants:‬‬
‫ﺍﻟﻘﺮﻳﺐ‪0, Z =،‬‬
‫‪2; CORT18‬‬
‫‪1698-37‬‬
‫ﻳﻌﻮﺩ ﺍﻹﺳﻬﺎﻡ ﺍﻷﻫﻢ ﺇﱃ ﺍﳌﻜﻮﱢﻥ ‪ .x‬ﳝﺜﻞ ﺍﶈﻮﺭ ﺍﻷﻓﻘﻲ ﺍﳌﺴﺎﻓﺔ ﺑﺎﻷﻣﺘﺎﺭ ﻋﻦ ﺍﳍﻮﺍﺋﻲ )ﻛﻨﺲ ﻋﻠﻰ ‪ .(Y‬ﻗﻴﻤﺔ‬
‫)ﺍﻻﺭﺗﻔﺎﻉ ﻋﻦ ﺳﻮﻳﺔ ﺍﻷﺭﺽ(‪ .‬ﺷﺪﺓ ﻣﻜﻮﻧﺎﺕ ﺍﺠﻤﻟﺎﻝ ﺍﻟﻜﻬﺮﺑﺎﺋﻲ )‪ (E‬ﻣﻌﺒﱠﺮ ﻋﻨﻬﺎ ﺑـ ‪ V/m‬ﻋﻠﻰ ﺍﶈﻮﺭ ﺍﻟﻌﻤﻮﺩﻱ‪.‬‬
‫‪Z‬‬
‫ﺛﺎﺑﺘﺔ ﻋﻠﻰ‬
‫‪m 2‬‬
‫ﺍﻟﺘﻮﺻﻴﺔ‬
‫‪56‬‬
‫‪ITU-R BS.1698‬‬
‫ﺍﻟﺸﻜﻞ‬
‫ﻗﻴﻤﺔ ﺷﺪﺓ ﺍﺠﻤﻟﺎﻝ ﺍﳌﻐﻨﻄﻴﺴﻲ ﰲ ﺍﳌﻨﻄﻘﺔ ﺍﻟﻘﺮﻳﺒﺔ‪ ،‬ﳏﺼﻠﺔ ﺑﺎﳊﺴﺎﺏ‬
‫‪38‬‬
‫‪0.25‬‬
‫‪0.15‬‬
‫‪0.10‬‬
‫‪0.05‬‬
‫‪225‬‬
‫‪250‬‬
‫‪200‬‬
‫‪175‬‬
‫‪150‬‬
‫‪125‬‬
‫‪100‬‬
‫‪75‬‬
‫‪50‬‬
‫‪25‬‬
‫‪0‬‬
‫‪Near magnetic‬‬
‫)‪field (A/m‬‬
‫)‪(A/m‬‬
‫ﺍﳌﻐﻨﻄﻴﺴﻲ ﺍﻟﻘﺮﻳﺐ‬
‫ﺍﺠﻤﻟﺎﻝ‬
‫‪0.20‬‬
‫‪0.00‬‬
‫‪Y sweep‬‬
‫)‪(m‬‬
‫)‪ (m‬ﻋﻠﻰ ‪Y‬‬
‫ﻛﻨﺲ‬
‫ﺍﳍﻮﺍﺋﻲ‪.‬‬
‫‪field‬ﰲ ﻣﻮﺻﱢﻞ‬
‫‪kWversus‬‬
‫ﺍﳌﺮﺳﻞ ‪200‬‬
‫‪ Transmitter‬ﻗﺪﺭﺓ‬
‫ﺍﻟﻘﺮﻳﺐ ﺗﺒﻌﺎﹰ ﻟﻠﻤﺴﺎﻓﺔ‪.‬‬
‫‪ ،MHz 18‬ﺷﺪﺓ‬
‫‪18 MHz, near‬‬
‫‪magnetic‬‬
‫‪distance.‬‬
‫ﺍﳌﻐﻨﻄﻴﺴﻲ‪power:‬‬
‫ﺍﺠﻤﻟﺎﻝ ‪200 kW‬‬
‫‪at antenna‬‬
‫‪connector. Height: 2 m over terrain‬‬
‫ﺍﻻﺭﺗﻔﺎﻉ ﻋﻦ ﺳﻮﻳﺔ ﺍﻷﺭﺽ‪m 2 :‬‬
‫‪Near‬‬
‫‪magnetic‬‬
‫‪sweep,‬ﺍ ‪Y‬‬
‫ﺍﻟﻘﺮﻳﺐ‪= 0, Z،‬‬
‫‪= 2; CORT18‬‬
‫‪CORT18‬‬
‫‪2 =field,‬؛‬
‫‪Z ،0 mag‬‬
‫‪= X (X),‬‬
‫ﻟﺜﻮﺍﺑﺖ‪:‬‬
‫‪constants:‬ﻋﻠﻰ ‪،Y‬‬
‫ﻣﻘﺪﺍﺭ )‪ ،(XX‬ﻛﻨﺲ‬
‫ﺍﳌﻐﻨﻄﻴﺴﻲ‬
‫ﺍﺠﻤﻟﺎﻝ‬
‫‪CORT18‬‬
‫‪2 =field,‬؛‬
‫‪Z ،0 mag‬‬
‫‪= X (Y),‬‬
‫ﺍﻟﺜﻮﺍﺑﺖ‪:‬‬
‫‪constants:‬ﻋﻠﻰ ‪،Y‬‬
‫ﻣﻘﺪﺍﺭ )‪ ،(YX‬ﻛﻨﺲ‬
‫ﺍﺠﻤﻟﺎﻝ ﺍﳌﻐﻨﻄﻴﺴﻲ‬
‫‪Near‬‬
‫‪magnetic‬‬
‫‪Y sweep,‬‬
‫ﺍﻟﻘﺮﻳﺐ‪= 0, Z،‬‬
‫‪= 2; CORT18‬‬
‫‪CORT18‬‬
‫‪2 =field,‬؛‬
‫‪Z ،0 mag‬‬
‫‪= X (Z),‬‬
‫ﺍﻟﺜﻮﺍﺑﺖ‪:‬‬
‫‪constants:‬ﻋﻠﻰ ‪،Y‬‬
‫ﻣﻘﺪﺍﺭ )‪ ،(ZX‬ﻛﻨﺲ‬
‫ﺍﺠﻤﻟﺎﻝ ﺍﳌﻐﻨﻄﻴﺴﻲ‬
‫‪Near‬‬
‫‪magnetic‬‬
‫‪Y sweep,‬‬
‫ﺍﻟﻘﺮﻳﺐ‪= 0, Z،‬‬
‫‪= 2; CORT18‬‬
‫‪1698-38‬‬
‫ﻳﻌﻮﺩ ﺍﻹﺳﻬﺎﻡ ﺍﻷﻫﻢ ﺇﱃ ﺍﳌﻜﻮﱢﻥ ‪ .y‬ﺍﳌﻜﻮﱢﻥ ‪ z‬ﺃﻗﻞ‪ ،‬ﰲ ﺣﲔ ﺃﻥ ﺍﳌﻜﻮﱢﻥ ‪ x‬ﻫﻮ ‪ .0‬ﳝﺜﻞ ﺍﶈﻮﺭ ﺍﻷﻓﻘﻲ ﺍﳌﺴﺎﻓﺔ ﺑﺎﻷﻣﺘﺎﺭ ﻋﻦ ﺍﳍﻮﺍﺋﻲ‬
‫)ﻛﻨﺲ ﻋﻠﻰ ‪ .(Y‬ﻗﻴﻤﺔ ‪ Z‬ﺛﺎﺑﺘﺔ ﻋﻠﻰ ‪) m 2‬ﺍﻻﺭﺗﻔﺎﻉ ﻋﻦ ﺳﻮﻳﺔ ﺍﻷﺭﺽ(‪ .‬ﺷﺪﺓ ﻣﻜﻮﻧﺎﺕ ﺍﺠﻤﻟﺎﻝ ﺍﳌﻐﻨﻄﻴﺴﻲ )‪ (H‬ﻣﻌﺒﱠﺮ ﻋﻨﻬﺎ‬
‫ﺑـ ‪A/m‬ﻋﻠﻰ ﺍﶈﻮﺭ ﺍﻟﻌﻤﻮﺩﻱ‪.‬‬
‫ﺍﻟﺘﻮﺻﻴﺔ‬
‫‪57‬‬
‫‪ITU-R BS.1698‬‬
‫ﺍﻟﺸﻜﻞ‬
‫ﻗﻴﻤﺔ ﺷﺪﺓ ﺍﺠﻤﻟﺎﻝ ﺍﻟﻜﻬﺮﺑﺎﺋﻲ ﰲ ﺍﳌﻨﻄﻘﺔ ﺍﻟﻘﺮﻳﺒﺔ‪ ،‬ﳏﺼﻠﺔ ﺑﺎﳊﺴﺎﺏ ﻋﻠﻰ ﻣﺴﺎﻓﺔ ‪ m 60‬ﻣﻦ ﺍﳍﻮﺍﺋﻲ )‪،(60 = Y‬‬
‫ﻭﻋﻠﻰ ﺍﺭﺗﻔﺎﻋﺎﺕ ﳐﺘﻠﻔﺔ ﺑﲔ ‪ 0‬ﻭ‪) 9‬ﻛﻨﺲ ﻋﻠﻰ ‪(Z‬‬
‫‪39‬‬
‫‪100‬‬
‫‪90‬‬
‫‪80‬‬
‫‪60‬‬
‫‪50‬‬
‫‪40‬‬
‫‪30‬‬
‫‪20‬‬
‫‪10‬‬
‫‪9‬‬
‫‪8‬‬
‫‪7‬‬
‫‪6‬‬
‫‪5‬‬
‫‪4‬‬
‫‪3‬‬
‫‪2‬‬
‫‪1‬‬
‫‪0‬‬
‫)‪(m‬‬
‫ﻛﻨﺲ ﻋﻠﻰ ‪Z‬‬
‫‪Z sweep‬‬
‫)‪(m‬‬
‫ﺍﳍﻮﺍﺋﻲ‪.‬‬
‫‪ m 60height‬ﻣ‬
‫ﻋﻠﻰ@ﻣﺴﺎﻓﺔ‬
‫‪ ،MHz 18‬ﺷﺪﺓ ﺍﺠﻤﻟﺎﻝ ﺍﻟﻘﺮﻳﺐ ﺗﺒﻌﺎﹰ‬
‫‪18 MHz, near electric‬‬
‫ﻦ ‪field‬‬
‫‪versus‬‬
‫ﻟﻼﺭﺗﻔﺎﻉ‪60،‬‬
‫‪m from antenna.‬‬
‫ﻗﺪﺭﺓ ﺍﳌﺮﺳﻞ ‪ kW 200‬ﰲ ﻣﻮﺻﱢﻞ ﺍﳍﻮﺍﺋﻲ‪Transmitter power: 200 kW at antenna connector. .‬‬
‫ﺍﺠﻤﻟﺎﻝ‬
‫ﺍﺠﻤﻟﺎﻝ‬
‫ﺍﺠﻤﻟﺎﻝ‬
‫‪CORT18‬‬
‫‪60 =field,‬؛‬
‫‪Y ،mag‬‬
‫‪0=X‬‬
‫ﺍﻟﺜﻮﺍﺑﺖ‪:‬‬
‫ﻋﻠﻰ ‪،Z‬‬
‫ﻣﻘﺪﺍﺭ=)‪ ،(X‬ﻛﻨﺲ‬
‫ﺍﻟﻜﻬﺮﺑﺎﺋﻲ‬
‫‪Near electric‬‬
‫‪(X),‬‬
‫‪Z sweep,‬‬
‫‪constants:‬‬
‫ﺍﻟﻘﺮﻳﺐ‪0, Y ،‬‬
‫‪= 60; CORT18‬‬
‫‪CORT18‬‬
‫‪60 =field,‬؛‬
‫‪Y ،mag‬‬
‫‪0=X‬‬
‫ﺍﻟﺜﻮﺍﺑﺖ‪:‬‬
‫ﻋﻠﻰ ‪،Z‬‬
‫‪ ،(X‬ﻛﻨﺲ‬
‫ﻣﻘﺪﺍﺭ=)‪Y‬‬
‫ﺍﻟﻜﻬﺮﺑﺎﺋﻲ‬
‫‪Near electric‬‬
‫‪(Y),‬‬
‫‪Z sweep,‬‬
‫‪constants:‬‬
‫ﺍﻟﻘﺮﻳﺐ‪0, Y ،‬‬
‫‪= 60; CORT18‬‬
‫‪CORT18‬‬
‫‪60 field,‬؛‬
‫‪= Y ،mag‬‬
‫‪0=X‬‬
‫ﺍﻟﺜﻮﺍﺑﺖ‪:‬‬
‫ﻋﻠﻰ ‪،Z‬‬
‫ﻣﻘﺪﺍﺭ =)‪ ،(XZ‬ﻛﻨﺲ‬
‫ﺍﻟﻜﻬﺮﺑﺎﺋﻲ‬
‫‪Near electric‬‬
‫‪(Z),‬‬
‫‪Z sweep,‬‬
‫‪constants:‬‬
‫ﺍﻟﻘﺮﻳﺐ‪0, Y =،‬‬
‫‪60; CORT18‬‬
‫‪1698-39‬‬
‫ﺍﻟﻌﻼﻗﺔ ﺍﻟﻘﻮﻳﺔ ﺑﲔ ﻗﻴﻢ ‪ E‬ﻭﺍﻻﺭﺗﻔﺎﻉ ﻇﺎﻫﺮﺓ )ﻟﻴﺲ ﺣﺎﺿﺮﹰﺍ ﺇﻻ ﺍﳌﻜﻮﻥ ‪ x‬ﻟﻠﻤﺠﺎﻝ ‪.(E‬‬
‫‪0‬‬
‫‪Near electric‬‬
‫)‪field (V/m‬‬
‫)‪(V/m‬‬
‫ﺍﻟﻜﻬﺮﺑﺎﺋﻲ ﺍﻟﻘﺮﻳﺐ‬
‫ﺍﺠﻤﻟﺎﻝ‬
‫‪70‬‬
‫ﺍﻟﺘﻮﺻﻴﺔ‬
‫‪58‬‬
‫‪ITU-R BS.1698‬‬
‫ﺍﻟﺸﻜﻞ‬
‫ﻗﻴﻤﺔ ﺷﺪﺓ ﺍﺠﻤﻟﺎﻝ ﺍﳌﻐﻨﻄﻴﺴﻲ ﰲ ﺍﳌﻨﻄﻘﺔ ﺍﻟﻘﺮﻳﺒﺔ‪ ،‬ﳏﺼﻠﺔ ﺑﺎﳊﺴﺎﺏ ﻋﻠﻰ ﻣﺴﺎﻓﺔ ‪ m 60‬ﻣﻦ ﺍﳍﻮﺍﺋﻲ )‪،(60 = Y‬‬
‫ﻭﻋﻠﻰ ﺍﺭﺗﻔﺎﻋﺎﺕ ﳐﺘﻠﻔﺔ ﺑﲔ ‪ 0‬ﻭ‪) 9‬ﻛﻨﺲ ﻋﻠﻰ ‪(Z‬‬
‫‪40‬‬
‫‪0.30‬‬
‫‪0.25‬‬
‫‪0.15‬‬
‫‪0.10‬‬
‫‪(A/m)magnetic‬‬
‫ﺍﳌﻐﻨﻄﻴﺴﻲ ﺍﻟﻘﺮﻳﺐ‬
‫ﺍﺠﻤﻟﺎﻝ‬
‫‪Near‬‬
‫)‪field (A/m‬‬
‫‪0.20‬‬
‫‪0.05‬‬
‫‪9‬‬
‫‪8‬‬
‫‪7‬‬
‫‪6‬‬
‫‪5‬‬
‫‪4‬‬
‫‪3‬‬
‫‪2‬‬
‫‪1‬‬
‫‪0‬‬
‫‪0.00‬‬
‫)‪(m‬‬
‫)‪ (m‬ﻋﻠﻰ ‪Z‬‬
‫ﻛﻨﺲ‬
‫‪Z sweep‬‬
‫ﺍﳍﻮﺍﺋﻲ‪.‬‬
‫‪ m 60‬ﻣﻦ‬
‫ﻣﺴﺎﻓﺔ‬
‫‪height‬ﻋﻠﻰ‬
‫ﻟﻼﺭﺗﻔﺎﻉ‪،‬‬
‫ﺍﻟﻘﺮﻳﺐ‪m‬ﺗﺒﻌﺎﹰ‬
‫‪ ،MHz 18‬ﺷﺪﺓ ﺍﺠﻤﻟﺎﻝ ﺍﳌﻐﻨﻄﻴﺴﻲ‬
‫‪18 MHz, near‬‬
‫‪magnetic‬‬
‫‪field‬‬
‫‪versus‬‬
‫‪@ 60‬‬
‫‪from antenna.‬‬
‫ﻗﺪﺭﺓ ﺍﳌﺮﺳﻞ ‪ kW 200‬ﰲ ﻣﻮﺻﱢﻞ ﺍﳍﻮﺍﺋﻲ‪Transmitter power: 200 kW at antenna connector. .‬‬
‫‪= 60; CORT18‬‬
‫‪Near magnetic‬‬
‫‪Z sweep,‬‬
‫ﺍﻟﻘﺮﻳﺐ‪= 0, Y،‬‬
‫‪CORT18‬‬
‫‪60 = field,‬؛‬
‫‪Y ،0 mag‬‬
‫‪= X (X),‬‬
‫ﺍﻟﺜﻮﺍﺑﺖ‪:‬‬
‫‪constants:‬ﻋﻠﻰ ‪،Z‬‬
‫ﻣﻘﺪﺍﺭ )‪ ،(XX‬ﻛﻨﺲ‬
‫ﺍﺠﻤﻟﺎﻝ ﺍﳌﻐﻨﻄﻴﺴﻲ‬
‫‪Near magnetic‬‬
‫‪Z sweep,‬‬
‫ﺍﻟﻘﺮﻳﺐ‪= 0, Y،‬‬
‫‪= 60; CORT18‬‬
‫‪CORT18‬‬
‫‪60 = field,‬؛‬
‫‪Y ،0 mag‬‬
‫‪= X (Y),‬‬
‫ﺍﻟﺜﻮﺍﺑﺖ‪:‬‬
‫‪constants:‬ﻋﻠﻰ ‪،Z‬‬
‫ﻣﻘﺪﺍﺭ )‪ ،(YX‬ﻛﻨﺲ‬
‫ﺍﺠﻤﻟﺎﻝ ﺍﳌﻐﻨﻄﻴﺴﻲ‬
‫‪CORT18‬‬
‫‪60 =field,‬؛‬
‫‪Y ،0mag‬‬
‫‪= X(Z),‬‬
‫ﺍﻟﺜﻮﺍﺑﺖ‪:‬‬
‫‪constants:‬ﻋﻠﻰ ‪،Z‬‬
‫ﻣﻘﺪﺍﺭ )‪ ،(ZX‬ﻛﻨﺲ‬
‫ﺍﺠﻤﻟﺎﻝ ﺍﳌﻐﻨﻄﻴﺴﻲ‬
‫‪Near magnetic‬‬
‫‪Z sweep,‬‬
‫ﺍﻟﻘﺮﻳﺐ‪= 0, Y،‬‬
‫‪= 60; CORT18‬‬
‫‪1698-40‬‬
‫ﺍﻟﻌﻼﻗﺔ ﺍﻟﻘﻮﻳﺔ ﺑﲔ ﻗﻴﻢ ‪ H‬ﻭﺍﻻﺭﺗﻔﺎﻉ ﻇﺎﻫﺮﺓ ﺃﻳﻀﹰﺎ )ﻛﻼ ﺍﳌﻜﻮﱢﻧﲔ ‪ z‬ﻭ‪ y‬ﻟﻠﻤﺠﺎﻝ ‪ H‬ﺣﺎﺿﺮ‪ ،‬ﻭﻗﻴﻤﺔ ﺍﳌﻜﻮﱢﻥ ‪ y‬ﺛﺎﺑﺘﺔ(‪.‬‬
‫‪2.2.2‬‬
‫ﺍﻟﻘﻴﺎﺳﺎﺕ‬
‫ﺃﹸﺟﺮﻳﺖ ﺍﻟﻘﻴﺎﺳﺎﺕ ﺑﺎﺳﺘﻌﻤﺎﻝ ﻣﻘﻴﺎﺱ ﻟﺸﺪﺓ ﳎﺎﻝ ﺍﻟﻨﻄﺎﻗﺎﺕ ﺍﻟﻌﺮﻳﻀﺔ‪ ،‬ﻣﻨﺼﻮﺏ ﻋﻠﻰ ﻋﺮﺑﺔ ﻣﻌﺰﻭﻟﺔ ﻋﻦ ﺍﻟﻜﻬﺮﺑﺎﺀ ﳛﺮﻛﻬﺎ ﻣﺸﻐﱢﻞ‬
‫ﻣﺘﻤﺮﻛﺰ ﺑﻌﻴﺪﹰﺍ ﻋﻦ ﻣﻮﻗﻊ ﺍﳍﻮﺍﺋﻲ‪ .‬ﻭﻬﺑﺬﻩ ﺍﻟﻮﺳﻴﻠﺔ ﰎ ﲡﻨّﺐ ﺃﻱ ﺗﺸﻮﻳﺶ ﻟﻠﻤﺠﺎﻟﲔ ﺍﻟﻜﻬﺮﺑﺎﺋﻲ ﻭﺍﳌﻐﻨﻄﻴﺴﻲ‪.‬‬
‫‪ 1.2.2.2‬ﻧﺘﺎﺋﺞ ﺍﻟﻘﻴﺎﺳﺎﺕ‬
‫ﺍﻟﻘﻴﻢ ﺍﶈﺼﻠﺔ ﺑﺎﻟﻘﻴﺎﺱ ﻣﻌﺮﻭﺿﺔ ﰲ ﺍﻟﺸﻜﻠﲔ ‪) 41‬ﺍﺠﻤﻟﺎﻝ ‪ (E‬ﻭ‪) 42‬ﺍﺠﻤﻟﺎﻝ ‪ .(H‬ﻭﺍﻟﺸﻜﻼﻥ ‪ 41‬ﻭ‪ 42‬ﻗﺎﺑﻼﻥ ﻟﻠﻤﻘﺎﺭﻧﺔ ﺍﳌﺒﺎﺷﺮﺓ ﻣﻊ‬
‫ﺍﻟﺸﻜﻠﲔ ‪ 37‬ﻭ‪ 38‬ﻋﻠﻰ ﺍﻟﺘﻮﺍﱄ‪.‬‬
‫ﺍﻟﺘﻮﺻﻴﺔ‬
‫‪59‬‬
‫‪ITU-R BS.1698‬‬
‫ﺍﻟﺸﻜﻞ‬
‫ﻗﻴﻢ ﺷﺪﺓ ﺍﺠﻤﻟﺎﻝ ﺍﻟﻜﻬﺮﺑﺎﺋﻲ ﰲ ﺍﳌﻨﻄﻘﺔ ﺍﻟﻘﺮﻳﺒﺔ‪ ،‬ﳏﺼﻠﺔ ﺑﺎﻟﻘﻴﺎﺱ‬
‫‪41‬‬
‫‪90‬‬
‫‪80‬‬
‫‪70‬‬
‫‪60‬‬
‫‪40‬‬
‫)‪(V/m‬‬
‫‪50‬‬
‫‪30‬‬
‫‪20‬‬
‫‪10‬‬
‫‪250‬‬
‫‪200‬‬
‫‪150‬‬
‫‪100‬‬
‫‪90‬‬
‫‪80‬‬
‫‪60‬‬
‫‪70‬‬
‫‪50‬‬
‫‪40‬‬
‫‪30‬‬
‫‪20‬‬
‫‪10‬‬
‫‪0‬‬
‫‪0‬‬
‫)‪(m‬‬
‫‪field‬ﺍﻟﻜﻬﺮﺑﺎﺋﻲ‬
‫ﺍﺠﻤﻟﺎﻝ‬
‫‪Electric‬‬
‫ﺍﺠﻤﻟﺎﻝ ‪X field X‬‬
‫‪1698-41‬‬
‫ﺍﺠﻤﻟﺎﻝ‬
‫ﺍﺠﻤﻟﺎﻝ‬
‫ﳝﺜﻞ ﺍﶈﻮﺭ ﺍﻷﻓﻘﻲ ﺍﳌﺴﺎﻓﺔ ﻋﻦ ﺍﳍﻮﺍﺋﻲ ﺑﺎﳌﺘﺮ )ﻛﻨﺲ ﻋﻠﻰ ‪ .(Y‬ﻭﺷﺪﺓ ﻣﻜﻮّﻧﺎﺕ ﺍﺠﻤﻟﺎﻝ‬
‫ﺍﳌﻜﻮّﻧﺎﺕ ﺍﻟﺜﻼﺛﺔ ‪ x‬ﻭ‪ y‬ﻭ‪ z‬ﻟﻠﻤﺠﺎﻝ ‪ E‬ﺣﺎﺿﺮﺓ‪ ،‬ﻭﺍﳋﻂ ﺍﻟﻌﻠﻮﻱ ﳝﺜﻞ ﺍﻟﻘﻴﻤﺔ ﺍﻹﲨﺎﻟﻴﺔ‪.‬‬
‫‪Y field Y‬‬
‫‪Z field Z‬‬
‫‪E‬‬
‫ﳑﺜﻠﺔ‬
‫ﺑـ ‪V/m‬‬
‫ﻋﻠﻰ ﺍﶈﻮﺭ ﺍﻟﻌﻤﻮﺩﻱ‪.‬‬
‫ﺍﻟﺘﻮﺻﻴﺔ‬
‫‪60‬‬
‫‪ITU-R BS.1698‬‬
‫ﺍﻟﺸﻜﻞ‬
‫ﻗﻴﻤﺔ ﺷﺪﺓ ﺍﺠﻤﻟﺎﻝ ﺍﳌﻐﻨﻄﻴﺴﻲ ﰲ ﺍﳌﻨﻄﻘﺔ ﺍﻟﻘﺮﻳﺒﺔ‪ ،‬ﳏﺼﻠﺔ ﺑﺎﻟﻘﻴﺎﺱ‬
‫‪42‬‬
‫‪70‬‬
‫‪20‬‬
‫)‪(A/m‬‬
‫‪250‬‬
‫‪200‬‬
‫‪150‬‬
‫‪100‬‬
‫‪90‬‬
‫‪80‬‬
‫‪60‬‬
‫‪50‬‬
‫‪40‬‬
‫‪30‬‬
‫‪10‬‬
‫‪0‬‬
‫‪0.400‬‬
‫‪0.380‬‬
‫‪0.360‬‬
‫‪0.340‬‬
‫‪0.320‬‬
‫‪0.300‬‬
‫‪0.280‬‬
‫‪0.260‬‬
‫‪0.240‬‬
‫‪0.220‬‬
‫‪0.210‬‬
‫‪0.200‬‬
‫‪0.180‬‬
‫‪0.160‬‬
‫‪0.140‬‬
‫‪0.120‬‬
‫‪0.100‬‬
‫‪0.060‬‬
‫‪0.040‬‬
‫‪0.020‬‬
‫‪0.000‬‬
‫)‪(m‬‬
‫ﺍﳌﻐﻨﻄﻴﺴﻲ‬
‫ﺍﺠﻤﻟﺎﻝ‪Magnetic‬‬
‫‪field‬‬
‫ﺍﺠﻤﻟﺎﻝ‬
‫‪X‬‬
‫‪X field‬‬
‫ﺍﺠﻤﻟﺎﻝ ‪Y‬‬
‫‪Y field‬‬
‫ﺍﺠﻤﻟﺎﻝ ‪Z fieldZ‬‬
‫‪1698-42‬‬
‫ﳝﺜﻞ ﺍﶈﻮﺭ ﺍﻷﻓﻘﻲ ﺍﳌﺴﺎﻓﺔ ﻋﻦ ﺍﳍﻮﺍﺋﻲ ﺑﺎﳌﺘﺮ )ﻛﻨﺲ ﻋﻠﻰ ‪ .(Y‬ﻭﺷﺪﺓ ﻣﻜﻮّﻧﺎﺕ ﺍﺠﻤﻟﺎﻝ‬
‫ﺍﳌﻜﻮّﻧﺎﺕ ﺍﻟﺜﻼﺛﺔ ‪ x‬ﻭ‪ y‬ﻭ‪ z‬ﻟﻠﻤﺠﺎﻝ ‪ H‬ﺣﺎﺿﺮﺓ‪ ،‬ﻭﺍﳋﻂ ﺍﻟﻌﻠﻮﻱ ﳝﺜﻞ ﺍﻟﻘﻴﻤﺔ ﺍﻹﲨﺎﻟﻴﺔ‪.‬‬
‫‪H‬‬
‫‪3.2‬‬
‫ﻣﻘﺎﺭﻧﺔ ﺑﲔ ﻧﺘﺎﺋﺞ ﺍﻟﻘﻴﺎﺳﺎﺕ ﻭﻧﺘﺎﺋﺞ ﺍﻟﺘﻮﻗﻌﺎﺕ ﻟﺸﺪﺓ ﺍﺠﻤﻟﺎﻝ ﰲ ﺍﳌﻨﻄﻘﺔ ﺍﻟﻘﺮﻳﺒﺔ‬
‫‪1.3.2‬‬
‫‪MHz 13‬‬
‫ﳑﺜﻠﺔ‬
‫ﺑـ ‪A/m‬‬
‫ﻋﻠﻰ ﺍﶈﻮﺭ ﺍﻟﻌﻤﻮﺩﻱ‪.‬‬
‫ﻋﻠﻰ ﻣﺴﺎﻓﺔ ﺃﻗﻞ ﻣﻦ ‪ m 40‬ﺃﻋﻄﻰ ﺍﻟﺘﻮﻗﻊ ﻧﺘﺎﺋﺞ‪ ،‬ﲞﺼﻮﺹ ﻛﻼ ﺍﺠﻤﻟﺎﻟﲔ‪ E ،‬ﻭ‪ ،H‬ﺃﻋﻠﻰ ﻣﻦ ﻧﺘﺎﺋﺞ ﺍﻟﻘﻴﺎﺱ‪ .‬ﻭﺍﻟﻘﻴﻢ ﺍﻟﻌﻠﻴﺎ ﻟﻜﻼ ﻧﻈﺎﻡ‬
‫ﺍﺠﻤﻟﺎﻟﲔ‪ E ،‬ﻭ‪ H‬ﻭﺟﺪﺕ ﻋﻠﻰ ﻣﺴﺎﻓﺔ ‪ m 20-10‬ﻋﻦ ﻧﻈﺎﻡ ﺍﳍﻮﺍﺋﻴﺎﺕ‪ ،‬ﺑﻜﻠﺘﺎ ﺍﻟﻄﺮﻳﻘﺘﲔ‪ ،‬ﺍﶈﺎﻛﺎﺓ ﻭﺍﻟﻘﻴﺎﺱ‪.‬‬
‫ﻭﻋﻠﻰ ﻣﺴﺎﻓﺔ ‪ m 40‬ﻣﻦ ﺍﳍﻮﺍﺋﻲ‪ ،‬ﻇﻬﺮﺕ ﻗﻴﻤﺔ "ﺩﻧﻴﺎ" ﰲ ﻧﺘﺎﺋﺞ ﻛﻠﺘﺎ ﺍﻟﻄﺮﻳﻘﺘﲔ‪ ،‬ﺍﻟﺘﻮﻗﻊ ﻭﺍﻟﻘﻴﺎﺱ‪ ،‬ﻟﻜﻨﻬﺎ ﰲ ﺍﻟﺘﻮﻗﻊ ﺃﺩﱏ ﻣﻨﻬﺎ ﰲ‬
‫ﺍﻟﻘﻴﺎﺱ‪.‬‬
‫ﻭﺍﻟﻘﻴﻤﺔ "ﺍﻟﻌﻠﻴﺎ" ﺍﻟﺜﺎﻧﻴﺔ ﺑﻠﻐﺖ ﺫﺭﻭﻬﺗﺎ‪ ،‬ﰲ ﻛﻠﺘﺎ ﺍﳊﺎﻟﺘﲔ‪ ،‬ﻋﻠﻰ ﻣﺴﺎﻓﺔ‬
‫ﺑﺎﶈﺎﻛﺎﺓ ﺃﻗﻞ ﻣﻦ ﺍﶈﺼﻠﺔ ﺑﺎﻟﻘﻴﺎﺱ‪.‬‬
‫ﺃﻣﺎ ﻋﻠﻰ ﻣﺴﺎﻓﺎﺕ ﺃﻛﱪ‪ ،‬ﻣﺜﻞ‬
‫ﺍﻟﻘﻴﺎﺱ‪.‬‬
‫‪2.3.2‬‬
‫‪m 250‬‬
‫‪m 75‬‬
‫ﻣﻦ ﺍﳍﻮﺍﺋﻲ؛ ﻭﰲ ﻫﺬﻩ ﺍﳊﺎﻟﺔ ﺟﺎﺀﺕ ﺍﻟﻘﻴﻢ ﺍﶈﺼﻠﺔ‬
‫ﻋﻦ ﺍﳍﻮﺍﺋﻲ‪ ،‬ﻓﺈﻥ ﺍﻟﻨﺘﺎﺋﺞ ﲞﺼﻮﺹ ﲨﻴﻊ ﺍﺠﻤﻟﺎﻻﺕ ﻣﺘﺴﺎﻭﻳﺔ ﺗﻘﺮﻳﺒﹰﺎ‪ ،‬ﰲ ﺍﻟﺘﻮﻗﻊ ﻛﻤﺎ ﰲ‬
‫‪MHz 18‬‬
‫ﻋﻠﻰ ﻣﺴﺎﻓﺔ ﺃﻗﻞ ﻣﻦ ‪ m 40‬ﺃﻋﻄﻰ ﺍﻟﺘﻮﻗﻊ ﻧﺘﺎﺋﺞ‪ ،‬ﲞﺼﻮﺹ ﻛﻼ ﺍﺠﻤﻟﺎﻟﲔ‪ E ،‬ﻭ‪ ،H‬ﺃﻋﻠﻰ ﻣﻦ ﻧﺘﺎﺋﺞ ﺍﻟﻘﻴﺎﺱ‪ .‬ﻭﺍﻟﻘﻴﻢ ﺍﻟﻌﻠﻴﺎ ﻟﻜﻼ ﻧﻈﺎﻡ‬
‫ﺍﺠﻤﻟﺎﻟﲔ‪ E ،‬ﻭ‪ H‬ﻭﺟﺪﺕ ﻋﻠﻰ ﻣﺴﺎﻓﺔ ‪ m 20-10‬ﻋﻦ ﻧﻈﺎﻡ ﺍﳍﻮﺍﺋﻴﺎﺕ‪ ،‬ﺑﻜﻠﺘﺎ ﺍﻟﻄﺮﻳﻘﺘﲔ‪ ،‬ﺍﶈﺎﻛﺎﺓ ﻭﺍﻟﻘﻴﺎﺱ‪.‬‬
‫ﻭﺍﻟﻘﻴﻤﺔ "ﺍﻟﻌﻠﻴﺎ" ﺍﻟﺜﺎﻧﻴﺔ ﻭُﺟﺪﺕ‪ ،‬ﺑﺎﻟﺘﻮﻗﻊ ﻭﺍﻟﻘﻴﺎﺱ‪ ،‬ﲞﺼﻮﺹ ﻛﻼ ﺍﺠﻤﻟﺎﻟﲔ‪ E ،‬ﻭ‪ ،H‬ﻋﻠﻰ ﻣﺴﺎﻓﺔ ‪ m 100‬ﻣﻦ ﺍﳍﻮﺍﺋﻲ‪ ،‬ﻭﺟﺎﺀﺕ‬
‫ﺍﻟﻘﻴﻤﺔ ﺍﶈﺼﻠﺔ ﺑﺎﻟﻘﻴﺎﺱ ﻟﻠﻤﺠﺎﻝ ‪ E‬ﺃﻗﻞ‪ .‬ﻭﻋﻠﻰ ﻣﺴﺎﻓﺔ ﺃﺑﻌﺪ ﻣﻦ ‪ m 60‬ﻋﻦ ﺍﳍﻮﺍﺋﻲ‪ ،‬ﻳُﻔﺘﺮﺽ ﺃﻥ ﺍﺠﻤﻟﺎﻝ ‪ H‬ﻳﻌﻄﻲ ﻧﻔﺲ ﺍﻟﻘﻴﻢ ﺑﻄﺮﻳﻘﺔ‬
‫ﺍﻟﺘﻮﻗﻊ ﻛﻤﺎ ﺑﻄﺮﻳﻘﺔ ﺍﻟﻘﻴﺎﺱ‪.‬‬
‫ﺍﻟﺘﻮﺻﻴﺔ‬
‫‪3‬‬
‫‪ITU-R BS.1698‬‬
‫‪61‬‬
‫ﺍﺳﺘﻨﺘﺎﺟﺎﺕ‬
‫ﺃﺗﺖ ﺑﻨﺘﺎﺋﺞ ﻣﻬﻤﺔ ﺍﳌﻘﺎﺭﻧ ﹸﺔ ﺑﲔ ﺍﻟﻘﻴﻢ ﺍﶈﺼﻠﺔ ﺑﺎﻟﻘﻴﺎﺱ ﻭﺍﻟﻘﻴﻢ ﺍﳌﺘﻮﻗﻌﺔ ﺑﺎﳊﺴﺎﺏ ﻟﻜﻼ ﺍﺠﻤﻟﺎﻟﲔ‪ ،‬ﺍﻟﻜﻬﺮﺑﺎﺋﻲ )‪ (E‬ﻭﺍﳌﻐﻨﻄﻴﺴﻲ )‪،(H‬‬
‫ﻣﻊ ﺗﺮﺩﺩ ‪ MHz 13‬ﻭﺗﺮﺩﺩ ‪.MHz 18‬‬
‫ﻋﻠﻰ ﺍﻟﻌﻤﻮﻡ‪ ،‬ﻻ ﺗﺘﻄﺎﺑﻖ ﺍﻟﻘﻴﻢ ﲤﺎﻣﹰﺎ‪ ،‬ﺃﻣﺮ ﻛﺎﻥ ﳑﻜﻨﹰﺎ ﺗﻮﻗﻌﻪ‪ .‬ﺇﻻ ﺃﻧﻪ ﻻ ﻓﺮﻭﻕ ﻛﺒﲑﺓ ﺑﻴﻨﻬﺎ‪ ،‬ﺑﺎﻟﻨﻈﺮ ﺇﱃ ﺃﻥ ﺍﻷﺩﻭﺍﺕ ﻏﲑ ﻳﻘﻴﻨﻴﺔ‪ ،‬ﻭﺃﻥ‬
‫ﻉ ﰲ ﺍﶈﺎﻛﹶﻴﺎﺕ‪ ،‬ﺣﱴ ﺣﲔ ﻛﺎﻥ ﻣﻦ ﺍﻟﻮﺍﺿﺢ ﺗﺒﻌﻴﺔ ﺷﺪﺓ ﺍﺠﻤﻟﺎﻝ‬
‫ﺳﻄﺢ ﺍﻷﺭﺽ ﻟﻴﺲ ﻣﺴﺘﻮﻳﹰﺎ ﲤﺎﻣﹰﺎ ﻗﺮﺏ ﺍﳍﻮﺍﺋﻲ )ﻭﻫﺬﺍ ﺍﻷﻣﺮ ﱂ ﻳﺮﺍ َ‬
‫ﺑﻘﻮﺓ ﻻﺭﺗﻔﺎﻉ ﻧﻘﻄﺔ ﺍﻟﻘﻴﺎﺱ(‪ ،‬ﻭﺃﻥ ﺑﺴﺎﻃﺔ ﺍﻟﻨﻤﻮﺫﺝ ﻣﻔﺮﻭﺿﺔ‪ .‬ﻭﺍﻟﻔﺮﻭﻕ ﻛﺒﲑﺓ ﻗﺮﺏ ﺍﳍﻮﺍﺋﻲ )ﻳﻌﲏ ﺃﻥ ﺍﻟﻘﻴﻤﺔ ﺍﻟﻌﻠﻴﺎ ﺍﻷﻭﱃ ﺗﻈﻬﺮ‬
‫ﻋﻠﻰ ﺑﻌﺪ ﳓﻮ ‪ (m 10‬ﺣﱴ ﺇﻬﻧﺎ ﺗﺼﻞ ﺇﱃ ‪ ،%50‬ﰒ ﺗﺘﻨﺎﻗﺺ ﻛﻠﻤﺎ ﻛﱪﺕ ﺍﳌﺴﺎﻓﺔ ﺣﱴ ﺗﺼﲑ ﺯﻫﻴﺪﺓ ﻋﻠﻰ ﻣﺴﺎﻓﺔ ‪.m 250‬‬
‫ﻭﺗُﻌﺰﻯ ﻫﺬﻩ ﺍﻟﻔﺮﻭﻕ ﺇﱃ ﻣﺼﺎﻋﺐ ﺇﺟﺮﺍﺀ ﺍﻟﻘﻴﺎﺳﺎﺕ ﰲ ﺍﺠﻤﻟﺎﻝ ﺍﻟﻘﺮﻳﺐ‪ ،‬ﻭﺍﻟﻼﻳﻘﲔ ﺍﳌﻼﺯﻡ ﻷﺩﻭﺍﺕ ﺍﻟﻘﻴﺎﺱ‪ ،‬ﻭﺑﺴﺎﻃﺔ ﺍﻟﻨﻤﻮﺫﺝ‪،‬‬
‫ﻭﻭﺟﻮﺩ ﺑﻌﺾ ﺍﻷﺷﻴﺎﺀ ﻗﺮﺏ ﺍﳍﻮﺍﺋﻲ )ﺑﲎ ﻣﻌﺪﻧﻴﺔ‪ ،‬ﺍﻟﻌﺎﺭﺿﺘﺎﻥ ﺍﳌﺴﺘﻌﻤﻠﺘﺎﻥ ﻟﺘﺜﺒﻴﺖ ﺛﻨﺎﺋﻴﺎﺕ ﺍﻟﻘﻄﺐ‪ ،‬ﺷﺒﻜﺔ ﺍﳌﻮﺍﺀﻣﺔ‪ ،‬ﺑﻴﺖ ﺻﻐﲑ(‬
‫ﻉ ﺷﺒﻜﺔ ﺍﳌﻮﺍﺀﻣﺔ ﻭﺇﺷﻌﺎﻋﻬﺎ‪ .‬ﺃﺧﲑﹰﺍ‪ ،‬ﺟﺮﺕ ﳕﺬﺟﺔ ﺃﺭﺽ ﺍﳌﻮﻗﻊ ﺑﻘﻴﻢ ﻛﻬﺮﺑﺎﺋﻴﺔ ﳕﻄﻴﺔ‪.‬‬
‫ﻉ ﰲ ﺍﻟﻨﻤﻮﺫﺝ‪ ،‬ﻛﻤﺎ ﱂ ﺗﺮﺍ َ‬
‫ﱂ ﺗﺮﺍ َ‬
‫ﻓﻔﻲ ﺳﺒﻴﻞ ﲢﻘﻴﻖ ﺃﻓﻀﻞ ﺗﻮﻗﻊ ﺗﻘﺮﻳﺒـﻲ ﻟﻨﺸﺎﻁ ﺍﺠﻤﻟﺎﻟﲔ ‪ E‬ﻭ‪ H‬ﺑﺎﺳﺘﻌﻤﺎﻝ ﳕﻮﺫﺝ‪ ،‬ﻧﻮﺻﻲ ﲟﺎ ﻳﻠﻲ‪:‬‬
‫ﳕﻮﺫﺝ ﺍﳍﻮﺍﺋﻲ‪ :‬ﻳﻠﺰﻡ ﺃﻥ ﺗُﺪﺭﺱ ﺑﻌﻨﺎﻳﺔ ﺍﻷﺑﻌﺎﺩ ﺍﳌﺎﺩﻳﺔ ﻟﻠﻌﻨﺎﺻﺮ ﺍﳌﺸﻌﺔ ﻭﺍﻟﻌﻨﺎﺻﺮ ﺍﳌﻨﻔﻌﻠﺔ‪ ،‬ﻭﻛﺬﻟﻚ ﻣﻌﺎﻭﻗﺔ ﺍﻟﺪﺧﻞ ﺍﳌﻌﻘﺪﺓ ﻟﻠﻨﻈﺎﻡ‪.‬‬
‫ﻓﺮﲟﺎ ﻛﺎﻥ ﻣﻦ ﺍﳌﺴﺘﺤﺴﻦ ﻟﺘﺒﺴﻴﻂ ﻧﻈﺎﻡ ﻣﻌﻘﺪ‪ ،‬ﺃﻱ ﺻﻔﻴﻒ ﺍﳌﺸﺎﻋﻴﻊ‪ ،‬ﺃﻥ ﻳﺴﺘﻌﺎﺽ ﻋﻦ ﺷﺒﻜﺔ ﺍﳌﻮﺍﺀﻣﺔ ﻭﺍﻟﺘﻐﺬﻳﺔ ﺑﻌﺪﺩ ﻣﺴﺎ ﹴﻭ ﻣﻦ‬
‫ﻣﻮﻟﺪﺍﺕ ﺍﻟﺘﻮﺗﺮ‪ ،‬ﻭﻳُﺴﻠﱠﻂ ﻣﻮﻟﱢﺪ ﻋﻠﻰ ﺩﺧﻞ ﻛﻞ ﻣﺸﻌﺎﻉ‪ .‬ﻭﺇﺫﺍ ﺍﺳﺘُﺒﻌﺪﺕ ﻓﻜﺮﺓ ﺷﺒﻜﺔ ﺍﳌﻮﺍﺀﻣﺔ‪ ،‬ﻓﻌﻨﺪﺋﺬ ﻳﻠﺰﻡ ﺍﻟﺘﻌﻮﻳﺾ ﻋﻤﺎ ﻳﻠﻲ‪:‬‬
‫‪-‬‬
‫ﻋﺪﻡ ﺍﳌﻮﺍﺀﻣﺔ ﺍﶈﺘﻤﻞ ﺑﲔ ﺍﳌﻮﻟﺪﺍﺕ ﻭﺍﳌﺸﺎﻋﻴﻊ‪ ،‬ﻭﺫﻟﻚ ﺑﺈﺩﺧﺎﻝ ﻋﻨﺎﺻﺮ ﻣﻮﺍﺀﻣﺔ ﻣﺼﻄﻨﻌﺔ ﺃﻭ ﺷﺒﻜﺎﺕ ﺑﺴﻴﻄﺔ‪ ،‬ﺃﻭ ﺗﻌﺪﻳﻞ‬
‫ﺍﻟﻘﺪﺭﺓ ﺍﳌﺨﺼﺼﺔ ﻟﻠﻤﺮﺳﻞ‪ .‬ﻭﺍﻟﻨﺘﻴﺠﺔ ﺍﻟﻨﻬﺎﺋﻴﺔ ﻻ ﺗﺘﺄﺛﺮ ﻣﻄﻠﻘﹰﺎ ﺑﻮﺟﻮﺩ ﻋﻴﻮﺏ ﻣﻮﺍﺀﻣﺔ ﺿﺌﻴﻠﺔ ﻻ ﺗﺴﺘﻠﺰﻡ ﳕﺬﺟﺔ‪.‬‬
‫ﺗﻘﺴﻴﻢ ﺍﻟﻘﻄﻊ ﺇﱃ ﻗﻄﻊ ﺃﺻﻐﺮ‪ :‬ﻳﻜﻮﻥ ﻛﺎﻓﻴﹰﺎ ﺃﻥ ﲤﺜﱠﻞ ﺃﻧﻈﻤﺔ ﺍﳍﻮﺍﺋﻴﺎﺕ ﺍﻷﺳﻼﻛﻴﺔ ﺑﻘﻄﻊ ﻻ ﻳﺘﺠﺎﻭﺯ ﻃﻮﳍﺎ ‪.λ/20‬‬
‫ﳕﻮﺫﺝ ﺃﺭﺿﻴﺔ ﺍﳌﻮﻗﻊ‪ :‬ﻣﻦ ﺍﻟﻀﺮﻭﺭﻱ ﺇﻋﻄﺎﺀ ﺍﻟﻘﻴﻢ ﺑﺎﻟﻀﺒﻂ ﻓﻴﻤﺎ ﳜﺺ ﺍﻟﺴﻤﺎﺣﻴﺔ ﻭﺍﻹﻳﺼﺎﻟﻴﺔ‪ ،‬ﺧﺼﻮﺻﹰﺎ ﰲ ﺣﺎﻟﺔ ﳎﺎﻝ ﻛﻬﺮﺑﺎﺋﻲ‬
‫ﻣﺴﺘﻘﻄﹶﺐ ﺃﻓﻘﻴﹰﺎ‪.‬‬
‫ﻗﺪﺭﺓ ﺍﳌﺮﺳﻞ‪ :‬ﻣﻦ ﺍﻷﳘﻴﺔ ﲟﻜﺎﻥ ﺃﻥ ﺗﺆﺧﺬ ﰲ ﺍﳊﺴﺎﺏ ﺍﳋﺴﺎﺭﺓ ﰲ ﺧﻄﻮﻁ ﺍﻹﺭﺳﺎﻝ‪ ،‬ﻭﻛﺬﻟﻚ ﺷﺒﻜﺔ ﺍﳌﻮﺍﺀﻣﺔ‪ ،‬ﻭﻣﻘﺎﻭﻣﺔ ﺍﳌﺮﺍﺑﻂ‪،‬‬
‫ﻼ ﻣﺼﻄﻨﻌﹰﺎ‪ ،‬ﻣﻦ ﺃﺟﻞ ﻣﺮﺍﻋﺎﺓ ﺍﻷﺳﺒﺎﺏ‬
‫ﻭﺳﻮﺀ ﺍﳌﻮﺍﺀﻣﺔ ﻟﻠﺸﺤﻨﺔ‪ .‬ﻭﻳُﺴﺘﻨﺴَﺐ ﰲ ﺑﻌﺾ ﺍﳊﺎﻻﺕ ﺗﻌﺪﻳﻞ ﺍﻟﻘﻴﻤﺔ ﺍﳌﻀﺒﻮﻃﺔ ﻟﻠﻘﺪﺭﺓ ﺗﻌﺪﻳ ﹰ‬
‫ﺍﳌﺘﻨﻮﻋﺔ ﻟﻠﺨﺴﺎﺭﺓ‪ ،‬ﺩﻭﻥ ﺗﻌﻘﻴﺪ ﳕﻮﺫﺝ ﻣﻨﻈﻮﻣﺔ ﺍﳍﻮﺍﺋﻴﺎﺕ‪.‬‬
‫ﺍﺭﺗﻔﺎﻉ ﻧﻘﺎﻁ ﺍﻟﻘﻴﺎﺱ ﻋﻦ ﺳﻮﻳﺔ ﺍﻷﺭﺽ‪ :‬ﻫﺬﻩ ﺍﳌﻌﹶﻠﻤَﺔ ﻫﺎﻣﺔ ﺟﺪﹰﺍ ﰲ ﻛﺜﲑ ﻣﻦ ﺍﳊﺎﻻﺕ‪ ،‬ﺇﺫﺍ ﻛﺎﻥ ﺍﳌﻘﺼﻮﺩ ﻫﻮ ﺍﳌﻘﺎﺭﻧﺔ ﺑﲔ ﺍﻟﻘﻴﻢ‬
‫ﺍﶈﺼﱠﻠﺔ ﺑﺎﻟﻘﻴﺎﺱ ﻭﺍﻟﻘﻴﻢ ﺍﳌﺘﻮﻗﻌﺔ ﺑﺎﳊﺴﺎﺏ‪ .‬ﻭﺑﺎﻟﻔﻌﻞ‪ ،‬ﻳﻼﺣَﻆ ﺍﻟﺘﺄﺛﲑ ﺍﻟﻘﻮﻱ ﻟﻼﺭﺗﻔﺎﻉ ﻋﻠﻰ ﻗﻴﻢ ﺍﺠﻤﻟﺎﻟﲔ‪ ،‬ﰒ ﺇﺫﺍ ﻛﺎﻧﺖ ﳕﺬﺟﺔ ﺃﺭﺿﻴﺔ‬
‫ﺍﳌﻮﻗﻊ ﻗﺪ ﺟﺮﺕ ﻋﻠﻰ ﺃﺳﺎﺱ ﺃﻬﻧﺎ ﻣﺴﺘﻮﻳﺔ‪ ،‬ﺗﺼﺎﺩَﻑ ﺃﺧﻄﺎﺀ ﻛﺒﲑﺓ ﻋﻨﺪ ﻣﻘﺎﺭﻧﺔ ﻧﺘﺎﺋﺞ ﺍﳊﺴﺎﺑﺎﺕ ﺑﻨﺘﺎﺋﺞ ﺍﻟﻘﻴﺎﺳﺎﺕ‪ .‬ﻓﻔﻲ ﻛﻞ ﻫﺬﻩ‬
‫ﺍﳊﺎﻻﺕ ﺣﻴﺚ ﺗﻜﻮﻥ ﺍﳌﺸﺎﻋﻴﻊ ﰲ ﺟﻮﺍﺭ ﺍﻷﺭﺿﻴﺔ ﻭﻻ ﺗﻜﻮﻥ ﻫﺬﻩ ﻣﺴﺘﻮﻳﺔ ﲤﺎﻣﹰﺎ‪ ،‬ﳚﺐ ﺍﻟﺘﺤﻔﻆ ﺑﺸﺄﻥ ﻧﺘﺎﺋﺞ ﺍﻟﺘﻮﻗﻊ‪.‬‬
‫ﺍﺧﺘﻴﺎﺭ ﺍﻟﺸﻔﺮﺓ‪ :‬ﻳﺒﺪﻭ ﺃﻥ ﺍﶈﺎﻛﺎﺓ ﺍﳌﻌﺘﻤﺪﺓ ﻋﻠﻰ ﻃﺮﻳﻘﺔ ﺍﻟﻌﺰﻭﻡ )‪ (MOM‬ﻣﻔﻴﺪﺓ ﻭﺳﻬﻠﺔ ﺍﻻﺳﺘﻌﻤﺎﻝ ﰲ ﺣﺎﻻﺕ ﺍﳍﻮﺍﺋﻴﺎﺕ‬
‫ﺍﻷﺳﻼﻛﻴﺔ‪ ،‬ﺍﳌﻌﺮﻭﻓﺔ ﺟﻴﺪﹰﺍ ﺧﺼﺎﺋﺼﻬﺎ ﺍﻟﻄﺒﻴﻌﻴﺔ ﻭﺍﻟﻜﻬﺮﺑﺎﺋﻴﺔ‪ .‬ﰒ ﺇﻧﻪ ﺑﺎﻹﻣﻜﺎﻥ ﻭﺳﻬﻞ ﺟﺪﹰﺍ ﺗﺒﺴﻴﻂ ﺍﻟﻨﻤﻮﺫﺝ ﺗﺒﻌﹰﺎ ﻟﻌﺪﺩ ﳏﺪﻭﺩ ﻣﻦ‬
‫ﺍﻟﻘﻮﺍﻋﺪ‪ ،‬ﺑﺪﻭﻥ ﺍﳋﺴﺎﺭﺓ ﰲ ﺩﻗﺔ ﺍﻟﻨﺘﺎﺋﺞ‪.‬‬
‫ﺍﻟﺘﻮﺻﻴﺔ‬
‫‪62‬‬
‫‪ITU-R BS.1698‬‬
‫ﺍﻟﺘﺬﻳﻴﻞ‬
‫ﻟﻠﻤﻠﺤﻖ ‪1‬‬
‫‪3‬‬
‫ﺍﳊﺪﻭﺩ ﻭﺍﻟﺴﻮﻳﺎﺕ‬
‫‪1‬‬
‫ﺍﻟﺴﻠﻄﺎﺕ ﺍﻟﺘﻨﻈﻴﻤﻴﺔ ﻭﺍﻻﺳﺘﺸﺎﺭﻳﺔ ﺍﳌﻌﻨﻴﺔ ﺑﺎﳉﻮﺍﻧﺐ ﺍﻟﺼﺤﻴﺔ‬
‫ﻳﻮﺟﺪ ﻋﺪﺩ ﻣﻦ ﺍﻟﺴﻠﻄﺎﺕ ﺍﻟﺪﻭﻟﻴﺔ ﻭﺍﻟﻮﻃﻨﻴﺔ ﺍﳌﻌﻨﻴﺔ ﺑﺎﳉﻮﺍﻧﺐ ﺍﻟﺼﺤﻴﺔ ﻟﻠﻤﺠﺎﻻﺕ ﺍﻟﻜﻬﺮﻣﻐﻨﻄﻴﺴﻴﺔ‪ .‬ﻭﻋﻠﻰ ﺳﺒﻴﻞ ﺍﻹﻋﻼﻡ ﻧﻌﻄﻲ‬
‫ﻗﺎﺋﻤﺔ ﺑﺄﲰﺎﺋﻬﺎ ﻏﲑ ﻛﺎﻣﻠﺔ‪ ،‬ﰲ ﺍﻟﻘﺴﻢ ﺍﻷﺧﲑ ﻣﻦ ﻫﺬﺍ ﺍﻟﺘﺬﻳﻴﻞ‪.‬‬
‫‪2‬‬
‫ﻣﻘﺎﺭﻧﺔ ﻟﻠﺤﺪﻭﺩ ﺍﻷﺳﺎﺳﻴﺔ ﻭﺍﻟﺴﻮﻳﺎﺕ ﺍﳌﺸﺘﻘﺔ ﺍﻟﻮﺍﺭﺩﺓ ﰲ ﺍﻟﺘﻨﻈﻴﻤﺎﺕ ﺍﳌﺴﺘﻌﻤﻠﺔ ﻋﻠﻰ ﻧﻄﺎﻕ ﻭﺍﺳﻊ‬
‫ﻟﻴﺴﺖ ﺍﳋﻄﻮﻁ ﺍﻟﺘﻮﺟﻴﻬﻴﺔ ﺍﳌﻌﻴﺎﺭﻳﺔ ﺍﳊﺎﻟﻴﺔ ﻣﺘﻄﺎﺑﻘﺔ ﰲ ﺗﻌﺮﻳﻒ ﻓﺌﺎﺕ ﺍﻷﺷﺨﺎﺹ ﺍﶈﺘﻤﻞ ﺗﻌﺮﺿﻬﻢ ﻟﻠﺨﻄﺮ‪" ،‬ﺍﻟﻔﺌﺎﺕ ﺍﳌﻌﺮﺿﺔ"‬
‫)ﻣﺜﻞ‪ :‬ﻋﺎﻣﺔ ﺍﳉﻤﻬﻮﺭ‪ ،‬ﺍﻟﻌﺎﻣﻠﲔ ﺍﳌﻌﺮﺿﲔ ﲝﻜﻢ ﻣﻬﻨﺘﻬﻢ‪ ،‬ﻓﺌﺎﺕ ﺍﻟﻌﻤﺮ( ﻭ‪/‬ﺃﻭ ﺗﻌﺮﻳﻒ ﺍﻷﻣﺎﻛﻦ ﺍﳌﻘﺼﻮﺩﺓ ﺑﺎﳊﻤﺎﻳﺔ )ﻣﺜﻞ‪ :‬ﺍﻷﻣﺎﻛﻦ‬
‫ﺍﻟﻌﺎﻣﺔ‪ ،‬ﺍﳌﻨﺎﺯﻝ‪ ،‬ﺍﻷﻣﺎﻛﻦ ﺍﳌﺴﻴّﺠﺔ‪ ،‬ﺍﳌﺒﺎﱐ ﺍﳌﻘﻴﱠﺪ ﺩﺧﻮﳍﺎ(‪.‬‬
‫ﻭﺗﻈﻬﺮ ﻓﺮﻭﻕ ﺑﻴﻨﻬﺎ ﲞﺼﻮﺹ ﺃﺟﺰﺍﺀ ﺍﳉﺴﻢ ﺍﳌﻘﺼﻮﺩﺓ ﺑﺎﳊﻤﺎﻳﺔ‪.‬‬
‫ﺗﺘﻨﺎﻭﻝ ﺍﳌﻘﺎﺭﻧﺔ ﰲ ﻫﺬﺍ ﺍﻟﺘﺬﻳﻴﻞ ﻣﺎ ﻳﻠﻲ‪:‬‬
‫‪-‬‬
‫ﻣﻌﻴﺎﺭ ﻣﻌﻬﺪ ﻣﻬﻨﺪﺳﻲ ﺍﻟﻜﻬﺮﺑﺎﺀ ﻭﺍﻹﻟﻜﺘﺮﻭﻧﻴﺎﺕ )‪ (IEEE‬ﻟﺴﻮﻳﺎﺕ ﺍﻟﺴﻼﻣﺔ ﲞﺼﻮﺹ ﺗﻌﺮﺽ ﺍﻷﺷﺨﺎﺹ ﻟﻠﻤﺠﺎﻻﺕ‬
‫ﺍﻟﻜﻬﺮﻣﻐﻨﻄﻴﺴﻴﺔ ﺍﻟﻨﺎﲨﺔ ﻋﻦ ﺍﻟﺘﺮﺩﺩﺍﺕ ﺍﻟﺮﺍﺩﻳﻮﻳﺔ ﺍﳌﺘﺮﺍﻭﺣﺔ ﺑﲔ ‪ kHz 3‬ﻭ‪[3] GHz 300‬؛‬
‫‪-‬‬
‫ﺍﳋﻄﻮﻁ ﺍﻟﺘﻮﺟﻴﻬﻴﺔ ﺍﻟﺼﺎﺩﺭﺓ ﻋﻦ ﺍﻟﻠﺠﻨﺔ ﺍﻟﺪﻭﻟﻴﺔ ﻟﻠﺤﻤﺎﻳﺔ ﻣﻦ ﺍﻹﺷﻌﺎﻋﺎﺕ ﻏﲑ ﺍﳌﺆﻳﱢﻨﺔ )‪ (ICNIRP‬ﲞﺼﻮﺹ ﺣﺪﻭﺩ‬
‫ﺍﻟﺘﻌﺮﺽ ﻟﻠﻤﺠﺎﻻﺕ ﺍﻟﻜﻬﺮﺑﺎﺋﻴﺔ ﻭﺍﳌﻐﻨﻄﻴﺴﻴﺔ ﻭﺍﻟﻜﻬﺮﻣﻐﻨﻄﻴﺴﻴﺔ ﺍﳌﺘﻐﲑﺓ ﻣﻊ ﺍﻟﻮﻗﺖ )ﺣﱴ ﺫﺭﻭﺓ ‪[4] (GHz 300‬؛‬
‫‪-‬‬
‫ﺑﻴﺎﻥ ﺍﺠﻤﻟﻠﺲ ﺍﻟﻮﻃﲏ ﻟﻠﺤﻤﺎﻳﺔ ﻣﻦ ﺍﻹﺷﻌﺎﻋﺎﺕ )‪ (NRPB‬ﺑﺸﺄﻥ ﺗﻘﻴﻴﺪﺍﺕ ﺍﳊﺪ ﻣﻦ ﺗﻌﺮﺽ ﺍﻷﺷﺨﺎﺹ ﻟﻠﻤﺠﺎﻻﺕ‬
‫ﻭﺍﻹﺷﻌﺎﻋﺎﺕ ﺍﻟﻜﻬﺮﻣﻐﻨﻄﻴﺴﻴﺔ ﺍﻟﺴﺎﻛﻨﺔ ﻭﺍﳌﺘﻐﲑﺓ ﻣﻊ ﺍﻟﻮﻗﺖ ]‪.[5‬‬
‫ﻭﻳﻘﺪﻡ ﺍﳉﺪﻭﻝ ‪ 5‬ﻣﻘﺎﺭﻧﺔ ﺗﻘﺮﻳﺒﻴﺔ ﺑﲔ ﺍﻟﻔﺌﺎﺕ ﻭﺍﻷﻣﺎﻛﻦ ﺍﳌﺨﺘﺎﺭﺓ ﰲ ﺍﳌﻌﺎﻳﲑ‪.‬‬
‫ﺍﳉﺪﻭﻝ‬
‫‪5‬‬
‫‪IEEE/ANSI‬‬
‫ﺍﻟﻔﺌﺎﺕ‬
‫ﻻ ﺷﻲﺀ‬
‫ﺍﻷﻣﺎﻛﻦ‬
‫ﺍﳊﻤﺎﻳﺔ ﻣﻮﻓﺮﺓ )ﺗﻮﻋﻴﺔ ﺍﳌﻌﺮﺿﲔ(‬
‫ﺍﳊﻤﺎﻳﺔ ﻏﲑ ﻣﻮﻓﺮﺓ )ﻻ ﺗﻮﻋﻴﺔ(‬
‫‪NRPB‬‬
‫‪ICNIRP‬‬
‫ﻋﺎﻣﺔ ﺍﳉﻤﻬﻮﺭ‬
‫ﺍﻟﻨﺎﺱ ﺍﳌﻌﺮﺿﻮﻥ ﲝﻜﻢ ﻣﻬﻨﺘﻬﻢ‬
‫ﺍﻟﻜﺒﺎﺭ ﻭﺍﻷﻃﻔﺎﻝ‬
‫ﺍﻟﻜﺒﺎﺭ‬
‫ﻻ ﺷﻲﺀ‬
‫ﻻ ﺷﻲﺀ‬
‫ﺍﻟﺘﻮﺻﻴﺔ‬
‫‪1.2‬‬
‫‪63‬‬
‫‪ITU-R BS.1698‬‬
‫ﻣﻘﺎﺭﻧﺔ ﺍﳊﺪﻭﺩ ﺍﻟﺒﻴﻮﻟﻮﺟﻴﺔ ﺍﻷﺳﺎﺳﻴﺔ‬
‫ﺗﻀﻊ ﺍﳌﻌﺎﻳﲑ ﻭﺍﳋﻄﻮﻁ ﺍﻟﺘﻮﺟﻴﻬﻴﺔ "ﺣﺪﻭﺩﹰﺍ ﺃﺳﺎﺳﻴﺔ" ﻟﺘﻴﺎﺭ ﺍﻟﺘﻤﺎﺱ‪ ،‬ﻭﻛﺜﺎﻓﺔ ﺍﻟﺘﻴﺎﺭ‪ ،‬ﻭﻣﻌﺪﻝ ﺍﻻﻣﺘﺼﺎﺹ ﺍﻟﻨﻮﻋﻲ )‪ ،(SAR‬ﻳﻌﺮﺿﻬﺎ‬
‫ﺍﳉﺪﻭﻝ ‪ 6‬ﻣﻊ ﺷﺮﻭﻁ ﺍﻟﻘﻴﺎﺱ‪.‬‬
‫ﻫﻨﺎﻙ ﺧﻂ ﺗﻮﺟﻴﻬﻲ ﻣﺸﺘﺮﻙ‪ ،‬ﺗُﺠﻤِﻊ ﻋﻠﻴﻪ ﺍﳌﻌﺎﻳﲑ ﺍﳌﻘﺎﺭَﻧﺔ‪ ،‬ﻭﻫﻮ ﺃﻬﻧﺎ ﲢﻈﺮ ﺃﻥ ﻳﺘﺠﺎﻭﺯ ﺍﳌﻌﺪﻝ ‪ SAR‬ﻟﻜﺎﻣﻞ ﺍﳉﺴﻢ ﻗﻴﻤﺔ ‪.W/kg 4‬‬
‫ﻓﺈﺫﺍ ﻃﺒّﻘﻨﺎ ﻋﺎﻣﻞ ﺳﻼﻣﺔ ﲟﻘﺪﺍﺭ ‪ ،10‬ﺍﳔﻔﺾ ﺍﳊﺪ ﺍﻷﺳﺎﺳﻲ ﻟﻠﻤﻌﺪﻝ ‪) SAR‬ﻣﻌﺪﻝ ‪ SAR‬ﺍﻟﻮﺳﻄﻲ ﻟﻜﺎﻣﻞ ﺍﳉﺴﻢ( ﺇﱃ ‪.W/kg 0,4‬‬
‫ﻭﺍﳊﺪ ﺍﻷﺳﺎﺳﻲ ﺍﻟﺬﻱ ﻭﺿﻌﺘﻪ ﺍﳍﻴﺌﺔ ‪ NRPB‬ﺑﻘﻴﻤﺔ ‪ W/kg 0,4‬ﻳُﻘﺘﺮَﺡ ﺍﻋﺘﺒﺎﺭﻩ ﺍﻟﺴﻮﻳﺔ ﺍﻟﻘﺼﻮﻯ ﺍﳌﺴﻤﻮﺡ ﻬﺑﺎ ﻣﻊ ﺍﺭﺗﻔﺎﻉ ﺍﳊﺮﺍﺭﺓ‬
‫ﺑﻘﻴﻤﺔ ‪.K 1‬‬
‫ﻭﲡﺐ ﺍﳌﻼﺣﻈﺔ ﺃﻥ ﺍﳊﺪ ﺍﻷﺳﺎﺳﻲ ﻟﻠﻤﻌﺪﻝ ‪ SAR‬ﻟﻜﺎﻣﻞ ﺍﳉﺴﻢ ﻳﻮﺿﻊ ﻣﺘﻮﺳﻄﻪ ﻋﻠﻰ ﻣﺪﻯ ‪ 6‬ﺩﻗﺎﺋﻖ‪ .‬ﻭﻫﻨﺎﻙ ﺃﻳﻀﹰﺎ ﺣﺪﻭﺩ ﺗﻨﻄﺒﻖ‬
‫ﻋﻠﻰ ﺃﺟﺰﺍﺀ ﻣﻌﻴّﻨﺔ ﻣﻦ ﺍﳉﺴﻢ‪ ،‬ﻭﻳﺸﺎﺭ ﺇﻟﻴﻬﺎ ﲟﺼﻄﻠﺢ "ﻣﻌﺪﻻﺕ ‪ SAR‬ﺍﳌﻮﺿﻌﻴﺔ"؛ ﻭﲟﺎ ﺃﻥ ﺍﻟﺮﻧﲔ ﻳﺆﺛﺮ ﺑﺄﻧﻪ ﻳﺮﻓﻊ ﺩﺭﺟﺔ ﺍﳊﺮﺍﺭﺓ ﰲ‬
‫ﻣﻮﺍﺿﻊ ﻣﻌﻴﱠﻨﺔ ﻳﺸﺎﺭ ﺇﻟﻴﻬﺎ ﺑﺘﺴﻤﻴﺔ "ﺍﻟﻨﻘﻂ ﺍﳊﺎﺭﺓ"‪ ،‬ﻓﺎﳊﺪﻭﺩ ﰲ ﻫﺬﻩ ﺍﻟﻨﻘﻂ ﺃﻋﻠﻰ ﻣﻦ ﻣﻌﺪﻝ ‪ SAR‬ﺍﻟﻮﺳﻄﻲ ﻟﻜﺎﻣﻞ ﺍﳉﺴﻢ‪.‬‬
‫‪2.2‬‬
‫ﻣﻘﺎﺭﻧﺔ ﺍﻟﺴﻮﻳﺎﺕ ﺍﳌﺸﺘﻘﺔ ﺑﺸﺄﻥ ﺍﺠﻤﻟﺎﻟﲔ ‪ E‬ﻭ‪ H‬ﻭﺣﺪﻭﺩ ﻛﺜﺎﻓﺔ ﺍﻟﻘﺪﺭﺓ ﻣﻊ ﺗﺮﺩﺩﺍﺕ ﻣﺘﻨﻮﻋﺔ‬
‫ﻣﻦ ﺍﻟﺼﻌﺐ ﺟﺪﹰﺍ ﺇﺟﺮﺍﺀ ﻗﻴﺎﺱ ﻣﺒﺎﺷﺮ ﻟﻜﺜﺎﻓﺔ ﺍﻟﺘﻴﺎﺭ ﻭﻣﻌﺪﻝ ﺍﻻﻣﺘﺼﺎﺹ ﺍﻟﻨﻮﻋﻲ )‪ ،(SAR‬ﻻ ﺑﻞ ﺇﻧﻪ ﻣﻦ ﺍﳌﺴﺘﺤﻴﻞ ﻋﻤﻠﻴﹰﺎ‪ .‬ﻭﻋﻠﻴﻪ‪،‬‬
‫ﻓﺈﻥ ﺍﻟﺴﻮﻳﺎﺕ ﺍﳌﺸﺘﻘﺔ ﺗﻌﻄﻰ ﺑﺎﻹﺿﺎﻓﺔ ﺇﱃ ﺍﳊﺪﻭﺩ ﺍﻷﺳﺎﺳﻴﺔ ﰲ ﺍﳌﻌﺎﻳﲑ ﻭﺍﻟﺘﻮﺟﻴﻬﺎﺕ ﺍﳌﻘﺼﻮﺩﺓ ﻫﻨﺎ‪.‬‬
‫ﻭﻣﻦ ﺟﻬﺔ ﺃﺧﺮﻯ‪ ،‬ﺃﺳﻬﻞ ﺑﻜﺜﲑ ﻋﻤﻠﻴﹰﺎ ﻗﻴﺎﺱ ﺍﳌﻘﺎﺩﻳﺮ ‪ E‬ﻭ‪ H‬ﰲ ﺍﺠﻤﻟﺎﻝ ﺍﻟﻜﻬﺮﻣﻐﻨﻄﻴﺴﻲ‪.‬‬
‫ﰒ ﺇﻥ ﺍﳌﻌﺪﻝ ‪ SAR‬ﺗﺎﺑﻊ ﻟﻠﺘﺮﺩﺩ‪ ،‬ﺑﻴﻨﻤﺎ ﺗُﻔﺘﺮَﺽ ﺍﳊﺪﻭﺩ ﺍﻷﺳﺎﺳﻴﺔ ﺍﳌﻌﺮﻭﺿﺔ ﰲ ﺍﳉﺪﻭﻝ ‪ 6‬ﺛﺎﺑﺘﺔ‪ .‬ﻭﻟﻜﻦ ﳝﻜﻦ ﺑﻔﻀﻞ ﺍﳌﻌﻄﻴﺎﺕ ﺫﺍﺕ‬
‫ﺍﻟﺼﻠﺔ ﲢﻮﻳﻞ ﺣﺪﻭﺩ ﺍﳌﻌﺪﻝ ‪ SAR‬ﺇﱃ ﺍﳌﻘﺎﺩﻳﺮ ﺍﳌﻨﺎﻇﺮﺓ ‪ E‬ﻭ‪ H‬ﻭ‪.S‬‬
‫ﺍﳉﺪﻭﻝ‬
‫ﻣﻘﺎﺭﻧﺔ ﺍﻟﺘﻘﻴﻴﺪﺍﺕ ﺍﻟﺒﻴﻮﻟﻮﺟﻴﺔ ﺍﻷﺳﺎﺳﻴﺔ )ﺣﺪﻭﺩ ‪(SAR‬‬
‫ﻭﺍﻟﺴﻮﻳﺎﺕ ﺍﳌﺮﺟﻌﻴﺔ )ﺍﳌﻌﻠﻤﺎﺕ ﺍﳊﺎﻟﻴﺔ(‬
‫‪6‬‬
‫‪IEEE/ANSI‬‬
‫ﺍﳌﻌﻠﻤﺔ‬
‫ﺍﳊﻤﺎﻳﺔ ﻣﻮﻓﺮﺓ ﺍﳊﻤﺎﻳﺔ ﻏﲑ ﻣﻮﻓﺮﺓ‬
‫ﺍﻟﺸﺪﺓ ﺍﻟﻔﻌﺎﻟﺔ ‪ RMS‬ﻟﻠﺘﻴﺎﺭ‬
‫ﺍﳌﺴﺘﺤﺚ ﺃﻭ ﺗﻴﺎﺭ ﺍﻟﺘﻤﺎﺱ‬
‫)‪(mA‬‬
‫ﻛﺜﺎﻓﺔ ﺍﻟﺘﻴﺎﺭ ﺍﻟﻔﻌﺎﻟﺔ )‪RMS (A/m2‬‬
‫ﻣﺴﺎﺣﺔ ﺣﺴﺎﺏ ﺍﳌﺘﻮﺳﻂ )‪(cm2‬‬
‫ﻭﻗﺖ ﺣﺴﺎﺏ ﺍﳌﺘﻮﺳﻂ‬
‫ﻣﺘﻮﺳﻂ ﺍﳌﻌﺪﻝ ﻟﻜﺎﻣﻞ ﺍﳉﺴﻢ‬
‫‪(W/kg) SAR‬‬
‫ﺍﳌﻌﺪﻝ‬
‫‪(W/kg) SAR‬‬
‫ﻛﺘﻠﺔ ﺣﺴﺎﺏ ﺍﳌﺘﻮﺳﻂ‬
‫‪ICNIRP‬‬
‫ﺍﳌﻮﺿﻌﻲ‬
‫)‪(kg‬‬
‫‪NRPB‬‬
‫ﻣﻬﲏ‬
‫ﻋﺎﻣﺔ ﺍﳉﻤﻬﻮﺭ‬
‫‪1 000 f‬‬
‫‪450 f‬‬
‫‪100‬‬
‫‪45‬‬
‫))‪(13a‬‬
‫))‪(13a‬‬
‫)‪(2‬‬
‫)‪(2‬‬
‫‪100‬‬
‫‪45‬‬
‫‪40‬‬
‫‪20‬‬
‫))‪(1), (13b‬‬
‫))‪(1) , (13b‬‬
‫)‪(3‬‬
‫)‪(3‬‬
‫‪350 f‬‬
‫‪1‬‬
‫‪1‬‬
‫‪15,7 f‬‬
‫‪1‬‬
‫‪1‬‬
‫‪10 f‬‬
‫‪1‬‬
‫‪2f‬‬
‫‪1‬‬
‫)‪(4‬‬
‫)‪(4‬‬
‫)‪(4‬‬
‫)‪(4‬‬
‫‪0,4‬‬
‫‪0,08‬‬
‫‪0,4‬‬
‫‪0,08‬‬
‫‪0,4‬‬
‫))‪(5a‬‬
‫))‪(5b‬‬
‫))‪(5a‬‬
‫))‪(5a‬‬
‫))‪(5c‬‬
‫‪8‬‬
‫‪1,6‬‬
‫‪10‬‬
‫‪2‬‬
‫))‪(13c‬‬
‫))‪(13c‬‬
‫))‪(13d‬‬
‫))‪(13d‬‬
‫‪0,001‬‬
‫‪0,001‬‬
‫‪0,001‬‬
‫‪0,01‬‬
‫‪10 f‬‬
‫‪10‬‬
‫‪0,01 and 0,1‬‬
‫ﺍﻟﺘﻮﺻﻴﺔ‬
‫‪64‬‬
‫‪ITU-R BS.1698‬‬
‫ﺍﳉﺪﻭﻝ‬
‫ﻣﻘﺎﺭﻧﺔ ﺍﻟﺘﻘﻴﻴﺪﺍﺕ ﺍﻟﺒﻴﻮﻟﻮﺟﻴﺔ ﺍﻷﺳﺎﺳﻴﺔ )ﺣﺪﻭﺩ ‪(SAR‬‬
‫ﻭﺍﻟﺴﻮﻳﺎﺕ ﺍﳌﺮﺟﻌﻴﺔ )ﺍﳌﻌﻠﻤﺎﺕ ﺍﳊﺎﻟﻴﺔ(‬
‫‪6‬‬
‫‪IEEE/ANSI‬‬
‫ﺍﳌﻌﻠﻤﺔ‬
‫ﺍﳊﻤﺎﻳﺔ ﻣﻮﻓﺮﺓ ﺍﳊﻤﺎﻳﺔ ﻏﲑ ﻣﻮﻓﺮﺓ‬
‫)‪(6‬‬
‫ﺍﳌﻌﺪﻝ‬
‫)‪(W/kg) Sar(7‬‬
‫ﺍﳌﻮﺿﻌﻲ‬
‫ﻛﺘﻠﺔ )‪ (kg‬ﺣﺴﺎﺏ ﺍﳌﺘﻮﺳﻂ‬
‫ﻛﺜﺎﻓﺔ ﺍﻟﻘﺪﺭﺓ‬
‫ﻭﻗﺖ‬
‫)‪(W/m2‬‬
‫)‪(min‬‬
‫‪ICNIRP‬‬
‫ﺣﺴﺎﺏ ﺍﳌﺘﻮﺳﻂ‬
‫)‪(6‬‬
‫ﻣﻬﲏ‬
‫ﻋﺎﻣﺔ ﺍﳉﻤﻬﻮﺭ‬
‫)‪(5a), (7‬‬
‫)‪(5a), (7‬‬
‫‪NRPB‬‬
‫)‪(5a)), (10‬‬
‫‪20‬‬
‫‪20‬‬
‫‪4‬‬
‫‪20‬‬
‫‪4‬‬
‫))‪(13c‬‬
‫))‪(13c‬‬
‫))‪(13d‬‬
‫))‪(13d‬‬
‫)‪0,010(8‬‬
‫)‪0,010(8‬‬
‫)‪0,01(5a)), (9‬‬
‫)‪0,01(5a)), (9‬‬
‫)‪0,1(5a)), (9‬‬
‫‪50‬‬
‫‪68/f 1,05‬‬
‫‪10‬‬
‫‪68/f 1,05‬‬
‫‪100‬‬
‫‪68/f 1,05‬‬
‫)‪(12), (13‬‬
‫)‪(12), (13‬‬
‫)‪(12‬‬
‫‪ :f‬ﺍﻟﺘﺮﺩﺩ ﺑـ ‪) MHz‬ﻣﺎ ﱂ ﻳُﺬﻛﺮ ﻏﲑﻩ(‪.‬‬
‫)‪ (1‬ﺍﻟﺘﻴﺎﺭ ﺍﻟﻌﺎﺑﺮ ﰲ ﻛﻞ ﻣﻦ ﺍﻟﻘﺪﻣﲔ‪ : f .‬ﺍﻟﺘﺮﺩﺩ )‪.(MHz‬‬
‫)‪ (2‬ﺍﻟﺘﻴﺎﺭ ﺍﳌﺴﺘﺤﺚ ﰲ ﺃﻱ ﻋﻀﻮ )‪.(MHz 110-10‬‬
‫)‪ (3‬ﺗﻴﺎﺭ ﺍﻟﺘﻤﺎﺱ ﺍﳌﺄﺧﻮﺫ ﻣﻦ ﺃﻱ ﺷﻲﺀ ﻣﻮﺻﻞ )‪.(MHz 110-kHz 100‬‬
‫)‪ (4‬ﻛﺜﺎﻓﺔ ﺍﻟﺘﻴﺎﺭ ﰲ ﺃﻱ ﻣﺴﺎﺣﺔ ﻗﺪﺭﻫﺎ ‪ 2cm 1‬ﻣﻦ ﻧﺴﻴﺞ ﺍﳉﺴﻢ‪.‬‬
‫ﺣﺪﻭﺩ ﺍﳌﻌﺪﻝ ‪ SAR‬ﺑﺎﻟﻨﺴﺒﺔ ﺇﱃ ﻭﻗﺖ ﳊﺴﺎﺏ ﺍﳌﻌﺪﻝ ﻣﺪﺗﻪ ‪.min 6‬‬
‫)‪(a (5‬‬
‫ﺣﺪﻭﺩ ﺍﳌﻌﺪﻝ ‪ SAR‬ﺑﺎﻟﻨﺴﺒﺔ ﺇﱃ ﻭﻗﺖ ﳊﺴﺎﺏ ﺍﳌﻌﺪﻝ ﻛﻤﺎ ﻫﻮ ﻣﻌﻄﻰ ﰲ ﺍﳉﺪﻭﻝ ‪.7‬‬
‫‪(b‬‬
‫ﺣﺪﻭﺩ ﺍﳌﻌﺪﻝ ‪ SAR‬ﺑﺎﻟﻨﺴﺒﺔ ﺇﱃ ﻭﻗﺖ ﳊﺴﺎﺏ ﺍﳌﻌﺪﻝ ﻣﺪﺗﻪ ‪.min 15‬‬
‫‪(c‬‬
‫)‪ (6‬ﺍﳌﻌﺪﻝ ‪ SAR‬ﺍﳌﻮﺿﻌﻲ ﺑﺎﺳﺘﺜﻨﺎﺀ ﺍﻟﻴﺪﻳﻦ ﻭﺍﳌﻌﺼﻤﲔ ﻭﺍﻟﻘﺪﻣﲔ ﻭﺍﻟﻜﺎﺣﻠﲔ )‪.(GHz 6-kHz 100‬‬
‫)‪ (7‬ﺍﳌﻌﺪﻝ ‪ SAR‬ﺍﳌﻮﺿﻌﻲ ﲞﺼﻮﺹ ﺍﻟﺮﺃﺱ ﻭﺍﳉﺬﻉ )‪.(GHz 10-kHz 100‬‬
‫)‪ (8‬ﺍﳌﻌﺪﻝ ‪ SAR‬ﺍﳌﻮﺿﻌﻲ ﲞﺼﻮﺹ ﺍﻟﻴﺪﻳﻦ ﻭﺍﳌﻌﺼﻤﲔ ﻭﺍﻟﻘﺪﻣﲔ ﻭﺍﻟﻜﺎﺣﻠﲔ )‪.(GHz 6-kHz 100‬‬
‫)‪ (9‬ﺍﳌﻌﺪﻝ ‪ SAR‬ﺍﳌﻮﺿﻌﻲ ﲞﺼﻮﺹ ﺍﻷﻃﺮﺍﻑ )‪.(GHz 10-kHz 100‬‬
‫)‪ (10‬ﺍﳌﻌﺪﻝ ‪ SAR‬ﺍﳌﻮﺿﻌﻲ ﲞﺼﻮﺹ ﺍﻟﺮﺃﺱ ﻭﺍﻟﺮﻗﺒﺔ ﻭﺍﳉﺬﻉ ﻭﺍﳉﻨﲔ )‪.(GHz 10-MHz 10‬‬
‫)‪ g 10 (11‬ﲞﺼﻮﺹ ﺍﻟﺮﺃﺱ ﻭﺍﳉﻨﲔ؛ ‪ g 100‬ﲞﺼﻮﺹ ﺍﻟﺮﻗﺒﺔ ﻭﺍﳉﺬﻉ‪.‬‬
‫)‪ (12‬ﲞﺼﻮﺹ ﺍﻟﺘﺮﺩﺩﺍﺕ ﺑﲔ ‪ 10‬ﻭ‪ : f .GHz 300‬ﺍﻟﺘﺮﺩﺩ )‪.(GHz‬‬
‫)‪ (13‬ﻣﺘﻮﺳﻂ ﺍﳌﻌﺪﻝ ﻋﻠﻰ ﻛﻞ ‪ 2cm 20‬ﻣﻦ ﺍﳌﺴﺎﺣﺔ ﺍﳌﻌﺮﺿﺔ‪:‬‬
‫‪(a‬‬
‫‪(b‬‬
‫‪(c‬‬
‫‪(d‬‬
‫‪kHz 100 > f > kHz 3‬‬
‫‪MHz 100 > f > kHz 100‬‬
‫‪GHz 6 > f > kHz 100‬‬
‫‪GHz 10 > f > kHz 100‬‬
‫ﺗﻌﺮﺽ ﺍﳉﺪﺍﻭﻝ ‪ 7‬ﻭ‪ 8‬ﻭ‪ 9‬ﺍﻟﺴﻮﻳﺔ ﺍﻟﻘﺼﻮﻯ ﻟﻠﻤﺠﺎﻟﲔ ‪ E‬ﻭ‪ H‬ﻭﻟﻜﺜﺎﻓﺔ ﺍﻟﻘﺪﺭﺓ ﻋﻠﻰ ﺍﻟﺘﻮﺍﱄ‪ ،‬ﰲ ﻣﺪﻯ ﻧﻄﺎﻗﺎﺕ ﺗﺮﺩﺩﻳﺔ ﻣﻦ‬
‫ﺇﱃ ‪ .GHz 300‬ﻭﺍﳊﺪﻭﺩ ﳏﺴﻮﺑﺔ ﻋﻠﻰ ﺍﻓﺘﺮﺍﺽ ﺛﺒﺎﺕ ﺍﻗﺘﺮﺍﻥ ﻛﻬﺮﻣﻐﻨﻄﻴﺴﻲ ﺃﻣﺜﻞ ﺑﲔ ﺍﺠﻤﻟﺎﻝ ﺍﻟﻜﻬﺮﻣﻐﻨﻄﻴﺴﻲ ﻭﺍﳉﺴﻢ‪.‬‬
‫‪kHz 1‬‬
‫ﺍﻟﺘﻮﺻﻴﺔ‬
‫‪65‬‬
‫‪ITU-R BS.1698‬‬
‫ﺍﳉﺪﻭﻝ ‪) 7‬ﻳﻘﺮﺃ ﻣﻦ ﺍﻟﻴﺴﺎﺭ ﺇﱃ ﺍﻟﻴﻤﲔ(‬
‫ﻣﻘﺎﺭﻧﺔ ﺍﻟﺴﻮﻳﺎﺕ ﺍﳌﺸﺘﻘﺔ؛ ﺍﺠﻤﻟﺎﻝ ‪) E‬ﺍﻟﻘﻴﻢ ﺍﻟﻔﻌﺎﻟﺔ‬
‫‪ICNIRP‬‬
‫‪NRPB‬‬
‫ﺍﻟﻜﺒﺎﺭ ﻭﺍﻷﻃﻔﺎﻝ ﺍﻟﻜﺒﺎﺭ ﻓﻘﻂ‬
‫ﻋﺎﻣﺔ ﺍﳉﻤﻬﻮﺭ‬
‫‪*(V/m‬‬
‫‪IEEE/ANSI‬‬
‫ﲪﺎﻳﺔ ﻏﲑ ﻣﻮﻓﺮﺓ‬
‫ﻣﻬﻨﻴﻮﻥ‬
‫ﲪﺎﻳﺔ ﻣﻮﻓﺮﺓ‬
‫ﻣﺪﻯ ﺍﻟﺘﺮﺩﺩﺍﺕ‬
‫‪0,6-3 kHz‬‬
‫‪3-30 kHz‬‬
‫‪30-38 kHz‬‬
‫‪1 000‬‬
‫‪38-65 kHz‬‬
‫‪65-100 kHz‬‬
‫‪87‬‬
‫‪610‬‬
‫‪100-410 kHz‬‬
‫)‪(1‬‬
‫‪614‬‬
‫‪410-600 kHz‬‬
‫‪600-610 kHz‬‬
‫‪610-680 kHz‬‬
‫‪680-920 kHz‬‬
‫‪600/f‬‬
‫‪0,92-1 MHz‬‬
‫‪1-1,34 MHz‬‬
‫‪87/f 0,5‬‬
‫‪610/f‬‬
‫‪823,8/f‬‬
‫‪614‬‬
‫‪823,8/f‬‬
‫‪1 842/f‬‬
‫‪1,34-3 MHz‬‬
‫‪3-10 MHz‬‬
‫‪600/f‬‬
‫‪60‬‬
‫‪10-12 MHz‬‬
‫‪12-30 MHz‬‬
‫‪50‬‬
‫)‪(2‬‬
‫‪30-60 MHz‬‬
‫‪60-100 MHz‬‬
‫‪f‬‬
‫‪61‬‬
‫‪28‬‬
‫)‪(2‬‬
‫‪27,5‬‬
‫‪61,4‬‬
‫‪100-137 MHz‬‬
‫‪137-200 MHz‬‬
‫‪0,25 f‬‬
‫)‪(2‬‬
‫‪137‬‬
‫‪200-300 MHz‬‬
‫)‪(2‬‬
‫‪300-400 MHz‬‬
‫‪400-800 MHz‬‬
‫‪100‬‬
‫)‪(2‬‬
‫‪0,5‬‬
‫‪0,125 f‬‬
‫)‪(2‬‬
‫‪1,375 f‬‬
‫‪0,5‬‬
‫‪3f‬‬
‫‪0,125 f‬‬
‫‪0,8-1,1 GHz‬‬
‫‪1,1-1,55 GHz‬‬
‫)‪(2‬‬
‫‪1,55-2 GHz‬‬
‫‪194‬‬
‫)‪(2‬‬
‫‪2-3 GHz‬‬
‫‪61‬‬
‫‪137‬‬
‫‪3-15 GHz‬‬
‫‪15-300 GHz‬‬
‫‪ :f‬ﺍﻟﺘﺮﺩﺩ ﺑـ ‪) MHz‬ﻣﺎ ﱂ ﻳُﺬﻛﺮ ﻏﲑﻩ(‬
‫* ﻳُﺤﺴﺐ ﻣﺘﻮﺳﻂ ﺍﻟﻘﻴﻢ ﻋﻠﻰ ﻓﺘﺮﺓ ‪ 6‬ﺩﻗﺎﺋﻖ‪ ،‬ﺑﺎﺳﺘﺜﻨﺎﺀ ﺍﳊﺎﻟﺘﲔ ﺍﻟﺘﺎﻟﻴﺘﲔ‪:‬‬
‫‪(a‬‬
‫)‪(1‬‬
‫)‪(2‬‬
‫‪f 2/0,3‬‬
‫‪ 30 (b‬ﺩﻗﻴﻘﺔ‪.‬‬
‫ﺗﻘﻊ ﻫﺬﻩ ﺍﻟﻘﻴﻤﺔ ﺑﲔ ‪ MHz 0,82‬ﻭ‪.MHz 1‬‬
‫ﻫﺬﻩ ﺍﻟﻘﻴﻤﺔ ﻣﻜﺎﻓﺌﺔ ﳌﻮﺟﺔ ﻣﺴﺘﻮﻳﺔ ﻣﻦ ﻣﻮﺟﺎﺕ ﺍﺠﻤﻟﺎﻝ ‪.E‬‬
‫ﺍﻟﺘﻮﺻﻴﺔ‬
‫‪66‬‬
‫‪ITU-R BS.1698‬‬
‫ﺍﳉﺪﻭﻝ ‪) 8‬ﻳﻘﺮﺃ ﻣﻦ ﺍﻟﻴﺴﺎﺭ ﺇﱃ ﺍﻟﻴﻤﲔ(‬
‫)‪(2) ،(1‬‬
‫ﻣﻘﺎﺭﻧﺔ ﺍﻟﺴﻮﻳﺎﺕ ﺍﳌﺸﺘﻘﺔ؛ ﺍﺠﻤﻟﺎﻝ ‪) H‬ﺍﻟﻘﻴﻢ ﺍﻟﻔﻌﺎﻟﺔ ﻟﺸﺪﺓ ﺍﺠﻤﻟﺎﻝ(‬
‫‪NRPB‬‬
‫‪ICNIRP‬‬
‫ﺍﻟﻜﺒﺎﺭ ﻭﺍﻷﻃﻔﺎﻝ ﺍﻟﻜﺒﺎﺭ ﻓﻘﻂ ﻋﺎﻣﺔ ﺍﳉﻤﻬﻮﺭ‬
‫‪IEEE/ANSI‬‬
‫ﺍﳊﻤﺎﻳﺔ ﻏﲑ ﻣﻮﻓﺮﺓ‬
‫ﻣﻬﻨﻴﻮﻥ‬
‫ﺍﳊﻤﺎﻳﺔ ﻣﻮﻓﺮﺓ‬
‫ﻣﺪﻯ ﺍﻟﺘﺮﺩﺩﺍﺕ‬
‫‪1-3 kHz‬‬
‫‪3-30 kHz‬‬
‫‪64‬‬
‫‪163‬‬
‫‪30-38 kHz‬‬
‫‪38-65 kHz‬‬
‫‪5‬‬
‫‪65-100 kHz‬‬
‫)‪(3‬‬
‫‪100-140 kHz‬‬
‫‪1,6/f‬‬
‫‪140-150 kHz‬‬
‫‪150-535 kHz‬‬
‫‪535-610 kHz‬‬
‫‪16,3/f‬‬
‫‪18/f 2‬‬
‫‪0,73/f‬‬
‫‪610-680 kHz‬‬
‫‪0,68-1 MHz‬‬
‫‪1-1,34 MHz‬‬
‫‪1,34-3 MHz‬‬
‫‪3-10 MHz‬‬
‫‪10-12 MHz‬‬
‫‪0,16‬‬
‫‪12-30 MHz‬‬
‫)‪(2‬‬
‫‪0,13‬‬
‫‪f /377‬‬
‫‪0.66 × 10–3 f‬‬
‫‪0,36‬‬
‫‪1,668‬‬
‫‪158,3/f‬‬
‫‪16,3/f‬‬
‫))‪(1a‬‬
‫)‪(2‬‬
‫‪30-60 MHz‬‬
‫‪60-100 MHz‬‬
‫‪0,16‬‬
‫‪0,073‬‬
‫‪100-137 MHz‬‬
‫‪0,0729‬‬
‫‪0,163‬‬
‫))‪(1b‬‬
‫)‪(2‬‬
‫‪137-200 MHz‬‬
‫‪200-300 MHz‬‬
‫‪300-400 MHz‬‬
‫‪400-800 MHz‬‬
‫‪0.26‬‬
‫‪0,5‬‬
‫‪0.33 × 10–3 f‬‬
‫‪0,0037f‬‬
‫‪0,5‬‬
‫‪0,008f‬‬
‫‪0,33 × 10–3 f‬‬
‫‪0,8-1,1 GHz‬‬
‫‪1,1-1,55 GHz‬‬
‫)‪(2‬‬
‫‪1,55-2 GHz‬‬
‫‪0,52‬‬
‫‪2-3 GHz‬‬
‫‪0,16‬‬
‫‪0,36‬‬
‫‪3-15 GHz‬‬
‫‪15-300 GHz‬‬
‫‪ :f‬ﺍﻟﺘﺮﺩﺩ ﺑـ ‪) MHz‬ﻣﺎ ﱂ ﻳُﺬﻛﺮ ﻏﲑﻩ(‬
‫)‪ (1‬ﻳُﺤﺴﺐ ﻣﺘﻮﺳﻂ ﺍﻟﻘﻴﻢ ﻋﻠﻰ ﻓﺘﺮﺓ ‪ 6‬ﺩﻗﺎﺋﻖ‪ ،‬ﺑﺎﺳﺘﺜﻨﺎﺀ ﺍﳊﺎﻟﺘﲔ ﺍﻟﺘﺎﻟﻴﺘﲔ‪:‬‬
‫‪ 0,0636 f 1,337 (a‬ﺩﻗﻴﻘﺔ‬
‫‪ 30 (b‬ﺩﻗﻴﻘﺔ‪.‬‬
‫)‪ (2‬ﻫﺬﻩ ﺍﻟﻘﻴﻤﺔ ﻣﻜﺎﻓﺌﺔ ﳌﻮﺟﺔ ﻣﺴﺘﻮﻳﺔ ﰲ ﺍﺠﻤﻟﺎﻝ ‪ ،H‬ﺍﺳﺘﻨﺎﺩﹰﺍ ﺇﱃ ﻗﻴﻢ ﻛﺜﺎﻓﺔ ﺍﻟﻘﺪﺭﺓ ﺍﳌﻌﻄﺎﺓ ﲞﺼﻮﺹ ﺍﻟﻜﺒﺎﺭ‪ .‬ﻣﻼﺣﻈﺔ ‪ -‬ﻻ ﺗﻌﻄﻰ ﻫﺬﻩ ﺍﻟﻘﻴﻢ ﺻﺮﺍﺣﺔ‬
‫ﻋﻠﻰ ﻧﻔﺲ ﺍﻟﻨﺤﻮ ﻋﻠﻰ ﺍﻋﺘﺒﺎﺭ ﺃﻥ ﻗﻴﻢ ﺍﺠﻤﻟﺎﻝ ‪ E‬ﻭﻛﺜﺎﻓﺔ ﺍﻟﻘﺪﺭﺓ ﳏﺪﺩﺓ‪.‬‬
‫)‪ (3‬ﺗﺼﻠﺢ ﻫﺬﻩ ﺍﻟﻘﻴﻤﺔ ﰲ ﺍﳌﺪﻯ ‪ kHz 0,8‬ﺇﱃ ‪.kHz 150‬‬
‫ﺍﻟﺘﻮﺻﻴﺔ‬
‫‪67‬‬
‫‪ITU-R BS.1698‬‬
‫ﺍﳉﺪﻭﻝ ‪) 9‬ﻳﻘﺮﺃ ﻣﻦ ﺍﻟﻴﺴﺎﺭ ﺇﱃ ﺍﻟﻴﻤﲔ(‬
‫ﻣﻘﺎﺭﻧﺔ ﺍﻟﺴﻮﻳﺎﺕ ﺍﳌﺸﺘﻘﺔ؛ ﻛﺜﺎﻓﺔ ﺍﻟﻘﺪﺭﺓ‬
‫‪NRPB‬‬
‫ﺍﻟﻜﺒﺎﺭ ﻭﺍﻷﻃﻔﺎﻝ‬
‫)‪(W/m2‬‬
‫)‪IEEE/ANSI(1‬‬
‫‪ICNIRP‬‬
‫ﻋﺎﻣﺔ‬
‫ﺍﳉﻤﻬﻮﺭ‬
‫ﺍﻟﻜﺒﺎﺭ ﻓﻘﻂ‬
‫)‪(3‬‬
‫ﺍﳌﻬﻨﻴﻮﻥ‬
‫ﺍﳊﻤﺎﻳﺔ ﻣﻮﻓﺮﺓ‬
‫ﺍﺠﻤﻟﺎﻝ ‪ H‬ﺍﺠﻤﻟﺎﻝ ‪E‬‬
‫ﺍﳊﻤﺎﻳﺔ ﻏﲑ ﻣﻮﻓﺮﺓ‬
‫ﺍﺠﻤﻟﺎﻝ ‪E‬‬
‫ﺍﺠﻤﻟﺎﻝ ‪H‬‬
‫ﻣﺪﻯ ﺍﻟﺘﺮﺩﺩﺍﺕ‬
‫‪<100 Hz‬‬
‫‪0,1-1 kHz‬‬
‫‪1-3 kHz‬‬
‫‪3-30 kHz‬‬
‫‪10 × 106‬‬
‫‪1 000‬‬
‫‪10 × 106‬‬
‫‪1 000‬‬
‫‪105/f 2‬‬
‫‪1 000‬‬
‫‪105/f 2‬‬
‫‪1 000‬‬
‫‪2‬‬
‫‪1 800/ f‬‬
‫‪105/f 2‬‬
‫‪1 000‬‬
‫‪2‬‬
‫‪1 800/ f‬‬
‫‪30-100 kHz‬‬
‫‪100-410 kHz‬‬
‫‪0,41-1 MHz‬‬
‫‪1-1,34 MHz‬‬
‫‪105/f 2‬‬
‫)‪(2‬‬
‫‪105/f 2‬‬
‫)‪(2‬‬
‫‪10‬‬
‫‪2‬‬
‫))‪(2), (3a‬‬
‫))‪(2), (3b‬‬
‫‪3-10 MHz‬‬
‫‪105/f 2‬‬
‫‪9 000/f 2‬‬
‫‪10‬‬
‫‪6,6‬‬
‫‪10-12 MHz‬‬
‫‪12-30 MHz‬‬
‫× ‪(9,4‬‬
‫‪106 )/f 8,336‬‬
‫‪2,7 × 10–3 f 2‬‬
‫‪1,34-3 MHz‬‬
‫‪2‬‬
‫‪30-60 MHz‬‬
‫))‪(2), (3b‬‬
‫‪5/ 2‬‬
‫‪10 f‬‬
‫))‪(2), (3c‬‬
‫‪10‬‬
‫‪60-100 MHz‬‬
‫‪100-137 MHz‬‬
‫‪2‬‬
‫‪10‬‬
‫))‪(3b‬‬
‫‪0,165 × 10–3f 2‬‬
‫‪137-200 MHz‬‬
‫‪200-300 MHz‬‬
‫‪50‬‬
‫‪300-400 MHz‬‬
‫‪400-800 MHz‬‬
‫‪26‬‬
‫‪f /150‬‬
‫‪41 × 10–6 f 2‬‬
‫‪41 × 10–6 f 2‬‬
‫‪f /200‬‬
‫‪0,8-1,1 GHz‬‬
‫‪f /30‬‬
‫‪f /40‬‬
‫))‪(3b‬‬
‫‪1,1-1,55 GHz‬‬
‫‪1,55-2 GHz‬‬
‫‪100‬‬
‫‪2-3 GHz‬‬
‫‪10‬‬
‫‪50‬‬
‫‪f /150‬‬
‫‪100‬‬
‫‪3-15 GHz‬‬
‫))‪(3d‬‬
‫))‪100(3e‬‬
‫‪ :f‬ﺍﻟﺘﺮﺩﺩ ﺑـ ‪) MHz‬ﻣﺎ ﱂ ﻳُﺬﻛﺮ ﻏﲑﻩ(‬
‫)‪ (1‬ﻓﻴﻤﺎ ﲢﺖ ‪ ،MHz 100‬ﺍﻟﻘﻴﻢ ﺍﳌﻜﺎﻓﺌﺔ ﳌﻮﺟﺔ ﻣﺴﺘﻮﻳﺔ ﻣﻌﻄﺎﺓ ﲞﺼﻮﺹ ﺍﺠﻤﻟﺎﻟﲔ ‪ E‬ﻭ‪.H‬‬
‫)‪ (2‬ﻛﻤﺎ ﺃﻋﻄﺘﻬﺎ ﺑﻌﺾ ﺃﺟﻬﺰﺓ ﺍﻟﻘﻴﺎﺱ ﺍﳌﺘﻴﺴﺮﺓ ﰲ ﺍﻟﺴﻮﻕ‪.‬‬
‫)‪ (3‬ﻳُﺤﺴﺐ ﻣﺘﻮﺳﻂ ﺍﻟﻘﻴﻢ ﻋﻠﻰ ﻓﺘﺮﺓ ‪ 6‬ﺩﻗﺎﺋﻖ‪ ،‬ﺑﺎﺳﺘﺜﻨﺎﺀ ﺍﳊﺎﻻﺕ ﺍﻟﺘﺎﻟﻴﺔ‪:‬‬
‫‪ f 2/0,3‬ﺩﻗﺎﺋﻖ‬
‫‪(a‬‬
‫‪ 30 (b‬ﺩﻗﻴﻘﺔ‬
‫‪ 0,0336 f 1,337 (c‬ﺩﻗﻴﻘﺔ‬
‫‪ 90 000/f (d‬ﺩﻗﻴﻘﺔ‬
‫‪ 616 000/f 1,2 (e‬ﺩﻗﻴﻘﺔ‪.‬‬
‫‪15-300 GHz‬‬
‫ﺍﻟﺘﻮﺻﻴﺔ‬
‫‪68‬‬
‫‪3‬‬
‫‪ITU-R BS.1698‬‬
‫ﻗﻴﻢ ﺷﺪﺓ ﺍﺠﻤﻟﺎﻝ ﺍﻟﻼﺯﻡ ﲢﺪﻳﺪﻫﺎ‬
‫ﺍﺳﺘُﻌﲔ ﺑﺎﳌﻌﻄﻴﺎﺕ ﺍﳌﻌﺮﻭﺿﺔ ﰲ ﺍﻟﻔﻘﺮﺓ ‪ 2.2‬ﻣﻦ ﻫﺬﺍ ﺍﻟﺘﺬﻳﻴﻞ ﻟﺒﻴﺎﻥ ﻗﻴﻢ ﺷﺪﺓ ﺍﺠﻤﻟﺎﻟﲔ ﺍﻟﻜﻬﺮﺑﺎﺋﻲ ﻭﺍﳌﻐﻨﻄﻴﺴﻲ ﰲ ﺍﻟﺸﻜﻠﲔ‬
‫ﻋﻠﻰ ﺗﺮﺗﻴﺐ ﺍﻟﺘﻮﺍﱄ‪.‬‬
‫‪ 43‬ﻭ‪44‬‬
‫ﻭﺍﳌﻨﺤﻨﻴﺎﺕ‪/‬ﺍﻟﺒﻴﺎﻧﻴﺎﺕ ﺍﻟﻮﺍﺭﺩﺓ ﰲ ﺍﻟﺸﻜﻠﲔ ‪ 43‬ﻭ‪ 44‬ﻳﻨﺒﻐﻲ ﺃﻻ ﺗﻌﺘﻤﺪﻫﺎ ﺍﻹﺩﺍﺭﺍﺕ ﺃﺳﺎﺳﹰﺎ ﻹﻋﺪﺍﺩ ﺗﻨﻈﻴﻤﺎﻬﺗﺎ ﺍﻟﻮﻃﻨﻴﺔ‪ ،‬ﻷﻬﻧﺎ ﲤﺜﻞ‬
‫ﺧﻠﻴﻄﹰﺎ ﻣﻦ ﺍﳊﺪﻭﺩ ﺍﳌﻮﺻﻮﻓﺔ ﰲ ﺍﻟﻮﻗﺖ ﺍﳊﺎﺿﺮ‪ ،‬ﻭﺍﻟﻘﺎﺑﻠﺔ ﺑﺎﻟﺘﺄﻛﻴﺪ ﻟﻠﺘﻄﻮﺭ ﻣﻊ ﺍﻟﺰﻣﻦ‪ .‬ﻓﻬﻲ ﻣﻦ ﰒ ﺇﻳﻀﺎﺣﻴﺔ ﻓﺤﺴﺐ ﻟﻠﻄﺮﻳﻘﺔ‬
‫ﺍﳌﻤﻜﻦ ﺃﻥ ﺗﻨﺘﻬﺠﻬﺎ ﺇﺩﺍﺭﺓ ﻣﺎ ﻹﻋﺪﺍﺩ ﻣﻌﺎﻳﲑ ﻣﻔﻴﺪﺓ‪.‬‬
‫ﻭﻻ ﺑﺪ ﻣﻦ ﺍﻻﻋﺘﺮﺍﻑ ﺃﻳﻀﹰﺎ ﺑﺄﻥ ﻧﺘﺎﺋﺞ ﺍﻟﺪﺭﺍﺳﺎﺕ ﺍﳌﺴﺘﻘﻠﺔ ﳍﺬﺍ ﺍﳌﻮﺿﻮﻉ ﻟﻴﺴﺖ ﻣﺘﺴﻘﺔ ﲤﺎﻣﹰﺎ‪ ،‬ﻭﻣﻦ ﰒ ﻓﺈﻥ ﺗﻔﺴﲑ ﺍﻟﺴﻠﻄﺎﺕ‬
‫ﺍﳌﺴﺆﻭﻟﺔ ﳍﺬﻩ ﺍﻟﻨﺘﺎﺋﺞ ﺃﺳﻔﺮ‪ ،‬ﻭﺳﻴﻈﻞ ﻳﺴﻔﺮ ﰲ ﺍﳌﺴﺘﻘﺒﻞ‪ ،‬ﻋﻦ ﻣﺘﻄﻠﺒﺎﺕ ﳐﺘﻠﻔﺔ ﲝﺴﺐ ﺍﻟﺒﻠﺪﺍﻥ‪.‬‬
‫ﺍﻟﺸﻜﻞ‬
‫‪43‬‬
‫ﻣﺪﻯ ﻗﻴﻢ ﺷﺪﺓ ﺍﺠﻤﻟﺎﻝ ﺍﻟﻜﻬﺮﺑﺎﺋﻲ‪ ،‬ﻣﺸﺘﻘﺔ ﻣﻦ ﺍﳉﺪﺍﻭﻝ ﺍﳌﻌﻄﺎﺓ ﰲ ﺍﻟﺘﺬﻳﻴﻞ‬
‫‪3‬‬
‫‪103‬‬
‫‪a‬‬
‫‪102‬‬
‫)‪E (V/m‬‬
‫‪b‬‬
‫‪10‬‬
‫‪105‬‬
‫‪1698-43‬‬
‫‪104‬‬
‫‪103‬‬
‫‪102‬‬
‫‪10‬‬
‫‪1‬‬
‫‪10–1‬‬
‫‪10–2‬‬
‫‪1‬‬
‫)‪f (MHz‬‬
‫ﳝﺜﱢﻞ ﺍﳌﻨﺤﻨﻴﺎﻥ ‪ a‬ﻭ‪ b‬ﺍﳊﺪﻳﻦ ﺍﻷﻋﻠﻰ ﻭﺍﻷﺩﱏ ﻋﻠﻰ ﺍﻟﺘﻮﺍﱄ‪ ،‬ﺍﳌﻮﺿﻮﻋﲔ ﰲ ﺑﻌﺾ ﺍﻟﺘﻮﺻﻴﺎﺕ ﺍﳌﻌﺮﻭﻓﺔ‪ ،‬ﺍﳌﻌﻤﻮﻝ ﻬﺑﺎ ﺣﺎﻟﻴﹰﺎ‪ ،‬ﲞﺼﻮﺹ‬
‫ﺳﻮﻳﺎﺕ ﺍﻟﺘﻌﺮﺽ ﻹﺷﻌﺎﻋﺎﺕ ﺍﻟﺘﺮﺩﺩﺍﺕ ﺍﻟﺮﺍﺩﻳﻮﻳﺔ )ﻣﻘﺪﻣﺔ ﰲ ﻫﺬﺍ ﺍﻟﺘﺬﻳﻴﻞ ﻋﻠﻰ ﺳﺒﻴﻞ ﺍﳌﺜﺎﻝ(‪ .‬ﻛﻞ ﺍﳌﻨﺤﻨﻴﺎﺕ ﺍﻟﱵ ﺗﻀﻌﻬﺎ ﺳﻠﻄﺎﺕ‬
‫ﺗُﺼﺪِﺭ ﻣﺜﻞ ﻫﺬﻩ ﺍﻟﺘﻮﺻﻴﺎﺕ ﺗﻘﻊ ﺑﲔ ﻫﺬﻳﻦ ﺍﳊﺪﻳﻦ‪ ،‬ﻭﺃﻱ ﻣﻨﺤ ﹴﻦ ﻳﻘﻊ ﺑﲔ ﺍﳌﻨﺤﻨﻴﲔ ‪ a‬ﻭ‪ b‬ﻓﻤﻦ ﺍﳌﻔﺘﺮﺽ ﺃﻧﻪ ﻳﺴﻤﺢ ﺑﺘﺸﻐﻴﻞ‬
‫ﺧﺪﻣﺎﺕ ﺇﺫﺍﻋﻴﺔ ﺳﻠﻴﻤﺔ‪.‬‬
‫ﺍﻟﺘﻮﺻﻴﺔ‬
‫‪69‬‬
‫‪ITU-R BS.1698‬‬
‫ﺍﻟﺸﻜﻞ‬
‫‪44‬‬
‫ﻣﺪﻯ ﻗﻴﻢ ﺷﺪﺓ ﺍﺠﻤﻟﺎﻝ ﺍﳌﻐﻨﻄﻴﺴﻲ‪ ،‬ﻣﺸﺘﻘﺔ ﻣﻦ ﺍﳉﺪﺍﻭﻝ ﺍﳌﻌﻄﺎﺓ ﰲ ﺍﻟﺘﺬﻳﻴﻞ‬
‫‪3‬‬
‫‪3‬‬
‫‪10‬‬
‫‪102‬‬
‫‪a‬‬
‫‪1‬‬
‫‪b‬‬
‫)‪H (A/m‬‬
‫‪10‬‬
‫‪10–1‬‬
‫‪105‬‬
‫‪1698-44‬‬
‫‪104‬‬
‫‪103‬‬
‫‪102‬‬
‫‪1‬‬
‫‪10‬‬
‫‪10–1‬‬
‫‪10–2‬‬
‫‪10–2‬‬
‫)‪f (MHz‬‬
‫ﳝﺜﱢﻞ ﺍﳌﻨﺤﻨﻴﺎﻥ ‪ a‬ﻭ‪ b‬ﺍﳊﺪﻳﻦ ﺍﻷﻋﻠﻰ ﻭﺍﻷﺩﱏ ﻋﻠﻰ ﺍﻟﺘﻮﺍﱄ‪ ،‬ﺍﳌﻮﺿﻮﻋﲔ ﰲ ﺑﻌﺾ ﺍﻟﺘﻮﺻﻴﺎﺕ ﺍﳌﻌﺮﻭﻓﺔ‪ ،‬ﺍﳌﻌﻤﻮﻝ ﻬﺑﺎ ﺣﺎﻟﻴﹰﺎ‪ ،‬ﲞﺼﻮﺹ‬
‫ﺳﻮﻳﺎﺕ ﺍﻟﺘﻌﺮﺽ ﻹﺷﻌﺎﻋﺎﺕ ﺍﻟﺘﺮﺩﺩﺍﺕ ﺍﻟﺮﺍﺩﻳﻮﻳﺔ )ﻣﻘﺪﻣﺔ ﰲ ﻫﺬﺍ ﺍﻟﺘﺬﻳﻴﻞ ﻋﻠﻰ ﺳﺒﻴﻞ ﺍﳌﺜﺎﻝ(‪ .‬ﻛﻞ ﺍﳌﻨﺤﻨﻴﺎﺕ ﺍﻟﱵ ﺗﻀﻌﻬﺎ ﺳﻠﻄﺎﺕ‬
‫ﺗُﺼﺪِﺭ ﻣﺜﻞ ﻫﺬﻩ ﺍﻟﺘﻮﺻﻴﺎﺕ ﺗﻘﻊ ﺑﲔ ﻫﺬﻳﻦ ﺍﳊﺪﻳﻦ‪ ،‬ﻭﺃﻱ ﻣﻨﺤ ﹴﻦ ﻳﻘﻊ ﺑﲔ ﺍﳌﻨﺤﻨﻴﲔ ‪ a‬ﻭ‪ b‬ﻓﻤﻦ ﺍﳌﻔﺘﺮﺽ ﺃﻧﻪ ﻳﺴﻤﺢ ﺑﺘﺸﻐﻴﻞ‬
‫ﺧﺪﻣﺎﺕ ﺇﺫﺍﻋﻴﺔ ﺳﻠﻴﻤﺔ‪.‬‬
‫ﺍﻟﻔﺮﻭﻕ ﺑﲔ ﺍﻟﺴﻮﻳﺎﺕ ﺍﻟﻘﺼﻮﻯ ﺍﳌﻘﺘﺮﺣﺔ ﰲ ﻧﻔﺲ ﺍﻟﺘﺮﺩﺩ )ﻛﻤﺎ ﰲ ﺍﻟﺸﻜﻠﲔ‬
‫ﺍﻟﺴﻠﻄﺎﺕ ﺍﻟﱵ ﺗﻘﺘﺮﺡ ﻫﺬﻩ ﺍﳊﺪﻭﺩ‪.‬‬
‫‪4‬‬
‫‪43‬‬
‫ﻭ‪ (44‬ﺗﺎﺑﻌﺔ ﻻﺧﺘﻼﻑ ﺍﻟﺸﺮﻭﻁ ﺍﻟﱵ ﺗﻠﺘﺰﻡ ﻬﺑﺎ‬
‫ﺍﻹﺟﺮﺍﺀﺍﺕ ﺍﻟﺮﻗﻤﻴﺔ ﻭﺣﺴﺎﺏ ﻣﻘﺎﺩﻳﺮ ﺍﺠﻤﻟﺎﻝ ﺍﻟﻜﻬﺮﻣﻐﻨﻄﻴﺴﻲ‬
‫ﳝﻜﻦ‪ ،‬ﰲ ﻋﺪﺩ ﻣﻦ ﺍﳊﺎﻻﺕ ﺍﻟﺒﺴﻴﻄﺔ ﻧﺴﺒﻴﹰﺎ‪ ،‬ﺣﻞ ﻣﺸﻜﻼﺕ ﺍﻹﺷﻌﺎﻉ ﻭﺍﻟﺘﻨﺎﺛﺮ ﻋﻦ ﻃﺮﻳﻖ ﺇﺟﺮﺍﺀﺍﺕ ﲢﻠﻴﻠﻴﺔ ﺑﺼﻴﻐﺔ ﻣﻐﻠﻘﺔ‪ .‬ﺇﻻ ﺃﻥ‬
‫ﺣﻞ ﺍﳌﺸﻜﻼﺕ ﺍﻟﻌﺎﻣﺔ‪ ،‬ﺍﳌﺘﺼﻔﺔ ﻬﺑﻨﺪﺳﺎﺕ ﻣﺘﻐﻴﱢﺮﺓ‪ ،‬ﻳﻘﺘﻀﻲ ﺗﻄﺒﻴﻖ ﺇﺟﺮﺍﺀﺍﺕ ﺣﺴﺎﺏ ﺭﻗﻤﻲ‪ ،‬ﺗﻨﻔﱠﺬ ﺑﻮﺍﺳﻄﺔ ﺣﻮﺍﺳﻴﺐ ﻣﻘﺘﺪﺭﺓ‪.‬‬
‫ﻭﺍﻹﺟﺮﺍﺀﺍﺕ ﺍﻟﺮﻗﻤﻴﺔ‪ ،‬ﺍﻟﺘﺎﺑﻌﺔ ﳌﺪﻯ ﺍﻟﺘﺮﺩﺩ ﻗﻴﺪ ﺍﻟﻨﻈﺮ ﻭﻷﺑﻌﺎﺩ ﺍﻟﺒﲎ ﺍﳍﻨﺪﺳﻴﺔ ﺍﳌﺴﺘﻌﻤﻠﺔ‪ ،‬ﻣﺘﻴﺴﱢﺮﺓ ﻣﻦ ﺃﺟﻞ ﺣﺴﺎﺏ ﻣﻘﺎﺩﻳﺮ ﺍﺠﻤﻟﺎﻝ‬
‫ﺍﻟﻜﻬﺮﻣﻐﻨﻄﻴﺴﻲ‪.‬‬
‫ﻭﻗﺪ ﻓﻀّﻠﻨﺎ ﺃﻥ ﻧﺴﺘﻌﻤﻞ‪ ،‬ﻣﻦ ﺑﲔ ﻫﺬﻩ ﺍﻟﻄﺮﺍﺋﻖ‪ ،‬ﻃﺮﻳﻘﺔ ﺍﻟﻌﺰﻭﻡ )‪ (MOM‬ﺍﳌﺴﺘﻌﻤﻠﺔ ﰲ ﺗﺼﻤﻴﻢ ﺃﻧﻈﻤﺔ ﺍﳍﻮﺍﺋﻴﺎﺕ ﺍﻹﺫﺍﻋﻴﺔ‪ ،‬ﻭﰲ‬
‫ﺣﺴﺎﺏ ﻗﻴﻢ ﺍﺠﻤﻟﺎﻻﺕ ﺍﻟﻜﻬﺮﻣﻐﻨﻄﻴﺴﻴﺔ ﺍﻟﻨﺎﲨﺔ ﻋﻨﻬﺎ‪.‬‬
‫ﻭﻃﺮﻳﻘﺔ ﺍﻟﻌﺰﻭﻡ )‪ (MOM‬ﻫﺬﻩ ﻳﻜﺜﺮ ﺍﺳﺘﻌﻤﺎﳍﺎ ﳊﺴﺎﺏ ﺗﻮﺯﻉ ﻣﻌﺪﻝ ﺍﻻﻣﺘﺼﺎﺹ ﺍﻟﻨﻮﻋﻲ )‪ (SAR‬ﰲ ﻣﺎ ﻳﺴﻤّﻰ "ﺍﻟﻨﻤﻮﺫﺝ‬
‫ﺍﻟﻔﺪﺭﻱ"‪.‬‬
‫ﺃﻣﺎ ﺷﺪﺓ ﺍﺠﻤﻟﺎﻝ ﺍﻟﻜﻬﺮﺑﺎﺋﻲ ﺩﺍﺧﻞ ﺍﳉﺴﻢ ﻓﺘﺤﺴﺐ ﻗﻴﻤﻬﺎ ﻋﻦ ﻃﺮﻳﻖ ﺣﻞ ﺍﳌﻌﺎﺩﻟﺔ ﺍﻟﺘﻜﺎﻣﻠﻴﺔ ﺍﳋﺎﺻﺔ ﺑﺎﺠﻤﻟﺎﻝ ﺍﻟﻜﻬﺮﺑﺎﺋﻲ‪ ،‬ﻣﻊ ﺍﻻﺳﺘﻌﺎﻧﺔ‬
‫ﲟﻌﺎﺩﻻﺕ ‪.Maxwell‬‬
‫– ‪NEC – WIN Professional V 1.1 (1997) by Nittany Scientific, inc.‬‬
‫ﻭﺍﻟﱪﺍﳎﻴﺎﺕ ﺍﳌﺴﺘﻌﻤﻠﺔ ﻫﻲ‪:‬‬
‫‪.http://www.nittany-scientific.com/‬‬
ITU-R BS.1698
‫ﺍﻟﺘﻮﺻﻴﺔ‬
70
‫ﻗﺎﺋﻤﺔ ﺑﺒﻌﺾ ﺍﻟﺘﻨﻄﻴﻤﺎﺕ ﺍﻟﻮﻃﻨﻴﺔ‬
5
‫ﺍﻹﺩﺍﺭﺍﺕ‬
1.5
‫ﺃﺳﺘﺮﺍﻟﻴﺎ‬
1.1.5
Australian Radiation Protection and Nuclear Safety Agency (ARPANSA) Radiation Protection Standard
RPS-3, Radiation Protection Standard – Maximum exposure levels to radiofrequency fields – 3 kHz to
300 GHz.
‫ﺍﻟﱪﺍﺯﻳﻞ‬
Regulamento sobre Limitacao da Exposicao a Campos Elétricos, Magnéticos e
Elétromagnéticos na Faixa de Radiofrequencias entre 9 kHz e 300 GHz.
www.anatel.gov.br/bibliotheca/Templates/Resolucoes/resolucoes.asp
2.1.5
- 303/202 ‫ﺍﻟﻘﺮﺍﺭ ﺭﻗﻢ‬
‫ﻓﺮﻧﺴﺎ‬
3.1.5
‫ ﺍﳌﺘﻌﻠﻖ ﺑﺎﻟﻘﻴﻢ ﺍﳊﺪﻳﺔ ﻟﺘﻌﺮﺽ ﺍﳉﻤﻬﻮﺭ ﻟﻠﻤﺠﺎﻻﺕ ﺍﻟﻜﻬﺮﻣﻐﻨﻄﻴﺴﻴﺔ‬2002.05.03 ‫ ﺑﺘﺎﺭﻳﺦ‬2002-775 ‫ﺍﳌﺮﺳﻮﻡ ﺍﻟﺘﻨﻈﻴﻤﻲ ﺭﻗﻢ‬
.‫ﺍﻟﻨﺎﲨﺔ ﻋﻦ ﺍﻟﺘﺠﻬﻴﺰﺍﺕ ﺍﳌﺴﺘﻌﻤﻠﺔ ﰲ ﺷﺒﻜﺎﺕ ﺍﻻﺗﺼﺎﻻﺕ ﺃﻭ ﻋﻦ ﺍﳌﻨﺸﺂﺕ ﺍﻟﺮﺍﺩﻳﻮﻳﺔ ﺍﻟﻜﻬﺮﺑﺎﺋﻴﺔ‬
‫ﺃﳌﺎﻧﻴﺎ‬
4.1.5
‫ﺇﻳﻄﺎﻟﻴﺎ‬
5.1.5
‫ﻧﻴﻮﺯﻳﻠﻨﺪﺍ‬
6.1.5
‫ﺍﻟﻮﻻﻳﺎﺕ ﺍﳌﺘﺤﺪﺓ ﺍﻷﻣﺮﻳﻜﻴﺔ‬
7.1.5
‫ﺩﻭﻟﺔ ﻣﺪﻳﻨﺔ ﺍﻟﻔﺎﺗﻴﻜﺎﻥ‬
8.1.5
‫ﺍﻟﻴﺎﺑﺎﻥ‬
9.1.5
Bundesministerium für Wirtschaft und Arbeit. www.bmwi.de.
DPCM 8 July 2003. www.parlamento.it/parlam/leggi/elelenum.htm.
.http://www.fcc.gov/oet/rfsafety/
Delibera del 16/12/1992 No: 225620.
Radio Law (Law No. 131 of May 2, 1950), Article 30.
The Regulations for Enforcement of the Radio Law (Radio Regulatory Commission Rules No. 14 of
November 30, 1950), Article 21-3 and Annex, Table 2-3-2.
(‫ )ﺑﺎﻻﻧﻜﻠﻴﺰﻳﺔ‬http://www.tele.soumu.go.jp/e/ele/index.htm :‫ﻣﻮﻗﻊ ﺍﻟﻮﻳﺐ‬
(‫ )ﺑﺎﻟﻴﺎﺑﺎﻧﻴﺔ‬http://www.tele.soumu.go.jp/j/ele/index.htm
(.‫ ﺑﻌﺾ ﺍﻟﺘﻘﺎﺭﻳﺮ ﺍﳌﻘﺪﻣﺔ ﺇﱃ ﺍﻟﻮﺯﺍﺭﺍﺕ ﻣﺘﻴﺴﱢﺮﺓ ﺑﺎﻻﻧﻜﻠﻴﺰﻳﺔ‬.‫)ﻟﻴﺴﺖ ﻣﻮﺍﺩ ﺍﻟﻘﺎﻧﻮﻥ ﻭﺍﻟﺘﻨﻈﻴﻤﺎﺕ ﻣﺘﻴﺴﺮﺓ ﺇﻻ ﺑﺎﻟﻴﺎﺑﺎﻧﻴﺔ‬
‫ﺍﻟﺘﻮﺻﻴﺔ‬
‫‪71‬‬
‫‪ITU-R BS.1698‬‬
‫‪6‬‬
‫ﻗﺎﺋﻤﺔ ﺑﺒﻌﺾ ﺍﳍﻴﺌﺎﺕ ﺍﻟﺘﻨﻈﻴﻤﻴﺔ ﻭﺍﻻﺳﺘﺸﺎﺭﻳﺔ‬
‫‪1.6‬‬
‫ﳉﻨﺔ ﺍﳌﻜﻮﱢﻧﺎﺕ ﺍﻹﻟﻜﺘﺮﻭﻧﻴﺔ ]‪[6‬‬
‫‪2.6‬‬
‫ﺍﻟﻠﺠﻨﺔ ﺍﻷﳌﺎﻧﻴﺔ ﻟﺘﻜﻨﻮﻟﻮﺟﻴﺎﺕ ﺍﳌﻌﻠﻮﻣﺎﺕ ﺍﻟﻜﻬﺮﺑﺎﺋﻴﺔ ﻭﺍﻹﻟﻜﺘﺮﻭﻧﻴﺔ‬
‫‪3.6‬‬
‫ﺍﻻﲢﺎﺩ ﺍﻷﻭﺭﰊ – ﺗﻮﺻﻴﺔ ﳎﻠﺲ ﺍﻻﲢﺎﺩ ﺍﻷﻭﺭﰊ‪ 12 ،L 199 ،‬ﻳﻮﻟﻴﻮ‬
‫‪4.6‬‬
‫ﻣﻌﻬﺪ ﻣﻬﻨﺪﺳﻲ ﺍﻟﻜﻬﺮﺑﺎﺀ ﻭﺍﻹﻟﻜﺘﺮﻭﻧﻴﺎﺕ‪/‬ﻣﻌﻬﺪ ﺍﻟﺘﻘﻴﻴﺲ ﺍﻟﻮﻃﲏ ﺍﻷﻣﺮﻳﻜﻲ )‪(IEEE/ANSI‬‬
‫‪5.6‬‬
‫ﺍﻟﻠﺠﻨﺔ ﺍﻟﺪﻭﻟﻴﺔ ﻟﻠﺤﻤﺎﻳﺔ ﻣﻦ ﺍﻹﺷﻌﺎﻋﺎﺕ ﻏﲑ ﺍﳌﺆﻳﱢﻨﺔ )‪(ICNIRP‬‬
‫‪6.6‬‬
‫ﺍﻟﻠﺠﻨﺔ ﺍﻟﻜﻬﺮﺗﻘﻨﻴﺔ ﺍﻟﺪﻭﻟﻴﺔ )‪(IEC‬‬
‫‪7.6‬‬
‫ﻣﻨﻈﻤﺔ ﺍﻟﺼﺤﺔ ﺍﻟﻌﺎﳌﻴﺔ )‪(WHO‬‬
‫‪8.6‬‬
‫ﺍﳍﻴﺌﺔ ﺍﻟﻮﻃﻨﻴﺔ ﻟﻠﺤﻤﺎﻳﺔ ﻣﻦ ﺍﻹﺷﻌﺎﻋﺎﺕ )‪(NRPB‬‬
‫‪9.6‬‬
‫ﺍﳌﻌﻬﺪ ﺍﻷﻭﺭﻭﰊ ﻟﺘﻘﻴﻴﺲ ﺍﻻﺗﺼﺎﻻﺕ )‪(ETSI‬‬
‫‪1999‬‬
‫ﺍﻟﺘﺬﻳﻴﻞ‬
‫ﻟﻠﻤﻠﺤﻖ ‪1‬‬
‫‪4‬‬
‫ﻃﺮﺍﺋﻖ ﺗﻘﻴﻴﻢ ﺃﺧﺮﻯ‬
‫‪1‬‬
‫ﻗﻴﺎﺱ ﺍﳉﺮﻋﺎﺕ‬
‫ﳝﻜﹼﻦ ﺗﻄﺒﻴﻖ ﻣﻔﺎﻫﻴﻢ ﻗﻴﺎﺱ ﺍﳉﺮﻋﺎﺕ ﻣﻦ ﺇﻗﺎﻣﺔ ﺍﻟﺼﻠﺔ ﺑﲔ ﺍﻟﻘﻴﻢ ﺍﳋﺎﺭﺟﻴﺔ ﻟﺸﺪﺓ ﺍﺠﻤﻟﺎﻝ )ﺃﻱ ﺍﶈﺼﱠﻠﺔ ﺑﺎﻟﻘﻴﺎﺱ ﺧﺎﺭﺝ ﺍﳉﺴﻢ(‬
‫ﻭﺍﳌﻘﺎﺩﻳﺮ ﺍﻟﺪﺍﺧﻠﻴﺔ ﻣﻦ ﺷﺪﺓ ﺍﺠﻤﻟﺎﻝ‪ ،‬ﻭﻛﺜﺎﻓﺔ ﺍﻟﺘﻴﺎﺭ ﺍﳌﺴﺘﺤﺚ‪ ،‬ﻭﻣﻌﺪﻝ ﺍﻣﺘﺼﺎﺹ ﺍﻷﻧﺴﺠﺔ ﻟﻠﻘﺪﺭﺓ‪ .‬ﻭﻳﺘﻜﺎﻣﻞ ﺍﺳﺘﻌﻤﺎﻝ ﺍﻟﻄﺮﻳﻘﺘﲔ‬
‫ﺍﻟﺘﺠﺮﻳﺒﻴﺔ ﻭﺍﻟﺮﻗﻤﻴﺔ ﻟﻘﻴﺎﺱ ﺍﳉﺮﻋﺎﺕ‪ .‬ﻭﻛﻠﺘﺎﳘﺎ ﺗﺴﺘﻠﺰﻡ ﻋﻤﻠﻴﺎﺕ ﺗﻘﺮﻳﺐ ﶈﺎﻛﺎﺓ ﺗﻌﺮﺽ ﺟﺴﻢ ﺍﻹﻧﺴﺎﻥ‪ .‬ﻟﻜﻦ ﺍﺑﺘﻜﺎﺭ ﻣﻮﺍﺩ ﻣﻜﺎﻓﺌﺔ‬
‫ﻷﻧﺴﺠﺔ ﺍﳉﺴﻢ‪ ،‬ﻭﻣﺴﺎﺑﲑ ﻗﻠﻤﺎ ﺗﺸﻮﺵ ﺍﻻﺧﺘﺒﺎﺭﺍﺕ‪ ،‬ﺇﱃ ﺟﺎﻧﺐ ﺍﺳﺘﻌﻤﺎﻝ ﳕﺎﺫﺝ ﻗﺮﻳﺒﺔ ﻣﻦ ﺍﻟﻮﺍﻗﻊ ﺗﺸﺮﳛﻴﹰﺎ ﻷﻏﺮﺍﺽ ﺣﺴﺎﺑﻴﺔ‪ ،‬ﻗﺪ‬
‫ﺣﺴّﻦ ﻓﻬﻢ ﺗﻔﺎﻋﻞ ﺍﳉﺴﻢ ﻭﺍﺠﻤﻟﺎﻻﺕ ﺍﻟﻜﻬﺮﻣﻐﻨﻄﻴﺴﻴﺔ‪.‬‬
‫ﻭﰲ ﺣﲔ ﺃﻥ ﻛﺜﺎﻓﺔ ﺍﻟﺘﻴﺎﺭ ﻫﻲ ﺍﻟﻜﻢ ﺍﻷﻭﺿﺢ ﺻﻠﺔ ﺑﺎﻵﺛﺎﺭ ﺍﻟﺒﻴﻮﻟﻮﺟﻴﺔ ﰲ ﺣﺎﻟﺔ ﺍﻟﺘﺮﺩﺩﺍﺕ ﺍﳌﻨﺨﻔﻀﺔ‪ ،‬ﻳﺼﲑ ﻣﻌﺪﻝ ﺍﻻﻣﺘﺼﺎﺹ‬
‫ﺍﻟﻨﻮﻋﻲ )‪ (SAR‬ﻫﻮ ﺍﻟﻜﻢ ﺍﻷﻫﻢ ﻋﻨﺪﻣﺎ ﺗﺘﺰﺍﻳﺪ ﺍﻟﺘﺮﺩﺩﺍﺕ ﻣﻘﺘﺮﺑﺔ ﺑﻄﻮﻝ ﻣﻮﺟﺎﻬﺗﺎ ﻣﻦ ﺃﺑﻌﺎﺩ ﺟﺴﻢ ﺍﻹﻧﺴﺎﻥ‪.‬‬
‫ﻟﻜﻦ ﺍﳌﻌﺪﻝ ‪ SAR‬ﻻ ﳝﻜﻦ ﺍﺳﺘﺨﺮﺍﺟﻪ‪ ،‬ﰲ ﺃﻛﺜﺮﻳﺔ ﺣﺎﻻﺕ ﺍﻟﺘﻌﺮﺽ‪ ،‬ﺇﻻ ﻣﻦ ﻗﻴﻢ ﺷﺪﺓ ﺍﺠﻤﻟﺎﻝ ﺍﶈﺼﻠﺔ ﺑﺎﻟﻘﻴﺎﺱ ﰲ ﺍﻟﺒﻴﺌﺔ‪ ،‬ﺑﺎﺳﺘﻌﻤﺎﻝ‬
‫ﳕﺎﺫﺝ ﺧﺎﺻﺔ ﺑﻘﻴﺎﺱ ﺍﳉﺮﻋﺎﺕ‪ .‬ﻭﺟﺮﻯ ﺍﺳﺘﻌﻤﺎﻝ ﺗﻘﻨﻴﺎﺕ ﻏﲑ ﻣﺸﻮﱢﺷﺔ ﻟﻠﻘﻴﺎﺱ ﲞﺼﻮﺹ ﺗﺮﺩﺩﺍﺕ ﲢﺖ ‪ ،MHz 100‬ﻣﻦ ﺃﺟﻞ‬
‫ﻗﻴﺎﺱ ﺍﻟﺘﻴﺎﺭ ﺍﳌﺴﺘﺤﺚ‪ ،‬ﻭﰲ ﺍﺠﻤﻟﺎﻻﺕ ﺍﳌﻨﺘﻈﻤﺔ ﺍﳌﻮﺳﻌﺔ ﺃﹸﻭﺟﹺﺪﺕ ﺍﻟﺼﻠﺔ ﻛﺪﺍﻟﺔ ﻟﻠﺘﺮﺩﺩ ﺑﲔ ﻗﻴﻢ ﺷﺪﺓ ﺍﺠﻤﻟﺎﻝ ﺍﻟﻜﻬﺮﺑﺎﺋﻲ ﺍﳋﺎﺭﺟﻲ‬
‫ﺍﻟﺘﻮﺻﻴﺔ‬
‫‪72‬‬
‫‪ITU-R BS.1698‬‬
‫ﻭﺍﻟﺘﻴﺎﺭ ﺍﳌﺴﺘﺤﺚ‪ .‬ﻭﲞﺼﻮﺹ ﺗﺮﺩﺩﺍﺕ ﺭﻧﲔ ﺍﳉﺴﻢ‪ ،‬ﻟﻮﺣﻆ ﺣﺼﻮﻝ ﺣﺎﻻﺕ ﺗﻌﺮﺽ ﰲ ﻣﻨﻄﻘﺔ ﺍﺠﻤﻟﺎﻝ ﺍﻟﻘﺮﻳﺐ ﺍﻟﺘﻔﺎﻋﻠﻲ ﻻ ﻳﺴﺘﻬﺎﻥ‬
‫ﻬﺑﺎ ﻋﻤﻠﻴﹰﺎ‪ ،‬ﳎﺎﻝ ﻳﺼﻌﺐ ﻓﻴﻪ ﺇﻗﺎﻣﺔ ﺍﻻﻗﺘﺮﺍﻥ ﺑﲔ ﺍﺠﻤﻟﺎﻝ ﺍﻟﻄﺎﺭﺉ ﻭﺟﺴﻢ ﺍﻹﻧﺴﺎﻥ‪ ،‬ﺑﺴﺒﺐ ﻋﺪﻡ ﺍﻧﺘﻈﺎﻡ ﺍﺠﻤﻟﺎﻝ ﻣﻦ ﺟﻬﺔ‪ ،‬ﻭﺗﻐﲑ‬
‫ﺗﺮﺍﺻﻒ ﺍﺠﻤﻟﺎﻝ ﻭﺍﳉﺴﻢ ﻣﻦ ﺟﻬﺔ ﺃﺧﺮﻯ‪ .‬ﻭﺑﺎﻹﺿﺎﻓﺔ ﺇﱃ ﺫﻟﻚ‪ ،‬ﳝﻜﻦ ﺃﻥ ﲢﺪﺙ‪ ،‬ﰲ ﺑﻌﺾ ﺃﺟﺰﺍﺀ ﺍﳉﺴﻢ‪ ،‬ﺯﻳﺎﺩﺍﺕ ﻣﻮﺿﻌﻴﺔ ﰲ‬
‫ﻛﺜﺎﻓﺔ ﺍﻟﺘﻴﺎﺭ ﻭﰲ ﻣﻌﺪﻝ ﺍﻻﻣﺘﺼﺎﺹ ﺍﻟﻨﻮﻋﻲ )‪ ،(SAR‬ﻷﻥ ﺍﳌﻘﻄﻊ ﺍﻟﻌﺮﺿﺎﱐ ﺍﳍﻨﺪﺳﻲ ﻟﻸﻧﺴﺠﺔ ﺍﻷﻗﻮﻯ ﺇﻳﺼﺎﻟﻴﺔ ﺿﻴﻖ‪.‬‬
‫ﻭﺍﳌﻘﺎﺩﻳﺮ ﺍﳌﺘﺼﻠﺔ ﺑﻘﻴﺎﺱ ﺍﳉﺮﻋﺎﺕ ﳝﻜﻦ ﺣﺴﺎﻬﺑﺎ ﺑﺎﺳﺘﻌﻤﺎﻝ ﺇﺟﺮﺍﺀﺍﺕ ﺭﻗﻤﻴﺔ ﻭﳕﺎﺫﺝ ﳉﺴﻢ ﺍﻹﻧﺴﺎﻥ ﺣﺴﺎﺑﻴﺔ‪ .‬ﻭﻣﻦ ﺟﻬﺔ ﺃﺧﺮﻯ‬
‫ﳝﻜﻦ ﻗﻴﺎﺱ ﻫﺬﻩ ﺍﳌﻘﺎﺩﻳﺮ ﺑﺎﺳﺘﻌﻤﺎﻝ ﳕﺎﺫﺝ ﻃﺒﻴﻌﻴﺔ ﻣﻼﺋﻤﺔ )ﺃﺷﺒﺎﺡ(‪.‬‬
‫‪2‬‬
‫ﻗﻴﺎﺱ ﺍﳌﻌﺪﻝ‬
‫‪SAR‬‬
‫ﺍﳌﻌﺪﻝ ‪ (W/kg) SAR‬ﻫﻮ ﺍﳌﻘﺪﺍﺭ ﺍﳊﺪﻱ ﺍﻷﺳﺎﺳﻲ ﺍﳌﻌﺘﻤﺪ ﰲ ﺃﻛﺜﺮﻳﺔ ﺍﻟﺘﻨﻈﻴﻤﺎﺕ ﻭﺍﳌﻌﺎﻳﲑ ﺍﳌﺘﻌﻠﻘﺔ ﺑﺎﻟﺘﻌﺮﺽ ﻟﻺﺷﻌﺎﻋﺎﺕ‬
‫ﺍﻟﻜﻬﺮﻣﻐﻨﻄﻴﺴﻴﺔ‪ .‬ﺇﻧﻪ ﻗﻴﺎﺱ ﻣﻌﺪﻝ ﺍﻟﻄﺎﻗﺔ ﺍﻟﻜﻬﺮﻣﻐﻨﻄﻴﺴﻴﺔ ﺍﻟﱵ ﺗﺒﺪﺩﻫﺎ ﺍﻟﻮﺣﺪﺓ ﺍﻟﻜﺘﻠﻴﺔ ﻣﻦ ﻧﺴﻴﺞ ﺍﳉﺴﻢ‪.‬‬
‫ﻭﳝﻜﻦ ﺗﻌﺮﻳﻒ ﺍﳌﻌﺪﻝ ‪ SAR‬ﺑﺄﻧﻪ ﺍﻟﻘﻴﻤﺔ ﺍﳌﻘﻴﱠﺴﺔ ﰲ ﻛﺎﻣﻞ ﺍﳉﺴﻢ )ﻳﺴﻤّﻰ ﺃﺣﻴﺎﻧﹰﺎ "ﻣﺘﻮﺳﻂ‬
‫ﺍﳌﻮﺿﻌﻴﺔ ﺍﶈﺪﺩﺓ ﳊﺠﻢ ﺻﻐﲑ ﻣﻦ ﻧﺴﻴﺞ ﺍﳉﺴﻢ )ﻣﺘﻮﺳﻂ ‪ SAR‬ﺍﳌﻮﺿﻌﻲ(‪.‬‬
‫‪SAR‬‬
‫ﻟﻜﺎﻣﻞ ﺍﳉﺴﻢ"( ﺃﻭ ﺍﻟﻘﻴﻤﺔ‬
‫ﳝﻜﻦ ﺍﳊﺼﻮﻝ ﻋﻠﻰ ﻗﻴﻤﺔ ﺍﳌﻌﺪﻝ ‪ SAR‬ﺍﻧﻄﻼﻗﹰﺎ ﻣﻦ ﺍﳌﻘﺎﺩﻳﺮ ﺍﻟﺪﺍﺧﻠﻴﺔ‪ ،‬ﻋﻠﻰ ﺛﻼﺛﺔ ﺃﻭﺟﻪ‪ ،‬ﻛﻤﺎ ﺗﺪﻝ ﺍﳌﻌﺎﺩﻟﺔ ﺍﻟﺘﺎﻟﻴﺔ‪:‬‬
‫‪σE 2‬‬
‫‪J2‬‬
‫‪dT‬‬
‫=‬
‫‪= Ci‬‬
‫‪ρ‬‬
‫‪σρ‬‬
‫‪dT‬‬
‫= ‪SAR‬‬
‫ﺣﻴﺚ‪:‬‬
‫‪ :E‬ﻗﻴﻤﺔ ﺷﺪﺓ ﺍﺠﻤﻟﺎﻝ ﺍﻟﻜﻬﺮﺑﺎﺋﻲ ﺍﻟﺪﺍﺧﻠﻲ ﰲ ﻧﺴﻴﺞ ﺍﳉﺴﻢ )‪(V/m–1‬‬
‫‪ : σ‬ﺇﻳﺼﺎﻟﻴﺔ ﻧﺴﻴﺞ ﺍﳉﺴﻢ )‪(S/m–1‬‬
‫‪ : ρ‬ﻛﺜﺎﻓﺔ ﻧﺴﻴﺞ ﺍﳉﺴﻢ )‪(kg/m–3‬‬
‫‪:Ci‬‬
‫ﺍﻟﺴﻌﺔ ﺍﳊﺮﺍﺭﻳﺔ ﻟﻨﺴﻴﺞ ﺍﳉﺴﻢ )‪(J/kg–1 °C–1‬‬
‫‪ :dT/dt‬ﺍﳌﺸﺘﻘﺔ ﺍﻟﺰﻣﻨﻴﺔ ﻟﻠﺤﺮﺍﺭﺓ ﰲ ﻧﺴﻴﺞ ﺍﳉﺴﻢ )‪((°C/s–1‬‬
‫‪ :J‬ﻗﻴﻤﺔ ﻛﺜﺎﻓﺔ ﺍﻟﺘﻴﺎﺭ ﺍﳌﺴﺘﺤﺚ ﰲ ﻧﺴﻴﺞ ﺍﳉﺴﻢ )‪(A/m2‬‬
‫ﻳُﻌﺮﱠﻑ ﺍﳌﻌﺪﻝ ‪ SAR‬ﺍﳌﻮﺿﻌﻲ ﰲ ﻛﺘﻠﺔ ﺗﺰﺍﻳﺪﻳﺔ )‪ (dm‬ﺑﺄﻧﻪ ﺍﳌﺸﺘﻘﺔ ﺍﻟﺰﻣﻨﻴﺔ ﻟﻠﻄﺎﻗﺔ ﺍﳌﻤﺘﺼﱠﺔ ﺍﻟﺘﺰﺍﻳﺪﻳﺔ )‪ (dW‬ﻣﻘﺴﻮﻣ ﹰﺔ ﻋﻠﻰ ﺍﻟﻜﺘﻠﺔ‪:‬‬
‫‪dW/dm‬‬
‫‪SAR = d/dt‬‬
‫ﻭﻗﻴﻤﺔ ﻫﺬﺍ ﺍﳌﻘﺪﺍﺭ ﻫﺎﻣﺔ ﺑﺎﻋﺘﺒﺎﺭ ﺃﻣﺮﻳﻦ ﳘﺎ‪ :‬ﺍﻟﺘﻮﺯﻉ ﻏﲑ ﺍﳌﻨﺘﻈﻢ ﺍﻟﻨﺎﺟﻢ ﻋﻦ ﺍﻣﺘﺼﺎﺹ ﺍﻟﻄﺎﻗﺔ‪ ،‬ﰲ ﺣﺎﻟﺔ ﺍﻟﺘﻌﺮﺽ ﳌﻮﺟﺔ ﻣﺴﺘﻮﻳﺔ‬
‫ﻣﻨﺘﻈﻤﺔ؛ ﻭﺍﻻﻣﺘﺼﺎﺹ ﺍﳌﻮﺿﻌﻲ ﻟﻠﻄﺎﻗﺔ ﺍﻟﻨﺎﺟﻢ ﻋﻦ ﳎﺎﻻﺕ ﻏﲑ ﻣﻨﺘﻈﻤﺔ ﻗﺮﻳﺒﺔ ﻗﺮﺑﹰﺎ ﻣﺒﺎﺷﺮﹰﺍ ﻣﻦ ﻣﺼﺪﺭ ﺍﻹﺷﻌﺎﻉ‪.‬‬
‫ﺗﻨﺺ ﺍﻟﺘﻨﻈﻴﻤﺎﺕ ﺃﻭ ﺍﳌﻌﺎﻳﲑ ﺍﳌﺘﻌﻠﻘﺔ ﲝﺎﻻﺕ ﺍﻟﺘﻌﺮﺽ ﻋﻠﻰ ﺣﺪﻭﺩ ﻣﺸﺘﻘﺔ ﻟﻠﻤﺠﺎﻟﲔ ﺍﻟﻜﻬﺮﺑﺎﺋﻲ ﻭﺍﳌﻐﻨﻄﻴﺴﻲ‪ .‬ﻭﻣﻔﻬﻮﻡ ﻗﻴﺎﺱ‬
‫ﺍﳉﺮﻋﺎﺕ ﻳﻄﻤﺌﻦ ﺇﱃ ﺃﻥ ﺍﻟﺘﻘﻴّﺪ ﺑﺎﻟﺴﻮﻳﺎﺕ ﺍﳌﺸﺘﻘﺔ )ﺍﳋﺎﺭﺟﻴﺔ( ﻳﻀﻤﻦ ﺍﻟﺘﻘﻴّﺪ ﺑﺎﳊﺪﻭﺩ ﺍﻷﺳﺎﺳﻴﺔ ﻟﻠﻤﻌﺪﻝ ‪ .SAR‬ﺇﻻ ﺃﻧﻪ ﳝﻜﻦ ﺃﻳﻀًﹰﺎ‬
‫ﺃﻥ ﺗُﺴﺘﻌﻤَﻞ ﻗﻴﺎﺳﺎﺕ ﺍﳌﻌﺪﻝ ‪ SAR‬ﺍﳋﺎﺭﺟﻲ ﺃﻭ ﺍﻟﺪﺍﺧﻠﻲ ﻟﻠﺘﺤﻘﻖ ﻣﻦ ﺍﻟﺘﻘﻴﺪ ﺑﺎﳌﻌﺎﻳﲑ‪ .‬ﻭﰲ ﺣﺎﻻﺕ ﺗﻌﺮﺽ ﺟﺰﺀ ﻣﻦ ﺍﳉﺴﻢ ﺠﻤﻟﺎﻝ‬
‫ﻗﺮﻳﺐ‪ ،‬ﳝﻜﻦ ﺃﻥ ﻳﻜﻮﻥ ﻣﻦ ﺍﻟﺼﻌﺐ ﻗﻴﺎﺱ ﺷﺪﺩ ﺍﺠﻤﻟﺎﻻﺕ ﺍﻟﻜﻬﺮﻣﻐﻨﻄﻴﺴﻴﺔ ﺍﳋﺎﺭﺟﻴﺔ‪ ،‬ﻭﳝﻜﻦ ﺃﻥ ﺗﺘﺠﺎﻭﺯ ﺍﳊﺪﻭﺩ ﺍﳌﺸﺘﻘﺔ ﻋﻠﻰ‬
‫ﺍﻟﺮﻏﻢ ﻣﻦ ﻛﻮﻥ ﺍﳌﻌﺪﻝ ‪ SAR‬ﺍﳌﻮﺿﻌﻲ ﺃﻗﻞ ﻣﻦ ﺍﳊﺪﻭﺩ ﺍﻷﺳﺎﺳﻴﺔ‪ .‬ﻓﻔﻲ ﻫﺬﻩ ﺍﳊﺎﻻﺕ ﳚﺐ ﺇﺟﺮﺍﺀ ﻗﻴﺎﺳﺎﺕ ﻟﻠﻤﻌﺪﻝ ‪SAR‬‬
‫ﺍﻟﺪﺍﺧﻠﻲ ﰲ ﳕﺎﺫﺝ ﺟﺴﻤﻴﺔ‪ .‬ﻭﻓﻴﻤﺎ ﻳﻠﻲ ﻭﺻﻒ ﺃﻫﻢ ﺍﻟﻄﺮﺍﺋﻖ ﻟﻘﻴﺎﺱ ﺍﳌﻌﺪﻝ ‪.SAR‬‬
‫ﺍﻟﺘﻮﺻﻴﺔ‬
‫‪1.2‬‬
‫‪ITU-R BS.1698‬‬
‫ﻃﺮﻳﻘﺔ ﺍﻟﻘﻴﺎﺱ ﺑﻮﺍﺳﻄﺔ ﺍﺠﻤﻟﺎﻝ ﺍﻟﻜﻬﺮﺑﺎﺋﻲ‬
‫ﺍﳌﻌﺪﻝ ‪ SAR‬ﻣﺘﻨﺎﺳﺐ ﺃﻳﻀﹰﺎ ﻣﻊ ﻣﺮﺑﻊ ﺍﻟﻘﻴﻤﺔ ﺍﻟﻔﻌﺎﻟﺔ )‪ (RMS‬ﻟﺸﺪﺓ ﺍﺠﻤﻟﺎﻝ ﺍﻟﻜﻬﺮﺑﺎﺋﻲ‬
‫ﻟﻠﻤﻌﺎﺩﻟﺔ ﺍﻟﺘﺎﻟﻴﺔ‪:‬‬
‫ﺣﻴﺚ‪:‬‬
‫‪73‬‬
‫)‪E (V/m‬‬
‫ﺩﺍﺧﻞ ﺍﻟﻨﺴﻴﺞ ﺍﳌﻌﺮﱠﺽ‪ ،‬ﻃﺒﻘﹰﺎ‬
‫‪SAR = σ E2/ρ‬‬
‫)‪ :σ (S/m‬ﺍﻹﻳﺼﺎﻟﻴﺔ‬
‫)‪ :ρ (kg/m3‬ﻛﺜﺎﻓﺔ ﺍﻟﻜﺘﻠﺔ ﳌﺎﺩﺓ ﺍﻟﻨﺴﻴﺞ ﰲ ﺍﳌﻮﺿﻊ ﺍﳌﻘﺼﻮﺩ ﺑﺎﻟﻘﻴﺎﺱ‪.‬‬
‫ﻳُﺤﺪﱠﺩ ﺍﳌﻌﺪﻝ ‪ SAR‬ﺍﳌﻮﺿﻌﻲ ﺩﺍﺧﻞ ﺟﺴ ﹴﻢ ﺗﻠﻘﻰ ﺍﻹﺷﻌﺎﻉ‪ ،‬ﺑﻮﺍﺳﻄﺔ ﻣﺴﺒﺎﺭ ﻟﻠﻤﺠﺎﻝ ﺍﻟﻜﻬﺮﺑﺎﺋﻲ ﺍﳌﺘﻨﺎﺣﻲ‪ .‬ﻭﳝﻜﻦ ﲢﺪﻳﺪ ﻗﻴﻢ ﺗﻮﺯﻉ‬
‫ﻫﺬﺍ ﺍﳌﻌﺪﻝ ﰲ ﻛﺎﻣﻞ ﺍﳉﺴﻢ ﺃﻭ ﰲ ﺟﺰﺀ ﻣﻨﻪ‪ ،‬ﻋﻦ ﻃﺮﻳﻖ ﺗﻨﻘﻴﻞ ﺍﳌﺴﺒﺎﺭ ﻭﺗﻜﺮﺍﺭ ﻋﻤﻠﻴﺔ ﻗﻴﺎﺱ ﺍﺠﻤﻟﺎﻝ ﺍﻟﻜﻬﺮﺑﺎﺋﻲ‪ .‬ﻭﻻ ﺗﺴﺘﻐﺮﻕ ﻋﻤﻠﻴﺔ‬
‫ﻗﻴﺎﺱ ﻭﺍﺣﺪﺓ ﻟﻠﻤﺠﺎﻝ ﺍﻟﻜﻬﺮﺑﺎﺋﻲ ﺃﻛﺜﺮ ﻣﻦ ﺑﻀﻊ ﺛﻮﺍﻥٍ‪ ،‬ﻭﻫﺬﺍ ﻳﻌﲏ ﺃﻧﻪ ﳝﻜﻦ ﲢﺪﻳﺪ ﺗﻮﺯﻳﻌﺎﺕ ﺛﻼﺛﻴﺔ ﺍﻷﺑﻌﺎﺩ ﻟﻠﻤﻌﺪﻝ ‪SAR‬‬
‫ﺑﺎﺳﺘﺒﺎﻧﺔ ﻋﺎﻟﻴﺔ ﻭﰲ ﻏﻀﻮﻥ ﻭﻗﺖ ﻟﻠﻘﻴﺎﺱ ﻣﻌﻘﻮﻝ )ﺃﻗﻞ ﻣﻦ ﺳﺎﻋﺔ ﺑﻮﺟﻪ ﻋﺎﻡ(‪.‬‬
‫‪2.2‬‬
‫ﻃﺮﻳﻘﺔ ﺍﻟﻘﻴﺎﺱ ﺑﻮﺍﺳﻄﺔ ﺍﳊﺮﺍﺭﺓ‬
‫ﺍﳌﻌﺪﻝ ‪ SAR‬ﻣﺘﻨﺎﺳﺐ ﻣﻊ ﺍﳌﻌﺪﻝ ﺍﻻﺑﺘﺪﺍﺋﻲ ‪ (C/s) dT/dt‬ﻻﺭﺗﻔﺎﻉ ﺍﳊﺮﺍﺭﺓ ﰲ ﻧﺴﻴﺞ ﺷﻲﺀ ﻣﻌﺮﱠﺽ‪ ،‬ﻃﺒﻘﹰﺎ ﻟﻠﻤﻌﺎﺩﻟﺔ ﺍﻟﺘﺎﻟﻴﺔ‪:‬‬
‫‪SAR = c ∆ T/ ∆ t‬‬
‫ﺣﻴﺚ ‪ c‬ﻫﻲ ﺍﻟﺴﻌﺔ ﺍﳊﺮﺍﺭﻳﺔ ﺍﻟﻨﻮﻋﻴﺔ ﳌﺎﺩﺓ ﺍﻟﻨﺴﻴﺞ )‪ .(J/KgC‬ﻓﻴﻤﻜﻦ ﲢﺪﻳﺪ ﺍﳌﻌﺪﻝ ‪ SAR‬ﺍﳌﻮﺿﻌﻲ ﺩﺍﺧﻞ ﳕﻮﺫﺝ ﺟﺴﻤﻲ ﻣﺘﻠ ﹴﻖ‬
‫ﻟﻺﺷﻌﺎﻉ‪ ،‬ﻋﱪ ﺍﻻﺳﺘﻌﺎﻧﺔ ﺑﺒﻌﺾ ﻣﺴﺎﺑﲑ ﺍﳊﺮﺍﺭﺓ‪ .‬ﻳُﺴﺘﻌﻤﻞ ﻣﺴﺒﺎﺭ ﺃﻭ ﻋﺪﺓ ﻣﺴﺎﺑﲑ ﻟﺘﺤﺪﻳﺪ ﺗﺰﺍﻳﺪ ﺍﳊﺮﺍﺭﺓ ‪ ∆T‬ﰲ ﻣﺪﺓ ﺗﻌﺮﺽ ﻗﺼﲑﺓ‬
‫)ﺃﻗﻞ ﻣﻦ ‪ 30‬ﺛﺎﻧﻴﺔ‪ ،‬ﻋﻠﻰ ﺍﻟﻌﻤﻮﻡ‪ ،‬ﲡﻨﺒﹰﺎ ﻟﻨﻘﻞ ﺍﳊﺮﺍﺭﺓ(‪ .‬ﻭﲢﺴﺐ ﺍﻟﻘﻴﻤﺔ ﺍﻟﺘﻘﺮﻳﺒﻴﺔ ﳌﻌﺪﻝ ﺍﺭﺗﻔﺎﻉ ﺍﳊﺮﺍﺭﺓ ﺍﻻﺑﺘﺪﺍﺋﻲ ﺑﺘﻄﺒﻴﻖ ﺍﻟﺼﻴﻐﺔ‬
‫‪ ،∆T/∆T‬ﰒ ﺗُﺤﺴﺐ ﻗﻴﻤﺔ ﺍﳌﻌﺪﻝ ‪ SAR‬ﻟﻜﻞ ﻣﻮﺿﻊ ﻗﻴﺎﺱ‪ .‬ﻭﻫﻜﺬﺍ ﳝﻜﻦ‪ ،‬ﺑﺘﻜﺮﺍﺭ ﻗﻴﺎﺱ ﺍﳊﺮﺍﺭﺓ ﰲ ﺍﳉﺴﻢ ﺑﻜﺎﻣﻠﻪ ﺃﻭ ﰲ ﺟﺰﺀ‬
‫ﻣﻨﻪ‪ ،‬ﲢﺪﻳﺪ ﺗﻮﺯﻳﻊ ﺍﳌﻌﺪﻝ ‪ SAR‬ﻭﻗﻴﻤﻪ ﺍﻟﻮﺳﻄﻴﺔ ﰲ ﻛﺎﻣﻞ ﺍﳉﺴﻢ ﺃﻭ ﰲ ﺟﺰﺀ ﻣﻨﻪ‪.‬‬
‫ﺑﻴﺪ ﺃﻥ ﺍﻟﻘﻴﺎﺳﺎﺕ ﺍﻟﺜﻼﺛﻴﺔ ﺍﻷﺑﻌﺎﺩ ﻟﺘﻮﺯﻳﻊ ﺍﳌﻌﺪﻝ ‪ SAR‬ﺗﺴﺘﻐﺮﻕ ﺍﻟﻜﺜﲑ ﻣﻦ ﺍﻟﻮﻗﺖ‪ ،‬ﺑﺴﺒﺐ ﺍﻟﻌﺪﺩ ﺍﻟﻜﺒﲑ ﻣﻦ ﺍﻟﻨﻘﻂ ﺍﻟﱵ ﳚﺮﻯ ﻓﻴﻬﺎ‬
‫ﺍﻟﻘﻴﺎﺱ‪ .‬ﻓﺘﻮﺧﻴﹰﺎ ﻷﻥ ﻳﻜﻮﻥ ﻭﻗﺖ ﺍﻟﻘﻴﺎﺱ ﻣﻌﻘﻮ ﹰﻻ‪ ،‬ﳚﺐ ﺍﳊﺪ ﻣﻦ ﻋﺪﺩ ﻫﺬﻩ ﺍﻟﻨﻘﺎﻁ‪ ،‬ﻭﻫﺬﺍ ﻳﻌﲏ ﺃﻧﻪ ﻣﻦ ﺍﻟﺼﻌﺐ ﺟﺪﹰﺍ ﺇﺣﺮﺍﺯ‬
‫ﳊﻤْﻞ ﺍﳊﺮﺍﺭﻱ ﺃﺛﻨﺎﺀ‬
‫ﻗﻴﺎﺳﺎﺕ ﺩﻗﻴﻘﺔ ﻟﺘﻮﺯﻳﻊ ﺍﳌﻌﺪﻝ ‪ SAR‬ﻏﲑ ﺍﳌﻨﺘﻈﻢ‪ .‬ﰒ ﺇﻥ ﻗﻴﺎﺳﺎﺕ ﺍﳊﺮﺍﺭﺓ ﺗﺘﺄﺛﺮ ﺃﻳﻀﹰﺎ ﺑﺎﻹﻳﺼﺎﻝ ﺍﳊﺮﺍﺭﻱ ﻭﺑﺎ ﹶ‬
‫ﻋﻤﻠﻴﺎﺕ ﺍﻟﻘﻴﺎﺱ ﺃﻭ ﺑﻴﻨﻬﺎ‪.‬‬
‫‪3.2‬‬
‫ﻱ‬
‫ﺴﻌَﺮ ّ‬
‫ﻃﺮﻳﻘﺔ ﺍﻟﻘﻴﺎﺱ ﺍ ِﳌ ْ‬
‫ﻱ‪ .‬ﰲ ﻋﻤﻠﻴﺔ ﻗﻴﺎﺱ ﻣﺴﻌﺮﻱ ﻋﺎﺩﻳﺔ‪ ،‬ﻳُﺠﺮﻯ ﺃﻭ ﹰﻻ ﺗﻌﺮﻳﺾ‬
‫ﺴﻌَﺮ ّ‬
‫ﳝﻜﻦ ﲢﺪﻳﺪ ﻣﺘﻮﺳﻂ ﺍﳌﻌﺪﻝ ‪ SAR‬ﻟﻜﺎﻣﻞ ﺍﳉﺴﻢ ﺑﻄﺮﺍﺋﻖ ﺍﻟﻘﻴﺎﺱ ﺍ ِﳌ ْ‬
‫ﳕﻮﺫﺝ ﺟﺴﻤﻲ ﻗﺪﱡﻩ ﻃﺒﻴﻌﻲ ﺃﻭ ُﺳﻠﱠﻤﻲّ‪ ،‬ﻭﻣﺘﻮﺍﺯﻥ ﺣﺮﺍﺭﻳﹰﺎ‪ ،‬ﻟﻺﺷﻌﺎﻉ ﻃﻴﻠﺔ ﻓﺘﺮﺓ ﻣﺎ‪ .‬ﰒ ﻳﺴﺘﻌﻤَﻞ ﻣﺴﻌﺮ ﻟﻘﻴﺎﺱ ﺗﺪﻓﻖ ﺍﳊﺮﺍﺭﺓ ﻣﻦ‬
‫ﺍﳉﺴﻢ‪ ،‬ﺣﱴ ﻳﻌﻮﺩ ﺍﻟﻨﻤﻮﺫﺝ ﺇﱃ ﺣﺎﻟﺔ ﺍﻟﺘﻮﺍﺯﻥ ﺍﳊﺮﺍﺭﻱ‪ .‬ﰒ ﻳﻘﺴﻢ ﳎﻤﻮﻉ ﺍﻟﻄﺎﻗﺔ ﺍﻟﱵ ﻛﺎﻥ ﺍﻣﺘﺼﻬﺎ ﺍﻟﻨﻤﻮﺫﺝ ﺍﳉﺴﻤﻲ ﻋﻠﻰ ﻭﻗﺖ‬
‫ﺍﻟﺘﻌﺮﺽ ﻭﻋﻠﻰ ﻛﺘﻠﺔ ﺍﻟﻨﻤﻮﺫﺝ‪ ،‬ﻓﻴﻜﻮﻥ ﺣﺎﺻﻞ ﺍﻟﻘﺴﻤﺔ ﻫﻮ ﺍﳌﻌﺪﻝ ‪ SAR‬ﻟﻜﺎﻣﻞ ﺍﳉﺴﻢ‪ .‬ﻭﻫﻨﺎﻙ ﻃﺮﻳﻘﺔ ﻟﻠﻘﻴﺎﺱ ﺍﳌﺴﻌﺮﻱ ﺗﺴﺘﻌﻤﻞ‬
‫ﻣﺴﻌﺮﻳﻦ ﻭﳕﻮﺫﺟﲔ ﻣﺘﻤﺎﺛﻠﲔ ﲤﺎﻣﹰﺎ‪ .‬ﻳُﻌﺮﱠﺽ ﺃﺣﺪﳘﺎ ﻟﻺﺷﻌﺎﻉ ﻭﻳُﺴﺘﻌﻤﻞ ﺍﻵﺧﺮ ﻣﺮﺟﻌﹰﺎ ﺣﺮﺍﺭﻳﹰﺎ‪ .‬ﻭﻫﺬﺍ ﻳﻌﲏ ﺃﻧﻪ ﳝﻜﻦ ﺇﺟﺮﺍﺀ ﺍﻟﻘﻴﺎﺱ‬
‫ﻭﻟﻜﻦ ﺍﻟﺘﺤﻜﻢ ﰲ ﺍﻟﻈﺮﻭﻑ ﺍﳊﺮﺍﺭﻳﺔ ﻳﻜﻮﻥ ﰲ ﻫﺬﻩ ﺍﻟﻄﺮﻳﻘﺔ ﺃﺿﻌﻒ ﻣﻨﻪ ﰲ ﺍﻟﻄﺮﻳﻘﺔ ﺍﻟﻌﺎﺩﻳﺔ‪.‬‬
‫ﲢﺪﺩ ﻃﺮﺍﺋﻖ ﺍﻟﻘﻴﺎﺱ ﺍﳌﺴﻌﺮﻱ ﺍﳌﻌﺪﻝ ‪ SAR‬ﻟﻜﺎﻣﻞ ﺍﳉﺴﻢ ﺑﺪﻗﺔ ﻛﺎﻓﻴﺔ‪ ،‬ﻟﻜﻨﻬﺎ ﻻ ﺗﻔﻴﺪ ﺷﻴﺌﹰﺎ ﻋﻦ ﺗﻮﺯﻋﻪ ﺩﺍﺧﻞ ﺍﳉﺴﻢ‪ .‬ﻭﻳﻠﺰﻡ‬
‫ﻟﺘﺤﺼﻴﻞ ﻧﺘﺎﺋﺞ ﺩﻗﻴﻘﺔ ﺗﻔﺮﻳﻎ ﻣﻘﺪﺍﺭ ﻛﺎﻑ ﻣﻦ ﺍﻟﻄﺎﻗﺔ‪ .‬ﻭﻗﺪ ﻳﺒﻠﻎ ﻋﺪﺓ ﺳﺎﻋﺎﺕ ﳎﻤﻮﻉ ﺍﻟﻮﻗﺖ ﺍﻟﻼﺯﻡ ﻟﻠﻘﻴﺎﺱ‪ ،‬ﻭﻫﻮ ﺍﻟﻮﻗﺖ ﺍﻟﻼﺯﻡ‬
‫ﻟﻌﻮﺩﺓ ﺍﳉﺴﻢ ﺇﱃ ﺍﻟﺘﻮﺍﺯﻥ ﺍﳊﺮﺍﺭﻱ ﺑﻌﺪ ﺗﻌﺮﺿﻪ ﻟﻺﺷﻌﺎﻉ‪ .‬ﺃﻣﺎ ﺍﳌﻌﺪﻝ ‪ SAR‬ﳉﺰﺀ ﻣﻦ ﺍﳉﺴﻢ ﻓﻴﻤﻜﻦ ﻗﻴﺎﺳﻪ ﺑﺎﺳﺘﻌﻤﺎﻝ ﺃﺷﺒﺎﺡ‬
‫ﻷﺟﺰﺍﺀ ﻣﻦ ﺍﳉﺴﻢ ﻭﻣﺴﺎﻋﺮ ﺻﻐﲑﺓ‪.‬‬
‫ﺍﻟﺘﻮﺻﻴﺔ‬
‫‪74‬‬
‫‪3‬‬
‫‪ITU-R BS.1698‬‬
‫ﻗﻴﺎﺱ ﺍﳌﻌﺪﻝ ‪ SAR‬ﺑﻮﺍﺳﻄﺔ ﺗﻴﺎﺭﺍﺕ ﺍﳉﺴﻢ‬
‫ﳝﻜﻦ ﻭﺿﻊ ﺃﺟﻬﺰﺓ ﻗﻴﺎﺱ ﺗﻴﺎﺭﺍﺕ ﺍﳉﺴﻢ ﰲ ﺻﻨﻔﲔ‪:‬‬
‫‪-‬‬
‫ﺃﺟﻬﺰﺓ ﻗﻴﺎﺱ ﺍﻟﺘﻴﺎﺭ ﺍﻟﺴﺎﺭﻱ ﻣﻦ ﺍﳉﺴﻢ ﺇﱃ ﺍﻷﺭﺽ؛‬
‫‪-‬‬
‫ﺃﺟﻬﺰﺓ ﻗﻴﺎﺱ ﺗﻴﺎﺭ ﺍﻟﺘﻤﺎﺱ‪.‬‬
‫‪1.3‬‬
‫ﺗﻴﺎﺭﺍﺕ ﺍﳉﺴﻢ ﺍﳌﺴﺘﺤﺜﺔ‬
‫ﲢﺪﺙ ﺗﻴﺎﺭﺍﺕ ﺍﳉﺴﻢ ﺍﻟﺪﺍﺧﻠﻴﺔ ﺍﳌﺴﺘﺤﺜﺔ ﰲ ﺍﻷﺷﺨﺎﺹ ﻋﻦ ﺗﻌﺮﺽ ﻛﺎﻣﻞ ﺍﳉﺴﻢ ﺃﻭ ﺑﻌﻀﻪ ﺠﻤﻟﺎﻻﺕ ﻧﺎﲨﺔ ﻋﻦ ﺍﻟﺘﺮﺩﺩﺍﺕ ﺍﻟﺮﺍﺩﻳﻮﻳﺔ‪،‬‬
‫ﺑﺪﻭﻥ ﲤﺎﺱ ﻣﻊ ﺷﻲﺀ ﻏﲑ ﺍﻷﺭﺽ‪.‬‬
‫ﻭﺍﻟﺘﻘﻨﻴﺘﺎﻥ ﺍﻟﺮﺋﻴﺴﻴﺘﺎﻥ ﺍﳌﺴﺘﻌﻤﻠﺘﺎﻥ ﻟﻘﻴﺎﺱ ﺗﻴﺎﺭﺍﺕ ﺍﳉﺴﻢ ﳘﺎ‪ :‬ﳏﻮﻻﺕ ﺍﻟﺘﻴﺎﺭ )ﺍﻟﻠﻮﻟﺒﻴﺔ( ﺍﻟﻘﺎﻣﻄﺔ‪ ،‬ﺗﺴﺘﻌﻤﻞ ﻟﻘﻴﺎﺱ ﺍﻟﺘﻴﺎﺭ ﺍﻟﺴﺎﺭﻱ ﰲ‬
‫ﺃﻋﻀﺎﺀ ﺍﳉﺴﻢ؛ ﻭﺍﻷﺟﻬﺰﺓ ﺫﺍﺕ ﺍﻟﺼﻔﻴﺤﺘﲔ ﺍﳌﺘﻮﺍﺯﻳﺘﲔ‪ ،‬ﲤﻜﹼﻦ ﻣﻦ ﻗﻴﺎﺱ ﺍﻟﺘﻴﺎﺭﺍﺕ ﺍﻟﱵ ﲡﺘﺎﺯ ﺍﻟﻘﺪﻣﲔ ﻗﺒﻞ ﺃﻥ ﲤﺘﺼﻬﺎ ﺍﻷﺭﺽ‪.‬‬
‫ﺻﻨﹺﻌﺖ ﳏﻮﻻﺕ ﺗﻴﺎﺭ ﻗﺎﻣﻄﺔ ﺗُﺤﻤَﻞ‪.‬‬
‫ﻭﻗﺪ ُ‬
‫ﻭﺗُﺮﻛﱠﺐ ﻭﺣﺪﺓ ﺍﻟﻘﻴﺎﺱ ﺇﻣﺎ ﻣﺒﺎﺷﺮﺓ ﻋﻠﻰ ﺍﶈﻮﻝ‪ ،‬ﻭﺇﻣﺎ ﺑﻮﺍﺳﻄﺔ ﻭﺻﻠﺔ ﻟﻴﻒ ﺑﺼﺮﻱ ﲤﻜﹼﻦ ﻣﻦ ﻋﺮﺽ ﻣﺮﺋﻲ ﻋﻠﻰ ﺷﺎﺷﺔ ﳊﺮﻛﺔ ﺍﻟﺘﻴﺎﺭ‬
‫ﺍﻟﺴﺎﺭﻱ ﰲ ﺍﻟﻌﻀﻮ ﺍﳌﻘﻤﻮﻁ ﲟﺤﻮﻝ ﺍﻟﺘﻴﺎﺭ‪ .‬ﺃﻣﺎ ﻛﺸﻒ ﺍﻟﺘﻴﺎﺭ ﰲ ﻭﺣﺪﺍﺕ ﺍﻟﻘﻴﺎﺱ ﻫﺬﻩ ﻓﻴﺘﻢ ﺇﻣﺎ ﺑﺎﺳﺘﻌﻤﺎﻝ ﺗﻘﻨﻴﺎﺕ ﺿﻴﻘﺔ ﺍﻟﻨﻄﺎﻕ‪،‬‬
‫ﻼ ﺃﻭ ﻣﺴﺘﻘﺒﻼﺕ ﻣﻮﻟﱠﻔﺔ )ﻣﺰﻳﺘﻬﺎ ﺃﻬﻧﺎ ﲢﺪﺩ ﺗﻮﺯﻳﻊ ﺍﻟﺘﺮﺩﺩ ﻟﻠﺘﻴﺎﺭ ﺍﳌﺴﺘﺤﺚ ﰲ ﺑﻴﺌﺎﺕ ﻣﺘﻌﺪﺩﺓ ﻣﺼﺎﺩﺭ‬
‫ﻛﻤﺤﻠﻼﺕ ﺍﻟﻄﻴﻒ ﻣﺜ ﹰ‬
‫ﺍﻹﺷﻌﺎﻉ(‪ ،‬ﻭﺇﻣﺎ ﺑﺎﺳﺘﻌﻤﺎﻝ ﺗﻘﻨﻴﺎﺕ ﻋﺮﻳﻀﺔ ﺍﻟﻨﻄﺎﻕ ﺗﻌﺘﻤﺪ ﻃﺮﻳﻘﺔ ﺍﻟﻜﺸﻒ ﻬﺑﺎ ﻋﻠﻰ ﺛﻨﺎﺋﻴﺎﺕ ﺍﻟﻘﻄﺐ ﺃﻭ ﻋﻠﻰ ﺍﻟﺘﺤﻮﻳﻞ ﺍﳊﺮﺍﺭﻱ‪.‬‬
‫ﺻﻨﹺﻌﺖ ﺃﺩﻭﺍﺕ ﺗﺪﻝ ﺩﻻﻟﺔ ﺻﺤﻴﺤﺔ ﻋﻠﻰ ﺍﻟﻘﻴﻢ ﺍﻟﻔﻌﺎﻟﺔ ﻟﺸﺪﺓ ﺍﺠﻤﻟﺎﻝ‪ ،‬ﰲ ﺣﻀﻮﺭ ﻣﻮﺟﺎﺕ ﻣﺘﻌﺪﺩﺓ ﺍﻟﺘﺮﺩﺩﺍﺕ ﻭ‪/‬ﺃﻭ ﻣﺸ ﱠﻜﻠﹶﺔ‬
‫ﻭﻗﺪ ُ‬
‫ﺍﻻﺗﺴﺎﻉ‪.‬‬
‫ﺗﻠﺒّﻲ ﳏﻮﻻﺕ ﺍﻟﺘﻴﺎﺭ ﻋﺎﺩﺓ ﺍﻟﺘﺮﺩﺩﺍﺕ ﺍﻟﻌﻠﻴﺎ ﺣﱴ ‪ MHz 100‬ﻻ ﺃﻛﺜﺮ‪ ،‬ﻭﻟﺬﺍ ﺻﻨﻌﺖ ﳏﻮﻻﺕ ﻧﻮﺍﻬﺗﺎ ﻫﻮﺍﺋﻴﺔ )ﻣﻘﺎﺑﻞ ﺍﻟﱵ ﻧﻮﺍﻬﺗﺎ ﻣﻦ‬
‫ﺍﻟﻔﺮﱢﻳﺖ( ﻟﺘﻮﺳﻴﻊ ﻣﺪﻯ ﺗﻠﺒﻴﺔ ﺍﻟﺘﺮﺩﺩﺍﺕ ﺍﻟﻌﻠﻴﺎ‪ .‬ﻭﺗﺘﻤﻴﺰ ﺍﶈﻮﻻﺕ ﺍﳍﻮﺍﺋﻴ ﹸﺔ ﺍﻟﻨﻮﺍ ِﺓ ﺑﺎﳋﻔﺔ ﺍﻟﱵ ﲡﻌﻠﻬﺎ ﺻﺎﳊﺔ ﻟﻠﻘﻴﺎﺳﺎﺕ ﺍﻟﻄﻮﻳﻠﺔ ﺍﻷﺟﻞ‪،‬‬
‫ﻟﻜﻨﻬﺎ ﺃﻗﻞ ﺣﺴﺎﺳﻴﺔ ﺑﻜﺜﲑ ﻣﻦ ﺍﻟﱵ ﻧﻮﺍﻬﺗﺎ ﻓﺮﱢﻳﺖ‪.‬‬
‫ﻳﻮﺟﺪ ﺑﺪﻳﻞ ﻟﻸﺟﻬﺰﺓ ﺍﻟﻘﺎﻣﻄﺔ ﰲ ﺍﻷﺟﻬﺰﺓ ﺫﺍﺕ ﺍﻟﺼﻔﻴﺤﺘﲔ‪ :‬ﺗﺴﺘﻘﺒﻞ ﺍﻟﺼﻔﻴﺤﺔ ﺍﻟﻌﻠﻴﺎ ﺍﻟﺘﻴﺎﺭ ﺍﳌﺘﺪﻓﻖ ﻋﱪ ﺍﻟﻘﺪﻣﲔ‪ ،‬ﻭﻳﻨﻘﻠﻪ ﻣﻨﻬﺎ‬
‫ﳏﺴﺎﺱ ﺗﻴﺎﺭ ﻣﺮﻛﺐ ﺑﲔ ﺍﻟﺼﻔﻴﺤﺘﲔ ﺇﱃ ﺍﻟﺼﻔﻴﺤﺔ ﺍﻟﻘﺎﻋﺪﻳﺔ ﺍﳌﻼﻣﺴﺔ ﻟﻸﺭﺽ‪ .‬ﻭﳝﻜﻦ ﲢﺪﻳﺪ ﻗﻮﺓ ﺍﻟﺘﻴﺎﺭ ﺍﳌﺘﺪﻓﻖ ﻣﻦ ﺍﻟﺼﻔﻴﺤﺔ ﺍﻟﻌﻠﻴﺎ‬
‫ﺇﱃ ﺍﻟﺼﻔﻴﺤﺔ ﺍﻟﻘﺎﻋﺪﻳﺔ ﻋﻦ ﻃﺮﻳﻖ ﻗﻴﺎﺱ ﺍﳔﻔﺎﺽ ﺍﻟﺘﻮﺗﺮ ﺍﻟﻨﺎﺟﻢ ﻋﻦ ﺍﻟﺘﺮﺩﺩﺍﺕ ﺍﻟﺮﺍﺩﻳﻮﻳﺔ ﺑﻮﺍﺳﻄﺔ ﺟﻬﺎﺯ ﻣﻘﺎﻭﻣﺔ ﻣﻨﺨﻔﺾ ﺍﳌﻌﺎﻭﻗﺔ‪.‬‬
‫ﻭﳝﻜﻦ ﺃﻳﻀﹰﺎ ﻗﻴﺎﺱ ﺍﻟﺘﻴﺎﺭ ﺍﳌﺘﺪﻓﻖ ﺑﲔ ﺍﻟﺼﻔﻴﺤﺘﲔ ﻋﱪ ﺍﳌﻮﺻﱢﻞ‪ ،‬ﺑﻮﺍﺳﻄﺔ ﳏﻮﻝ ﺗﻴﺎﺭ ﺿﻴﻖ ﺍﻟﻔﺘﺤﺔ‪ ،‬ﺃﻭ ﺑﻮﺍﺳﻄﺔ ﻣﺰﺩﻭﺟﺔ ﺣﺮﺍﺭﻳﺔ‬
‫ﻣﻮﺿﻮﻋﺔ ﰲ ﻓﺮﺍﻍ‪.‬‬
‫ﻭﻣﺘﻴﺴﱢﺮﺓ ﻫﻲ ﺃﻳﻀﹰﺎ ﺍﻷﺩﻭﺍﺕ ﺍﳌﻠﺒﻴﺔ ﻟﺘﺮﺩﺩﺍﺕ ﻣﺴﺘﻮﻳﺔ ﺍﳌﻮﺟﺔ ﻣﻦ ‪ kHz 3‬ﺇﱃ‬
‫‪MHz 100‬‬
‫ﻭﻋﻨﺪ ﺍﺧﺘﻴﺎﺭ ﺃﺩﺍﺓ ﻟﻘﻴﺎﺱ ﺍﻟﺘﻴﺎﺭ ﺍﳌﺴﺘﺤﺚ‪ ،‬ﳚﺐ ﻣﺮﺍﻋﺎﺓ ﻋﺪﺓ ﺃﻣﻮﺭ‪:‬‬
‫ﺃﻭ ﹰﻻ‪ ،‬ﺇﻥ ﺃﺟﻬﺰﺓ ﺍﻟﻘﻴﺎﺱ ﺍﻟﱵ ﻳﻘﻒ ﻋﻠﻴﻬﺎ ﺍﻟﺸﺨﺺ ﺗﺘﺄﺛﺮ ﺑﺘﻴﺎﺭﺍﺕ ﺍﻻﻧﺘﻘﺎﻝ ﺍﳌﺴﺘﺤﺜﺔ ﺍﻟﻨﺎﲨﺔ ﻋﻦ ﺍﺠﻤﻟﺎﻻﺕ ﺍﳌﻨﺘﻬﻴﺔ ﰲ ﺍﻟﺼﻔﻴﺤﺔ‬
‫ﺍﻟﻌﻠﻴﺎ‪ .‬ﻓﻘﺪ ﺃﺟﺮﻳﺖ ﲝﻮﺙ ﺃﺛﺒﺘﺖ ﺃﻥ ﺍﻷﺧﻄﺎﺀ ﺍﻟﻈﺎﻫﺮﻳﺔ ﺍﳌﻠﺤﻮﻇﺔ ﺃﺛﻨﺎﺀ ﻏﻴﺎﺏ ﺍﻟﺸﺨﺺ ﻟﻴﺴﺖ ﳍﺎ ﺷﺄﻥ ﻳُﺬﻛﺮ ﰲ ﻋﻤﻠﻴﺔ ﺍﻟﻘﻴﺎﺱ‬
‫ﺣﲔ ﻳﻜﻮﻥ ﺍﻟﺸﺨﺺ ﻭﺍﻗﻔﹰﺎ ﻋﻠﻰ ﺍﳉﻬﺎﺯ‪.‬‬
‫ﺛﺎﻧﻴﹰﺎ‪ ،‬ﺇﻥ ﺍﻟﺘﻴﺎﺭﺍﺕ ﺍﶈﺼﻠﺔ ﻗﻴﻤﺘﻬﺎ ﻣﻦ ﺍﻟﻜﺎﺣﻠﲔ ﺑﺎﻟﻘﻴﺎﺱ ﺑﻮﺍﺳﻄﺔ ﺟﻬﺎﺯ ﻗﺎﻣﻂ ﲡﻨﺢ ﲟﺠﻤﻮﻋﻬﺎ ﺇﱃ ﺃﻥ ﺗﻔﻮﻕ ﺑﻘﻠﻴﻞ ﺍﺠﻤﻟﻤﻮﻉ‬
‫ﺍﶈﺼﻞ ﺑﻮﺍﺳﻄﺔ ﺟﻬﺎﺯ ﺫﻱ ﺻﻔﻴﺤﺘﲔ‪ .‬ﺇﻻ ﺃﻥ ﻣﻘﺪﺍﺭ ﻫﺬﻩ ﺍﻟﺰﻳﺎﺩﺓ ﺍﻟﺘﺎﺑﻌﺔ ﻟﻠﺘﺮﺩﺩﺍﺕ ﺍﻟﺮﺍﺩﻳﻮﻳﺔ ﻭﳍﻨﺪﺳﺔ ﺍﳉﻬﺎﺯ ﻣﻌﹰﺎ‪ ،‬ﻻ ﻳﺮﺟﺢ ﺃﻥ‬
‫ﺗﻜﻮﻥ ﺫﺍﺕ ﺷﺄﻥ‪ .‬ﻭﻣﻊ ﺫﻟﻚ ﻳﺒﻘﻰ ﺃﻥ ﺃﺩﻕ ﻃﺮﻳﻘﺔ ﻟﺘﻘﻴﻴﻢ ﺍﻟﺘﻴﺎﺭﺍﺕ ﺍﻟﺴﺎﺭﻳﺔ ﰲ ﺍﻷﻋﻀﺎﺀ ﻫﻲ ﺍﳌﻌﺘﻤﺪﺓ ﻋﻠﻰ ﳏﻮﻝ ﺍﻟﺘﻴﺎﺭ‪ .‬ﻭﻗﺪ‬
‫ﺗﺘﻮﻗﻒ ﺩﻗﺔ ﻃﺮﻳﻘﺔ ﺍﻟﻘﻴﺎﺱ ﻋﻠﻰ ﺍﳌﺘﻄﻠﺒﺎﺕ ﺍﶈﺪﺩﺓ ﰲ ﺍﳋﻄﻮﻁ ﺍﻟﺘﻮﺟﻴﻬﻴﺔ ﺑﺸﺄﻥ ﺍﳊﻤﺎﻳﺔ‪ ،‬ﻣﺘﻄﻠﺒﺎﺕ ﻫﻲ ﺍﳌﺮﺟﻊ ﻟﺘﻘﻴﻴﻢ ﺍﳌﻄﺎﺑﻘﺔ‪.‬‬
‫ﺍﻟﺘﻮﺻﻴﺔ‬
‫‪ITU-R BS.1698‬‬
‫‪75‬‬
‫ﺛﺎﻟﺜﹰﺎ‪ ،‬ﺍﻟﺘﻴﺎﺭﺍﺕ ﺍﳌﺴﺘﺤﺜﺔ ﰲ ﺍﻷﻋﻀﺎﺀ ﳚﺐ ﲝﺚ ﺇﻣﻜﺎﻥ ﻗﻴﺎﺳﻬﺎ ﰲ ﻇﺮﻭﻑ ﺗﺄﺭﻳﺾ ﻭﺍﻗﻌﻴﺔ ﻛﺎﻟﱵ ﺗﻮﺟﺪ ﰲ ﺣﻴﺎﺓ ﺍﳌﻤﺎﺭﺳﺔ‪ .‬ﻋﻠﻰ‬
‫ﻭﺟﻪ ﺍﳋﺼﻮﺹ‪ ،‬ﺇﻥ ﺍﺧﺘﻼﻑ ﺩﺭﺟﺔ ﺍﻟﺘﻤﺎﺱ ﺍﻟﻜﻬﺮﺑﺎﺋﻲ ﺑﲔ ﺍﻷﺭﺽ ﻭﺍﻟﺼﻔﻴﺤﺔ ﺍﻟﻘﺎﻋﺪﻳﺔ ﻣﻦ ﺟﻬﺎﺯ ﺍﻟﻘﻴﺎﺱ ﺫﻱ ﺍﻟﺼﻔﻴﺤﺘﲔ‬
‫ﺍﳌﺘﻮﺍﺯﻳﺘﲔ‪ ،‬ﻭﻛﺬﻟﻚ ﺍﳊﺎﻟﺔ ﺍﻟﻔﻌﻠﻴﺔ ﻟﺴﻄﺢ ﺍﻷﺭﺽ‪ ،‬ﻣﻦ ﺷﺄﻬﻧﻤﺎ ﺍﻟﺘﺄﺛﲑ ﻋﻠﻰ ﺍﻟﺴﺮﻳﺎﻥ ﺍﻟﻈﺎﻫﺮ ﻟﻠﺘﻴﺎﺭ ﳓﻮ ﺍﻷﺭﺽ‪.‬‬
‫ﻭﳝﻜﻦ ﺇﺟﺮﺍﺀ ﺍﻟﻘﻴﺎﺳﺎﺕ ﺑﺎﺳﺘﻌﻤﺎﻝ ﻫﻮﺍﺋﻴﺎﺕ ﻣﺼﻤﻤﺔ ﲝﻴﺚ ﺗﻜﻮﻥ ﻣﻜﺎﻓﺌﺔ ﻟﻠﺸﺨﺺ‪ .‬ﻭﻫﺬﻩ ﺍﻟﻄﺮﻳﻘﺔ ﲤﻜﹼﻦ ﻣﻦ ﺍﺳﺘﻌﻤﺎﻝ ﻃﺮﻳﻘﺔ‬
‫ﻣﻘﻴﱠﺴﺔ ﻭﺇﺟﺮﺍﺀ ﻗﻴﺎﺳﺎﺕ ﺍﻟﺘﻴﺎﺭ ﺑﺪﻭﻥ ﺍﳊﺎﺟﺔ ﺇﱃ ﺗﻌﺮﻳﺾ ﺃﺷﺨﺎﺹ ﻟﺘﻴﺎﺭﺍﺕ ﺃﻭ ﺠﻤﻟﺎﻻﺕ ﺧﻄﺮﺓ ﻋﻠﻴﻬﻢ‪.‬‬
‫‪2.3‬‬
‫ﻗﻴﺎﺱ ﺗﻴﺎﺭ ﺍﻟﺘﻤﺎﺱ‬
‫ﳚﺐ ﺃﻥ ﻳﻮﺿﻊ ﺟﻬﺎﺯ ﻗﻴﺎﺱ ﺍﻟﺘﻴﺎﺭ ﺑﲔ ﻳﺪ ﺍﻟﺸﺨﺺ ﻭﺍﻟﺸﻲﺀ ﺍﳌﻮﺻﻞ‪ .‬ﻭﳝﻜﻦ ﺃﻥ ﺗﻘﻮﻡ ﺗﻘﻨﻴﺔ ﺍﻟﻘﻴﺎﺱ ﻋﻠﻰ ﻣﺴﺒﺎﺭ ﻣﻌﺪﱐ )ﻣﺴﺎﺣﺔ‬
‫ﺍﻟﺘﻤﺎﺱ ﳏﺪﺩﺓ( ﳝﺴﻚ ﺃﺣﺪ ﻃﺮﻓﻴﻪ ﺑﺎﻟﻴﺪ ﺑﻴﻨﻤﺎ ﻳﻜﻮﻥ ﻃﺮﻓﻪ ﺍﻵﺧﺮ ﰲ ﲤﺎﺱ ﻣﻊ ﺍﻟﺸﻲﺀ ﺍﳌﻮﺻﻞ‪ .‬ﰒ ﳝﻜﻦ ﺃﻥ ﻳُﺴﺘﻌﻤَﻞ ﳏﺴﺎﺱ ﻗﺎﻣﻂ‬
‫)ﳏﻮﻝ ﺗﻴﺎﺭ( ﻟﻘﻴﺎﺱ ﺗﻴﺎﺭ ﺍﻟﺘﻤﺎﺱ ﺍﻟﺴﺎﺭﻱ ﰲ ﺍﻟﻴﺪ ﺍﻟﱵ ﰲ ﺣﺎﻟﺔ ﲤﺎﺱ ﻣﻊ ﺍﻟﺸﻲﺀ ﺍﳌﻮﺻﻞ ﻋﱪ ﺍﳌﺴﺒﺎﺭ‪.‬‬
‫ﻭﻫﻨﺎﻙ ﻃﺮﻳﻘﺘﺎﻥ ﺃﺧﺮﻳﺎﻥ‪:‬‬
‫‪-‬‬
‫ﻗﻴﺎﺱ ﻓﺮﻕ ﺍﻟﻜﻤﻮﻥ )ﺍﳔﻔﺎﺽ ﺍﻟﺘﻮﺗﺮ( ﻋﱪ ﻣﻘﺎﻭﻣﺔ ﻻ ﺣﺜﻴﺔ )ﻣﺪﻯ ﺍﳌﻘﺎﻭﻣﺔ ﻣﻦ ‪ 5‬ﺇﱃ ‪ ( Ω 10‬ﻣﻮﺻﱠﻠﺔ ﺑﺎﻟﺘﺴﻠﺴﻞ ﺑﲔ‬
‫ﺍﻟﺸﻲﺀ ﺍﳌﻮﺻﻞ ﻭﺍﳌﺴﺒﺎﺭ ﺍﳌﻌﺪﱐ ﺍﳌﻤﺴﻮﻙ ﻃﺮﻓﻪ ﺑﺎﻟﻴﺪ؛‬
‫‪-‬‬
‫ﻼ ﻣﺒﺎﺷﺮ‪.‬‬
‫ﻣﻘﻴﺎﺱ ﻣﻠﹼﻲ ﺃﻣﺒﲑ ﺑﺸﻜﻞ ﻣﺰﺩﻭﺟﺔ ﺣﺮﺍﺭﻳﺔ ﻳﻮﺻﱠﻞ ﺑﺎﻟﺘﺴﻠﺴﻞ ﺗﻮﺻﻴ ﹰ‬
‫ﳚﺐ ﺃﻥ ﺗﻮﺿﻊ ﺍﻟﺘﻮﺻﻴﻼﺕ ﺍﻟﺴﻠﻜﻴﺔ ﻭﺟﻬﺎﺯ ﻗﻴﺎﺱ ﺍﻟﺘﻴﺎﺭ ﺑﻄﺮﻳﻘﺔ ﺗﻘﻠﻞ ﻗﻴﻤﺔ ﻣﺎ ﻳﻨﺠﻢ ﻋﻦ ﺍﻟﺘﻴﺎﺭﺍﺕ ﺍﳌﻠﺘ ﹶﻘﻄﹶﺔ ﻣﻦ ﺍﻟﺘﺪﺍﺧﻞ‬
‫ﻭﺍﻷﺧﻄﺎﺀ‪.‬‬
‫ﻭﰲ ﺣﺎﻟﺔ ﺗﻮﻗﻊ ﺗﻴﺎﺭﺍﺕ ﻋﺎﻟﻴﺔ ﺑﺼﻮﺭﺓ ﻣﻔﺮﻃﺔ‪ ،‬ﳝﻜﻦ ﺍﻟﺘﻌﻮﻳﻞ ﻋﻠﻰ ﺷﺒﻜﺔ ﻛﻬﺮﺑﺎﺋﻴﺔ ﻣﻦ ﺍﳌﻘﺎﻭﻣﺎﺕ ﻭﺍﳌﻜﺜﻔﺎﺕ ﶈﺎﻛﺎﺓ ﻣﻌﺎﻭﻗﺔ‬
‫ﺍﳉﺴﻢ ﺍﳌﻜﺎﻓﺌﺔ‪.‬‬
‫‪3.3‬‬
‫ﻗﻴﺎﺱ ﺗﻮﺗﺮ ﺍﻟﺘﻤﺎﺱ‬
‫ﻳﻘﺎﺱ ﺗﻮﺗﺮ ﺍﻟﺘﻤﺎﺱ )ﺗﻮﺗﺮ ﺑﺪﻭﻥ ﺷﺤﻨﺔ( ﺑﻔﻠﻄﻤﺘﺮ ﺃﻭ ﺑﻜﺎﺷﻒ ﺗﺬﺑﺬﺏ ﻣﻨﺎﺳﺐ ﳌﺪﻯ ﺍﻟﺘﺮﺩﺩ ﻣﻮﺿﻊ ﺍﻟﺒﺤﺚ‪ .‬ﻭﺗﻜﻮﻥ ﺃﺟﻬﺰﺓ‬
‫ﺍﻟﻘﻴﺎﺱ ﻣﻮﺻﱠﻠﺔ ﺑﲔ ﺍﻟﺸﻲﺀ ﺍﳌﻮﺻﻞ ﺍﳌﺸﺤﻮﻥ ﺑﺎﻟﺘﻮﺗﺮ ﺍﳌﺴﺘﺤﺚ ﻣﻦ ﺍﺠﻤﻟﺎﻝ ﻭﺍﻟﻜﻤﻮﻥ ﺍﳌﺮﺟﻌﻲ )ﺍﻷﺭﺽ(‪ .‬ﻭﳚﺐ ﺃﻻ ﺗﻜﻮﻥ ﻣﻌﺎﻭﻗﺔ‬
‫ﺩﺧﻞ ﺍﻟﻔﻠﻄﻤﺘﺮ ﺃﻗﻞ ﻣﻦ ‪.k Ω 10‬‬
‫ﺍﻟﺘﺬﻳﻴﻞ‬
‫ﻟﻠﻤﻠﺤﻖ ‪1‬‬
‫‪5‬‬
‫ﺍﻷﺟﻬﺰﺓ ﺍﻹﻟﻜﺘﺮﻭﻧﻴﺔ ﺍﻟﻄﺒﻴﺔ‬
‫‪1‬‬
‫ﺍﻷﺟﻬﺰﺓ ﺍﻹﻟﻜﺘﺮﻭﻧﻴﺔ ﺍﻟﻄﺒﻴﺔ‬
‫ﺍﳌﻼﺀﻣﺔ ﺍﻟﻜﻬﺮﻣﻐﻨﻄﻴﺴﻴﺔ )‪ (EMC‬ﻣﺴﺄﻟﺔ ﻋﺎﻣﺔ ﺗﻨﻄﺮﺡ ﺑﺼﺪﺩ ﺍﻟﺘﺠﻬﻴﺰﺍﺕ ﺍﻹﻟﻜﺘﺮﻭﻧﻴﺔ‪ ،‬ﻭﻻ ﺳﻴﻤﺎ ﺍﻟﺘﺠﻬﻴﺰﺍﺕ ﺍﻹﻟﻜﺘﺮﻭﻧﻴﺔ ﺍﻟﻄﺒﻴﺔ‪.‬‬
‫ﻓﻬﺬﻩ ﺇﺫﺍ ﺍﺳﺘُﻌﻤﻠﺖ ﰲ ﺣﻀﻮﺭ ﳎﺎﻻﺕ ﻛﻬﺮﻣﻐﻨﻄﻴﺴﻴﺔ ﻗﻮﻳﺔ ﳝﻜﻦ ﺃﻻ ﺗﺸﺘﻐﻞ ﺑﺼﻮﺭﺓ ﺻﺤﻴﺤﺔ‪ .‬ﻭﻳﺰﺩﺍﺩ ﺧﻄﺮ ﺳﻮﺀ ﺍﻷﺩﺍﺀ ﻛﻠﻤﺎ‬
‫ﺸ ّﻊ‬
‫ﻗﻮﻳﺖ ﺷﺪﺓ ﺍﺠﻤﻟﺎﻝ‪ .‬ﻭﺧﻄﺮ ﺳﻮﺀ ﺍﻷﺩﺍﺀ ﻣﺮﻫﻮﻥ ﺑﻌﺪﺓ ﻣﺘﻐﻴﱢﺮﺍﺕ‪ ،‬ﻣﺜﻞ ﺳﻮﻳﺔ ﺷﺪﺓ ﺍﺠﻤﻟﺎﻝ‪ ،‬ﻭﻫﺬﻩ ﺗﺎﺑﻌﺔ ﻟﻠﻤﺴﺎﻓﺔ ﺑﲔ ﺍﳍﻮﺍﺋﻲ ﺍﳌ ِ‬
‫ﻭﺍﳉﻬﺎﺯ‪ ،‬ﻭﻣﺜﻞ ﻗﺪﺭﺓ ﺍﳌﺮﺳﻞ‪ ،‬ﻭﺗﺮﺩﺩ ﺍﳌﻮﺟﺎﺕ‪ ،‬ﻭﳕﻂ ﺗﺸﻜﻴﻞ ﺍﻹﺷﺎﺭﺓ ﺍﳌﺸﻌﱠﺔ‪ ،‬ﻭﺗﺄﺛﲑ ﺍﻗﺘﺮﺍﻥ ﺍﻟﻜﺒﻼﺕ‪ ،‬ﻭﺣﺼﺎﻧﺔ ﺍﻷﺟﻬﺰﺓ‬
‫ﺍﻹﻟﻜﺘﺮﻭﻧﻴﺔ ﻧﻔﺴﻬﺎ ﺇﺯﺍﺀ ﺍﻟﺘﺮﺩﺩﺍﺕ ﺍﻟﺮﺍﺩﻳﻮﻳﺔ‪.‬‬
ITU-R BS.1698
‫ﺍﻟﺘﻮﺻﻴﺔ‬
76
‫ ﺑﻮﺍﺳﻄﺔ‬،‫ﻭﻣﻦ ﺍﳌﻤﻜﻦ ﻋﺎﺩﺓ ﺍﳊﺪ ﻣﻦ ﺗﺪﺍﺧﻞ ﺍﻟﺘﺮﺩﺩﺍﺕ ﺍﻟﺮﺍﺩﻳﻮﻳﺔ ﰲ ﺍﻷﺟﻬﺰﺓ ﺍﻹﻟﻜﺘﺮﻭﻧﻴﺔ ﺍﻟﻄﺒﻴﺔ ﺃﻭ ﺇﺯﺍﻟﺔ ﻫﺬﺍ ﺍﻟﺘﺪﺍﺧﻞ ﻛﻠﻴﹰﺎ‬
‫ ﻓﻤﻦ ﺍﳌﻨﺎﺳﺐ ﺃﻥ ﺗُﻄﺒﱠﻖ ﺗﻘﻨﻴﺎﺕ ﻣﺸﺘﻘﺔ ﻣﻦ ﺍﻟﺘﻘﻨﻴﺎﺕ‬.‫ﺣﺠﺐ ﺍﻟﺘﺮﺩﺩﺍﺕ ﺍﻟﺮﺍﺩﻳﻮﻳﺔ ﺍﳊﺠﺐ ﺍﳌﻼﺋﻢ ﺃﻭ ﺑﻄﺮﻳﻘﺔ ﺍﻟﺘﺮﺷﻴﺢ ﺍﻹﻟﻜﺘﺮﻭﱐ‬
‫ ﻭﻋﻠﻰ ﺍﻷﺩﻭﺍﺕ‬،‫ ﻣﻐﺮﻭﺳﺔ ﻛﺎﻧﺖ ﺃﻡ ﻻ‬،‫ ﻋﻠﻰ ﺍﻷﺟﻬﺰﺓ ﺍﻟﻄﺒﻴﺔ‬،‫ ﻭﳝﻜﻦ ﺃﻥ ﺗُﻄﺒﱠﻖ‬.‫ﺍﻟﺸﺎﺋﻊ ﺍﺳﺘﻌﻤﺎﳍﺎ ﺑﺸﺄﻥ ﺍﳌﻼﺀﻣﺔ ﺍﻟﻜﻬﺮﻣﻐﻨﻄﻴﺴﻴﺔ‬
.‫ ﺣﺪﻭﺩ ﺧﺎﺻﺔ ﺃﺷﺪ ﻣﻦ ﺍﳌﻔﺮﻭﺿﺔ ﲞﺼﻮﺹ ﻋﺎﻣﺔ ﺍﳉﻤﻬﻮﺭ‬،‫ﺍﻟﻄﺒﻴﺔ‬
‫ﺍﻷﺟﻬﺰﺓ ﺍﳌﻐﺮﻭﺳﺔ ﻭﺍﻷﺟﻬﺰﺓ ﺍﶈﻤﻮﻟﺔ‬
1.1
.‫ﻼ ﰲ ﺍﻷﺟﻬﺰﺓ ﺍﻟﻄﺒﻴﺔ ﺍﳌﻐﺮﻭﺳﺔ ﻭﺍﶈﻤﻮﻟﺔ‬
‫ﻣﻦ ﺷﺄﻥ ﺍﺠﻤﻟﺎﻻﺕ ﺍﻟﻜﻬﺮﻣﻐﻨﻄﻴﺴﻴﺔ ﺃﻥ ﺗﺴﺒﺐ ﺗﺪﺍﺧ ﹰ‬
‫ ﻭﻳﺒﺪﻭ ﺁﺧﺬﹰﺍ ﰲ ﺍﻟﺘﺰﺍﻳﺪ‬.‫ ﻭﺳﻴﻜﱪ ﰲ ﺍﳌﺴﺘﻘﺒﻞ ﻋﺪﺩ ﻫﺬﻩ ﺍﻷﺟﻬﺰﺓ‬،‫ﻳﺪﺧﻞ ﰲ ﻫﺬﺍ ﺍﻟﺼﻨﻒ ﻣﻀﺨﺎﺕ ﺍﻷﻧﺴﻮﻟﲔ ﻭﻧﺎﻇﻤﺎﺕ ﺍﻟﻘﻠﺐ‬
‫ ﳝﻜﻦ ﺃﻥ ﺗﺘﺄﺛﺮ‬،‫ ﻓﺒﻮﺟﻪ ﻋﺎﻡ‬.‫ ﻭﺍﳌﻌﻴﻨﺎﺕ ﺍﻟﺒﺪﻟﻴﺔ ﻟﻠﺒﺼﺮ ﻭﺍﳊﺮﻛﺔ‬،‫ ﻣﺜﻞ ﺍﳌِﺮﻗﹶﺐ ﺍﶈﻤﻮﻝ‬،‫ﺃﻳﻀﹰﺎ ﻣﺪﻯ ﻭﻋﺪﺩ ﺍﻷﺟﻬﺰﺓ ﺍﳉﺪﻳﺪﺓ ﺍﳌﺨﺘﻠﻔﺔ‬
‫ ﻭﻣﻊ ﺫﻟﻚ ﻓﺈﻥ ﻣﺸﻜﻼﺕ ﺗﺪﺍﺧﻞ ﺍﻟﺘﺮﺩﺩﺍﺕ‬.‫ﻧﺎﻇﻤﺎﺕ ﺍﻟﻘﻠﺐ ﻭﺳﺎﺋﺮ ﺍﻷﺟﻬﺰﺓ ﺍﻟﻄﺒﻴﺔ ﻣﻦ ﺗﺪﺍﺧﻞ ﺍﺠﻤﻟﺎﻻﺕ ﺍﻟﻜﻬﺮﻣﻐﻨﻄﻴﺴﻴﺔ ﺍﳌﺸﻌﱠﺔ‬
.‫ ﺑﺴﺐ ﻋﺪﻡ ﺍﻟﻮﻋﻲ ﺍﻟﻜﺎﰲ ﳍﺎ ﻋﻨﺪ ﺍﳌﺼﻨﱢﻌﲔ ﻭﺍﳌﻮﺭﱢﺩﻳﻦ‬،‫ﺤﻞﹼ ﲤﺎﻣﹰﺎ‬
َ ‫ﺍﻟﺮﺍﺩﻳﻮﻳﺔ ﰲ ﺍﻷﺟﻬﺰﺓ ﺍﻹﻟﻜﺘﺮﻭﻧﻴﺔ ﺍﻟﻄﺒﻴﺔ ﺍﳌﻐﺮﻭﺳﺔ ﱂ ُﺗ‬
‫ﺍﻟﺘﺬﻳﻴﻞ‬
1 ‫ﻟﻠﻤﻠﺤﻖ‬
6
‫ﻣﺮﺍﺟﻊ ﺑﻴﺒﻠﻴﻮﻏﺮﺍﻓﻴﺔ‬
[1]
IEC [6 October 2000] IEC Committee Draft (CD) 85/214/CD: Measurement and evaluation of high
frequency (9 kHz to 300 GHz) electromagnetic fields with regard to human exposure.
[2]
EBU [November 2001] BPN 023: Radio frequency radiation: Exposure limits and their implication
for broadcasters. European Broadcasting Union.
[3]
ANSI/IEEE [1992] Standard for safety levels with respect to human exposure to radiofrequency
electromagnetic fields, 3 kHz to 300 GHz. IEEE Std C95.1/D1.4.
[4]
ICNIRP [April 1998] Guidelines for limiting exposure to time-varying electric, magnetic and
electromagnetic fields (up to 300 GHz). Health Physics, Vol. 74, 4, p. 494-522.
[5]
NRPB [1993] Board Statement on restrictions on human exposure to state and time varying electromagnetic fields and radiation. Doc. NRPB, Vol. 4, 5.
[6]
CENELEC [21 November 2003] Draft prEN 50413: Basic Standard on measurement and
calculation procedures for human exposure to electric, magnetic and electromagnetic fields
(0 Hz-300 GHz).
[7]
IEEE. IEEE Std C95.3: IEEE recommended practice for measurements and computations of radio
frequency electromagnetic fields with respect to human exposure to such fields, 100 kHz-300 GHz.
‫ــــــــــ‬