Simplified Analysis Model for Modern Skyscrapers With Mega

Simplified Analysis Model for Modern Skyscrapers With
Mega-Diagonal Lateral Force Resisting System
Russell Irion
A project submitted to the faculty of
Brigham Young University
in partial fulfillment of the requirements for the degree of
Master of Science
Richard Balling, Chair
Fernando Fonseca
Alan Parkinson
Department of Civil & Environmental Engineering
Brigham Young University
April 2015
Copyright © 2015 Russell Irion
All Rights Reserved
ABSTRACT
Simplified Analysis Model for Modern Skyscrapers
With a Diagrid Lateral Force Resisting System
Russell Irion
Department of Civil & Environmental Engineering, BYU
Master of Science
Modern skyscrapers are reaching higher and are more innovative than ever before. The
standard form of skyscrapers from the early 20th century has structural elements that include a
concrete core, columns, belt trusses and outriggers. Dr. Richard Balling and Jacob Lee produced
a simplified skyscraper analysis model (SSAM) with the aforementioned structural elements.
The 1960s brought about a change to the status quo of skyscrapers, introducing diagonal braces,
which contribute to both the lateral and vertical stiffness of the overall structural system. With
the addition of external diagonal braces came more open floor space and an optimal design that
performs well even at high elevations.
The John Hancock Center in Chicago Illinois was the first of many to adopt the external
diagonal brace structure. Fazlur Khan was the designer who produced this innovative design. It
was determined to be the best configuration for new skyscrapers at the time. Advances in
technology allow us to now model the entire skyscraper, which would have been too
computationally expensive for Khan back in the 1960s. A full model of the building was created
in SAP 2000 to measure the total displacement due to wind and earthquake loads.
The purpose of this project is to discuss how the SSAM was modified to include diagonal
braces. The diagonal elements impacted the size of the columns and the overall stiffness of the
structure. The lateral displacement of structure was calculated in the spreadsheet and compared
with the model created in SAP 2000.
The displacement due to wind loads between the two structures on average was .03m.
The greatest difference was located at the top story of the building and the difference between
the two was .098m. Earthquake loads were calculated and the average difference in displacement
from the two analyses was .34m and the worst case was 1.0m. In each case the SSAM predicts a
building that is less stiff than what the finite element model calculated.
Keywords: SSAM, Diagonal, John Hancock Center, SAP 2000
ACKNOWLEDGEMENTS
Many hours of hard work have been put in to producing a Masters Project that I can be
proud of. Oftentimes I met walls that seemed insurmountable. Many hours were spent wrestling
SAP 2000 or dissecting the stiffness matrix. Dr. Balling provided advice and assured me that I
would be able to figure it out. I’m very grateful for his council and guidance through this project.
Additionally I’m grateful for Changheon Yi and the listening ear he gave when I needed to talk
through a problem.
Most important however is the confidence and support I received from my loving family.
Ellen has been a constant support for me through it all. On a number of occasions I would wake
her up by sleep talking, teaching some engineering principle to her. While lifting the pillow, I
gestured to each corner and proceeded to explain to her “each corner has a value.” After getting
frustrated that she didn’t understand me I shook my head and went back to bed. Needless to say,
she is very sweet for putting up with the long hours I have put in at school and was always very
positive through it all. Lastly my parents and siblings have always been supportive and I’m lucky
that we get to be together forever.
TABLE OF CONTENTS
LIST OF FIGURES ................................................................................................................... viii 1 Introduction ............................................................................................................................. 1 2 The John Hancock Center, Chicago IL. USA ...................................................................... 4 2.1 Building Characteristics ..................................................................................................... 5 3 Finite Element Model ............................................................................................................. 7 3.1 Structural Members............................................................................................................ 7 3.2 Loads .................................................................................................................................. 8 3.3 Execution ........................................................................................................................... 9 4 Simplified Skyscraper Analysis Model (SSAM) ................................................................ 10 4.1 Simplifications ................................................................................................................. 10 4.2 Vertical Stiffness Contribution of Diagonals................................................................... 11 4.3 Horizontal Stiffness Contribution of Diagonals .............................................................. 12 4.4 Strain and Stress in Diagonal Members ........................................................................... 14 4.5 Analysis Results ............................................................................................................... 14 5 Conclusions ............................................................................................................................ 20 REFERENCES............................................................................................................................ 21 v
LIST OF TABLES
Table 1 Diagonal Member Stiffness Matrix ..........................................................................13 Table 2 Displacement Results. ...............................................................................................15 vi
vii
LIST OF FIGURES
Figure 1 Braced Tube and Diagrid Structure Diagrams. .......................................................2 Figure 2 Diagonal Tower, Seoul, South Korea. (Dezeen 2012) ............................................3 Figure 4 High Rise Design vs Height. ...................................................................................5 Figure 6 Displaced vs Undisplaced Shape. ............................................................................9 Figure 7 Vertical Displacement. ............................................................................................12 Figure 8 Horizontal Displacement. ........................................................................................12 Figure 9 Wind Displacement Results. ...................................................................................15 Figure 10 Earthquake Displacement Results. ........................................................................16 Figure 11 Force on Building. .................................................................................................17 Figure 12 Colored Frame Undisplaced and Displaced. .........................................................19 viii
1
INTRODUCTION
This work is an extension of the work of Dr. Richard J. Balling and Jacob S. Lee and
their simplified skyscraper analysis model (SSAM) to include mega diagonals and tapered
buildings. The extended model is applied to the John Hancock Center in Chicago, IL USA. The
John Hancock Center was one of the first to implement an external mega-diagonal structural
system. A computer model was created in order to compare results and draw conclusions about
the accuracy of the SSAM.
Using a SSAM in lieu of a space frame or detailed finite element model (DFEM) results
in faster execution, an iterative optimization technique, simpler data preparation and
straightforward data extraction (Lee and Balling 2014). It also presents an effective way to teach
engineering students some of the analysis and calculations that are required when designing a
skyscraper. Using the SSAM, conventional skyscrapers were analyzed, with configurations
involving concrete cores, columns, outriggers and belt-trusses. The purpose of this document is
to develop a skyscraper spreadsheet model that includes diagonal cross braces and a tapered
profile. The spreadsheet will be compared to a full-scale computer model in order to determine if
the calculations closely mimic real life. The paper will culminate with the production of a
spreadsheet that models the John Hancock Building to display how the SSAM is now upgraded
to better model modern skyscrapers.
1
Mega-diagonal structural members have become a viable option as a part of the lateral
force resisting system of a structure. The sloping orientation of the member results in
components parallel to both the lateral forces as well as the gravity loads of a structure.
Figure 1 Braced Tube and Diagrid Structure Diagrams.
As displayed in Figure 1, structural systems that include mega-diagonal braces may
require column elements, but they are not required if engineered appropriately. Systems
composed solely of diagonal members are called diagrid buildings (Panchal and Patel 2014). The
structure analyzed herein has a combination of core, column and mega-diagonal elements. Some
examples of this type of structure include the Diagonal Zero Zero in Barcelona, Spain, The
Diagonal Tower in Seoul, South Korea, and the John Hancock building in Chicago, IL. These
buildings “can be seen as one enormous vertical truss or integrated structural frame” (Priwer and
Phillips 2014).
2
Figure 2 Diagonal Tower, Seoul, South Korea. (Dezeen 2012)
Architects and designers hope to create structures that are unique and expressive.
Oftentimes those types of structures are not perfectly symmetric or follow perfect patterns. One
unique form of a skyscraper is a gradual taper in order to produce an elongating effect. By doing
so, numerous other benefits result which will be discussed in the next section.
3
2
THE JOHN HANCOCK CENTER, CHICAGO IL. USA
The John Hancock building in Chicago
Illinois was the first skyscraper to employ the use
of external diagonal structural cross braces. Doing
so presented some geometric advantages. The
revolutionary designer who determined this
structure was the most efficient form was Fazlur
Khan of Skidmore Owings and Merrill. This
building was the start of new heights and
possibilities
for
modern
skyscrapers.
The
conceptual design and planning stages for this
building started in 1965 and the building was
finally completed in 1970. Around this same time,
Figure 3 Image of Hancock Center.
the world saw a shift away from the less efficient
vierendeel structural composition towards a
cantilevered column type system (Takabatke 2012). These vierendeel structures were comprised
mainly of beams and columns with rigid connections. By changing to hinge connected braces,
the diagonal elements only experience axial forces and become a more efficient shape.
4
Figure 4 High Rise Design vs Height.
Figure 4 was produced by Fazlur Khan in the mid 1900s (Iyengar 2000). It displays the
shift toward truss-tubed structures that resulted in taller buildings.
2.1
Building Characteristics
The John Hancock Building is a mixed use structure, utilizing floor space for residential
and commercial use. The structural system used is the truss-tube without interior columns system
as depicted in Figure 4. The bottom floor is rectangular, 262’ wide and roughly 164’ long. The
top floors are also rectangular, 160’ wide and 100’ long (Iyengar 2000). The Hancock center has
a slight taper all the way to the top, thus causing onlookers to believe the structure is even taller
than it actually is (Hearn 2015). The total height of the structure is 1128 ft. Not only does the
5
tapered form produce an elongation effect, it also decreases the surface area on which wind can
act and decreases the seismic weight of the structure at the critical top levels (Khushbu Jania
2013) (Montuori, Mele et al. 2013). It was designed such that under 60 mph wind loading, the
structure would sway only five to eight inches (Hearn 2015).
Figure 5 John Hancock Center
(Iyengar, 2000)
6
3
3.1
FINITE ELEMENT MODEL
Structural Members
Typical megadiagonals would be a concrete filled steel tube or some other steel brace.
The megadiagonal members used to model the John Hancock Center were all assumed to be
concrete members. This assumption is made to more closely match the SSAM model that will be
discussed later. Material properties of each of the columns and concrete core were also assigned
to match what is found in the SSAM. The cross sections of diagonal and column members were
assumed to be circular. The moment of Inertia was calculated for the different members at each
interval. The moment of inertia for the concrete core is found in the SSAM. The torsional
stiffness was arbitrarily set to 1000. This assumption did not affect the results and was verified. It
is also worth noting that the diagonal members were assumed to span the entire interval instead
of connecting at each intermediate column.
SAP 2000 allows users to create “area elements.” For the façade and floor members, area
elements were used and properties such as unit weight, thickness, stiffness and other
characteristics were applied appropriately. The use of area elements may more accurately
represent real life behavior. It proved difficult to produce similar results when modeling the
concrete core. Thus a column element was used that shared the same characteristics (moment of
7
inertia, area. . . etc.) as found for the concrete core in the SSAM. In order to be able to see other
elements, the diaphragms have been removed from the display in Figure 6.
3.2
Loads
The loading on the structure was taken directly from the SSAM. Instead of potentially
introducing more error into our model by using the SAP 2000 built in wind analysis, horizontal
point loads and moments about the assumed axis of rotation were placed at the top of the core in
the center of the building. This project is not created to determine the accuracy of the forces
calculated in the spreadsheet, instead the response of the system is the main objective. Thus
forces were copied straight from the spreadsheet into the DFEM.
8
3.3
Execution
The SAP 2000 model required over 28 minutes to run analysis on average. The underlying
mathematical model had 6 degrees of freedom at each column and core for every level. The
diagonal members only had degrees of freedom at critical intervals. That results in over roughly
10,2000 degrees of freedom for the system. The SAP 2000 model said the model had over
92,616 equilibrium equations to satisfy. The file containing all the information was over 120
MB. In order to make any changes the whole structure needed to be re analyzed.
Figure 6 Displaced vs Undisplaced Shape.
9
4
SIMPLIFIED SKYSCRAPER ANALYSIS MODEL (SSAM)
As was mentioned earlier, the SSAM is an analysis tool that results in faster execution, an
iterative optimization technique, simpler data preparation and straightforward data extraction.
The spreadsheet makes it simple to change member properties & see immediate results when
determining how much material to allocate between columns, core, and other structural
members. Without it, a modeling expert would require a lot of time and effort to provide a
collection of optimized designs to the client. Implementing this spreadsheet, in conjunction with
the optimization capabilities in excel or other outside sources could enable the designer to
converge onto a pareto front of optimized designs. These benefits are what have led to further
development of this tool. The following sections will describe the improvements that have been
made to the SSAM.
4.1
Simplifications
The configuration that has been selected is a single X brace for each side of the building
spanning the entire interval. Using this configuration results in a symmetric structure. Wind and
earthquake forces produce a lateral force, which can then be further simplified and analyzed as a
symmetric structure with anti-symmetric loading. Initially it was hoped that a very general,
modular method could be created which allows for multiple X’s on each interval or other
configurations. Complications came in developing the stiffness matrix, due to the dependence
10
that adjacent intervals and their degrees of freedom have on each other. It is possible that a
macro could be created that would automatically fill in the stiffness matrix given some input
parameters, but this has not been explored yet.
4.2
Vertical Stiffness Contribution of Diagonals
Unlike most of the other components of this structure, the diagonal members will
contribute to both the vertical and horizontal stiffness of the structure (Moon, Connor et al.
2007). The size of the concrete core, columns and diagonals depend on each other. With each of
these components, strain in the core must equal the strain of the outer column and diagonals,
otherwise a large displacement discrepancy will propagate through each level and result in
cracks. The thickness of the concrete and the area of the diagonal members were determined as
the two independent variables and would be used to calculate the required area of columns.
Equating equations of strain and solving for the dependent variable resulted in:
𝒄𝒐𝒍𝒋
𝑨𝒊
= 𝑨𝒄𝒐𝒓𝒆
∗
𝒊
𝒄𝒐𝒍𝒋
𝑭𝒊
𝒄𝒐𝒓𝒆 −
𝒅𝒊𝒂𝒈
𝑽𝒊
𝑭𝒊
𝒉𝒊
𝐬𝐢𝐧 𝜽𝒅𝒊𝒂𝒈
𝒊
𝟒 𝑭𝒄𝒐𝒍𝒋
𝒊
𝒄𝒐𝒍𝒋
𝑭𝒊
𝟏+
𝜸𝒉𝒊 𝑨𝒄𝒐𝒓𝒆
𝒊
𝑭𝒄𝒐𝒓𝒆
𝒊
4-1
where A = area
F = Axial force in member
!"#$
𝑉!
= Total volume of diagonals on interval
ℎ! = Height of interval
𝛾 = Unit weight of concrete core
For the new model, the diagonal members were assumed to be concrete tube members instead of
steel members. This assumption was made to simplify the model. Oftentimes these diagonal
members are concrete filled steel tubes. It wasn’t deemed necessary to go into such depth to
determine the stiffness of a composite structure. If a designer would like to determine an
11
appropriate amount of steel, the ratio of stiffness provided by a steel tube of the desired radius
and thickness could be subtracted from the calculated area of concrete. The spreadsheet could be
manipulated to assume the diagonals are pure steel if that is what the designer desires.
4.3
Horizontal Stiffness Contribution of Diagonals
Using principles of virtual work and mechanics of materials in conjunction with anti-
symmetry, the following equations were derived:
Figure 7 Vertical Displacement.
Figure 8 Horizontal Displacement.
12
𝑲𝑳𝑽 = 𝑬𝑨
𝑲𝑳𝑳 = 𝑬𝑨
𝑲𝑽𝑽 = 𝑬𝑨
𝑳
𝑳
𝑳
𝟏 − 𝒔𝒊𝒏𝟐 𝜽
4-2
(𝟏 − 𝒔𝒊𝒏𝟐 𝜽)
4-3
𝒔𝒊𝒏𝟐 𝜽
4-4
E is the youngs modulus of the diagonal members, A is the area and L is the total length of the
diagonal member. Implementing the formulas from above results in the following stiffness
matrix:
Table 1 Diagonal Member Stiffness Matrix
DOF’s
𝑯𝒐𝒓𝒊
𝑽𝒆𝒓𝑨𝒊
𝑯𝒐𝒓𝒊!𝟏
𝑽𝒆𝒓𝑨𝒊!𝟏
𝐻𝑜𝑟!
𝐾𝑳𝑳
−𝐾𝑳𝑽
−𝐾𝑳𝑳
−𝐾𝑳𝑽
𝑉𝑒𝑟𝐴!
−𝐾𝑳𝑽
𝐾𝑽𝑽
𝐾𝑳𝑽
𝐾𝑽𝑽
𝐻𝑜𝑟!!!
−𝐾𝑳𝑳
𝐾𝑳𝑽
𝐾𝑳𝑳
𝐾𝑳𝑽
𝑉𝑒𝑟𝐴!!!
−𝐾𝑳𝑽
𝐾𝑽𝑽
𝐾𝑳𝑽
𝐾𝑽𝑽
13
4.4
Strain and Stress in Diagonal Members
By inverting the stiffness matrix and multiplying by the calculated lateral loads, the
product is the total displacement of the structure. Diagonal members are going to be strained
when the building is displaced both horizontally and vertically. The difference between
horizontal displacements on neighboring intervals equals the horizontal component of the strain
in the diagonal member. By anti-symmetry, the sum of the vertical displacements on neighboring
intervals is the vertical component of the strain in the diagonal member.
𝒕𝒐𝒕𝒂𝒍 𝒔𝒕𝒓𝒂𝒊𝒏 = 𝜺 = 𝜺𝒉𝒐𝒓𝒊𝒛 + 𝜺𝒗𝒆𝒓𝒕 ∗ 𝒔𝒊𝒏𝟐 𝜽
4-5
Stress in the diagonal members can be calculated from the equation:
𝝈=𝑬∗𝝐
4-6
where 𝜎 = stress and E = Young’s modulus. Comparing that calculated stress to the allowable
stress is the resulting design constraint.
4.5
Analysis Results
Executing both the SSAM and DFEM for the John Hancock center produced similar
results. The overall drift due to wind on average for the structure was within .1m between the
two programs. Unfortunately, stresses calculated by the SAP 2000 did not correspond to what the
SSAM calculated. Overall displacement was however observed and recorded with closer
correlation.
14
Table 2 Displacement Results.
WIND DISPLACEMENT
EARTHQUAKE DISPLACEMENT
ELEVATION (M)
SSAM
DFEM
Δ
SSAM
DFEM
Δ
80
.0199
.033
.131
.113
.123
.01
160
.0699
.075
.005
.411
.301
.11
240
.140
.122
.018
.843
.512
.33
320
.221
.168
.052
1.35
.721
.63
400
.305
.207
.098
1.90
.893
1.001
Wind Displacement 450 400 Height(m) 350 300 250 200 DFEM 150 SSAM 100 50 0 0 0.05 0.1 0.15 0.2 0.25 0.3 X Displacement (m) Figure 9 Wind Displacement Results.
15
0.35 Earthquake Displacement 450 400 Height(m) 350 300 250 200 DFEM 150 SSAM 100 50 0 0 0.5 1 1.5 2 X Displacement (m) Figure 10 Earthquake Displacement Results.
A comparison between the deflections found in each model can be found in both Figure 9
and Figure 10. The results agree with the statements made earlier regarding the allowable drift
for which the building was designed. It is said that under 60 mph winds the building would
deflect only roughly 5-8” (Hearn 2015). The wind load considered by our models was of higher
magnitude, thus the higher deflections.
Earthquake displacements deviate from one another. In the top level of the building, the
displacement calculated in the SSAM is double the displacement calculated in the DFEM. It is
possible that the DFEM model was set up incorrectly, and would produce better results if a more
experienced designer had entered data and constructed the model. Measures were taken to ensure
the two models had the same material and cross sectional properties. The connection between
elements however was not always clear in the SAP 2000 model and could have introduced some
error.
16
400
Wind
350
Height (m)
300
250
Wind
200
150
100
50
0
0
100
200
300
400
Lateral Force (KN)
500
600
Figure 11 Force on Building.
One unique observation for this structure is the force exerted by the wind. Because of its
tapered shape, the lateral force decreases with height after about 175 m (see Figure 11). The
equations used for lateral wind pressure can be found in ASCE 7-05
𝟐
𝑷𝒘𝒊𝒏𝒅
= . 𝟎𝟎𝟐𝟓𝟔 𝟐. 𝟎𝟏
𝒌
𝑯𝒌 𝒂
𝑯𝒈
𝒗𝟐 4 -­‐7
P = wind pressure at story k
v = design wind speed in mph
Hk = height of story k above the ground
Hg = reference height parameter reflecting exposure (274 m)
a = another exposure parameter (9.5m)
The final execution required over 28 minutes to analyze. In comparison, the SSAM
spreadsheet produces results that are essentially instantaneous. The spreadsheet does not need to
go through the thousands of degrees of freedom found in the structure. Instead it utilizes some
17
simplifications and must only analyze a structure with thirty degrees of freedom. Doing so
results in much faster execution.
Easier data extraction is the final result. Instead of sifting through thousands of numbers,
the SSAM produces results that are easily deciphered. Graphs are automatically populated
showing overall force and displacement. Unity checks are provided which show exactly what
parts of the structure are overstressed or if the governing drift constraints come from wind or
earthquake loads. The DFEM proved to be more difficult to work with than originally
anticipated. Many hours of exposure to such programs are required in order to master the art of
structural modeling and analysis. The SSAM can be seen as a more user-friendly tool created to
help teach skyscraper analysis principles in a manageable way.
18
Figure 12 Colored Frame Undisplaced and Displaced.
19
5
CONCLUSIONS
It is much simpler to make changes and understand what is going on in the SSAM than in
the DFEM. Users inexperienced in SAP 2000 or any other commercial software will find it
difficult to portray the structure and loading the user intends. However, one must understand the
simplifications and assumptions made in the SSAM in order to use it correctly. The claim has
never been made that the SSAM can replace full structural analyses, but instead can be a tool in
determining sizes and forces in a structure. Further research will need to be done on the
calculation of stress in diagonal members.
Calculations from the SSAM estimate that the total lateral displacement on the top floor
of the structure will be roughly .3m. That is about .1m greater than the deflection results
provided by the DFEM. On average the two calculated wind displacements differed .03m.
Earthquake loads are estimated to displace the structure 1.8m at the top level. That displacement
is roughly 1 m greater in magnitude than the displacement provided by the DFEM. On average,
the difference between the two analyses with respect to earthquake displacement is .34m.
The Hancock Center in Chicago Illinois has proven to be an optimal shape for
skyscrapers. The tapered profile of the structure reduces the loads that an un-tapered structure
would react to. The external diagonal brace system was the first of its kind. The diagonals help
resist both vertical and lateral loads. The results of both the SSAM and the DFEM model closely
reflect the findings online regarding the overall drift one can anticipate being present. The
likeness in overall displacement between the two analyses, although not perfect, produced results
that help justify the use of the SSAM for preliminary skyscraper analysis.
20
REFERENCES
Dezeen (2012). Diagonal Tower by SOM.
Hearn, C. (2015). johnhancockcenterchicago. Retrieved 03-20-15, 2015, from
http://www.johnhancockcenterchicago.com/facts.html.
Iyengar, H. (2000). "Reflections on the Hancock Concept." CTBUH(1).
Khushbu Jania, P. V. P. (2013). "Analysis and Design of Diagrid Structural System for High
Rise Steel Buildings." Procedia Engineering 51: 92-100.
Lee, J. S. and R. J. Balling (2014). "Simplified Model for Analysis and Optimization of
Skyscrapers with Outrigger and Belt Trusses." Journal of Structural Engineering.
Montuori, G. M., et al. (2013). "Design criteria for diagrid tall buildings: Stiffness versus
strength." Wiley Online Library(23): 1294-1314.
Moon, K.-S., et al. (2007). "DIAGRID STRUCTURAL SYSTEMS FOR TALL BUILDINGS:
CHARACTERISTICS AND METHODOLOGY FOR PRELIMINARY DESIGN." The
Structural Design of Tall and Special Buildings 16(2).
Panchal, N. B. and V. R. Patel (2014). "DIAGRID STRUCTURAL SYSTEM: STRATEGIES
TO REDUCE LATERAL FORCES ON HIGH-RISE BUILDINGS." IJRET 03(04): 374-378.
Priwer, S. and C. Phillips (2014). Skyscrapers and High Rises, Routledge.
Takabatke, H. (2012). "A Simplified Analytical Method for High-Rise Buildings." INTECH.
21
APPENDIX
You created this PDF from an application that is not licensed to print to novaPDF printer (http://www.novapdf.com)
Concrete
allowable stress (KPa)
modulus (KPa)
density (KN/m^3)
cost ($/m^3)
48000
43400000
21.7
157
Steel
allowable stress (KPa)
modulus (KPa)
density (KN/m^3)
cost ($/m^3)
207000
200000000
77
5390
Weight Data
floor dead load (KPa)
floor live load (KPa)
cladding weight (KPa)
4.34
2.4
1.3
Wind Data
speed (m/s)
air density (Kg/m^3)
reference height (m)
exponent
drift allowable
Seismic Data
spectral acceleration (g)
ductility factor
exponent
drift allowable
80 m
55
1.226
274
9.5
0.002778
0.2
3
2
0.02
80 m
80 m
80 m
80 m
You created this PDF from an application that is not licensed to print to novaPDF printer (http://www.novapdf.com)
Design Variables
config 8
stories
core t
outrig V
81 to 100 0.32719329
0
61 to 80 0.83919412
0
41 to 60 1.36217332
0
21 to 40 1.87311318
0
1 to 20 2.35789651
0
belt V
0
0
0
0
0
diag V
50
80
120
170
200
Core Section Properties
stories
d
81 to 100
25
61 to 80
25
41 to 60
25
21 to 40
25
1 to 20
25
y
0
0
0
0
0
sin
1
1
1
1
1
n
2
2
2
2
2
Outrigger Superelement
story mem length
100 14.8408221
80 14.8408221
60 14.8408221
40 14.8408221
20 14.8408221
mem sine
0.5390537
0.5390537
0.5390537
0.5390537
0.5390537
mem area
0
0
0
0
0
stiffness
0
0
0
0
0
Long Side Diagonal Superelement
story mem length
mem sine
100
95.37 0.83883821
80
98.9 0.80889788
60
102.7 0.77896787
40
106.724 0.74959709
20
110.9528 0.72102732
mem area
0.13106847
0.20222447
0.29211295
0.39822345
0.45064207
stiffness
41969.3831
58065.0137
74904.7198
90993.4763
91640.3294
Tributary Perimeter
stories
core
81 to 100
0
61 to 80
0
41 to 60
0
21 to 40
0
1 to 20
0
Interval Dimensions
stories
# stories
81 to 100
20
61 to 80
20
41 to 60
20
21 to 40
20
1 to 20
20
Axial Force
stories
81 to 100
61 to 80
41 to 60
21 to 40
1 to 20
Design Constraints
wind drift
seismic drift
core stress
column stress
outrigger stress
belt stress
diagonal stress
d
25
25
25
25
25
y
12.5
12.5
12.5
12.5
12.5
Design Objective
concrete cost
steel cost
total cost
0.38171318
0.33888699
0.65074505
0.47919283
0
0
371.71106
sin
0
0
0
0
0
n
2
2
2
2
2
area
32.7193289
83.9194121
136.217332
187.311318
235.789651
inertia
3408.26343
8741.60543
14189.3054
19511.5956
24561.422
Belt Superelement
mem length
mem sine
10.1519703 0.78802437
10.1519703 0.78802437
10.1519703 0.78802437
10.1519703 0.78802437
10.1519703 0.78802437
mem area
0
0
0
0
0
stiffness
0
0
0
0
0
Short Side Diagonal Superelement
story mem length
mem sine
100
86.33 0.92667671
80
87.87 0.91043587
60
89.5548 0.89330778
40
91.37408 0.87552181
20
93.3209 0.85725706
mem area
0.14479324
0.22760897
0.33499042
0.46512096
0.53578566
15637095.3
0
15637095.3
stiffness
62507.5897
93183.1084
129549.424
169342.733
183115.047
Tributary Area
core
column A column B/D column C/E
837.4
23.25
46.5
46.5
1190.55
33.0625
66.125
66.125
1543.7
42.875
85.75
85.75
1896.85
52.6875
105.375
105.375
2250
62.5
125
125
column A column B/D column C/E
10.0625
10.0625
10.0625
11.609375 11.609375 11.609375
13.15625
13.15625
13.15625
14.703125 14.703125 14.703125
16.25
16.25
16.25
Dead, Live, and Cladding Load
core
column A column B/D column C/E
112881.52
4180.6
7314.7
7314.7
160486.14
5664.2 10121.025 10121.025
208090.76
7147.8
12927.35
12927.35
255695.38
8631.4 15733.675 15733.675
303300
10115
18540
18540
height
80
80
80
80
80
core
112881.52
330168.415
683943.274
1176111.94
1804584.39
column A
4180.6
11883.0412
23930.0458
40415.1995
61215.8442
column B/D
7314.7
20713.8404
42246.9799
71944.11
109633.702
column C/E
7314.7
20712.8275
42244.3453
71939.4975
109626.974
Core Superelement
stories
EI
81 to 100 3.7021E+10
61 to 80 9.5129E+10
41 to 60 1.5469E+11
21 to 40 2.1309E+11
1 to 20 2.687E+11
2EI/L
925533933
2378212899
3867373425
5327308471
6717565889
4EI/L
1851067865
4756425799
7734746850
1.0655E+10
1.3435E+10
6EI/L^2
34707522.5
89182983.7
145026503
199774068
251908721
Column Area
column A column B/D
1.17410209 1.88831534
2.82212245
4.957252
4.5240517 8.04346495
6.15532526 11.0308707
7.7258427 13.9113447
12EI/L^3
867688.062
2229574.59
3625662.59
4994351.69
6297718.02
LONG Diagonal Superelement - Stiffness Matrix Contribution (PARALLEL TO LOAD)
KLV
KVV
stories KLL
81 to 100
17675.91 27236.8691 41969.3831
61 to 80 30676.5633 42204.6806 58065.0137
41 to 60 48539.3118 60297.7906 74904.7198
21 to 40 70946.6491 80347.2603 90993.4763
1 to 20 84631.6173 88066.2778 91640.3294
Column Superelements
column A
column B
636950.384 1024411.07
1531001.43 2689309.21
2454298.05 4363579.73
3339263.95 5984247.36
4191269.67 7546904.53
column C
512047.264
1344401.22
2181480.82
2991793.25
3773120.12
column C/E
1.88773185
4.95631787
8.04232559
11.0296525
13.9101203
column D
1024411.07
2689309.21
4363579.73
5984247.36
7546904.53
SHORT Diagonal Superelement - Stiffness Matrix Contribution (PERP TO LOAD)
KLV
KVV
stories KLL
81 to 100 10283.1714 25353.0326 62507.5897
61 to 80 19235.5692 42337.1011 93183.1084
41 to 60 32793.457 65179.5478 129549.424
21 to 40 51576.0413 93456.0206 169342.733
1 to 20 66058.478 109983.187 183115.047
You created this PDF from an application that is not licensed to print to novaPDF printer (http://www.novapdf.com)
hor 100
rot 100
ver A 100
ver B 100
ver C 100
ver D 100
hor 80
rot 80
ver A 80
ver B 80
ver C 80
ver D 80
hor 60
rot 60
ver A 60
ver B 60
ver C 60
ver D 60
hor 40
rot 40
ver A 40
ver B 40
ver C 40
ver D 40
hor 20
rot 20
ver A 20
ver B 20
ver C 20
ver D 20
hor 100
rot 100 ver A 100
ver B 100
ver C 100
ver D 100
hor 80
rot 80
ver A 80
ver B 80
885363.972 -34707522 -27236.869
0
0
0 -885363.97 -34707522 -27236.869
0
-34707522 1851067865
0
0
0
0 34707522.5 925533933
0
0
-27236.869
0 741427.357
0
0
0 27236.8691
0
-594981
0
0
0
0 1024411.07
0
0
0
0
0 -1024411.1
0
0
0
0 512047.264
0
0
0
0
0
0
0
0
0
0 1024411.07
0
0
0
0
-885363.97 34707522.5 27236.8691
0
0
0 3145615.13 -54475461 -14967.812
0
-34707522 925533933
0
0
0
0 -54475461 6607493664
0
0
-27236.869
0
-594981
0
0
0 -14967.812
0 2423676.91
0
0
0
0 -1024411.1
0
0
0
0
0 3713720.28
0
0
0
0 -512047.26
0
0
0
0
0
0
0
0
0
0 -1024411.1
0
0
0
0
0
0
0
0
0
0 -2260251.2 89182983.7 42204.6806
0
0
0
0
0
0
0 -89182984 2378212899
0
0
0
0
0
0
0
0 -42204.681
0 -1472936.4
0
0
0
0
0
0
0
0
0
0 -2689309.2
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
You created this PDF from an application that is not licensed to print to novaPDF printer (http://www.novapdf.com)
ver C 80
ver D 80
hor 60
rot 60
ver A 60
ver B 60
ver C 60
ver D 60
hor 40
rot 40
ver A 40
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
-512047.26
0
0
0
0
0
0
0
0
0
0
0 -1024411.1
0
0
0
0
0
0
0
0
0
0
0 -2260251.2 -89182984 -42204.681
0
0
0
0
0
0
0
0 89182983.7 2378212899
0
0
0
0
0
0
0
0
0 42204.6806
0 -1472936.4
0
0
0
0
0
0
0
0
0
0
0 -2689309.2
0
0
0
0
0
1856448.49
0
0
0
0
0 -1344401.2
0
0
0
0
0 3713720.28
0
0
0
0
0 -2689309.2
0
0
0
0
0 5934453.05 -55843520 -18093.11
0
0
0 -3674201.9 -145026503 -60297.791
0
0 -55843520 1.2491E+10
0
0
0
0 145026503 3867373425
0
0
0 -18093.11
0 4341001.74
0
0
0 60297.7906
0 -2379393.3
0
0
0
0
0 7052888.94
0
0
0
0
0
-1344401.2
0
0
0
0
0 3525882.04
0
0
0
0
0 -2689309.2
0
0
0
0
0 7052888.94
0
0
0
0
0 -3674201.9 145026503 60297.7906
0
0
0 8739500.24 -54747564 -20049.47
0
0 -145026503 3867373425
0
0
0
0 -54747564 1.8389E+10
0
0
0 -60297.791
0 -2379393.3
0
0
0 -20049.47
0 6258352.35
0
0
0
0
0 -4363579.7
0
0
0
0
0
0
0
0
0
0
0 -2181480.8
0
0
0
0
0
0
0
0
0
0
0 -4363579.7
0
0
0
0
0
0
0
0
0
0
0 -5065298.3 199774068 80347.2603
0
0
0
0
0
0
0
0 -199774068 5327308471
0
0
0
0
0
0
0
0
0 -80347.26
0 -3248270.5
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
You created this PDF from an application that is not licensed to print to novaPDF printer (http://www.novapdf.com)
ver B 40
ver C 40
ver D 40
hor 20
rot 20
ver A 20
ver B 20
ver C 20
ver D 20 wind force
wind disp
0
0
0
0
0
0
0
0
0 1330.09094 0.30553586
0
0
0
0
0
0
0
0
0 -17008.525 0.00105017
0
0
0
0
0
0
0
0
0
0 0.01160755
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0 2660.51415 0.22107105
0
0
0
0
0
0
0
0
0 -848.48204 0.00104872
0
0
0
0
0
0
0
0
0
0 0.01059798
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0 2784.47627 0.13984295
0
0
0
0
0
0
0
0
0 -451.34945 0.00095597
0
0
0
0
0
0
0
0
0
0 0.00886057
-4363579.7
0
0
0
0
0
0
0
0
0
0
0 -2181480.8
0
0
0
0
0
0
0
0
0
0
0 -4363579.7
0
0
0
0
0
0
0
0
0
0
0 -5065298.3 -199774068 -80347.26
0
0
0 2810.08274 0.06993034
0
0
0 199774068 5327308471
0
0
0
0 236.584562 0.00076219
0
0
0 80347.2603
0 -3248270.5
0
0
0
0 0.0063923
10347827.1
0
0
0
0
0 -5984247.4
0
0
0
0
0 5173274.06
0
0
0
0
0 -2991793.2
0
0
0
0
0 10347827.1
0
0
0
0
0 -5984247.4
0
0
0
0
0
11447648 -52134653 -7719.0175
0
0
0 2620.79527 0.01989762
0
0
0 -52134653 2.409E+10
0
0
0
0 2104.36895 0.00045452
0
0
0 -7719.0175
0 8065625.21
0
0
0
0 0.00329004
-5984247.4
0
0
0
0
0 13531151.9
0
0
0
0
0 -2991793.2
0
0
0
0
0 6764913.37
0
0
0
0
0 -5984247.4
0
0
0
0
0 13531151.9
0
0
You created this PDF from an application that is not licensed to print to novaPDF printer (http://www.novapdf.com)
wind non
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
wind non'
46.7046386
-558.38003
0
0
0
0
114.064882
-310.51632
0
0
0
0
130.955641
33.7479847
0
0
0
0
62.8330392
634.43305
0
0
0
0
-149.55284
1606.30861
0
0
0
0
seis force
9306.10303
-112144.19
0
0
0
0
17953.8115
-26843.668
0
0
0
0
16467.9074
15805.0665
0
0
0
0
10234.9953
35138.1663
0
0
0
0
3494.08303
29244.2567
0
0
0
0
seis disp
1.89602416
0.00673127
0.07316596
0
0
0
1.35604505
0.00666551
0.06645574
0
0
0
0.84264804
0.00598282
0.05510068
0
0
0
0.4106056
0.00462206
0.03933276
0
0
0
0.11303739
0.00262882
0.02003899
0
0
0
seis non
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
seis non'
298.3739
-3558.99
0
0
0
0
717.0503
-1875.34
0
0
0
0
784.6933
505.4961
0
0
0
0
303.1254
4102.239
0
0
0
0
-944.584
8784.438
0
0
0
0
You created this PDF from an application that is not licensed to print to novaPDF printer (http://www.novapdf.com)
story story height
m
0
1
4
2
4
3
4
4
4
5
4
6
4
7
4
8
4
9
4
10
4
11
4
12
4
13
4
14
4
15
4
16
4
17
4
18
4
19
4
20
4
21
4
22
4
23
4
24
4
25
4
26
4
27
4
28
4
29
4
30
4
31
4
32
4
33
4
34
4
35
4
36
4
37
4
38
4
39
4
40
4
41
4
42
4
43
4
44
4
45
4
46
4
47
4
48
4
49
4
50
4
51
4
52
4
53
4
54
4
55
4
56
4
57
4
58
4
59
4
60
4
61
4
62
4
63
4
64
4
65
4
66
4
67
4
68
4
69
4
70
4
71
4
72
4
73
4
74
4
75
4
76
4
77
4
78
4
79
4
80
4
81
4
82
4
83
4
total height
m
0
4
8
12
16
20
24
28
32
36
40
44
48
52
56
60
64
68
72
76
80
84
88
92
96
100
104
108
112
116
120
124
128
132
136
140
144
148
152
156
160
164
168
172
176
180
184
188
192
196
200
204
208
212
216
220
224
228
232
236
240
244
248
252
256
260
264
268
272
276
280
284
288
292
296
300
304
308
312
316
320
324
328
332
int position
m
0
4
8
12
16
20
24
28
32
36
40
44
48
52
56
60
64
68
72
76
80
4
8
12
16
20
24
28
32
36
40
44
48
52
56
60
64
68
72
76
80
4
8
12
16
20
24
28
32
36
40
44
48
52
56
60
64
68
72
76
80
4
8
12
16
20
24
28
32
36
40
44
48
52
56
60
64
68
72
76
80
4
8
12
int height
m
floor area
m^2
perimeter
m
conc vol
m^3
steel vol
m^3
weight
KN
axial force
KN
pressure
KPa
width
m
lat force
KN
F bot
KN
F top
KN
M bot
KNm
80
80
80
80
80
80
80
80
80
80
80
80
80
80
80
80
80
80
80
80
80
80
80
80
80
80
80
80
80
80
80
80
80
80
80
80
80
80
80
80
80
80
80
80
80
80
80
80
80
80
80
80
80
80
80
80
80
80
80
80
80
80
80
80
80
80
80
80
80
80
80
80
80
80
80
80
80
80
80
80
80
80
80
4000
4000
4000
4000
4000
4000
4000
4000
4000
4000
4000
4000
4000
4000
4000
4000
4000
4000
4000
4000
3372.1
3372.1
3372.1
3372.1
3372.1
3372.1
3372.1
3372.1
3372.1
3372.1
3372.1
3372.1
3372.1
3372.1
3372.1
3372.1
3372.1
3372.1
3372.1
3372.1
2744.2
2744.2
2744.2
2744.2
2744.2
2744.2
2744.2
2744.2
2744.2
2744.2
2744.2
2744.2
2744.2
2744.2
2744.2
2744.2
2744.2
2744.2
2744.2
2744.2
2116.3
2116.3
2116.3
2116.3
2116.3
2116.3
2116.3
2116.3
2116.3
2116.3
2116.3
2116.3
2116.3
2116.3
2116.3
2116.3
2116.3
2116.3
2116.3
2116.3
1488.4
1488.4
1488.4
260
260
260
260
260
260
260
260
260
260
260
260
260
260
260
260
260
260
260
260
235.25
235.25
235.25
235.25
235.25
235.25
235.25
235.25
235.25
235.25
235.25
235.25
235.25
235.25
235.25
235.25
235.25
235.25
235.25
235.25
210.5
210.5
210.5
210.5
210.5
210.5
210.5
210.5
210.5
210.5
210.5
210.5
210.5
210.5
210.5
210.5
210.5
210.5
210.5
210.5
185.75
185.75
185.75
185.75
185.75
185.75
185.75
185.75
185.75
185.75
185.75
185.75
185.75
185.75
185.75
185.75
185.75
185.75
185.75
185.75
161
161
161
1736.29961
1736.29961
1736.29961
1736.29961
1736.29961
1736.29961
1736.29961
1736.29961
1736.29961
1736.29961
1736.29961
1736.29961
1736.29961
1736.29961
1736.29961
1736.29961
1736.29961
1736.29961
1736.29961
1736.29961
1378.78567
1378.78567
1378.78567
1378.78567
1378.78567
1378.78567
1378.78567
1378.78567
1378.78567
1378.78567
1378.78567
1378.78567
1378.78567
1378.78567
1378.78567
1378.78567
1378.78567
1378.78567
1378.78567
1378.78567
1004.4907
1004.4907
1004.4907
1004.4907
1004.4907
1004.4907
1004.4907
1004.4907
1004.4907
1004.4907
1004.4907
1004.4907
1004.4907
1004.4907
1004.4907
1004.4907
1004.4907
1004.4907
1004.4907
1004.4907
619.573655
619.573655
619.573655
619.573655
619.573655
619.573655
619.573655
619.573655
619.573655
619.573655
619.573655
619.573655
619.573655
619.573655
619.573655
619.573655
619.573655
619.573655
619.573655
619.573655
240.817023
240.817023
240.817023
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
65989.7016
65989.7016
65989.7016
65989.7016
65989.7016
65989.7016
65989.7016
65989.7016
65989.7016
65989.7016
65989.7016
65989.7016
65989.7016
65989.7016
65989.7016
65989.7016
65989.7016
65989.7016
65989.7016
65989.7016
53870.9031
53870.9031
53870.9031
53870.9031
53870.9031
53870.9031
53870.9031
53870.9031
53870.9031
53870.9031
53870.9031
53870.9031
53870.9031
53870.9031
53870.9031
53870.9031
53870.9031
53870.9031
53870.9031
53870.9031
41387.9561
41387.9561
41387.9561
41387.9561
41387.9561
41387.9561
41387.9561
41387.9561
41387.9561
41387.9561
41387.9561
41387.9561
41387.9561
41387.9561
41387.9561
41387.9561
41387.9561
41387.9561
41387.9561
41387.9561
28674.5103
28674.5103
28674.5103
28674.5103
28674.5103
28674.5103
28674.5103
28674.5103
28674.5103
28674.5103
28674.5103
28674.5103
28674.5103
28674.5103
28674.5103
28674.5103
28674.5103
28674.5103
28674.5103
28674.5103
16094.7454
16094.7454
16094.7454
4120356.33
4054366.63
3988376.93
3922387.22
3856397.52
3790407.82
3724418.12
3658428.42
3592438.72
3526449.02
3460459.31
3394469.61
3328479.91
3262490.21
3196500.51
3130510.81
3064521.1
2998531.4
2932541.7
2866552
2800562.3
2746691.4
2692820.49
2638949.59
2585078.69
2531207.78
2477336.88
2423465.98
2369595.07
2315724.17
2261853.27
2207982.36
2154111.46
2100240.56
2046369.65
1992498.75
1938627.85
1884756.95
1830886.04
1777015.14
1723144.24
1681756.28
1640368.32
1598980.37
1557592.41
1516204.46
1474816.5
1433428.54
1392040.59
1350652.63
1309264.68
1267876.72
1226488.76
1185100.81
1143712.85
1102324.9
1060936.94
1019548.98
978161.027
936773.071
895385.115
866710.604
838036.094
809361.584
780687.073
752012.563
723338.053
694663.542
665989.032
637314.522
608640.011
579965.501
551290.991
522616.48
493941.97
465267.46
436592.949
407918.439
379243.929
350569.419
321894.908
305800.163
289705.417
1.53080805
1.77131367
1.92915587
2.04960518
2.14818816
2.232246
2.30587688
2.37161914
2.43116199
2.48569051
2.53607039
2.5829547
2.62684912
2.66815374
2.707191
2.74422478
2.779474
2.81312243
2.84532593
2.87621793
2.90591358
2.93451301
2.96210386
2.98876333
3.01455976
3.039554
3.06380047
3.08734801
3.1102407
3.13251842
3.15421738
3.17537059
3.19600819
3.21615782
3.23584488
3.25509276
3.27392306
3.29235577
3.31040941
3.32810121
3.34544721
3.36246235
3.37916061
3.39555504
3.41165791
3.4274807
3.44303422
3.45832864
3.47337354
3.48817796
3.50275044
3.51709905
3.53123145
3.54515488
3.55887622
3.57240199
3.5857384
3.59889136
3.61186648
3.62466913
3.63730442
3.64977723
3.6620922
3.67425381
3.68626632
3.69813379
3.70986015
3.72144914
3.73290435
3.74422924
3.75542712
3.76650116
3.77745444
3.78828989
3.79901036
3.80961856
3.82011714
3.83050862
3.84079545
3.85097999
3.86106451
3.87105122
3.88094223
50
49.805
49.61
49.415
49.22
49.025
48.83
48.635
48.44
48.245
48.05
47.855
47.66
47.465
47.27
47.075
46.88
46.685
46.49
46.295
46.1
45.905
45.71
45.515
45.32
45.125
44.93
44.735
44.54
44.345
44.15
43.955
43.76
43.565
43.37
43.175
42.98
42.785
42.59
42.395
42.2
42.005
41.81
41.615
41.42
41.225
41.03
40.835
40.64
40.445
40.25
40.055
39.86
39.665
39.47
39.275
39.08
38.885
38.69
38.495
38.3
38.105
37.91
37.715
37.52
37.325
37.13
36.935
36.74
36.545
36.35
36.155
35.96
35.765
35.57
35.375
35.18
34.985
34.79
34.595
34.4
34.205
34.01
306.16161
352.881109
382.82169
405.12496
422.935284
437.743441
450.383872
461.374787
471.061948
479.688554
487.432729
494.429189
500.782515
506.57567
511.875675
516.737526
521.206965
525.322483
529.116811
532.618037
535.850464
538.835279
541.59107
544.134251
546.479393
548.639498
550.62622
552.450053
554.120484
555.646118
557.03479
558.293657
559.429273
560.447662
561.35437
562.15452
562.852853
563.453766
563.961347
564.379404
564.711489
564.960925
565.13082
565.224093
565.243483
565.191568
565.070777
564.883401
564.631603
564.31743
563.942821
563.50961
563.019543
562.474274
561.875378
561.224353
560.522627
559.771562
558.972457
558.126553
557.235037
556.299045
555.319662
554.29793
553.234849
552.131375
550.98843
549.806896
548.587624
547.33143
546.039103
544.711398
543.349046
541.952752
540.523194
539.061027
537.566884
536.041376
534.485095
532.89861
531.282477
529.637228
527.963381
303.941939
343.000438
359.565272
362.991964
356.851646
343.190858
323.488216
298.970862
270.742855
239.844277
207.280768
174.039075
141.095474
109.420345
79.9805741
53.7407027
31.6633231
14.7090295
3.83609688
0
531.965549
523.747891
508.689413
487.544289
461.091988
430.133366
395.487282
357.987634
318.480748
277.823059
236.879044
196.519367
157.619198
121.056695
87.7116204
58.4640701
34.1933108
15.7767054
4.08871977
0
560.617331
549.142019
530.799123
506.440787
476.924189
443.110189
405.862085
366.044444
324.522014
282.158715
239.816684
198.355383
158.630756
121.494443
87.7930277
58.3673327
34.0517496
15.6736037
4.05255031
0
553.195083
540.722671
521.583992
496.650946
466.791904
432.870998
395.74744
356.274869
315.300737
273.665715
232.203128
191.738412
153.088594
117.061794
84.456749
56.0623468
32.6571882
15.0091585
3.87501694
0
527.430679
514.807385
495.889606
2.21967168
9.88067105
23.2564177
42.1329958
66.0836382
94.5525833
126.895656
162.403925
200.319093
239.844277
280.151961
320.390114
359.687042
397.155325
431.8951
462.996823
489.543642
510.613453
525.280714
532.618037
3.88491587
15.0873878
32.9016575
56.5899621
85.3874052
118.506131
155.138937
194.462419
235.639736
277.823059
320.155746
361.774289
401.810075
439.390967
473.64275
503.69045
528.659542
547.677061
559.872627
564.379404
4.0941583
15.8189059
34.3316973
58.7833056
88.3192942
122.081379
159.208691
198.838957
240.109589
282.158715
324.126136
365.154228
404.388787
440.979831
474.08235
502.85702
526.470877
544.097958
554.919907
558.126553
4.03995402
15.5763733
33.7356695
57.6469847
86.4429451
119.260377
155.24099
193.532027
233.286887
273.665715
313.835974
352.972986
390.260453
424.890958
456.066445
482.99868
504.909696
521.032218
530.610078
532.89861
3.85179795
14.8298424
32.0737754
1105.24341
2286.66959
3319.06405
4148.47959
4758.02195
5147.86287
5328.04121
5315.03754
5129.86461
4796.88554
4343.02561
3797.21617
3189.98462
2553.14138
1919.53378
1322.84807
797.446656
378.232188
100.532194
0
1934.42018
3491.65261
4695.59458
5571.93473
6147.89318
6452.00049
6513.90818
6364.22461
6034.37207
5556.46118
4963.17998
4287.69528
3563.56447
2824.65622
2105.07889
1439.11557
861.164865
405.686712
107.152656
0
2038.60848
3660.94679
4899.68421
5787.89471
6358.98918
6646.65284
6684.78729
6507.45677
6148.83816
5643.1743
5024.73053
4327.75381
3586.43449
2834.87034
2107.03267
1436.73434
857.599619
403.035525
106.204767
0
2011.61849
3604.81781
4814.62147
5676.01081
6223.89205
6493.06497
6518.19312
6333.77544
5974.11922
5473.3143
4865.2084
4183.38354
3461.13343
2731.44187
2026.96198
1379.99623
822.477332
385.949791
101.552168
0
1917.92974
3432.04923
4577.44252
M top
disp
KNm coefficients
58.170706
254.074399
585.717186
1037.1199
1586.00732
2206.22694
2868.94527
3543.35836
4197.16196
4796.88554
5308.14242
5695.82426
5924.25716
5957.32988
5758.60134
5291.39227
4518.86439
3404.08969
1910.11169
0
101.811588
387.961401
828.634337
1392.98368
2049.29773
2765.14307
3507.48902
4242.81641
4937.21351
5556.46118
6066.10886
6431.54292
6618.0483
6590.86451
6315.23667
5756.46229
4879.93424
3651.1804
2035.90046
0
107.295183
406.771866
864.650155
1446.97368
2119.66306
2848.5655
3599.50085
4338.30452
5030.86758
5643.1743
6141.33732
6491.63071
6660.52119
6614.69746
6321.098
5746.93737
4859.73118
3627.31972
2017.89057
0
105.874657
400.535312
849.639082
1419.0027
2074.63068
2782.74213
3509.7963
4222.51696
4887.91573
5473.3143
5946.36583
6275.0753
6427.81922
6373.36436
6080.88593
5519.98491
4660.70488
3473.54812
1929.49119
0
100.943671
381.338804
807.783974
-6.706E-09
3.6455E-06
0
0
-5.329E-09
2.5624E-06
0.00045452
0.01989762
-4.634E-09
1.7672E-06
0.00076219
0.06993034
-4.065E-09
1.0675E-06
0.00095597
0.13984295
-1.989E-09
2.4775E-07
0.00104872
disp I
m
disp II
m
5.7899E-05
0.00022988
0.00051336
0.00090578
0.00140455
0.0020071
0.00271085
0.00351324
0.00441168
0.0054036
0.00648642
0.00765757
0.00891448
0.01025456
0.01167525
0.01317397
0.01474814
0.01639519
0.01811254
0.01989762
0.02175636
0.02369505
0.02571165
0.02780411
0.02997038
0.03220841
0.03451617
0.03689159
0.03933265
0.04183728
0.04440345
0.0470291
0.0497122
0.05245069
0.05524253
0.05808567
0.06097807
0.06391768
0.06690245
0.06993034
0.07300708
0.07613859
0.0793231
0.08255881
0.08584396
0.08917676
0.09255544
0.0959782
0.09944328
0.1029489
0.10649327
0.11007461
0.11369116
0.11734111
0.12102271
0.12473416
0.12847369
0.13223952
0.13602987
0.13984295
0.14368363
0.14755692
0.15146124
0.15539503
0.15935675
0.16334482
0.16735768
0.17139378
0.17545155
0.17952944
0.18362587
0.1877393
0.19186815
0.19601087
0.20016591
0.20433169
0.20850665
0.21268924
0.21687789
0.22107105
0.22526978
0.22947567
0.23368796
4.0475E-07
1.4625E-06
2.9528E-06
4.6757E-06
6.4544E-06
8.1358E-06
9.5922E-06
1.0722E-05
1.145E-05
1.1729E-05
1.1539E-05
1.089E-05
9.8189E-06
8.3945E-06
6.7136E-06
4.9039E-06
3.1234E-06
1.5608E-06
4.3599E-07
0
6.2301E-07
2.2382E-06
4.495E-06
7.0833E-06
9.7336E-06
1.2217E-05
1.4347E-05
1.5976E-05
1.7E-05
1.7355E-05
1.7018E-05
1.6011E-05
1.4394E-05
1.227E-05
9.7863E-06
7.1294E-06
4.5292E-06
2.2577E-06
6.2914E-07
0
8.7798E-07
3.1518E-06
6.3251E-06
9.9599E-06
1.3677E-05
1.7155E-05
2.0131E-05
2.2402E-05
2.3821E-05
2.4302E-05
2.3816E-05
2.2391E-05
2.0117E-05
1.7138E-05
1.3661E-05
9.9458E-06
6.3146E-06
3.1459E-06
8.7612E-07
0
1.3896E-06
4.9867E-06
1.0004E-05
1.5747E-05
2.1615E-05
2.7102E-05
3.1793E-05
3.5367E-05
3.7595E-05
3.834E-05
3.756E-05
3.5301E-05
3.1705E-05
2.7002E-05
2.1515E-05
1.5659E-05
9.9389E-06
4.9498E-06
1.3781E-06
0
3.3714E-06
1.2095E-05
2.4257E-05
total disp
m
0
5.8303E-05
0.00023134
0.00051632
0.00091045
0.001411
0.00201523
0.00272045
0.00352396
0.00442313
0.00541533
0.00649796
0.00766846
0.0089243
0.01026296
0.01168197
0.01317887
0.01475126
0.01639675
0.01811297
0.01989762
0.02175698
0.02369729
0.02571615
0.02781119
0.02998011
0.03222063
0.03453051
0.03690757
0.03934965
0.04185464
0.04442047
0.04704511
0.04972659
0.05246296
0.05525232
0.0580928
0.0609826
0.06391994
0.06690308
0.06993034
0.07300796
0.07614175
0.07932942
0.08256877
0.08585764
0.08919392
0.09257557
0.0960006
0.0994671
0.1029732
0.10651708
0.11009701
0.11371127
0.11735825
0.12103637
0.12474411
0.12848
0.13224266
0.13603074
0.13984295
0.14368502
0.1475619
0.15147124
0.15541078
0.15937836
0.16337192
0.16738948
0.17142915
0.17548915
0.17956778
0.18366343
0.1877746
0.19189986
0.19603788
0.20018742
0.20434734
0.20851659
0.21269419
0.21687927
0.22107105
0.22527315
0.22948776
0.23371222
rot I
rad
rot II
rad
total rot
rad
2.8842E-05
5.704E-05
8.4595E-05
0.00011151
0.00013777
0.0001634
0.00018837
0.00021271
0.0002364
0.00025945
0.00028185
0.00030361
0.00032473
0.0003452
0.00036503
0.00038422
0.00040276
0.00042066
0.00043791
0.00045452
0.00047476
0.0004945
0.00051372
0.00053243
0.00055062
0.00056831
0.00058548
0.00060215
0.0006183
0.00063394
0.00064906
0.00066368
0.00067778
0.00069138
0.00070446
0.00071703
0.00072909
0.00074063
0.00075167
0.00076219
0.00077611
0.00078958
0.0008026
0.00081518
0.00082732
0.00083901
0.00085025
0.00086106
0.00087141
0.00088132
0.00089079
0.00089981
0.00090839
0.00091652
0.0009242
0.00093145
0.00093824
0.0009446
0.0009505
0.00095597
0.00096431
0.00097227
0.00097983
0.000987
0.00099379
0.00100018
0.00100619
0.0010118
0.00101702
0.00102185
0.0010263
0.00103035
0.00103401
0.00103728
0.00104017
0.00104266
0.00104476
0.00104647
0.00104779
0.00104872
0.00105061
0.0010523
0.00105381
1.9241E-07
3.2728E-07
4.0951E-07
4.4458E-07
4.3836E-07
3.9702E-07
3.2694E-07
2.3476E-07
1.2724E-07
1.1342E-08
-1.059E-07
-2.172E-07
-3.153E-07
-3.928E-07
-4.423E-07
-4.56E-07
-4.264E-07
-3.457E-07
-2.062E-07
0
2.9522E-07
4.9776E-07
6.1771E-07
6.652E-07
6.5044E-07
5.8364E-07
4.751E-07
3.3513E-07
1.7408E-07
2.3342E-09
-1.697E-07
-3.315E-07
-4.728E-07
-5.828E-07
-6.513E-07
-6.676E-07
-6.212E-07
-5.015E-07
-2.98E-07
0
4.1587E-07
7.0036E-07
8.6805E-07
9.3356E-07
9.1151E-07
8.1651E-07
6.6318E-07
4.6612E-07
2.3995E-07
-7.232E-10
-2.413E-07
-4.672E-07
-6.639E-07
-8.167E-07
-9.112E-07
-9.328E-07
-8.67E-07
-6.992E-07
-4.15E-07
0
6.581E-07
1.1076E-06
1.372E-06
1.4745E-06
1.4386E-06
1.2876E-06
1.0446E-06
7.3279E-07
3.7542E-07
-4.452E-09
-3.838E-07
-7.396E-07
-1.049E-06
-1.289E-06
-1.437E-06
-1.47E-06
-1.365E-06
-1.101E-06
-6.529E-07
0
1.5964E-06
2.6857E-06
3.3252E-06
2.9034E-05
5.7368E-05
8.5004E-05
0.00011195
0.00013821
0.00016379
0.0001887
0.00021295
0.00023653
0.00025946
0.00028175
0.0003034
0.00032442
0.00034481
0.00036459
0.00038376
0.00040233
0.00042031
0.0004377
0.00045452
0.00047506
0.00049499
0.00051433
0.00053309
0.00055127
0.00056889
0.00058596
0.00060248
0.00061847
0.00063394
0.00064889
0.00066335
0.00067731
0.00069079
0.00070381
0.00071636
0.00072846
0.00074013
0.00075137
0.00076219
0.00077652
0.00079028
0.00080347
0.00081612
0.00082823
0.00083982
0.00085092
0.00086152
0.00087165
0.00088132
0.00089055
0.00089934
0.00090772
0.0009157
0.00092329
0.00093051
0.00093738
0.0009439
0.00095009
0.00095597
0.00096497
0.00097337
0.0009812
0.00098848
0.00099523
0.00100147
0.00100723
0.00101253
0.0010174
0.00102185
0.00102591
0.00102961
0.00103296
0.001036
0.00103873
0.00104119
0.00104339
0.00104537
0.00104714
0.00104872
0.00105221
0.00105499
0.00105713
You created this PDF from an application that is not licensed to print to novaPDF printer (http://www.novapdf.com)
drift P moment
KNm
1.4576E-05
4.3259E-05
7.1244E-05
9.8535E-05
0.00012514
0.00015106
0.0001763
0.00020088
0.00022479
0.00024805
0.00027066
0.00029263
0.00031396
0.00033467
0.00035475
0.00037423
0.0003931
0.00041137
0.00042906
0.00044616
0.00046484
0.00048508
0.00050471
0.00052376
0.00054223
0.00056013
0.00057747
0.00059426
0.00061052
0.00062625
0.00064146
0.00065616
0.00067037
0.00068409
0.00069734
0.00071012
0.00072245
0.00073433
0.00074579
0.00075681
0.00076941
0.00078345
0.00079692
0.00080984
0.00082222
0.00083407
0.00084541
0.00085626
0.00086663
0.00087652
0.00088597
0.00089498
0.00090357
0.00091174
0.00091953
0.00092693
0.00093397
0.00094066
0.00094702
0.00095305
0.00096052
0.00096922
0.00097733
0.00098489
0.0009919
0.00099839
0.00100439
0.00100992
0.001015
0.00101966
0.00102391
0.00102779
0.00103131
0.00103451
0.00103739
0.00103998
0.00104231
0.0010444
0.00104627
0.00104794
0.00105052
0.00105365
0.00105611
240.23102
701.555942
1136.58794
1545.96224
1930.31581
2290.28476
2626.50285
2939.60046
3230.20381
3498.93438
3746.4084
3973.23643
4180.02307
4367.36659
4535.85872
4686.08438
4818.62154
4934.04095
5032.90605
5115.77278
5207.26888
5329.42939
5436.41446
5528.71822
5606.82664
5671.21737
5722.35972
5760.71456
5786.73421
5800.86242
5803.53427
5795.17615
5776.20567
5747.03162
5708.05395
5659.6637
5602.24297
5536.16491
5461.79365
5379.48431
5303.18394
5270.26577
5228.96509
5179.65791
5122.71059
5058.47984
4987.31269
4909.5465
4825.5089
4735.51785
4639.8816
4538.89867
4432.85789
4322.03837
4206.70953
4087.13106
3963.55298
3836.2156
3705.34956
3571.17584
3440.13431
3360.13199
3276.16556
3188.51277
3097.44049
3003.20475
2906.05078
2806.21298
2703.91499
2599.36969
2492.77922
2384.33502
2274.21787
2162.59786
2049.63449
1935.47667
1820.26272
1704.12047
1587.16722
1469.50984
1352.6338
1288.8296
1223.84676
P F bot
KN
P F top
KN
P M bot
KNm
P M top
KNm
-0.855823
-4.7355026
-10.868622
-18.551547
-27.145066
-36.071985
-44.814705
-52.912808
-59.960658
-65.60502
-69.542706
-71.518256
-71.321644
-68.786024
-63.785513
-56.233013
-46.078068
-33.304776
-17.929728
0
-18.550895
-35.973648
-51.985713
-66.344619
-78.846
-89.321674
-97.637763
-103.69286
-107.41625
-108.76617
-107.7281
-104.31317
-98.556509
-90.515748
-80.269509
-67.915964
-53.571448
-37.369113
-19.45764
0
-18.892593
-35.574294
-50.001979
-62.155895
-72.038118
-79.671057
-85.096023
-88.371837
-89.573509
-88.79096
-86.127802
-81.700176
-75.635638
-68.072104
-59.156853
-49.045573
-37.901475
-25.894455
-13.200308
0
-12.255478
-22.680891
-31.328333
-38.262153
-43.557757
-47.300475
-49.584491
-50.511834
-50.191422
-48.738182
-46.272214
-42.91803
-38.803842
-34.060916
-28.822985
-23.22572
-17.406262
-11.502813
-5.6542832
0
-4.8187579
-8.6995998
-11.703035
0.85582301
4.73550261
10.8686222
18.5515469
27.1450661
36.071985
44.8147049
52.9128082
59.9606582
65.6050197
69.5427059
71.5182558
71.3216437
68.7860238
63.7855132
56.2330126
46.0780685
33.3047764
17.9297278
0
18.5508954
35.9736484
51.9857132
66.3446187
78.8459996
89.3216735
97.6377628
103.692862
107.416254
108.76617
107.728105
104.313171
98.5565092
90.515748
80.2695087
67.9159644
53.5714484
37.3691131
19.4576399
0
18.8925928
35.574294
50.0019787
62.1558949
72.0381176
79.6710575
85.0960228
88.371837
89.573509
88.7909598
86.1278022
81.7001761
75.6356378
68.0721044
59.1568528
49.0455727
37.9014754
25.8944553
13.2003078
0
12.2554785
22.6808909
31.3283332
38.2621532
43.5577568
47.3004748
49.5844914
50.5118336
50.191422
48.7381816
46.2722142
42.9180304
38.8038423
34.0609163
28.822985
23.22572
17.4062623
11.5028131
5.65428322
0
4.8187579
8.69959979
11.7030346
193.986548
441.980243
531.354861
494.707917
361.934215
160.319933
-85.361343
-352.75205
-621.81423
-874.7336
-1095.8245
-1271.4357
-1389.8577
-1441.231
-1417.4558
-1312.1036
-1120.3295
-838.78696
-465.54381
0
4204.86962
3357.54051
2541.52376
1769.18983
1051.27999
396.985216
-185.97669
-691.28575
-1113.9463
-1450.2156
-1697.5338
-1854.4564
-1920.5884
-1896.5204
-1783.7669
-1584.7058
-1302.5215
-941.14803
-505.21591
0
4282.32103
3320.26744
2444.54118
1657.49053
960.508235
354.093589
-162.08766
-589.14558
-928.91046
-1183.8795
-1357.1654
-1452.4476
-1473.9252
-1426.2727
-1314.5967
-1144.3967
-921.52607
-652.15665
-342.74483
0
2777.90845
2116.88315
1531.6074
1020.32409
580.770091
210.224332
-94.44665
-336.74556
-520.50364
-649.84242
-729.13792
-762.98721
-756.17744
-713.65729
-640.51078
-541.93347
-423.21108
-289.70048
-146.81297
0
1092.25179
811.962647
572.148361
22.2213693
119.26451
264.256695
432.869428
603.223691
755.793971
873.312197
940.672146
944.834615
874.733595
721.183616
476.788372
135.85075
-305.71566
-850.47351
-1499.547
-2252.7056
-3108.4458
-4064.0716
-5115.7728
481.672372
906.002996
1263.96636
1548.0411
1752.13332
1871.50173
1902.68461
1843.42866
1692.61976
1450.2156
1117.18035
695.421138
187.726684
-402.29221
-1070.2601
-1811.0924
-2619.0486
-3487.7839
-4410.3984
-5379.4843
490.544514
895.945182
1215.73438
1450.30421
1600.84706
1669.29835
1658.28147
1571.05488
1411.46135
1183.87946
893.177208
544.66784
144.067881
-302.54269
-788.75804
-1307.8819
-1852.961
-2416.8158
-2992.0698
-3571.1758
318.212423
571.222438
761.708494
892.783575
967.950152
991.057567
966.261883
897.988153
790.895134
649.842421
479.859999
286.120203
73.9120806
-151.38185
-384.30647
-619.35253
-850.97282
-1073.5959
-1281.6375
-1469.5098
125.118626
219.101032
284.544372
story story height total height
m
m
0
0
1
4
4
2
4
8
3
4
12
4
4
16
5
4
20
6
4
24
7
4
28
8
4
32
9
4
36
10
4
40
11
4
44
12
4
48
13
4
52
14
4
56
15
4
60
16
4
64
17
4
68
18
4
72
19
4
76
20
4
80
21
4
84
22
4
88
23
4
92
24
4
96
25
4
100
26
4
104
27
4
108
28
4
112
29
4
116
30
4
120
31
4
124
32
4
128
33
4
132
34
4
136
35
4
140
36
4
144
37
4
148
38
4
152
39
4
156
40
4
160
41
4
164
42
4
168
43
4
172
44
4
176
45
4
180
46
4
184
47
4
188
48
4
192
49
4
196
50
4
200
51
4
204
52
4
208
53
4
212
54
4
216
55
4
220
56
4
224
57
4
228
58
4
232
59
4
236
60
4
240
61
4
244
62
4
248
63
4
252
64
4
256
65
4
260
66
4
264
67
4
268
68
4
272
69
4
276
70
4
280
71
4
284
72
4
288
73
4
292
74
4
296
75
4
300
76
4
304
77
4
308
78
4
312
79
4
316
80
4
320
81
4
324
82
4
328
83
4
332
84
4
336
85
4
340
86
4
344
87
4
348
88
4
352
89
4
356
90
4
360
91
4
364
92
4
368
93
4
372
94
4
376
95
4
380
96
4
384
97
4
388
98
4
392
99
4
396
100
4
400
int position
m
0
4
8
12
16
20
24
28
32
36
40
44
48
52
56
60
64
68
72
76
80
4
8
12
16
20
24
28
32
36
40
44
48
52
56
60
64
68
72
76
80
4
8
12
16
20
24
28
32
36
40
44
48
52
56
60
64
68
72
76
80
4
8
12
16
20
24
28
32
36
40
44
48
52
56
60
64
68
72
76
80
4
8
12
16
20
24
28
32
36
40
44
48
52
56
60
64
68
72
76
80
int height
m
floor area
m^2
perimeter
m
conc vol
m^3
steel vol
m^3
weight
KN
axial force
KN
seis W
KN
W*H^
KN*m^2
lat force
KN
F bot
KN
F top
KN
M bot
KNm
80
80
80
80
80
80
80
80
80
80
80
80
80
80
80
80
80
80
80
80
80
80
80
80
80
80
80
80
80
80
80
80
80
80
80
80
80
80
80
80
80
80
80
80
80
80
80
80
80
80
80
80
80
80
80
80
80
80
80
80
80
80
80
80
80
80
80
80
80
80
80
80
80
80
80
80
80
80
80
80
80
80
80
80
80
80
80
80
80
80
80
80
80
80
80
80
80
80
80
80
4000
4000
4000
4000
4000
4000
4000
4000
4000
4000
4000
4000
4000
4000
4000
4000
4000
4000
4000
4000
3372.1
3372.1
3372.1
3372.1
3372.1
3372.1
3372.1
3372.1
3372.1
3372.1
3372.1
3372.1
3372.1
3372.1
3372.1
3372.1
3372.1
3372.1
3372.1
3372.1
2744.2
2744.2
2744.2
2744.2
2744.2
2744.2
2744.2
2744.2
2744.2
2744.2
2744.2
2744.2
2744.2
2744.2
2744.2
2744.2
2744.2
2744.2
2744.2
2744.2
2116.3
2116.3
2116.3
2116.3
2116.3
2116.3
2116.3
2116.3
2116.3
2116.3
2116.3
2116.3
2116.3
2116.3
2116.3
2116.3
2116.3
2116.3
2116.3
2116.3
1488.4
1488.4
1488.4
1488.4
1488.4
1488.4
1488.4
1488.4
1488.4
1488.4
1488.4
1488.4
1488.4
1488.4
1488.4
1488.4
1488.4
1488.4
1488.4
1488.4
260
260
260
260
260
260
260
260
260
260
260
260
260
260
260
260
260
260
260
260
235.25
235.25
235.25
235.25
235.25
235.25
235.25
235.25
235.25
235.25
235.25
235.25
235.25
235.25
235.25
235.25
235.25
235.25
235.25
235.25
210.5
210.5
210.5
210.5
210.5
210.5
210.5
210.5
210.5
210.5
210.5
210.5
210.5
210.5
210.5
210.5
210.5
210.5
210.5
210.5
185.75
185.75
185.75
185.75
185.75
185.75
185.75
185.75
185.75
185.75
185.75
185.75
185.75
185.75
185.75
185.75
185.75
185.75
185.75
185.75
161
161
161
161
161
161
161
161
161
161
161
161
161
161
161
161
161
161
161
161
1736.29961
1736.29961
1736.29961
1736.29961
1736.29961
1736.29961
1736.29961
1736.29961
1736.29961
1736.29961
1736.29961
1736.29961
1736.29961
1736.29961
1736.29961
1736.29961
1736.29961
1736.29961
1736.29961
1736.29961
1378.78567
1378.78567
1378.78567
1378.78567
1378.78567
1378.78567
1378.78567
1378.78567
1378.78567
1378.78567
1378.78567
1378.78567
1378.78567
1378.78567
1378.78567
1378.78567
1378.78567
1378.78567
1378.78567
1378.78567
1004.4907
1004.4907
1004.4907
1004.4907
1004.4907
1004.4907
1004.4907
1004.4907
1004.4907
1004.4907
1004.4907
1004.4907
1004.4907
1004.4907
1004.4907
1004.4907
1004.4907
1004.4907
1004.4907
1004.4907
619.573655
619.573655
619.573655
619.573655
619.573655
619.573655
619.573655
619.573655
619.573655
619.573655
619.573655
619.573655
619.573655
619.573655
619.573655
619.573655
619.573655
619.573655
619.573655
619.573655
240.817023
240.817023
240.817023
240.817023
240.817023
240.817023
240.817023
240.817023
240.817023
240.817023
240.817023
240.817023
240.817023
240.817023
240.817023
240.817023
240.817023
240.817023
240.817023
240.817023
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
65989.7016
65989.7016
65989.7016
65989.7016
65989.7016
65989.7016
65989.7016
65989.7016
65989.7016
65989.7016
65989.7016
65989.7016
65989.7016
65989.7016
65989.7016
65989.7016
65989.7016
65989.7016
65989.7016
65989.7016
53870.9031
53870.9031
53870.9031
53870.9031
53870.9031
53870.9031
53870.9031
53870.9031
53870.9031
53870.9031
53870.9031
53870.9031
53870.9031
53870.9031
53870.9031
53870.9031
53870.9031
53870.9031
53870.9031
53870.9031
41387.9561
41387.9561
41387.9561
41387.9561
41387.9561
41387.9561
41387.9561
41387.9561
41387.9561
41387.9561
41387.9561
41387.9561
41387.9561
41387.9561
41387.9561
41387.9561
41387.9561
41387.9561
41387.9561
41387.9561
28674.5103
28674.5103
28674.5103
28674.5103
28674.5103
28674.5103
28674.5103
28674.5103
28674.5103
28674.5103
28674.5103
28674.5103
28674.5103
28674.5103
28674.5103
28674.5103
28674.5103
28674.5103
28674.5103
28674.5103
16094.7454
16094.7454
16094.7454
16094.7454
16094.7454
16094.7454
16094.7454
16094.7454
16094.7454
16094.7454
16094.7454
16094.7454
16094.7454
16094.7454
16094.7454
16094.7454
16094.7454
16094.7454
16094.7454
16094.7454
4120356.33
4054366.63
3988376.93
3922387.22
3856397.52
3790407.82
3724418.12
3658428.42
3592438.72
3526449.02
3460459.31
3394469.61
3328479.91
3262490.21
3196500.51
3130510.81
3064521.1
2998531.4
2932541.7
2866552
2800562.3
2746691.4
2692820.49
2638949.59
2585078.69
2531207.78
2477336.88
2423465.98
2369595.07
2315724.17
2261853.27
2207982.36
2154111.46
2100240.56
2046369.65
1992498.75
1938627.85
1884756.95
1830886.04
1777015.14
1723144.24
1681756.28
1640368.32
1598980.37
1557592.41
1516204.46
1474816.5
1433428.54
1392040.59
1350652.63
1309264.68
1267876.72
1226488.76
1185100.81
1143712.85
1102324.9
1060936.94
1019548.98
978161.027
936773.071
895385.115
866710.604
838036.094
809361.584
780687.073
752012.563
723338.053
694663.542
665989.032
637314.522
608640.011
579965.501
551290.991
522616.48
493941.97
465267.46
436592.949
407918.439
379243.929
350569.419
321894.908
305800.163
289705.417
273610.672
257515.927
241421.181
225326.436
209231.69
193136.945
177042.2
160947.454
144852.709
128757.963
112663.218
96568.4725
80473.727
64378.9816
48284.2362
32189.4908
16094.7454
56389.7016
56389.7016
56389.7016
56389.7016
56389.7016
56389.7016
56389.7016
56389.7016
56389.7016
56389.7016
56389.7016
56389.7016
56389.7016
56389.7016
56389.7016
56389.7016
56389.7016
56389.7016
56389.7016
56389.7016
45777.8631
45777.8631
45777.8631
45777.8631
45777.8631
45777.8631
45777.8631
45777.8631
45777.8631
45777.8631
45777.8631
45777.8631
45777.8631
45777.8631
45777.8631
45777.8631
45777.8631
45777.8631
45777.8631
45777.8631
34801.8761
34801.8761
34801.8761
34801.8761
34801.8761
34801.8761
34801.8761
34801.8761
34801.8761
34801.8761
34801.8761
34801.8761
34801.8761
34801.8761
34801.8761
34801.8761
34801.8761
34801.8761
34801.8761
34801.8761
23595.3903
23595.3903
23595.3903
23595.3903
23595.3903
23595.3903
23595.3903
23595.3903
23595.3903
23595.3903
23595.3903
23595.3903
23595.3903
23595.3903
23595.3903
23595.3903
23595.3903
23595.3903
23595.3903
23595.3903
12522.5854
12522.5854
12522.5854
12522.5854
12522.5854
12522.5854
12522.5854
12522.5854
12522.5854
12522.5854
12522.5854
12522.5854
12522.5854
12522.5854
12522.5854
12522.5854
12522.5854
12522.5854
12522.5854
12522.5854
902235.225
3608940.9
8120117.03
14435763.6
22555880.6
32480468.1
44209526
57743054.4
73081053.2
90223522.5
109170462
129921872
152477753
176838104
203002926
230972218
260745980
292324213
325706916
360894090
323008602
354503772
387463833
421888786
457778631
495133367
533952995
574237514
615986926
659201228
703880423
750024509
797633486
846707356
897246116
949249769
1002718313
1057651749
1114050076
1171913295
936031259
982248151
1029578702
1078022914
1127580785
1178252317
1230037509
1282936360
1336948872
1392075044
1448314876
1505668367
1564135519
1623716331
1684410803
1746218935
1809140727
1873176179
1938325291
2004588063
1404775158
1451210886
1498401667
1546347500
1595048386
1644504324
1694715314
1745681357
1797402453
1849878601
1903109802
1957096055
2011837360
2067333718
2123585129
2180591592
2238353107
2296869675
2356141296
2416167969
1314570926
1347229829
1380289454
1413749802
1447610873
1481872667
1516535183
1551598423
1587062385
1622927069
1659192476
1695858607
1732925459
1770393035
1808261333
1846530354
1885200098
1924270564
1963741754
2003613666
1.79180073
7.16720294
16.1262066
28.6688118
44.7950184
64.5048264
87.798236
114.675247
145.135859
179.180073
216.807889
258.019306
302.814324
351.192944
403.155165
458.700988
517.830412
580.543438
646.840065
716.720294
641.481328
704.029394
769.486672
837.853163
909.128866
983.313781
1060.40791
1140.41125
1223.3238
1309.14557
1397.87654
1489.51673
1584.06614
1681.52475
1781.89258
1885.16962
1991.35587
2100.45133
2212.45601
2327.3699
1858.91822
1950.703
2044.69946
2140.9076
2239.32742
2339.95892
2442.80211
2547.85698
2655.12352
2764.60175
2876.29166
2990.19326
3106.30653
3224.63149
3345.16812
3467.91644
3592.87644
3720.04812
3849.43148
3981.02653
2789.82364
2882.04302
2975.7619
3070.98028
3167.69817
3265.91555
3365.63244
3466.84883
3569.56473
3673.78012
3779.49502
3886.70942
3995.42332
4105.63672
4217.34963
4330.56204
4445.27395
4561.48536
4679.19627
4798.40669
2610.68188
2675.54107
2741.19608
2807.6469
2874.89355
2942.93601
3011.77429
3081.40839
3151.83831
3223.06405
3295.0856
3367.90297
3441.51616
3515.92517
3591.13
3667.13065
3743.92711
3821.51939
3899.90749
3979.09141
1.77881018
6.96652126
15.1465396
25.6872553
37.7957967
50.5717839
63.061083
74.3095601
83.4168352
89.5900367
92.1975547
90.8227956
85.3179358
75.8576759
62.9929946
47.7049028
31.4581975
16.2552163
4.68959047
0
636.830588
684.316571
722.740357
750.716434
767.077481
770.918005
761.637981
738.98649
703.105355
654.572783
594.447
524.30989
446.310634
363.209346
278.420715
196.05764
120.974869
58.8126373
16.0403061
0
1845.44106
1896.08331
1920.48397
1918.25321
1889.43251
1834.5278
1754.54262
1651.01132
1526.03225
1382.30088
1223.14303
1052.54803
875.201865
696.520401
522.682519
360.66331
218.267244
104.161347
27.9083782
0
2769.59742
2801.34581
2794.98436
2751.59833
2672.74533
2560.47779
2417.3655
2246.51804
2051.60733
1836.89006
1607.23026
1368.12172
1125.71052
886.817533
658.96088
450.378452
270.050392
127.72159
33.924173
0
2591.75443
2600.62592
2574.66841
2515.65162
2425.69143
2307.26183
2163.20688
1996.75264
1811.51907
1611.53202
1401.23515
1185.50185
969.647179
759.439837
561.114063
381.381587
227.443572
107.002543
28.2743293
0
0.01299056
0.20068168
0.97966705
2.98155642
6.99922162
13.9330425
24.737153
40.3656869
61.7190242
89.5900367
124.610334
167.19651
217.496388
275.335268
340.162171
410.996085
486.372215
564.288222
642.150475
716.720294
4.65073963
19.712823
46.7463153
87.1367289
142.051385
212.395777
298.769928
401.42476
520.218447
654.572783
803.429544
965.206844
1137.7555
1318.3154
1503.47186
1689.11198
1870.381
2041.63869
2196.4157
2327.3699
13.4771571
54.6196839
124.215492
222.65439
349.89491
505.431128
688.259494
896.845656
1129.09128
1382.30088
1653.14863
1937.64523
2231.10467
2528.11109
2822.4856
3107.25313
3374.6092
3615.88677
3821.5231
3981.02653
20.2262214
80.6972045
180.777535
319.381949
494.952839
705.43776
948.266941
1220.33079
1517.9574
1836.89006
2172.26476
2518.5877
2869.7128
3218.81919
3558.38875
3880.18359
4175.22356
4433.76377
4645.2721
4798.40669
18.9274436
74.9151499
166.527662
291.995278
449.202117
635.674178
848.567407
1084.65575
1340.31924
1611.53202
1893.85045
2182.40113
2471.86898
2756.48534
3030.01594
3285.74906
3516.48354
3714.51685
3871.63317
3979.09141
6.46840065
46.443475
139.814211
293.568632
503.943957
758.576759
1038.65313
1321.05885
1580.52951
1791.80073
1931.75829
1981.58827
1928.92724
1770.01244
1511.83187
1174.27453
792.280531
417.991275
122.899612
0
2315.74759
4562.11047
6671.44945
8579.61639
10227.6997
11563.7701
12544.6256
13137.5376
13321.9962
13091.4557
12455.08
11439.4885
10090.5013
8474.88474
6682.09716
4826.03422
3046.77448
1512.32496
420.366642
0
6710.69477
12640.5554
17727.5443
21922.8938
25192.4335
27517.917
28898.349
29351.3124
28914.2952
27646.0175
25627.7587
22964.6842
19787.1726
16252.1427
12544.3805
8877.86609
5497.10095
2678.43465
731.391982
0
10071.2633
18675.6388
25799.8557
31446.8381
35636.6044
38407.1669
39815.4318
39938.0986
38872.5599
36737.8012
33675.3006
29849.9283
25450.8466
20692.4091
15815.0611
11086.2388
6801.26914
3284.26946
889.047292
0
9424.56158
17337.5061
23766.17
28750.3043
32342.5524
34608.9275
35629.2899
35497.8247
34323.5192
32230.6405
29359.2127
25865.4948
21922.458
17720.2629
13466.7375
9387.85446
5728.20848
2751.49396
740.982424
0
M top
disp
KNm coefficients
0.34044214
5.16038612
24.6730961
73.3921581
167.981319
325.104325
559.274763
880.705897
1293.16051
1791.80073
2361.03791
2972.3824
3582.29345
4130.02902
4535.49561
4697.09812
4489.58967
3761.92148
2335.09264
0
121.881452
506.901163
1177.31461
2144.9041
3409.23325
4955.90146
6754.79838
8758.35839
10899.8151
13091.4557
15222.8756
17159.2328
18739.5024
19774.7311
20046.2915
19304.1369
17265.0554
13610.9246
7986.96619
0
353.194462
1404.50616
3128.39017
5480.72345
8397.47783
11793.393
15560.6494
19567.5416
23657.1506
27646.0175
31322.8162
34447.0263
36747.6063
37921.6663
37633.1414
35511.4643
31150.2387
24105.9118
13896.4477
0
530.066492
2075.07097
4552.91571
7861.70952
11878.8681
16460.2144
21439.0787
26625.399
31804.8217
36737.8012
41158.7008
44774.8925
47265.8579
48282.2879
47445.1833
44344.9553
38540.5251
29558.4251
16891.8986
0
496.029557
1926.38957
4194.02999
7187.57607
10780.8508
14832.3975
19185.0022
23665.2164
28082.8793
32230.6405
35883.4822
38798.2422
40713.1362
41347.28
40400.2125
37551.4178
32459.8481
24763.4457
14078.6661
0
disp I
disp II
total disp
rot I
m
m
m
rad
0
-3.08E-08 0.00032005 1.3277E-07 0.00032018 0.00015953
2.0126E-05 0.0012723 4.9318E-07 0.00127279 0.0003161
0 0.00284493 1.0245E-06 0.00284595 0.00046972
0 0.00502611 1.6704E-06 0.00502778 0.00062038
0.00780402 2.3756E-06 0.0078064 0.00076808
0.01116683 3.0866E-06 0.01116991 0.00091283
0.01510271 3.7525E-06 0.01510646 0.00105462
0.01959983 4.3264E-06 0.01960416 0.00119345
0.02464637 4.7666E-06 0.02465114 0.00132933
0.0302305 5.0382E-06 0.03023554 0.00146225
0.0363404 5.1152E-06 0.03634552 0.00159221
0.04296423 4.9819E-06 0.04296921 0.00171921
0.05009018 4.636E-06 0.05009481 0.00184326
0.0577064 4.0903E-06 0.05771049 0.00196436
0.06580108 3.3758E-06 0.06580446 0.00208249
0.0743624 2.5443E-06 0.07436494 0.00219767
0.08337851 1.6719E-06 0.08338018 0.00230989
0.0928376 8.6187E-07 0.09283846 0.00241916
0.10272784 2.483E-07 0.10272808 0.00252547
0.11303739
0 0.11303739 0.00262882
-2.943E-08 0.12380661 1.3319E-06 0.12380794 0.00275532
1.5989E-05 0.13507617 4.8457E-06 0.13508101 0.00287899
0.00262882 0.14683477 9.8552E-06 0.14684462 0.00299984
0.11303739 0.15907111 1.5727E-05 0.15908684 0.00311786
0.1717739 2.1886E-05 0.17179579 0.00323306
0.18493184 2.782E-05 0.18495966 0.00334544
0.19853362 3.3085E-05 0.1985667 0.00345498
0.21256795 3.731E-05 0.21260526 0.00356171
0.22702352 4.0204E-05 0.22706373 0.00366561
0.24188904 4.1564E-05 0.24193061 0.00376668
0.25715322 4.1275E-05 0.25719449 0.00386493
0.27280474 3.9323E-05 0.27284406 0.00396036
0.28883231 3.5798E-05 0.28886811 0.00405296
0.30522464 3.0903E-05 0.30525554 0.00414273
0.32197041 2.4958E-05 0.32199537 0.00422968
0.33905834 1.8411E-05 0.33907675 0.00431381
0.35647712 1.1844E-05 0.35648897 0.00439511
0.37421546 5.978E-06 0.37422144 0.00447359
0.39226205 1.6867E-06 0.39226374 0.00454924
0.4106056
0 0.4106056 0.00462206
-3.065E-08 0.42928682 4.0236E-06 0.42929085 0.00471806
1.2183E-05 0.44834614 1.4561E-05 0.4483607 0.00481111
0.00462206 0.46777176 2.9459E-05 0.46780122 0.00490122
0.4106056 0.48755194 4.6765E-05 0.4875987 0.00498838
0.50767488 6.4739E-05 0.50773962 0.0050726
0.52812884 8.1861E-05 0.5282107 0.00515388
0.54890202 9.6844E-05 0.54899887 0.00523222
0.56998267 0.00010864 0.57009131 0.00530761
0.59135901 0.00011646 0.59147547 0.00538007
0.61301927 0.00011978 0.61313905 0.00544957
0.63495169 0.00011833 0.63507002 0.00551614
0.65714448 0.00011216 0.65725663 0.00557977
0.67958588 0.00010158 0.67968746 0.00564045
0.70226412 8.7241E-05 0.70235137 0.00569818
0.72516744
7.01E-05 0.72523754 0.00575298
0.74828404 5.145E-05 0.74833549 0.00580483
0.77160218 3.293E-05 0.77163511 0.00585374
0.79511007 1.6538E-05 0.79512661 0.00589971
0.81879595 4.6429E-06 0.81880059 0.00594274
0.84264804
0 0.84264804 0.00598282
-2.916E-08 0.8667017 8.8519E-06 0.86671055 0.00604354
7.7655E-06 0.89099266 3.1962E-05 0.89102462 0.00610147
0.00598282 0.91550972 6.4514E-05 0.91557423 0.0061566
0.84264804 0.94024169 0.00010218 0.94034386 0.00620892
0.96517737 0.00014113 0.96531849 0.00625845
0.99030556 0.00017805 0.99048361 0.00630518
1.01561508 0.00021015 1.01582524 0.00634911
1.04109472 0.00023522 1.04132995 0.00639024
1.0667333 0.00025159 1.06698488 0.00642858
1.09251961 0.00025816 1.09277777 0.00646411
1.11844245 0.00025447 1.11869692 0.00649685
1.14449064 0.00024065 1.14473129 0.00652678
1.17065298 0.00021746 1.17087044 0.00655392
1.19691827 0.00018635 1.19710462 0.00657826
1.22327532 0.0001494 1.22342472 0.0065998
1.24971292 0.00010941 1.24982233 0.00661854
1.27621989 6.9871E-05 1.27628977 0.00663448
1.30278504 3.5012E-05 1.30282005 0.00664762
1.32939715 9.8078E-06 1.32940696 0.00665797
1.35604505
0 1.35604505 0.00666551
-1.605E-08 1.38274346 2.0163E-05 1.38276362 0.00668344
2.3365E-06 1.40951047 7.2709E-05 1.40958318 0.00669982
0.00666551 1.43633994 0.00014657 1.43648651 0.00671466
1.35604505 1.46322568 0.00023185 1.46345754 0.00672796
1.49016155 0.00031982 1.49048137 0.00673972
1.51714138 0.00040298 1.51754435 0.00674994
1.544159 0.00047505 1.54463405 0.00675862
1.57120826 0.00053104 1.5717393 0.00676576
1.598283 0.00056726 1.59885026 0.00677136
1.62537705 0.00058135 1.6259584 0.00677541
1.65248425 0.00057232 1.65305657 0.00677793
1.67959844 0.00054055 1.68013899 0.00677891
1.70671346 0.00048786 1.70720132 0.00677834
1.73382314 0.00041754 1.73424068 0.00677624
1.76092133 0.00033433 1.76125566 0.0067726
1.78800186 0.00024453 1.78824639 0.00676741
1.81505857 0.00015597 1.81521453 0.00676069
1.8420853 7.8057E-05 1.84216335 0.00675242
1.86907588 2.1839E-05 1.86909772 0.00674261
1.89602416
0 1.89602416 0.00673127
You created this PDF from an application that is not licensed to print to novaPDF printer (http://www.novapdf.com)
rot II
rad
total rot
rad
6.4016E-08
1.1382E-07
1.4948E-07
1.7116E-07
1.7921E-07
1.7416E-07
1.5684E-07
1.2837E-07
9.0262E-08
4.4451E-08
-6.65E-09
-6.009E-08
-1.123E-07
-1.592E-07
-1.959E-07
-2.167E-07
-2.152E-07
-1.842E-07
-1.155E-07
0
6.3533E-07
1.0929E-06
1.3854E-06
1.5266E-06
1.5316E-06
1.4168E-06
1.2E-06
9.003E-07
5.3841E-07
1.3651E-07
-2.816E-07
-6.906E-07
-1.063E-06
-1.371E-06
-1.583E-06
-1.666E-06
-1.587E-06
-1.309E-06
-7.936E-07
0
1.914E-06
3.2651E-06
4.1025E-06
4.4779E-06
4.4455E-06
4.0618E-06
3.386E-06
2.48E-06
1.4084E-06
2.3826E-07
-9.602E-07
-2.114E-06
-3.148E-06
-3.982E-06
-4.535E-06
-4.722E-06
-4.455E-06
-3.643E-06
-2.19E-06
0
4.2057E-06
7.1484E-06
8.9473E-06
9.7256E-06
9.6104E-06
8.7329E-06
7.2284E-06
5.2362E-06
2.9E-06
3.6776E-07
-2.208E-06
-4.671E-06
-6.86E-06
-8.609E-06
-9.748E-06
-1.01E-05
-9.491E-06
-7.731E-06
-4.632E-06
0
9.5732E-06
1.6239E-05
2.0281E-05
2.1994E-05
2.1678E-05
1.9638E-05
1.6189E-05
1.1653E-05
6.3595E-06
6.4482E-07
-5.147E-06
-1.066E-05
-1.554E-05
-1.942E-05
-2.192E-05
-2.265E-05
-2.124E-05
-1.726E-05
-1.032E-05
0
0.00015959
0.00031622
0.00046987
0.00062055
0.00076826
0.000913
0.00105477
0.00119358
0.00132942
0.00146229
0.0015922
0.00171915
0.00184315
0.0019642
0.0020823
0.00219745
0.00230968
0.00241897
0.00252535
0.00262882
0.00275595
0.00288008
0.00300122
0.00311939
0.00323459
0.00334685
0.00345618
0.00356261
0.00366615
0.00376682
0.00386465
0.00395967
0.00405189
0.00414136
0.0042281
0.00431214
0.00439352
0.00447228
0.00454844
0.00462206
0.00471997
0.00481437
0.00490532
0.00499286
0.00507705
0.00515794
0.00523561
0.00531009
0.00538147
0.00544981
0.00551518
0.00557765
0.0056373
0.0056942
0.00574845
0.00580011
0.00584929
0.00589607
0.00594055
0.00598282
0.00604775
0.00610862
0.00616554
0.00621865
0.00626806
0.00631391
0.00635634
0.00639548
0.00643148
0.00646448
0.00649464
0.00652211
0.00654706
0.00656965
0.00659005
0.00660844
0.00662499
0.00663989
0.00665334
0.00666551
0.00669301
0.00671606
0.00673494
0.00674995
0.0067614
0.00676958
0.00677481
0.00677741
0.00677771
0.00677606
0.00677278
0.00676824
0.0067628
0.00675682
0.00675068
0.00674476
0.00673945
0.00673516
0.00673229
0.00673127
drift P moment
KNm
8.0045E-05
0.00023815
0.00039329
0.00054546
0.00069465
0.00084088
0.00098414
0.00112442
0.00126175
0.0013961
0.00152749
0.00165592
0.0017814
0.00190392
0.00202349
0.00214012
0.00225381
0.00236457
0.00247241
0.00257733
0.00269264
0.00281827
0.0029409
0.00306055
0.00317724
0.00329097
0.00340176
0.00350964
0.00361462
0.00371672
0.00381597
0.00391239
0.00400601
0.00409686
0.00418496
0.00427035
0.00435305
0.00443312
0.00451057
0.00458547
0.00467131
0.00476746
0.00486013
0.00494937
0.00503523
0.00511777
0.00519704
0.00527311
0.00534604
0.00541589
0.00548274
0.00554665
0.00560771
0.00566598
0.00572154
0.00577449
0.0058249
0.00587287
0.0059185
0.00596186
0.00601563
0.00607852
0.0061374
0.00619241
0.00624366
0.00629128
0.00633541
0.00637618
0.00641373
0.00644822
0.00647979
0.00650859
0.00653479
0.00655854
0.00658002
0.0065994
0.00661686
0.00663257
0.00664673
0.00665952
0.00667964
0.00670489
0.00672583
0.00674276
0.00675596
0.00676575
0.00677242
0.00677631
0.00677774
0.00677704
0.00677454
0.00677061
0.00676558
0.00675984
0.00675375
0.00674768
0.00674204
0.0067372
0.00673359
0.00673161
1319.24832
3862.23867
6274.36421
8557.97935
10715.4404
12749.1064
14661.3392
16454.5045
18130.9719
19693.1152
21143.3128
22483.9474
23717.4066
24846.0825
25872.3716
26798.6749
27627.397
28360.9463
29001.7342
29552.1748
30163.5875
30963.6478
31677.2908
32306.5929
32853.6323
33320.4872
33709.2358
34021.955
34260.7194
34427.6006
34524.6657
34553.976
34517.5863
34417.543
34255.8831
34034.6324
33755.8042
33421.3974
33033.3952
32593.763
32197.3785
32070.839
31889.6225
31655.7805
31371.3464
31038.3335
30658.7336
30234.515
29767.6209
29259.967
28713.4401
28129.896
27511.1571
26859.0107
26175.2064
25461.4543
24719.4225
23950.7345
23156.9675
22339.649
21545.2135
21073.2595
20573.4617
20047.5897
19497.3699
18924.4831
18330.563
17717.1934
17085.9062
16438.1794
15775.4345
15099.0345
14410.281
13710.4125
13000.6012
12281.9509
11555.4947
10822.1917
10082.9249
9338.49866
8600.57245
8201.42662
7794.03983
7379.56016
6959.06857
6533.57665
6104.02445
5671.27816
5236.12784
4799.28507
4361.38059
3922.9619
3484.49083
3046.34106
2608.79565
2172.04449
1736.1817
1301.2031
867.00354
433.374213
P F bot
KN
P F top
KN
P M bot
KNm
P M top
KNm
-4.6998221
-26.070111
-59.998608
-102.69575
-150.68588
-200.79843
-250.1591
-296.18108
-336.55617
-369.24591
-392.47274
-404.71105
-404.67825
-391.3258
-363.83023
-321.5841
-264.18698
-191.43639
-103.31868
0
-107.45778
-209.00462
-302.91409
-387.67912
-462.0042
-524.79767
-575.16384
-612.39519
-635.9646
-645.51751
-640.86411
-621.97157
-588.95632
-542.0763
-481.72336
-408.41559
-322.78988
-225.59443
-117.68147
0
-114.70316
-216.47816
-304.94452
-379.86937
-441.15956
-488.85375
-523.11464
-544.22127
-552.56146
-548.62438
-532.99323
-506.33813
-469.40912
-423.02942
-368.08884
-305.53745
-236.37948
-161.66746
-82.496697
0
-76.754823
-142.2445
-196.73373
-240.57108
-274.18176
-298.06061
-312.76523
-318.90948
-317.15713
-308.21586
-292.8315
-271.78262
-245.87542
-215.939
-182.82095
-147.38341
-110.49942
-73.049794
-35.92042
0
-30.639539
-55.35963
-74.530506
-88.554722
-97.861902
-102.90383
-104.14992
-102.08301
-97.195623
-89.986595
-80.958127
-70.613314
-59.454125
-47.979872
-36.686189
-26.064534
-16.602238
-8.783121
-3.0887001
0
4.69982212
26.0701111
59.9986078
102.695752
150.685881
200.798425
250.1591
296.181081
336.556166
369.245911
392.472743
404.711053
404.67825
391.325799
363.830226
321.584099
264.186984
191.436387
103.318678
0
107.457781
209.004623
302.914093
387.679115
462.004204
524.797673
575.163835
612.395189
635.964604
645.517512
640.864106
621.971568
588.956316
542.076302
481.723356
408.415589
322.789877
225.594432
117.68147
0
114.703161
216.478163
304.944515
379.869366
441.159558
488.853752
523.114642
544.221271
552.561462
548.62438
532.993232
506.338128
469.409118
423.029418
368.08884
305.537452
236.379477
161.667458
82.4966966
0
76.7548229
142.244502
196.733728
240.571077
274.181764
298.06061
312.765232
318.90948
317.157133
308.215863
292.831503
271.782621
245.87542
215.938997
182.820954
147.383411
110.499418
73.0497937
35.9204201
0
30.6395393
55.3596297
74.5305059
88.554722
97.8619017
102.903832
104.149917
102.083007
97.1956231
89.9865951
80.9581272
70.6133142
59.4541247
47.9798717
36.6861889
26.0645338
16.6022375
8.78312095
3.08870011
0
1065.29301
2433.21037
2933.26527
2738.55339
2009.14508
892.437445
-476.49352
-1974.5405
-3490.2121
-4923.2788
-6184.419
-7194.8632
-7886.0377
-8199.2072
-8085.1161
-7503.629
-6423.3698
-4821.3609
-2682.6604
0
24357.0969
19507.0981
14809.1334
10338.1097
6160.05605
2332.4341
-1095.5502
-4082.6346
-6595.1885
-8606.9002
-10098.465
-11057.272
-11477.097
-11357.789
-10704.963
-9529.6971
-7848.2245
-5681.6376
-3055.5891
0
25999.3831
20204.6286
14908.3985
10129.8498
5882.12745
2172.68334
-996.40884
-3628.1418
-5730.267
-7314.9917
-8398.6812
-9001.5667
-9147.4597
-8863.4735
-8179.752
-7129.2072
-5747.2657
-4071.6249
-2142.0195
0
17397.7599
13276.1535
9618.09335
6415.22871
3655.75685
1324.71382
-595.7433
-2126.0632
-3289.0369
-4109.5448
-4614.3146
-4831.691
-4791.4184
-4524.4361
-4062.6879
-3438.9463
-2686.6525
-1839.7726
-932.67056
0
6944.96225
5166.89877
3643.71362
2361.45925
1304.82536
457.350366
-198.38079
-680.55338
-1007.9546
-1199.8213
-1275.7038
-1255.3478
-1158.5932
-1005.2925
-815.24864
-608.17246
-403.66225
-221.20453
-80.197827
0
122.030469
656.580575
1458.78968
2396.23422
3348.57513
4207.2051
4874.89528
5265.44144
5303.30929
4923.27881
4070.08771
2698.07368
770.815714
-1739.2258
-4851.0697
-8575.576
-12915.808
-17867.396
-23418.9
-29552.175
2790.13185
5263.82013
7364.9701
9045.84603
10266.7601
10995.7608
11208.3209
10887.0256
10021.2604
8606.90016
6645.99814
4146.47712
1121.82155
-2409.228
-6422.9781
-10891.082
-15780.838
-21055.48
-26674.467
-32593.763
2978.25751
5452.04263
7414.33723
8863.61854
9803.54574
10242.6501
10194.0289
9675.04481
8707.0291
7314.99174
5527.33722
3375.58752
894.112606
-1880.1307
-4907.8512
-8147.6654
-11556.33
-15088.963
-18699.251
-22339.649
1992.93224
3582.45412
4783.32985
5613.32512
6092.92809
6245.07944
6094.91221
5669.50187
4997.62755
4109.54484
3036.77114
1811.88414
468.334134
-959.72887
-2437.6127
-3930.2243
-5402.1938
-6817.9807
-8141.9619
-9338.4987
795.552951
1394.24253
1812.11426
2066.27685
2174.70893
2156.08029
2029.58813
1814.80901
1531.56739
1199.82127
839.565764
470.755428
113.245952
-213.24387
-489.14918
-695.05424
-811.66494
-819.75796
-700.10536
-433.37421
Stress Factors
stories
gravity
81 to 100 5185.99496
61 to 80 5670.35091
41 to 60
6756.971
21 to 40 8014.91554
1 to 20 9389.36555
core 1
508593.75
508593.75
508593.75
508593.75
508593.75
core 2
6781250
6781250
6781250
6781250
6781250
core 3
0.00366343
0.0014257
0.00087673
0.00063646
0.00050474
column
542500
542500
542500
542500
542500
column A
0.0489066
0.07582326
0.09600157
0.11197989
0.12545486
Wind Displacements
story
horizontal
100 0.30553586
80 0.22107105
60 0.13984295
40 0.06993034
20 0.01989762
base
0
rotation
0.00105017
0.00104872
0.00095597
0.00076219
0.00045452
0
vertical A
0.01160755
0.01059798
0.00886057
0.0063923
0.00329004
0
vertical B
0
0
0
0
0
0
vertical C
0
0
0
0
0
0
vertical D
0
0
0
0
0
0
column B
0.06202286
0.10049282
0.12800771
0.14990615
0.16834456
column C
0.06201328
0.10048335
0.12799864
0.14989787
0.16833716
column D
0.06202286
0.10049282
0.12800771
0.14990615
0.16834456
outrigger
0
0
0
0
0
belt
0
0
0
0
0
Wind Moment Reaction
story
sum bot
81 69019.2794
61 73081.5324
41 75061.4288
21 73319.7564
1 59737.131
Wind Core/Column Stress
story
core
column A
column B
column C
column D
81 521.656135 573.202603 32.3546065 32.3496073 32.3546065
61 1262.43057 1038.2696 126.86521 126.853256 126.86521
41 1983.21043 1529.4251 253.866226 253.848245 253.866226
21 2826.89143 1999.53265
423.7684
423.745
423.7684
1 3985.51212 2284.84862 670.939304 670.909775 670.939304
max
Gravity Plus Wind Core/Column Stress
core
column A
column B
column C
5707.6511 5759.19757 5218.34957 5218.34457
6932.78147 6708.62051 5797.21612 5797.20416
8740.18142 8286.39609 7010.83722 7010.81924
10841.807 10014.4482 8438.68394 8438.66054
13374.8777 11674.2142 10060.3049 10060.2753
13374.8777 11674.2142 10060.3049 10060.2753
Wind Outrigger Stress
story
outrig B
100
0
80
0
60
0
40
0
20
0
max
0
Wind Belt Stress
belt AB
belt BC
0
0
0
0
0
0
0
0
0
0
0
0
outrig D
0
0
0
0
0
0
0
Wind Diag Stress
story Vertical StrainHorizontal Strain STRESS
100 0.01862685 0.07114229 3895980.66
80 0.01573998 0.06841611 3652374.2
60 0.0118815 0.05888539 3071283.05
40 0.00725786 0.04214113 2143916.01
20 0.00237221 0.01675919 830302.91
max
Seismic Displacements
story
horizontal
100 1.89602416
80 1.35604505
60 0.84264804
40 0.4106056
20 0.11303739
base
0
vertical A
0.07316596
0.06645574
0.05510068
0.03933276
0.02003899
0
vertical B
0
0
0
0
0
0
vertical C
0
0
0
0
0
0
Seismic Core/Column Stress
story
core
column A
81 4040.26687 3837.88877
61 9085.53901 6849.0175
41 13517.9865 9851.84584
21 17446.4833 12420.5224
1 21846.397 13611.8902
max
column B
250.588915
913.031452
1730.4065
2615.33509
3677.72219
column C
250.550196
912.945424
1730.28394
2615.19067
3677.56033
column D
250.588915
913.031452
1730.4065
2615.33509
3677.72219
outrig D
0
0
0
0
0
0
0
Seismic Moment Reaction
story
sum bot
81 410854.001
61 462945.629
41 341482.945
21 154963.561
1 19112.4217
vertical D
0
0
0
0
0
0
Gravity Plus Seismic Core/Column Stress
core
column A
column B
column C
9226.26183 9023.88373 5436.58388 5436.54516
14755.8899 12519.3684 6583.38236 6583.29633
20274.9575 16608.8168 8487.37749 8487.25493
25461.3989 20435.438 10630.2506 10630.1062
31235.7625 23001.2558 13067.0877 13066.9259
31235.7625 23001.2558 13067.0877 13066.9259
Seismic Belt Stress
belt AB
belt BC
0
0
0
0
0
0
0
0
0
0
0
0
0
Seismic Diagonal Stress
story Vertical StrainHorizontal Strain STRESS
100 0.11712002 0.29395426 17840623.9
80 0.09832673 0.30185134 17367728.5
60 0.07356061 0.27091819 14950380.2
40 0.04450489 0.19695873 10479521.1
20 0.01444866 0.07832436 4026349.14
max
17840623.9
belt DE
0
0
0
0
0
0
Wind + Grav Diagonal Stresses
3897487.6
3654021.89
3073246.48
2146244.98
833031.262
3897487.6
rotation
0.00673127
0.00666551
0.00598282
0.00462206
0.00262882
0
Seismic Outrigger Stress
story
outrig B
100
0
80
0
60
0
40
0
20
0
max
0
belt AD
0
0
0
0
0
0
column D
5218.34957
5797.21612
7010.83722
8438.68394
10060.3049
10060.3049 11674.2142
max
belt AD
0
0
0
0
0
0
belt DE
0
0
0
0
0
0
column D
5436.58388
6583.38236
8487.37749
10630.2506
13067.0877
13067.0877 23001.2558
0
Wing + Seismic Diagonal Stress
Diag A
17842130.9
17369376.2
14952343.6
10481850.1
4029077.49
17842130.9
You created this PDF from an application that is not licensed to print to novaPDF printer (http://www.novapdf.com)