Simplified Analysis Model for Modern Skyscrapers With Mega-Diagonal Lateral Force Resisting System Russell Irion A project submitted to the faculty of Brigham Young University in partial fulfillment of the requirements for the degree of Master of Science Richard Balling, Chair Fernando Fonseca Alan Parkinson Department of Civil & Environmental Engineering Brigham Young University April 2015 Copyright © 2015 Russell Irion All Rights Reserved ABSTRACT Simplified Analysis Model for Modern Skyscrapers With a Diagrid Lateral Force Resisting System Russell Irion Department of Civil & Environmental Engineering, BYU Master of Science Modern skyscrapers are reaching higher and are more innovative than ever before. The standard form of skyscrapers from the early 20th century has structural elements that include a concrete core, columns, belt trusses and outriggers. Dr. Richard Balling and Jacob Lee produced a simplified skyscraper analysis model (SSAM) with the aforementioned structural elements. The 1960s brought about a change to the status quo of skyscrapers, introducing diagonal braces, which contribute to both the lateral and vertical stiffness of the overall structural system. With the addition of external diagonal braces came more open floor space and an optimal design that performs well even at high elevations. The John Hancock Center in Chicago Illinois was the first of many to adopt the external diagonal brace structure. Fazlur Khan was the designer who produced this innovative design. It was determined to be the best configuration for new skyscrapers at the time. Advances in technology allow us to now model the entire skyscraper, which would have been too computationally expensive for Khan back in the 1960s. A full model of the building was created in SAP 2000 to measure the total displacement due to wind and earthquake loads. The purpose of this project is to discuss how the SSAM was modified to include diagonal braces. The diagonal elements impacted the size of the columns and the overall stiffness of the structure. The lateral displacement of structure was calculated in the spreadsheet and compared with the model created in SAP 2000. The displacement due to wind loads between the two structures on average was .03m. The greatest difference was located at the top story of the building and the difference between the two was .098m. Earthquake loads were calculated and the average difference in displacement from the two analyses was .34m and the worst case was 1.0m. In each case the SSAM predicts a building that is less stiff than what the finite element model calculated. Keywords: SSAM, Diagonal, John Hancock Center, SAP 2000 ACKNOWLEDGEMENTS Many hours of hard work have been put in to producing a Masters Project that I can be proud of. Oftentimes I met walls that seemed insurmountable. Many hours were spent wrestling SAP 2000 or dissecting the stiffness matrix. Dr. Balling provided advice and assured me that I would be able to figure it out. I’m very grateful for his council and guidance through this project. Additionally I’m grateful for Changheon Yi and the listening ear he gave when I needed to talk through a problem. Most important however is the confidence and support I received from my loving family. Ellen has been a constant support for me through it all. On a number of occasions I would wake her up by sleep talking, teaching some engineering principle to her. While lifting the pillow, I gestured to each corner and proceeded to explain to her “each corner has a value.” After getting frustrated that she didn’t understand me I shook my head and went back to bed. Needless to say, she is very sweet for putting up with the long hours I have put in at school and was always very positive through it all. Lastly my parents and siblings have always been supportive and I’m lucky that we get to be together forever. TABLE OF CONTENTS LIST OF FIGURES ................................................................................................................... viii 1 Introduction ............................................................................................................................. 1 2 The John Hancock Center, Chicago IL. USA ...................................................................... 4 2.1 Building Characteristics ..................................................................................................... 5 3 Finite Element Model ............................................................................................................. 7 3.1 Structural Members............................................................................................................ 7 3.2 Loads .................................................................................................................................. 8 3.3 Execution ........................................................................................................................... 9 4 Simplified Skyscraper Analysis Model (SSAM) ................................................................ 10 4.1 Simplifications ................................................................................................................. 10 4.2 Vertical Stiffness Contribution of Diagonals................................................................... 11 4.3 Horizontal Stiffness Contribution of Diagonals .............................................................. 12 4.4 Strain and Stress in Diagonal Members ........................................................................... 14 4.5 Analysis Results ............................................................................................................... 14 5 Conclusions ............................................................................................................................ 20 REFERENCES............................................................................................................................ 21 v LIST OF TABLES Table 1 Diagonal Member Stiffness Matrix ..........................................................................13 Table 2 Displacement Results. ...............................................................................................15 vi vii LIST OF FIGURES Figure 1 Braced Tube and Diagrid Structure Diagrams. .......................................................2 Figure 2 Diagonal Tower, Seoul, South Korea. (Dezeen 2012) ............................................3 Figure 4 High Rise Design vs Height. ...................................................................................5 Figure 6 Displaced vs Undisplaced Shape. ............................................................................9 Figure 7 Vertical Displacement. ............................................................................................12 Figure 8 Horizontal Displacement. ........................................................................................12 Figure 9 Wind Displacement Results. ...................................................................................15 Figure 10 Earthquake Displacement Results. ........................................................................16 Figure 11 Force on Building. .................................................................................................17 Figure 12 Colored Frame Undisplaced and Displaced. .........................................................19 viii 1 INTRODUCTION This work is an extension of the work of Dr. Richard J. Balling and Jacob S. Lee and their simplified skyscraper analysis model (SSAM) to include mega diagonals and tapered buildings. The extended model is applied to the John Hancock Center in Chicago, IL USA. The John Hancock Center was one of the first to implement an external mega-diagonal structural system. A computer model was created in order to compare results and draw conclusions about the accuracy of the SSAM. Using a SSAM in lieu of a space frame or detailed finite element model (DFEM) results in faster execution, an iterative optimization technique, simpler data preparation and straightforward data extraction (Lee and Balling 2014). It also presents an effective way to teach engineering students some of the analysis and calculations that are required when designing a skyscraper. Using the SSAM, conventional skyscrapers were analyzed, with configurations involving concrete cores, columns, outriggers and belt-trusses. The purpose of this document is to develop a skyscraper spreadsheet model that includes diagonal cross braces and a tapered profile. The spreadsheet will be compared to a full-scale computer model in order to determine if the calculations closely mimic real life. The paper will culminate with the production of a spreadsheet that models the John Hancock Building to display how the SSAM is now upgraded to better model modern skyscrapers. 1 Mega-diagonal structural members have become a viable option as a part of the lateral force resisting system of a structure. The sloping orientation of the member results in components parallel to both the lateral forces as well as the gravity loads of a structure. Figure 1 Braced Tube and Diagrid Structure Diagrams. As displayed in Figure 1, structural systems that include mega-diagonal braces may require column elements, but they are not required if engineered appropriately. Systems composed solely of diagonal members are called diagrid buildings (Panchal and Patel 2014). The structure analyzed herein has a combination of core, column and mega-diagonal elements. Some examples of this type of structure include the Diagonal Zero Zero in Barcelona, Spain, The Diagonal Tower in Seoul, South Korea, and the John Hancock building in Chicago, IL. These buildings “can be seen as one enormous vertical truss or integrated structural frame” (Priwer and Phillips 2014). 2 Figure 2 Diagonal Tower, Seoul, South Korea. (Dezeen 2012) Architects and designers hope to create structures that are unique and expressive. Oftentimes those types of structures are not perfectly symmetric or follow perfect patterns. One unique form of a skyscraper is a gradual taper in order to produce an elongating effect. By doing so, numerous other benefits result which will be discussed in the next section. 3 2 THE JOHN HANCOCK CENTER, CHICAGO IL. USA The John Hancock building in Chicago Illinois was the first skyscraper to employ the use of external diagonal structural cross braces. Doing so presented some geometric advantages. The revolutionary designer who determined this structure was the most efficient form was Fazlur Khan of Skidmore Owings and Merrill. This building was the start of new heights and possibilities for modern skyscrapers. The conceptual design and planning stages for this building started in 1965 and the building was finally completed in 1970. Around this same time, Figure 3 Image of Hancock Center. the world saw a shift away from the less efficient vierendeel structural composition towards a cantilevered column type system (Takabatke 2012). These vierendeel structures were comprised mainly of beams and columns with rigid connections. By changing to hinge connected braces, the diagonal elements only experience axial forces and become a more efficient shape. 4 Figure 4 High Rise Design vs Height. Figure 4 was produced by Fazlur Khan in the mid 1900s (Iyengar 2000). It displays the shift toward truss-tubed structures that resulted in taller buildings. 2.1 Building Characteristics The John Hancock Building is a mixed use structure, utilizing floor space for residential and commercial use. The structural system used is the truss-tube without interior columns system as depicted in Figure 4. The bottom floor is rectangular, 262’ wide and roughly 164’ long. The top floors are also rectangular, 160’ wide and 100’ long (Iyengar 2000). The Hancock center has a slight taper all the way to the top, thus causing onlookers to believe the structure is even taller than it actually is (Hearn 2015). The total height of the structure is 1128 ft. Not only does the 5 tapered form produce an elongation effect, it also decreases the surface area on which wind can act and decreases the seismic weight of the structure at the critical top levels (Khushbu Jania 2013) (Montuori, Mele et al. 2013). It was designed such that under 60 mph wind loading, the structure would sway only five to eight inches (Hearn 2015). Figure 5 John Hancock Center (Iyengar, 2000) 6 3 3.1 FINITE ELEMENT MODEL Structural Members Typical megadiagonals would be a concrete filled steel tube or some other steel brace. The megadiagonal members used to model the John Hancock Center were all assumed to be concrete members. This assumption is made to more closely match the SSAM model that will be discussed later. Material properties of each of the columns and concrete core were also assigned to match what is found in the SSAM. The cross sections of diagonal and column members were assumed to be circular. The moment of Inertia was calculated for the different members at each interval. The moment of inertia for the concrete core is found in the SSAM. The torsional stiffness was arbitrarily set to 1000. This assumption did not affect the results and was verified. It is also worth noting that the diagonal members were assumed to span the entire interval instead of connecting at each intermediate column. SAP 2000 allows users to create “area elements.” For the façade and floor members, area elements were used and properties such as unit weight, thickness, stiffness and other characteristics were applied appropriately. The use of area elements may more accurately represent real life behavior. It proved difficult to produce similar results when modeling the concrete core. Thus a column element was used that shared the same characteristics (moment of 7 inertia, area. . . etc.) as found for the concrete core in the SSAM. In order to be able to see other elements, the diaphragms have been removed from the display in Figure 6. 3.2 Loads The loading on the structure was taken directly from the SSAM. Instead of potentially introducing more error into our model by using the SAP 2000 built in wind analysis, horizontal point loads and moments about the assumed axis of rotation were placed at the top of the core in the center of the building. This project is not created to determine the accuracy of the forces calculated in the spreadsheet, instead the response of the system is the main objective. Thus forces were copied straight from the spreadsheet into the DFEM. 8 3.3 Execution The SAP 2000 model required over 28 minutes to run analysis on average. The underlying mathematical model had 6 degrees of freedom at each column and core for every level. The diagonal members only had degrees of freedom at critical intervals. That results in over roughly 10,2000 degrees of freedom for the system. The SAP 2000 model said the model had over 92,616 equilibrium equations to satisfy. The file containing all the information was over 120 MB. In order to make any changes the whole structure needed to be re analyzed. Figure 6 Displaced vs Undisplaced Shape. 9 4 SIMPLIFIED SKYSCRAPER ANALYSIS MODEL (SSAM) As was mentioned earlier, the SSAM is an analysis tool that results in faster execution, an iterative optimization technique, simpler data preparation and straightforward data extraction. The spreadsheet makes it simple to change member properties & see immediate results when determining how much material to allocate between columns, core, and other structural members. Without it, a modeling expert would require a lot of time and effort to provide a collection of optimized designs to the client. Implementing this spreadsheet, in conjunction with the optimization capabilities in excel or other outside sources could enable the designer to converge onto a pareto front of optimized designs. These benefits are what have led to further development of this tool. The following sections will describe the improvements that have been made to the SSAM. 4.1 Simplifications The configuration that has been selected is a single X brace for each side of the building spanning the entire interval. Using this configuration results in a symmetric structure. Wind and earthquake forces produce a lateral force, which can then be further simplified and analyzed as a symmetric structure with anti-symmetric loading. Initially it was hoped that a very general, modular method could be created which allows for multiple X’s on each interval or other configurations. Complications came in developing the stiffness matrix, due to the dependence 10 that adjacent intervals and their degrees of freedom have on each other. It is possible that a macro could be created that would automatically fill in the stiffness matrix given some input parameters, but this has not been explored yet. 4.2 Vertical Stiffness Contribution of Diagonals Unlike most of the other components of this structure, the diagonal members will contribute to both the vertical and horizontal stiffness of the structure (Moon, Connor et al. 2007). The size of the concrete core, columns and diagonals depend on each other. With each of these components, strain in the core must equal the strain of the outer column and diagonals, otherwise a large displacement discrepancy will propagate through each level and result in cracks. The thickness of the concrete and the area of the diagonal members were determined as the two independent variables and would be used to calculate the required area of columns. Equating equations of strain and solving for the dependent variable resulted in: 𝒄𝒐𝒍𝒋 𝑨𝒊 = 𝑨𝒄𝒐𝒓𝒆 ∗ 𝒊 𝒄𝒐𝒍𝒋 𝑭𝒊 𝒄𝒐𝒓𝒆 − 𝒅𝒊𝒂𝒈 𝑽𝒊 𝑭𝒊 𝒉𝒊 𝐬𝐢𝐧 𝜽𝒅𝒊𝒂𝒈 𝒊 𝟒 𝑭𝒄𝒐𝒍𝒋 𝒊 𝒄𝒐𝒍𝒋 𝑭𝒊 𝟏+ 𝜸𝒉𝒊 𝑨𝒄𝒐𝒓𝒆 𝒊 𝑭𝒄𝒐𝒓𝒆 𝒊 4-1 where A = area F = Axial force in member !"#$ 𝑉! = Total volume of diagonals on interval ℎ! = Height of interval 𝛾 = Unit weight of concrete core For the new model, the diagonal members were assumed to be concrete tube members instead of steel members. This assumption was made to simplify the model. Oftentimes these diagonal members are concrete filled steel tubes. It wasn’t deemed necessary to go into such depth to determine the stiffness of a composite structure. If a designer would like to determine an 11 appropriate amount of steel, the ratio of stiffness provided by a steel tube of the desired radius and thickness could be subtracted from the calculated area of concrete. The spreadsheet could be manipulated to assume the diagonals are pure steel if that is what the designer desires. 4.3 Horizontal Stiffness Contribution of Diagonals Using principles of virtual work and mechanics of materials in conjunction with anti- symmetry, the following equations were derived: Figure 7 Vertical Displacement. Figure 8 Horizontal Displacement. 12 𝑲𝑳𝑽 = 𝑬𝑨 𝑲𝑳𝑳 = 𝑬𝑨 𝑲𝑽𝑽 = 𝑬𝑨 𝑳 𝑳 𝑳 𝟏 − 𝒔𝒊𝒏𝟐 𝜽 4-2 (𝟏 − 𝒔𝒊𝒏𝟐 𝜽) 4-3 𝒔𝒊𝒏𝟐 𝜽 4-4 E is the youngs modulus of the diagonal members, A is the area and L is the total length of the diagonal member. Implementing the formulas from above results in the following stiffness matrix: Table 1 Diagonal Member Stiffness Matrix DOF’s 𝑯𝒐𝒓𝒊 𝑽𝒆𝒓𝑨𝒊 𝑯𝒐𝒓𝒊!𝟏 𝑽𝒆𝒓𝑨𝒊!𝟏 𝐻𝑜𝑟! 𝐾𝑳𝑳 −𝐾𝑳𝑽 −𝐾𝑳𝑳 −𝐾𝑳𝑽 𝑉𝑒𝑟𝐴! −𝐾𝑳𝑽 𝐾𝑽𝑽 𝐾𝑳𝑽 𝐾𝑽𝑽 𝐻𝑜𝑟!!! −𝐾𝑳𝑳 𝐾𝑳𝑽 𝐾𝑳𝑳 𝐾𝑳𝑽 𝑉𝑒𝑟𝐴!!! −𝐾𝑳𝑽 𝐾𝑽𝑽 𝐾𝑳𝑽 𝐾𝑽𝑽 13 4.4 Strain and Stress in Diagonal Members By inverting the stiffness matrix and multiplying by the calculated lateral loads, the product is the total displacement of the structure. Diagonal members are going to be strained when the building is displaced both horizontally and vertically. The difference between horizontal displacements on neighboring intervals equals the horizontal component of the strain in the diagonal member. By anti-symmetry, the sum of the vertical displacements on neighboring intervals is the vertical component of the strain in the diagonal member. 𝒕𝒐𝒕𝒂𝒍 𝒔𝒕𝒓𝒂𝒊𝒏 = 𝜺 = 𝜺𝒉𝒐𝒓𝒊𝒛 + 𝜺𝒗𝒆𝒓𝒕 ∗ 𝒔𝒊𝒏𝟐 𝜽 4-5 Stress in the diagonal members can be calculated from the equation: 𝝈=𝑬∗𝝐 4-6 where 𝜎 = stress and E = Young’s modulus. Comparing that calculated stress to the allowable stress is the resulting design constraint. 4.5 Analysis Results Executing both the SSAM and DFEM for the John Hancock center produced similar results. The overall drift due to wind on average for the structure was within .1m between the two programs. Unfortunately, stresses calculated by the SAP 2000 did not correspond to what the SSAM calculated. Overall displacement was however observed and recorded with closer correlation. 14 Table 2 Displacement Results. WIND DISPLACEMENT EARTHQUAKE DISPLACEMENT ELEVATION (M) SSAM DFEM Δ SSAM DFEM Δ 80 .0199 .033 .131 .113 .123 .01 160 .0699 .075 .005 .411 .301 .11 240 .140 .122 .018 .843 .512 .33 320 .221 .168 .052 1.35 .721 .63 400 .305 .207 .098 1.90 .893 1.001 Wind Displacement 450 400 Height(m) 350 300 250 200 DFEM 150 SSAM 100 50 0 0 0.05 0.1 0.15 0.2 0.25 0.3 X Displacement (m) Figure 9 Wind Displacement Results. 15 0.35 Earthquake Displacement 450 400 Height(m) 350 300 250 200 DFEM 150 SSAM 100 50 0 0 0.5 1 1.5 2 X Displacement (m) Figure 10 Earthquake Displacement Results. A comparison between the deflections found in each model can be found in both Figure 9 and Figure 10. The results agree with the statements made earlier regarding the allowable drift for which the building was designed. It is said that under 60 mph winds the building would deflect only roughly 5-8” (Hearn 2015). The wind load considered by our models was of higher magnitude, thus the higher deflections. Earthquake displacements deviate from one another. In the top level of the building, the displacement calculated in the SSAM is double the displacement calculated in the DFEM. It is possible that the DFEM model was set up incorrectly, and would produce better results if a more experienced designer had entered data and constructed the model. Measures were taken to ensure the two models had the same material and cross sectional properties. The connection between elements however was not always clear in the SAP 2000 model and could have introduced some error. 16 400 Wind 350 Height (m) 300 250 Wind 200 150 100 50 0 0 100 200 300 400 Lateral Force (KN) 500 600 Figure 11 Force on Building. One unique observation for this structure is the force exerted by the wind. Because of its tapered shape, the lateral force decreases with height after about 175 m (see Figure 11). The equations used for lateral wind pressure can be found in ASCE 7-05 𝟐 𝑷𝒘𝒊𝒏𝒅 = . 𝟎𝟎𝟐𝟓𝟔 𝟐. 𝟎𝟏 𝒌 𝑯𝒌 𝒂 𝑯𝒈 𝒗𝟐 4 -‐7 P = wind pressure at story k v = design wind speed in mph Hk = height of story k above the ground Hg = reference height parameter reflecting exposure (274 m) a = another exposure parameter (9.5m) The final execution required over 28 minutes to analyze. In comparison, the SSAM spreadsheet produces results that are essentially instantaneous. The spreadsheet does not need to go through the thousands of degrees of freedom found in the structure. Instead it utilizes some 17 simplifications and must only analyze a structure with thirty degrees of freedom. Doing so results in much faster execution. Easier data extraction is the final result. Instead of sifting through thousands of numbers, the SSAM produces results that are easily deciphered. Graphs are automatically populated showing overall force and displacement. Unity checks are provided which show exactly what parts of the structure are overstressed or if the governing drift constraints come from wind or earthquake loads. The DFEM proved to be more difficult to work with than originally anticipated. Many hours of exposure to such programs are required in order to master the art of structural modeling and analysis. The SSAM can be seen as a more user-friendly tool created to help teach skyscraper analysis principles in a manageable way. 18 Figure 12 Colored Frame Undisplaced and Displaced. 19 5 CONCLUSIONS It is much simpler to make changes and understand what is going on in the SSAM than in the DFEM. Users inexperienced in SAP 2000 or any other commercial software will find it difficult to portray the structure and loading the user intends. However, one must understand the simplifications and assumptions made in the SSAM in order to use it correctly. The claim has never been made that the SSAM can replace full structural analyses, but instead can be a tool in determining sizes and forces in a structure. Further research will need to be done on the calculation of stress in diagonal members. Calculations from the SSAM estimate that the total lateral displacement on the top floor of the structure will be roughly .3m. That is about .1m greater than the deflection results provided by the DFEM. On average the two calculated wind displacements differed .03m. Earthquake loads are estimated to displace the structure 1.8m at the top level. That displacement is roughly 1 m greater in magnitude than the displacement provided by the DFEM. On average, the difference between the two analyses with respect to earthquake displacement is .34m. The Hancock Center in Chicago Illinois has proven to be an optimal shape for skyscrapers. The tapered profile of the structure reduces the loads that an un-tapered structure would react to. The external diagonal brace system was the first of its kind. The diagonals help resist both vertical and lateral loads. The results of both the SSAM and the DFEM model closely reflect the findings online regarding the overall drift one can anticipate being present. The likeness in overall displacement between the two analyses, although not perfect, produced results that help justify the use of the SSAM for preliminary skyscraper analysis. 20 REFERENCES Dezeen (2012). Diagonal Tower by SOM. Hearn, C. (2015). johnhancockcenterchicago. Retrieved 03-20-15, 2015, from http://www.johnhancockcenterchicago.com/facts.html. Iyengar, H. (2000). "Reflections on the Hancock Concept." CTBUH(1). Khushbu Jania, P. V. P. (2013). "Analysis and Design of Diagrid Structural System for High Rise Steel Buildings." Procedia Engineering 51: 92-100. Lee, J. S. and R. J. Balling (2014). "Simplified Model for Analysis and Optimization of Skyscrapers with Outrigger and Belt Trusses." Journal of Structural Engineering. Montuori, G. M., et al. (2013). "Design criteria for diagrid tall buildings: Stiffness versus strength." Wiley Online Library(23): 1294-1314. Moon, K.-S., et al. (2007). "DIAGRID STRUCTURAL SYSTEMS FOR TALL BUILDINGS: CHARACTERISTICS AND METHODOLOGY FOR PRELIMINARY DESIGN." The Structural Design of Tall and Special Buildings 16(2). Panchal, N. B. and V. R. Patel (2014). "DIAGRID STRUCTURAL SYSTEM: STRATEGIES TO REDUCE LATERAL FORCES ON HIGH-RISE BUILDINGS." IJRET 03(04): 374-378. Priwer, S. and C. Phillips (2014). Skyscrapers and High Rises, Routledge. Takabatke, H. (2012). "A Simplified Analytical Method for High-Rise Buildings." INTECH. 21 APPENDIX You created this PDF from an application that is not licensed to print to novaPDF printer (http://www.novapdf.com) Concrete allowable stress (KPa) modulus (KPa) density (KN/m^3) cost ($/m^3) 48000 43400000 21.7 157 Steel allowable stress (KPa) modulus (KPa) density (KN/m^3) cost ($/m^3) 207000 200000000 77 5390 Weight Data floor dead load (KPa) floor live load (KPa) cladding weight (KPa) 4.34 2.4 1.3 Wind Data speed (m/s) air density (Kg/m^3) reference height (m) exponent drift allowable Seismic Data spectral acceleration (g) ductility factor exponent drift allowable 80 m 55 1.226 274 9.5 0.002778 0.2 3 2 0.02 80 m 80 m 80 m 80 m You created this PDF from an application that is not licensed to print to novaPDF printer (http://www.novapdf.com) Design Variables config 8 stories core t outrig V 81 to 100 0.32719329 0 61 to 80 0.83919412 0 41 to 60 1.36217332 0 21 to 40 1.87311318 0 1 to 20 2.35789651 0 belt V 0 0 0 0 0 diag V 50 80 120 170 200 Core Section Properties stories d 81 to 100 25 61 to 80 25 41 to 60 25 21 to 40 25 1 to 20 25 y 0 0 0 0 0 sin 1 1 1 1 1 n 2 2 2 2 2 Outrigger Superelement story mem length 100 14.8408221 80 14.8408221 60 14.8408221 40 14.8408221 20 14.8408221 mem sine 0.5390537 0.5390537 0.5390537 0.5390537 0.5390537 mem area 0 0 0 0 0 stiffness 0 0 0 0 0 Long Side Diagonal Superelement story mem length mem sine 100 95.37 0.83883821 80 98.9 0.80889788 60 102.7 0.77896787 40 106.724 0.74959709 20 110.9528 0.72102732 mem area 0.13106847 0.20222447 0.29211295 0.39822345 0.45064207 stiffness 41969.3831 58065.0137 74904.7198 90993.4763 91640.3294 Tributary Perimeter stories core 81 to 100 0 61 to 80 0 41 to 60 0 21 to 40 0 1 to 20 0 Interval Dimensions stories # stories 81 to 100 20 61 to 80 20 41 to 60 20 21 to 40 20 1 to 20 20 Axial Force stories 81 to 100 61 to 80 41 to 60 21 to 40 1 to 20 Design Constraints wind drift seismic drift core stress column stress outrigger stress belt stress diagonal stress d 25 25 25 25 25 y 12.5 12.5 12.5 12.5 12.5 Design Objective concrete cost steel cost total cost 0.38171318 0.33888699 0.65074505 0.47919283 0 0 371.71106 sin 0 0 0 0 0 n 2 2 2 2 2 area 32.7193289 83.9194121 136.217332 187.311318 235.789651 inertia 3408.26343 8741.60543 14189.3054 19511.5956 24561.422 Belt Superelement mem length mem sine 10.1519703 0.78802437 10.1519703 0.78802437 10.1519703 0.78802437 10.1519703 0.78802437 10.1519703 0.78802437 mem area 0 0 0 0 0 stiffness 0 0 0 0 0 Short Side Diagonal Superelement story mem length mem sine 100 86.33 0.92667671 80 87.87 0.91043587 60 89.5548 0.89330778 40 91.37408 0.87552181 20 93.3209 0.85725706 mem area 0.14479324 0.22760897 0.33499042 0.46512096 0.53578566 15637095.3 0 15637095.3 stiffness 62507.5897 93183.1084 129549.424 169342.733 183115.047 Tributary Area core column A column B/D column C/E 837.4 23.25 46.5 46.5 1190.55 33.0625 66.125 66.125 1543.7 42.875 85.75 85.75 1896.85 52.6875 105.375 105.375 2250 62.5 125 125 column A column B/D column C/E 10.0625 10.0625 10.0625 11.609375 11.609375 11.609375 13.15625 13.15625 13.15625 14.703125 14.703125 14.703125 16.25 16.25 16.25 Dead, Live, and Cladding Load core column A column B/D column C/E 112881.52 4180.6 7314.7 7314.7 160486.14 5664.2 10121.025 10121.025 208090.76 7147.8 12927.35 12927.35 255695.38 8631.4 15733.675 15733.675 303300 10115 18540 18540 height 80 80 80 80 80 core 112881.52 330168.415 683943.274 1176111.94 1804584.39 column A 4180.6 11883.0412 23930.0458 40415.1995 61215.8442 column B/D 7314.7 20713.8404 42246.9799 71944.11 109633.702 column C/E 7314.7 20712.8275 42244.3453 71939.4975 109626.974 Core Superelement stories EI 81 to 100 3.7021E+10 61 to 80 9.5129E+10 41 to 60 1.5469E+11 21 to 40 2.1309E+11 1 to 20 2.687E+11 2EI/L 925533933 2378212899 3867373425 5327308471 6717565889 4EI/L 1851067865 4756425799 7734746850 1.0655E+10 1.3435E+10 6EI/L^2 34707522.5 89182983.7 145026503 199774068 251908721 Column Area column A column B/D 1.17410209 1.88831534 2.82212245 4.957252 4.5240517 8.04346495 6.15532526 11.0308707 7.7258427 13.9113447 12EI/L^3 867688.062 2229574.59 3625662.59 4994351.69 6297718.02 LONG Diagonal Superelement - Stiffness Matrix Contribution (PARALLEL TO LOAD) KLV KVV stories KLL 81 to 100 17675.91 27236.8691 41969.3831 61 to 80 30676.5633 42204.6806 58065.0137 41 to 60 48539.3118 60297.7906 74904.7198 21 to 40 70946.6491 80347.2603 90993.4763 1 to 20 84631.6173 88066.2778 91640.3294 Column Superelements column A column B 636950.384 1024411.07 1531001.43 2689309.21 2454298.05 4363579.73 3339263.95 5984247.36 4191269.67 7546904.53 column C 512047.264 1344401.22 2181480.82 2991793.25 3773120.12 column C/E 1.88773185 4.95631787 8.04232559 11.0296525 13.9101203 column D 1024411.07 2689309.21 4363579.73 5984247.36 7546904.53 SHORT Diagonal Superelement - Stiffness Matrix Contribution (PERP TO LOAD) KLV KVV stories KLL 81 to 100 10283.1714 25353.0326 62507.5897 61 to 80 19235.5692 42337.1011 93183.1084 41 to 60 32793.457 65179.5478 129549.424 21 to 40 51576.0413 93456.0206 169342.733 1 to 20 66058.478 109983.187 183115.047 You created this PDF from an application that is not licensed to print to novaPDF printer (http://www.novapdf.com) hor 100 rot 100 ver A 100 ver B 100 ver C 100 ver D 100 hor 80 rot 80 ver A 80 ver B 80 ver C 80 ver D 80 hor 60 rot 60 ver A 60 ver B 60 ver C 60 ver D 60 hor 40 rot 40 ver A 40 ver B 40 ver C 40 ver D 40 hor 20 rot 20 ver A 20 ver B 20 ver C 20 ver D 20 hor 100 rot 100 ver A 100 ver B 100 ver C 100 ver D 100 hor 80 rot 80 ver A 80 ver B 80 885363.972 -34707522 -27236.869 0 0 0 -885363.97 -34707522 -27236.869 0 -34707522 1851067865 0 0 0 0 34707522.5 925533933 0 0 -27236.869 0 741427.357 0 0 0 27236.8691 0 -594981 0 0 0 0 1024411.07 0 0 0 0 0 -1024411.1 0 0 0 0 512047.264 0 0 0 0 0 0 0 0 0 0 1024411.07 0 0 0 0 -885363.97 34707522.5 27236.8691 0 0 0 3145615.13 -54475461 -14967.812 0 -34707522 925533933 0 0 0 0 -54475461 6607493664 0 0 -27236.869 0 -594981 0 0 0 -14967.812 0 2423676.91 0 0 0 0 -1024411.1 0 0 0 0 0 3713720.28 0 0 0 0 -512047.26 0 0 0 0 0 0 0 0 0 0 -1024411.1 0 0 0 0 0 0 0 0 0 0 -2260251.2 89182983.7 42204.6806 0 0 0 0 0 0 0 -89182984 2378212899 0 0 0 0 0 0 0 0 -42204.681 0 -1472936.4 0 0 0 0 0 0 0 0 0 0 -2689309.2 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 You created this PDF from an application that is not licensed to print to novaPDF printer (http://www.novapdf.com) ver C 80 ver D 80 hor 60 rot 60 ver A 60 ver B 60 ver C 60 ver D 60 hor 40 rot 40 ver A 40 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 -512047.26 0 0 0 0 0 0 0 0 0 0 0 -1024411.1 0 0 0 0 0 0 0 0 0 0 0 -2260251.2 -89182984 -42204.681 0 0 0 0 0 0 0 0 89182983.7 2378212899 0 0 0 0 0 0 0 0 0 42204.6806 0 -1472936.4 0 0 0 0 0 0 0 0 0 0 0 -2689309.2 0 0 0 0 0 1856448.49 0 0 0 0 0 -1344401.2 0 0 0 0 0 3713720.28 0 0 0 0 0 -2689309.2 0 0 0 0 0 5934453.05 -55843520 -18093.11 0 0 0 -3674201.9 -145026503 -60297.791 0 0 -55843520 1.2491E+10 0 0 0 0 145026503 3867373425 0 0 0 -18093.11 0 4341001.74 0 0 0 60297.7906 0 -2379393.3 0 0 0 0 0 7052888.94 0 0 0 0 0 -1344401.2 0 0 0 0 0 3525882.04 0 0 0 0 0 -2689309.2 0 0 0 0 0 7052888.94 0 0 0 0 0 -3674201.9 145026503 60297.7906 0 0 0 8739500.24 -54747564 -20049.47 0 0 -145026503 3867373425 0 0 0 0 -54747564 1.8389E+10 0 0 0 -60297.791 0 -2379393.3 0 0 0 -20049.47 0 6258352.35 0 0 0 0 0 -4363579.7 0 0 0 0 0 0 0 0 0 0 0 -2181480.8 0 0 0 0 0 0 0 0 0 0 0 -4363579.7 0 0 0 0 0 0 0 0 0 0 0 -5065298.3 199774068 80347.2603 0 0 0 0 0 0 0 0 -199774068 5327308471 0 0 0 0 0 0 0 0 0 -80347.26 0 -3248270.5 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 You created this PDF from an application that is not licensed to print to novaPDF printer (http://www.novapdf.com) ver B 40 ver C 40 ver D 40 hor 20 rot 20 ver A 20 ver B 20 ver C 20 ver D 20 wind force wind disp 0 0 0 0 0 0 0 0 0 1330.09094 0.30553586 0 0 0 0 0 0 0 0 0 -17008.525 0.00105017 0 0 0 0 0 0 0 0 0 0 0.01160755 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 2660.51415 0.22107105 0 0 0 0 0 0 0 0 0 -848.48204 0.00104872 0 0 0 0 0 0 0 0 0 0 0.01059798 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 2784.47627 0.13984295 0 0 0 0 0 0 0 0 0 -451.34945 0.00095597 0 0 0 0 0 0 0 0 0 0 0.00886057 -4363579.7 0 0 0 0 0 0 0 0 0 0 0 -2181480.8 0 0 0 0 0 0 0 0 0 0 0 -4363579.7 0 0 0 0 0 0 0 0 0 0 0 -5065298.3 -199774068 -80347.26 0 0 0 2810.08274 0.06993034 0 0 0 199774068 5327308471 0 0 0 0 236.584562 0.00076219 0 0 0 80347.2603 0 -3248270.5 0 0 0 0 0.0063923 10347827.1 0 0 0 0 0 -5984247.4 0 0 0 0 0 5173274.06 0 0 0 0 0 -2991793.2 0 0 0 0 0 10347827.1 0 0 0 0 0 -5984247.4 0 0 0 0 0 11447648 -52134653 -7719.0175 0 0 0 2620.79527 0.01989762 0 0 0 -52134653 2.409E+10 0 0 0 0 2104.36895 0.00045452 0 0 0 -7719.0175 0 8065625.21 0 0 0 0 0.00329004 -5984247.4 0 0 0 0 0 13531151.9 0 0 0 0 0 -2991793.2 0 0 0 0 0 6764913.37 0 0 0 0 0 -5984247.4 0 0 0 0 0 13531151.9 0 0 You created this PDF from an application that is not licensed to print to novaPDF printer (http://www.novapdf.com) wind non 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 wind non' 46.7046386 -558.38003 0 0 0 0 114.064882 -310.51632 0 0 0 0 130.955641 33.7479847 0 0 0 0 62.8330392 634.43305 0 0 0 0 -149.55284 1606.30861 0 0 0 0 seis force 9306.10303 -112144.19 0 0 0 0 17953.8115 -26843.668 0 0 0 0 16467.9074 15805.0665 0 0 0 0 10234.9953 35138.1663 0 0 0 0 3494.08303 29244.2567 0 0 0 0 seis disp 1.89602416 0.00673127 0.07316596 0 0 0 1.35604505 0.00666551 0.06645574 0 0 0 0.84264804 0.00598282 0.05510068 0 0 0 0.4106056 0.00462206 0.03933276 0 0 0 0.11303739 0.00262882 0.02003899 0 0 0 seis non 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 seis non' 298.3739 -3558.99 0 0 0 0 717.0503 -1875.34 0 0 0 0 784.6933 505.4961 0 0 0 0 303.1254 4102.239 0 0 0 0 -944.584 8784.438 0 0 0 0 You created this PDF from an application that is not licensed to print to novaPDF printer (http://www.novapdf.com) story story height m 0 1 4 2 4 3 4 4 4 5 4 6 4 7 4 8 4 9 4 10 4 11 4 12 4 13 4 14 4 15 4 16 4 17 4 18 4 19 4 20 4 21 4 22 4 23 4 24 4 25 4 26 4 27 4 28 4 29 4 30 4 31 4 32 4 33 4 34 4 35 4 36 4 37 4 38 4 39 4 40 4 41 4 42 4 43 4 44 4 45 4 46 4 47 4 48 4 49 4 50 4 51 4 52 4 53 4 54 4 55 4 56 4 57 4 58 4 59 4 60 4 61 4 62 4 63 4 64 4 65 4 66 4 67 4 68 4 69 4 70 4 71 4 72 4 73 4 74 4 75 4 76 4 77 4 78 4 79 4 80 4 81 4 82 4 83 4 total height m 0 4 8 12 16 20 24 28 32 36 40 44 48 52 56 60 64 68 72 76 80 84 88 92 96 100 104 108 112 116 120 124 128 132 136 140 144 148 152 156 160 164 168 172 176 180 184 188 192 196 200 204 208 212 216 220 224 228 232 236 240 244 248 252 256 260 264 268 272 276 280 284 288 292 296 300 304 308 312 316 320 324 328 332 int position m 0 4 8 12 16 20 24 28 32 36 40 44 48 52 56 60 64 68 72 76 80 4 8 12 16 20 24 28 32 36 40 44 48 52 56 60 64 68 72 76 80 4 8 12 16 20 24 28 32 36 40 44 48 52 56 60 64 68 72 76 80 4 8 12 16 20 24 28 32 36 40 44 48 52 56 60 64 68 72 76 80 4 8 12 int height m floor area m^2 perimeter m conc vol m^3 steel vol m^3 weight KN axial force KN pressure KPa width m lat force KN F bot KN F top KN M bot KNm 80 80 80 80 80 80 80 80 80 80 80 80 80 80 80 80 80 80 80 80 80 80 80 80 80 80 80 80 80 80 80 80 80 80 80 80 80 80 80 80 80 80 80 80 80 80 80 80 80 80 80 80 80 80 80 80 80 80 80 80 80 80 80 80 80 80 80 80 80 80 80 80 80 80 80 80 80 80 80 80 80 80 80 4000 4000 4000 4000 4000 4000 4000 4000 4000 4000 4000 4000 4000 4000 4000 4000 4000 4000 4000 4000 3372.1 3372.1 3372.1 3372.1 3372.1 3372.1 3372.1 3372.1 3372.1 3372.1 3372.1 3372.1 3372.1 3372.1 3372.1 3372.1 3372.1 3372.1 3372.1 3372.1 2744.2 2744.2 2744.2 2744.2 2744.2 2744.2 2744.2 2744.2 2744.2 2744.2 2744.2 2744.2 2744.2 2744.2 2744.2 2744.2 2744.2 2744.2 2744.2 2744.2 2116.3 2116.3 2116.3 2116.3 2116.3 2116.3 2116.3 2116.3 2116.3 2116.3 2116.3 2116.3 2116.3 2116.3 2116.3 2116.3 2116.3 2116.3 2116.3 2116.3 1488.4 1488.4 1488.4 260 260 260 260 260 260 260 260 260 260 260 260 260 260 260 260 260 260 260 260 235.25 235.25 235.25 235.25 235.25 235.25 235.25 235.25 235.25 235.25 235.25 235.25 235.25 235.25 235.25 235.25 235.25 235.25 235.25 235.25 210.5 210.5 210.5 210.5 210.5 210.5 210.5 210.5 210.5 210.5 210.5 210.5 210.5 210.5 210.5 210.5 210.5 210.5 210.5 210.5 185.75 185.75 185.75 185.75 185.75 185.75 185.75 185.75 185.75 185.75 185.75 185.75 185.75 185.75 185.75 185.75 185.75 185.75 185.75 185.75 161 161 161 1736.29961 1736.29961 1736.29961 1736.29961 1736.29961 1736.29961 1736.29961 1736.29961 1736.29961 1736.29961 1736.29961 1736.29961 1736.29961 1736.29961 1736.29961 1736.29961 1736.29961 1736.29961 1736.29961 1736.29961 1378.78567 1378.78567 1378.78567 1378.78567 1378.78567 1378.78567 1378.78567 1378.78567 1378.78567 1378.78567 1378.78567 1378.78567 1378.78567 1378.78567 1378.78567 1378.78567 1378.78567 1378.78567 1378.78567 1378.78567 1004.4907 1004.4907 1004.4907 1004.4907 1004.4907 1004.4907 1004.4907 1004.4907 1004.4907 1004.4907 1004.4907 1004.4907 1004.4907 1004.4907 1004.4907 1004.4907 1004.4907 1004.4907 1004.4907 1004.4907 619.573655 619.573655 619.573655 619.573655 619.573655 619.573655 619.573655 619.573655 619.573655 619.573655 619.573655 619.573655 619.573655 619.573655 619.573655 619.573655 619.573655 619.573655 619.573655 619.573655 240.817023 240.817023 240.817023 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 65989.7016 65989.7016 65989.7016 65989.7016 65989.7016 65989.7016 65989.7016 65989.7016 65989.7016 65989.7016 65989.7016 65989.7016 65989.7016 65989.7016 65989.7016 65989.7016 65989.7016 65989.7016 65989.7016 65989.7016 53870.9031 53870.9031 53870.9031 53870.9031 53870.9031 53870.9031 53870.9031 53870.9031 53870.9031 53870.9031 53870.9031 53870.9031 53870.9031 53870.9031 53870.9031 53870.9031 53870.9031 53870.9031 53870.9031 53870.9031 41387.9561 41387.9561 41387.9561 41387.9561 41387.9561 41387.9561 41387.9561 41387.9561 41387.9561 41387.9561 41387.9561 41387.9561 41387.9561 41387.9561 41387.9561 41387.9561 41387.9561 41387.9561 41387.9561 41387.9561 28674.5103 28674.5103 28674.5103 28674.5103 28674.5103 28674.5103 28674.5103 28674.5103 28674.5103 28674.5103 28674.5103 28674.5103 28674.5103 28674.5103 28674.5103 28674.5103 28674.5103 28674.5103 28674.5103 28674.5103 16094.7454 16094.7454 16094.7454 4120356.33 4054366.63 3988376.93 3922387.22 3856397.52 3790407.82 3724418.12 3658428.42 3592438.72 3526449.02 3460459.31 3394469.61 3328479.91 3262490.21 3196500.51 3130510.81 3064521.1 2998531.4 2932541.7 2866552 2800562.3 2746691.4 2692820.49 2638949.59 2585078.69 2531207.78 2477336.88 2423465.98 2369595.07 2315724.17 2261853.27 2207982.36 2154111.46 2100240.56 2046369.65 1992498.75 1938627.85 1884756.95 1830886.04 1777015.14 1723144.24 1681756.28 1640368.32 1598980.37 1557592.41 1516204.46 1474816.5 1433428.54 1392040.59 1350652.63 1309264.68 1267876.72 1226488.76 1185100.81 1143712.85 1102324.9 1060936.94 1019548.98 978161.027 936773.071 895385.115 866710.604 838036.094 809361.584 780687.073 752012.563 723338.053 694663.542 665989.032 637314.522 608640.011 579965.501 551290.991 522616.48 493941.97 465267.46 436592.949 407918.439 379243.929 350569.419 321894.908 305800.163 289705.417 1.53080805 1.77131367 1.92915587 2.04960518 2.14818816 2.232246 2.30587688 2.37161914 2.43116199 2.48569051 2.53607039 2.5829547 2.62684912 2.66815374 2.707191 2.74422478 2.779474 2.81312243 2.84532593 2.87621793 2.90591358 2.93451301 2.96210386 2.98876333 3.01455976 3.039554 3.06380047 3.08734801 3.1102407 3.13251842 3.15421738 3.17537059 3.19600819 3.21615782 3.23584488 3.25509276 3.27392306 3.29235577 3.31040941 3.32810121 3.34544721 3.36246235 3.37916061 3.39555504 3.41165791 3.4274807 3.44303422 3.45832864 3.47337354 3.48817796 3.50275044 3.51709905 3.53123145 3.54515488 3.55887622 3.57240199 3.5857384 3.59889136 3.61186648 3.62466913 3.63730442 3.64977723 3.6620922 3.67425381 3.68626632 3.69813379 3.70986015 3.72144914 3.73290435 3.74422924 3.75542712 3.76650116 3.77745444 3.78828989 3.79901036 3.80961856 3.82011714 3.83050862 3.84079545 3.85097999 3.86106451 3.87105122 3.88094223 50 49.805 49.61 49.415 49.22 49.025 48.83 48.635 48.44 48.245 48.05 47.855 47.66 47.465 47.27 47.075 46.88 46.685 46.49 46.295 46.1 45.905 45.71 45.515 45.32 45.125 44.93 44.735 44.54 44.345 44.15 43.955 43.76 43.565 43.37 43.175 42.98 42.785 42.59 42.395 42.2 42.005 41.81 41.615 41.42 41.225 41.03 40.835 40.64 40.445 40.25 40.055 39.86 39.665 39.47 39.275 39.08 38.885 38.69 38.495 38.3 38.105 37.91 37.715 37.52 37.325 37.13 36.935 36.74 36.545 36.35 36.155 35.96 35.765 35.57 35.375 35.18 34.985 34.79 34.595 34.4 34.205 34.01 306.16161 352.881109 382.82169 405.12496 422.935284 437.743441 450.383872 461.374787 471.061948 479.688554 487.432729 494.429189 500.782515 506.57567 511.875675 516.737526 521.206965 525.322483 529.116811 532.618037 535.850464 538.835279 541.59107 544.134251 546.479393 548.639498 550.62622 552.450053 554.120484 555.646118 557.03479 558.293657 559.429273 560.447662 561.35437 562.15452 562.852853 563.453766 563.961347 564.379404 564.711489 564.960925 565.13082 565.224093 565.243483 565.191568 565.070777 564.883401 564.631603 564.31743 563.942821 563.50961 563.019543 562.474274 561.875378 561.224353 560.522627 559.771562 558.972457 558.126553 557.235037 556.299045 555.319662 554.29793 553.234849 552.131375 550.98843 549.806896 548.587624 547.33143 546.039103 544.711398 543.349046 541.952752 540.523194 539.061027 537.566884 536.041376 534.485095 532.89861 531.282477 529.637228 527.963381 303.941939 343.000438 359.565272 362.991964 356.851646 343.190858 323.488216 298.970862 270.742855 239.844277 207.280768 174.039075 141.095474 109.420345 79.9805741 53.7407027 31.6633231 14.7090295 3.83609688 0 531.965549 523.747891 508.689413 487.544289 461.091988 430.133366 395.487282 357.987634 318.480748 277.823059 236.879044 196.519367 157.619198 121.056695 87.7116204 58.4640701 34.1933108 15.7767054 4.08871977 0 560.617331 549.142019 530.799123 506.440787 476.924189 443.110189 405.862085 366.044444 324.522014 282.158715 239.816684 198.355383 158.630756 121.494443 87.7930277 58.3673327 34.0517496 15.6736037 4.05255031 0 553.195083 540.722671 521.583992 496.650946 466.791904 432.870998 395.74744 356.274869 315.300737 273.665715 232.203128 191.738412 153.088594 117.061794 84.456749 56.0623468 32.6571882 15.0091585 3.87501694 0 527.430679 514.807385 495.889606 2.21967168 9.88067105 23.2564177 42.1329958 66.0836382 94.5525833 126.895656 162.403925 200.319093 239.844277 280.151961 320.390114 359.687042 397.155325 431.8951 462.996823 489.543642 510.613453 525.280714 532.618037 3.88491587 15.0873878 32.9016575 56.5899621 85.3874052 118.506131 155.138937 194.462419 235.639736 277.823059 320.155746 361.774289 401.810075 439.390967 473.64275 503.69045 528.659542 547.677061 559.872627 564.379404 4.0941583 15.8189059 34.3316973 58.7833056 88.3192942 122.081379 159.208691 198.838957 240.109589 282.158715 324.126136 365.154228 404.388787 440.979831 474.08235 502.85702 526.470877 544.097958 554.919907 558.126553 4.03995402 15.5763733 33.7356695 57.6469847 86.4429451 119.260377 155.24099 193.532027 233.286887 273.665715 313.835974 352.972986 390.260453 424.890958 456.066445 482.99868 504.909696 521.032218 530.610078 532.89861 3.85179795 14.8298424 32.0737754 1105.24341 2286.66959 3319.06405 4148.47959 4758.02195 5147.86287 5328.04121 5315.03754 5129.86461 4796.88554 4343.02561 3797.21617 3189.98462 2553.14138 1919.53378 1322.84807 797.446656 378.232188 100.532194 0 1934.42018 3491.65261 4695.59458 5571.93473 6147.89318 6452.00049 6513.90818 6364.22461 6034.37207 5556.46118 4963.17998 4287.69528 3563.56447 2824.65622 2105.07889 1439.11557 861.164865 405.686712 107.152656 0 2038.60848 3660.94679 4899.68421 5787.89471 6358.98918 6646.65284 6684.78729 6507.45677 6148.83816 5643.1743 5024.73053 4327.75381 3586.43449 2834.87034 2107.03267 1436.73434 857.599619 403.035525 106.204767 0 2011.61849 3604.81781 4814.62147 5676.01081 6223.89205 6493.06497 6518.19312 6333.77544 5974.11922 5473.3143 4865.2084 4183.38354 3461.13343 2731.44187 2026.96198 1379.99623 822.477332 385.949791 101.552168 0 1917.92974 3432.04923 4577.44252 M top disp KNm coefficients 58.170706 254.074399 585.717186 1037.1199 1586.00732 2206.22694 2868.94527 3543.35836 4197.16196 4796.88554 5308.14242 5695.82426 5924.25716 5957.32988 5758.60134 5291.39227 4518.86439 3404.08969 1910.11169 0 101.811588 387.961401 828.634337 1392.98368 2049.29773 2765.14307 3507.48902 4242.81641 4937.21351 5556.46118 6066.10886 6431.54292 6618.0483 6590.86451 6315.23667 5756.46229 4879.93424 3651.1804 2035.90046 0 107.295183 406.771866 864.650155 1446.97368 2119.66306 2848.5655 3599.50085 4338.30452 5030.86758 5643.1743 6141.33732 6491.63071 6660.52119 6614.69746 6321.098 5746.93737 4859.73118 3627.31972 2017.89057 0 105.874657 400.535312 849.639082 1419.0027 2074.63068 2782.74213 3509.7963 4222.51696 4887.91573 5473.3143 5946.36583 6275.0753 6427.81922 6373.36436 6080.88593 5519.98491 4660.70488 3473.54812 1929.49119 0 100.943671 381.338804 807.783974 -6.706E-09 3.6455E-06 0 0 -5.329E-09 2.5624E-06 0.00045452 0.01989762 -4.634E-09 1.7672E-06 0.00076219 0.06993034 -4.065E-09 1.0675E-06 0.00095597 0.13984295 -1.989E-09 2.4775E-07 0.00104872 disp I m disp II m 5.7899E-05 0.00022988 0.00051336 0.00090578 0.00140455 0.0020071 0.00271085 0.00351324 0.00441168 0.0054036 0.00648642 0.00765757 0.00891448 0.01025456 0.01167525 0.01317397 0.01474814 0.01639519 0.01811254 0.01989762 0.02175636 0.02369505 0.02571165 0.02780411 0.02997038 0.03220841 0.03451617 0.03689159 0.03933265 0.04183728 0.04440345 0.0470291 0.0497122 0.05245069 0.05524253 0.05808567 0.06097807 0.06391768 0.06690245 0.06993034 0.07300708 0.07613859 0.0793231 0.08255881 0.08584396 0.08917676 0.09255544 0.0959782 0.09944328 0.1029489 0.10649327 0.11007461 0.11369116 0.11734111 0.12102271 0.12473416 0.12847369 0.13223952 0.13602987 0.13984295 0.14368363 0.14755692 0.15146124 0.15539503 0.15935675 0.16334482 0.16735768 0.17139378 0.17545155 0.17952944 0.18362587 0.1877393 0.19186815 0.19601087 0.20016591 0.20433169 0.20850665 0.21268924 0.21687789 0.22107105 0.22526978 0.22947567 0.23368796 4.0475E-07 1.4625E-06 2.9528E-06 4.6757E-06 6.4544E-06 8.1358E-06 9.5922E-06 1.0722E-05 1.145E-05 1.1729E-05 1.1539E-05 1.089E-05 9.8189E-06 8.3945E-06 6.7136E-06 4.9039E-06 3.1234E-06 1.5608E-06 4.3599E-07 0 6.2301E-07 2.2382E-06 4.495E-06 7.0833E-06 9.7336E-06 1.2217E-05 1.4347E-05 1.5976E-05 1.7E-05 1.7355E-05 1.7018E-05 1.6011E-05 1.4394E-05 1.227E-05 9.7863E-06 7.1294E-06 4.5292E-06 2.2577E-06 6.2914E-07 0 8.7798E-07 3.1518E-06 6.3251E-06 9.9599E-06 1.3677E-05 1.7155E-05 2.0131E-05 2.2402E-05 2.3821E-05 2.4302E-05 2.3816E-05 2.2391E-05 2.0117E-05 1.7138E-05 1.3661E-05 9.9458E-06 6.3146E-06 3.1459E-06 8.7612E-07 0 1.3896E-06 4.9867E-06 1.0004E-05 1.5747E-05 2.1615E-05 2.7102E-05 3.1793E-05 3.5367E-05 3.7595E-05 3.834E-05 3.756E-05 3.5301E-05 3.1705E-05 2.7002E-05 2.1515E-05 1.5659E-05 9.9389E-06 4.9498E-06 1.3781E-06 0 3.3714E-06 1.2095E-05 2.4257E-05 total disp m 0 5.8303E-05 0.00023134 0.00051632 0.00091045 0.001411 0.00201523 0.00272045 0.00352396 0.00442313 0.00541533 0.00649796 0.00766846 0.0089243 0.01026296 0.01168197 0.01317887 0.01475126 0.01639675 0.01811297 0.01989762 0.02175698 0.02369729 0.02571615 0.02781119 0.02998011 0.03222063 0.03453051 0.03690757 0.03934965 0.04185464 0.04442047 0.04704511 0.04972659 0.05246296 0.05525232 0.0580928 0.0609826 0.06391994 0.06690308 0.06993034 0.07300796 0.07614175 0.07932942 0.08256877 0.08585764 0.08919392 0.09257557 0.0960006 0.0994671 0.1029732 0.10651708 0.11009701 0.11371127 0.11735825 0.12103637 0.12474411 0.12848 0.13224266 0.13603074 0.13984295 0.14368502 0.1475619 0.15147124 0.15541078 0.15937836 0.16337192 0.16738948 0.17142915 0.17548915 0.17956778 0.18366343 0.1877746 0.19189986 0.19603788 0.20018742 0.20434734 0.20851659 0.21269419 0.21687927 0.22107105 0.22527315 0.22948776 0.23371222 rot I rad rot II rad total rot rad 2.8842E-05 5.704E-05 8.4595E-05 0.00011151 0.00013777 0.0001634 0.00018837 0.00021271 0.0002364 0.00025945 0.00028185 0.00030361 0.00032473 0.0003452 0.00036503 0.00038422 0.00040276 0.00042066 0.00043791 0.00045452 0.00047476 0.0004945 0.00051372 0.00053243 0.00055062 0.00056831 0.00058548 0.00060215 0.0006183 0.00063394 0.00064906 0.00066368 0.00067778 0.00069138 0.00070446 0.00071703 0.00072909 0.00074063 0.00075167 0.00076219 0.00077611 0.00078958 0.0008026 0.00081518 0.00082732 0.00083901 0.00085025 0.00086106 0.00087141 0.00088132 0.00089079 0.00089981 0.00090839 0.00091652 0.0009242 0.00093145 0.00093824 0.0009446 0.0009505 0.00095597 0.00096431 0.00097227 0.00097983 0.000987 0.00099379 0.00100018 0.00100619 0.0010118 0.00101702 0.00102185 0.0010263 0.00103035 0.00103401 0.00103728 0.00104017 0.00104266 0.00104476 0.00104647 0.00104779 0.00104872 0.00105061 0.0010523 0.00105381 1.9241E-07 3.2728E-07 4.0951E-07 4.4458E-07 4.3836E-07 3.9702E-07 3.2694E-07 2.3476E-07 1.2724E-07 1.1342E-08 -1.059E-07 -2.172E-07 -3.153E-07 -3.928E-07 -4.423E-07 -4.56E-07 -4.264E-07 -3.457E-07 -2.062E-07 0 2.9522E-07 4.9776E-07 6.1771E-07 6.652E-07 6.5044E-07 5.8364E-07 4.751E-07 3.3513E-07 1.7408E-07 2.3342E-09 -1.697E-07 -3.315E-07 -4.728E-07 -5.828E-07 -6.513E-07 -6.676E-07 -6.212E-07 -5.015E-07 -2.98E-07 0 4.1587E-07 7.0036E-07 8.6805E-07 9.3356E-07 9.1151E-07 8.1651E-07 6.6318E-07 4.6612E-07 2.3995E-07 -7.232E-10 -2.413E-07 -4.672E-07 -6.639E-07 -8.167E-07 -9.112E-07 -9.328E-07 -8.67E-07 -6.992E-07 -4.15E-07 0 6.581E-07 1.1076E-06 1.372E-06 1.4745E-06 1.4386E-06 1.2876E-06 1.0446E-06 7.3279E-07 3.7542E-07 -4.452E-09 -3.838E-07 -7.396E-07 -1.049E-06 -1.289E-06 -1.437E-06 -1.47E-06 -1.365E-06 -1.101E-06 -6.529E-07 0 1.5964E-06 2.6857E-06 3.3252E-06 2.9034E-05 5.7368E-05 8.5004E-05 0.00011195 0.00013821 0.00016379 0.0001887 0.00021295 0.00023653 0.00025946 0.00028175 0.0003034 0.00032442 0.00034481 0.00036459 0.00038376 0.00040233 0.00042031 0.0004377 0.00045452 0.00047506 0.00049499 0.00051433 0.00053309 0.00055127 0.00056889 0.00058596 0.00060248 0.00061847 0.00063394 0.00064889 0.00066335 0.00067731 0.00069079 0.00070381 0.00071636 0.00072846 0.00074013 0.00075137 0.00076219 0.00077652 0.00079028 0.00080347 0.00081612 0.00082823 0.00083982 0.00085092 0.00086152 0.00087165 0.00088132 0.00089055 0.00089934 0.00090772 0.0009157 0.00092329 0.00093051 0.00093738 0.0009439 0.00095009 0.00095597 0.00096497 0.00097337 0.0009812 0.00098848 0.00099523 0.00100147 0.00100723 0.00101253 0.0010174 0.00102185 0.00102591 0.00102961 0.00103296 0.001036 0.00103873 0.00104119 0.00104339 0.00104537 0.00104714 0.00104872 0.00105221 0.00105499 0.00105713 You created this PDF from an application that is not licensed to print to novaPDF printer (http://www.novapdf.com) drift P moment KNm 1.4576E-05 4.3259E-05 7.1244E-05 9.8535E-05 0.00012514 0.00015106 0.0001763 0.00020088 0.00022479 0.00024805 0.00027066 0.00029263 0.00031396 0.00033467 0.00035475 0.00037423 0.0003931 0.00041137 0.00042906 0.00044616 0.00046484 0.00048508 0.00050471 0.00052376 0.00054223 0.00056013 0.00057747 0.00059426 0.00061052 0.00062625 0.00064146 0.00065616 0.00067037 0.00068409 0.00069734 0.00071012 0.00072245 0.00073433 0.00074579 0.00075681 0.00076941 0.00078345 0.00079692 0.00080984 0.00082222 0.00083407 0.00084541 0.00085626 0.00086663 0.00087652 0.00088597 0.00089498 0.00090357 0.00091174 0.00091953 0.00092693 0.00093397 0.00094066 0.00094702 0.00095305 0.00096052 0.00096922 0.00097733 0.00098489 0.0009919 0.00099839 0.00100439 0.00100992 0.001015 0.00101966 0.00102391 0.00102779 0.00103131 0.00103451 0.00103739 0.00103998 0.00104231 0.0010444 0.00104627 0.00104794 0.00105052 0.00105365 0.00105611 240.23102 701.555942 1136.58794 1545.96224 1930.31581 2290.28476 2626.50285 2939.60046 3230.20381 3498.93438 3746.4084 3973.23643 4180.02307 4367.36659 4535.85872 4686.08438 4818.62154 4934.04095 5032.90605 5115.77278 5207.26888 5329.42939 5436.41446 5528.71822 5606.82664 5671.21737 5722.35972 5760.71456 5786.73421 5800.86242 5803.53427 5795.17615 5776.20567 5747.03162 5708.05395 5659.6637 5602.24297 5536.16491 5461.79365 5379.48431 5303.18394 5270.26577 5228.96509 5179.65791 5122.71059 5058.47984 4987.31269 4909.5465 4825.5089 4735.51785 4639.8816 4538.89867 4432.85789 4322.03837 4206.70953 4087.13106 3963.55298 3836.2156 3705.34956 3571.17584 3440.13431 3360.13199 3276.16556 3188.51277 3097.44049 3003.20475 2906.05078 2806.21298 2703.91499 2599.36969 2492.77922 2384.33502 2274.21787 2162.59786 2049.63449 1935.47667 1820.26272 1704.12047 1587.16722 1469.50984 1352.6338 1288.8296 1223.84676 P F bot KN P F top KN P M bot KNm P M top KNm -0.855823 -4.7355026 -10.868622 -18.551547 -27.145066 -36.071985 -44.814705 -52.912808 -59.960658 -65.60502 -69.542706 -71.518256 -71.321644 -68.786024 -63.785513 -56.233013 -46.078068 -33.304776 -17.929728 0 -18.550895 -35.973648 -51.985713 -66.344619 -78.846 -89.321674 -97.637763 -103.69286 -107.41625 -108.76617 -107.7281 -104.31317 -98.556509 -90.515748 -80.269509 -67.915964 -53.571448 -37.369113 -19.45764 0 -18.892593 -35.574294 -50.001979 -62.155895 -72.038118 -79.671057 -85.096023 -88.371837 -89.573509 -88.79096 -86.127802 -81.700176 -75.635638 -68.072104 -59.156853 -49.045573 -37.901475 -25.894455 -13.200308 0 -12.255478 -22.680891 -31.328333 -38.262153 -43.557757 -47.300475 -49.584491 -50.511834 -50.191422 -48.738182 -46.272214 -42.91803 -38.803842 -34.060916 -28.822985 -23.22572 -17.406262 -11.502813 -5.6542832 0 -4.8187579 -8.6995998 -11.703035 0.85582301 4.73550261 10.8686222 18.5515469 27.1450661 36.071985 44.8147049 52.9128082 59.9606582 65.6050197 69.5427059 71.5182558 71.3216437 68.7860238 63.7855132 56.2330126 46.0780685 33.3047764 17.9297278 0 18.5508954 35.9736484 51.9857132 66.3446187 78.8459996 89.3216735 97.6377628 103.692862 107.416254 108.76617 107.728105 104.313171 98.5565092 90.515748 80.2695087 67.9159644 53.5714484 37.3691131 19.4576399 0 18.8925928 35.574294 50.0019787 62.1558949 72.0381176 79.6710575 85.0960228 88.371837 89.573509 88.7909598 86.1278022 81.7001761 75.6356378 68.0721044 59.1568528 49.0455727 37.9014754 25.8944553 13.2003078 0 12.2554785 22.6808909 31.3283332 38.2621532 43.5577568 47.3004748 49.5844914 50.5118336 50.191422 48.7381816 46.2722142 42.9180304 38.8038423 34.0609163 28.822985 23.22572 17.4062623 11.5028131 5.65428322 0 4.8187579 8.69959979 11.7030346 193.986548 441.980243 531.354861 494.707917 361.934215 160.319933 -85.361343 -352.75205 -621.81423 -874.7336 -1095.8245 -1271.4357 -1389.8577 -1441.231 -1417.4558 -1312.1036 -1120.3295 -838.78696 -465.54381 0 4204.86962 3357.54051 2541.52376 1769.18983 1051.27999 396.985216 -185.97669 -691.28575 -1113.9463 -1450.2156 -1697.5338 -1854.4564 -1920.5884 -1896.5204 -1783.7669 -1584.7058 -1302.5215 -941.14803 -505.21591 0 4282.32103 3320.26744 2444.54118 1657.49053 960.508235 354.093589 -162.08766 -589.14558 -928.91046 -1183.8795 -1357.1654 -1452.4476 -1473.9252 -1426.2727 -1314.5967 -1144.3967 -921.52607 -652.15665 -342.74483 0 2777.90845 2116.88315 1531.6074 1020.32409 580.770091 210.224332 -94.44665 -336.74556 -520.50364 -649.84242 -729.13792 -762.98721 -756.17744 -713.65729 -640.51078 -541.93347 -423.21108 -289.70048 -146.81297 0 1092.25179 811.962647 572.148361 22.2213693 119.26451 264.256695 432.869428 603.223691 755.793971 873.312197 940.672146 944.834615 874.733595 721.183616 476.788372 135.85075 -305.71566 -850.47351 -1499.547 -2252.7056 -3108.4458 -4064.0716 -5115.7728 481.672372 906.002996 1263.96636 1548.0411 1752.13332 1871.50173 1902.68461 1843.42866 1692.61976 1450.2156 1117.18035 695.421138 187.726684 -402.29221 -1070.2601 -1811.0924 -2619.0486 -3487.7839 -4410.3984 -5379.4843 490.544514 895.945182 1215.73438 1450.30421 1600.84706 1669.29835 1658.28147 1571.05488 1411.46135 1183.87946 893.177208 544.66784 144.067881 -302.54269 -788.75804 -1307.8819 -1852.961 -2416.8158 -2992.0698 -3571.1758 318.212423 571.222438 761.708494 892.783575 967.950152 991.057567 966.261883 897.988153 790.895134 649.842421 479.859999 286.120203 73.9120806 -151.38185 -384.30647 -619.35253 -850.97282 -1073.5959 -1281.6375 -1469.5098 125.118626 219.101032 284.544372 story story height total height m m 0 0 1 4 4 2 4 8 3 4 12 4 4 16 5 4 20 6 4 24 7 4 28 8 4 32 9 4 36 10 4 40 11 4 44 12 4 48 13 4 52 14 4 56 15 4 60 16 4 64 17 4 68 18 4 72 19 4 76 20 4 80 21 4 84 22 4 88 23 4 92 24 4 96 25 4 100 26 4 104 27 4 108 28 4 112 29 4 116 30 4 120 31 4 124 32 4 128 33 4 132 34 4 136 35 4 140 36 4 144 37 4 148 38 4 152 39 4 156 40 4 160 41 4 164 42 4 168 43 4 172 44 4 176 45 4 180 46 4 184 47 4 188 48 4 192 49 4 196 50 4 200 51 4 204 52 4 208 53 4 212 54 4 216 55 4 220 56 4 224 57 4 228 58 4 232 59 4 236 60 4 240 61 4 244 62 4 248 63 4 252 64 4 256 65 4 260 66 4 264 67 4 268 68 4 272 69 4 276 70 4 280 71 4 284 72 4 288 73 4 292 74 4 296 75 4 300 76 4 304 77 4 308 78 4 312 79 4 316 80 4 320 81 4 324 82 4 328 83 4 332 84 4 336 85 4 340 86 4 344 87 4 348 88 4 352 89 4 356 90 4 360 91 4 364 92 4 368 93 4 372 94 4 376 95 4 380 96 4 384 97 4 388 98 4 392 99 4 396 100 4 400 int position m 0 4 8 12 16 20 24 28 32 36 40 44 48 52 56 60 64 68 72 76 80 4 8 12 16 20 24 28 32 36 40 44 48 52 56 60 64 68 72 76 80 4 8 12 16 20 24 28 32 36 40 44 48 52 56 60 64 68 72 76 80 4 8 12 16 20 24 28 32 36 40 44 48 52 56 60 64 68 72 76 80 4 8 12 16 20 24 28 32 36 40 44 48 52 56 60 64 68 72 76 80 int height m floor area m^2 perimeter m conc vol m^3 steel vol m^3 weight KN axial force KN seis W KN W*H^ KN*m^2 lat force KN F bot KN F top KN M bot KNm 80 80 80 80 80 80 80 80 80 80 80 80 80 80 80 80 80 80 80 80 80 80 80 80 80 80 80 80 80 80 80 80 80 80 80 80 80 80 80 80 80 80 80 80 80 80 80 80 80 80 80 80 80 80 80 80 80 80 80 80 80 80 80 80 80 80 80 80 80 80 80 80 80 80 80 80 80 80 80 80 80 80 80 80 80 80 80 80 80 80 80 80 80 80 80 80 80 80 80 80 4000 4000 4000 4000 4000 4000 4000 4000 4000 4000 4000 4000 4000 4000 4000 4000 4000 4000 4000 4000 3372.1 3372.1 3372.1 3372.1 3372.1 3372.1 3372.1 3372.1 3372.1 3372.1 3372.1 3372.1 3372.1 3372.1 3372.1 3372.1 3372.1 3372.1 3372.1 3372.1 2744.2 2744.2 2744.2 2744.2 2744.2 2744.2 2744.2 2744.2 2744.2 2744.2 2744.2 2744.2 2744.2 2744.2 2744.2 2744.2 2744.2 2744.2 2744.2 2744.2 2116.3 2116.3 2116.3 2116.3 2116.3 2116.3 2116.3 2116.3 2116.3 2116.3 2116.3 2116.3 2116.3 2116.3 2116.3 2116.3 2116.3 2116.3 2116.3 2116.3 1488.4 1488.4 1488.4 1488.4 1488.4 1488.4 1488.4 1488.4 1488.4 1488.4 1488.4 1488.4 1488.4 1488.4 1488.4 1488.4 1488.4 1488.4 1488.4 1488.4 260 260 260 260 260 260 260 260 260 260 260 260 260 260 260 260 260 260 260 260 235.25 235.25 235.25 235.25 235.25 235.25 235.25 235.25 235.25 235.25 235.25 235.25 235.25 235.25 235.25 235.25 235.25 235.25 235.25 235.25 210.5 210.5 210.5 210.5 210.5 210.5 210.5 210.5 210.5 210.5 210.5 210.5 210.5 210.5 210.5 210.5 210.5 210.5 210.5 210.5 185.75 185.75 185.75 185.75 185.75 185.75 185.75 185.75 185.75 185.75 185.75 185.75 185.75 185.75 185.75 185.75 185.75 185.75 185.75 185.75 161 161 161 161 161 161 161 161 161 161 161 161 161 161 161 161 161 161 161 161 1736.29961 1736.29961 1736.29961 1736.29961 1736.29961 1736.29961 1736.29961 1736.29961 1736.29961 1736.29961 1736.29961 1736.29961 1736.29961 1736.29961 1736.29961 1736.29961 1736.29961 1736.29961 1736.29961 1736.29961 1378.78567 1378.78567 1378.78567 1378.78567 1378.78567 1378.78567 1378.78567 1378.78567 1378.78567 1378.78567 1378.78567 1378.78567 1378.78567 1378.78567 1378.78567 1378.78567 1378.78567 1378.78567 1378.78567 1378.78567 1004.4907 1004.4907 1004.4907 1004.4907 1004.4907 1004.4907 1004.4907 1004.4907 1004.4907 1004.4907 1004.4907 1004.4907 1004.4907 1004.4907 1004.4907 1004.4907 1004.4907 1004.4907 1004.4907 1004.4907 619.573655 619.573655 619.573655 619.573655 619.573655 619.573655 619.573655 619.573655 619.573655 619.573655 619.573655 619.573655 619.573655 619.573655 619.573655 619.573655 619.573655 619.573655 619.573655 619.573655 240.817023 240.817023 240.817023 240.817023 240.817023 240.817023 240.817023 240.817023 240.817023 240.817023 240.817023 240.817023 240.817023 240.817023 240.817023 240.817023 240.817023 240.817023 240.817023 240.817023 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 65989.7016 65989.7016 65989.7016 65989.7016 65989.7016 65989.7016 65989.7016 65989.7016 65989.7016 65989.7016 65989.7016 65989.7016 65989.7016 65989.7016 65989.7016 65989.7016 65989.7016 65989.7016 65989.7016 65989.7016 53870.9031 53870.9031 53870.9031 53870.9031 53870.9031 53870.9031 53870.9031 53870.9031 53870.9031 53870.9031 53870.9031 53870.9031 53870.9031 53870.9031 53870.9031 53870.9031 53870.9031 53870.9031 53870.9031 53870.9031 41387.9561 41387.9561 41387.9561 41387.9561 41387.9561 41387.9561 41387.9561 41387.9561 41387.9561 41387.9561 41387.9561 41387.9561 41387.9561 41387.9561 41387.9561 41387.9561 41387.9561 41387.9561 41387.9561 41387.9561 28674.5103 28674.5103 28674.5103 28674.5103 28674.5103 28674.5103 28674.5103 28674.5103 28674.5103 28674.5103 28674.5103 28674.5103 28674.5103 28674.5103 28674.5103 28674.5103 28674.5103 28674.5103 28674.5103 28674.5103 16094.7454 16094.7454 16094.7454 16094.7454 16094.7454 16094.7454 16094.7454 16094.7454 16094.7454 16094.7454 16094.7454 16094.7454 16094.7454 16094.7454 16094.7454 16094.7454 16094.7454 16094.7454 16094.7454 16094.7454 4120356.33 4054366.63 3988376.93 3922387.22 3856397.52 3790407.82 3724418.12 3658428.42 3592438.72 3526449.02 3460459.31 3394469.61 3328479.91 3262490.21 3196500.51 3130510.81 3064521.1 2998531.4 2932541.7 2866552 2800562.3 2746691.4 2692820.49 2638949.59 2585078.69 2531207.78 2477336.88 2423465.98 2369595.07 2315724.17 2261853.27 2207982.36 2154111.46 2100240.56 2046369.65 1992498.75 1938627.85 1884756.95 1830886.04 1777015.14 1723144.24 1681756.28 1640368.32 1598980.37 1557592.41 1516204.46 1474816.5 1433428.54 1392040.59 1350652.63 1309264.68 1267876.72 1226488.76 1185100.81 1143712.85 1102324.9 1060936.94 1019548.98 978161.027 936773.071 895385.115 866710.604 838036.094 809361.584 780687.073 752012.563 723338.053 694663.542 665989.032 637314.522 608640.011 579965.501 551290.991 522616.48 493941.97 465267.46 436592.949 407918.439 379243.929 350569.419 321894.908 305800.163 289705.417 273610.672 257515.927 241421.181 225326.436 209231.69 193136.945 177042.2 160947.454 144852.709 128757.963 112663.218 96568.4725 80473.727 64378.9816 48284.2362 32189.4908 16094.7454 56389.7016 56389.7016 56389.7016 56389.7016 56389.7016 56389.7016 56389.7016 56389.7016 56389.7016 56389.7016 56389.7016 56389.7016 56389.7016 56389.7016 56389.7016 56389.7016 56389.7016 56389.7016 56389.7016 56389.7016 45777.8631 45777.8631 45777.8631 45777.8631 45777.8631 45777.8631 45777.8631 45777.8631 45777.8631 45777.8631 45777.8631 45777.8631 45777.8631 45777.8631 45777.8631 45777.8631 45777.8631 45777.8631 45777.8631 45777.8631 34801.8761 34801.8761 34801.8761 34801.8761 34801.8761 34801.8761 34801.8761 34801.8761 34801.8761 34801.8761 34801.8761 34801.8761 34801.8761 34801.8761 34801.8761 34801.8761 34801.8761 34801.8761 34801.8761 34801.8761 23595.3903 23595.3903 23595.3903 23595.3903 23595.3903 23595.3903 23595.3903 23595.3903 23595.3903 23595.3903 23595.3903 23595.3903 23595.3903 23595.3903 23595.3903 23595.3903 23595.3903 23595.3903 23595.3903 23595.3903 12522.5854 12522.5854 12522.5854 12522.5854 12522.5854 12522.5854 12522.5854 12522.5854 12522.5854 12522.5854 12522.5854 12522.5854 12522.5854 12522.5854 12522.5854 12522.5854 12522.5854 12522.5854 12522.5854 12522.5854 902235.225 3608940.9 8120117.03 14435763.6 22555880.6 32480468.1 44209526 57743054.4 73081053.2 90223522.5 109170462 129921872 152477753 176838104 203002926 230972218 260745980 292324213 325706916 360894090 323008602 354503772 387463833 421888786 457778631 495133367 533952995 574237514 615986926 659201228 703880423 750024509 797633486 846707356 897246116 949249769 1002718313 1057651749 1114050076 1171913295 936031259 982248151 1029578702 1078022914 1127580785 1178252317 1230037509 1282936360 1336948872 1392075044 1448314876 1505668367 1564135519 1623716331 1684410803 1746218935 1809140727 1873176179 1938325291 2004588063 1404775158 1451210886 1498401667 1546347500 1595048386 1644504324 1694715314 1745681357 1797402453 1849878601 1903109802 1957096055 2011837360 2067333718 2123585129 2180591592 2238353107 2296869675 2356141296 2416167969 1314570926 1347229829 1380289454 1413749802 1447610873 1481872667 1516535183 1551598423 1587062385 1622927069 1659192476 1695858607 1732925459 1770393035 1808261333 1846530354 1885200098 1924270564 1963741754 2003613666 1.79180073 7.16720294 16.1262066 28.6688118 44.7950184 64.5048264 87.798236 114.675247 145.135859 179.180073 216.807889 258.019306 302.814324 351.192944 403.155165 458.700988 517.830412 580.543438 646.840065 716.720294 641.481328 704.029394 769.486672 837.853163 909.128866 983.313781 1060.40791 1140.41125 1223.3238 1309.14557 1397.87654 1489.51673 1584.06614 1681.52475 1781.89258 1885.16962 1991.35587 2100.45133 2212.45601 2327.3699 1858.91822 1950.703 2044.69946 2140.9076 2239.32742 2339.95892 2442.80211 2547.85698 2655.12352 2764.60175 2876.29166 2990.19326 3106.30653 3224.63149 3345.16812 3467.91644 3592.87644 3720.04812 3849.43148 3981.02653 2789.82364 2882.04302 2975.7619 3070.98028 3167.69817 3265.91555 3365.63244 3466.84883 3569.56473 3673.78012 3779.49502 3886.70942 3995.42332 4105.63672 4217.34963 4330.56204 4445.27395 4561.48536 4679.19627 4798.40669 2610.68188 2675.54107 2741.19608 2807.6469 2874.89355 2942.93601 3011.77429 3081.40839 3151.83831 3223.06405 3295.0856 3367.90297 3441.51616 3515.92517 3591.13 3667.13065 3743.92711 3821.51939 3899.90749 3979.09141 1.77881018 6.96652126 15.1465396 25.6872553 37.7957967 50.5717839 63.061083 74.3095601 83.4168352 89.5900367 92.1975547 90.8227956 85.3179358 75.8576759 62.9929946 47.7049028 31.4581975 16.2552163 4.68959047 0 636.830588 684.316571 722.740357 750.716434 767.077481 770.918005 761.637981 738.98649 703.105355 654.572783 594.447 524.30989 446.310634 363.209346 278.420715 196.05764 120.974869 58.8126373 16.0403061 0 1845.44106 1896.08331 1920.48397 1918.25321 1889.43251 1834.5278 1754.54262 1651.01132 1526.03225 1382.30088 1223.14303 1052.54803 875.201865 696.520401 522.682519 360.66331 218.267244 104.161347 27.9083782 0 2769.59742 2801.34581 2794.98436 2751.59833 2672.74533 2560.47779 2417.3655 2246.51804 2051.60733 1836.89006 1607.23026 1368.12172 1125.71052 886.817533 658.96088 450.378452 270.050392 127.72159 33.924173 0 2591.75443 2600.62592 2574.66841 2515.65162 2425.69143 2307.26183 2163.20688 1996.75264 1811.51907 1611.53202 1401.23515 1185.50185 969.647179 759.439837 561.114063 381.381587 227.443572 107.002543 28.2743293 0 0.01299056 0.20068168 0.97966705 2.98155642 6.99922162 13.9330425 24.737153 40.3656869 61.7190242 89.5900367 124.610334 167.19651 217.496388 275.335268 340.162171 410.996085 486.372215 564.288222 642.150475 716.720294 4.65073963 19.712823 46.7463153 87.1367289 142.051385 212.395777 298.769928 401.42476 520.218447 654.572783 803.429544 965.206844 1137.7555 1318.3154 1503.47186 1689.11198 1870.381 2041.63869 2196.4157 2327.3699 13.4771571 54.6196839 124.215492 222.65439 349.89491 505.431128 688.259494 896.845656 1129.09128 1382.30088 1653.14863 1937.64523 2231.10467 2528.11109 2822.4856 3107.25313 3374.6092 3615.88677 3821.5231 3981.02653 20.2262214 80.6972045 180.777535 319.381949 494.952839 705.43776 948.266941 1220.33079 1517.9574 1836.89006 2172.26476 2518.5877 2869.7128 3218.81919 3558.38875 3880.18359 4175.22356 4433.76377 4645.2721 4798.40669 18.9274436 74.9151499 166.527662 291.995278 449.202117 635.674178 848.567407 1084.65575 1340.31924 1611.53202 1893.85045 2182.40113 2471.86898 2756.48534 3030.01594 3285.74906 3516.48354 3714.51685 3871.63317 3979.09141 6.46840065 46.443475 139.814211 293.568632 503.943957 758.576759 1038.65313 1321.05885 1580.52951 1791.80073 1931.75829 1981.58827 1928.92724 1770.01244 1511.83187 1174.27453 792.280531 417.991275 122.899612 0 2315.74759 4562.11047 6671.44945 8579.61639 10227.6997 11563.7701 12544.6256 13137.5376 13321.9962 13091.4557 12455.08 11439.4885 10090.5013 8474.88474 6682.09716 4826.03422 3046.77448 1512.32496 420.366642 0 6710.69477 12640.5554 17727.5443 21922.8938 25192.4335 27517.917 28898.349 29351.3124 28914.2952 27646.0175 25627.7587 22964.6842 19787.1726 16252.1427 12544.3805 8877.86609 5497.10095 2678.43465 731.391982 0 10071.2633 18675.6388 25799.8557 31446.8381 35636.6044 38407.1669 39815.4318 39938.0986 38872.5599 36737.8012 33675.3006 29849.9283 25450.8466 20692.4091 15815.0611 11086.2388 6801.26914 3284.26946 889.047292 0 9424.56158 17337.5061 23766.17 28750.3043 32342.5524 34608.9275 35629.2899 35497.8247 34323.5192 32230.6405 29359.2127 25865.4948 21922.458 17720.2629 13466.7375 9387.85446 5728.20848 2751.49396 740.982424 0 M top disp KNm coefficients 0.34044214 5.16038612 24.6730961 73.3921581 167.981319 325.104325 559.274763 880.705897 1293.16051 1791.80073 2361.03791 2972.3824 3582.29345 4130.02902 4535.49561 4697.09812 4489.58967 3761.92148 2335.09264 0 121.881452 506.901163 1177.31461 2144.9041 3409.23325 4955.90146 6754.79838 8758.35839 10899.8151 13091.4557 15222.8756 17159.2328 18739.5024 19774.7311 20046.2915 19304.1369 17265.0554 13610.9246 7986.96619 0 353.194462 1404.50616 3128.39017 5480.72345 8397.47783 11793.393 15560.6494 19567.5416 23657.1506 27646.0175 31322.8162 34447.0263 36747.6063 37921.6663 37633.1414 35511.4643 31150.2387 24105.9118 13896.4477 0 530.066492 2075.07097 4552.91571 7861.70952 11878.8681 16460.2144 21439.0787 26625.399 31804.8217 36737.8012 41158.7008 44774.8925 47265.8579 48282.2879 47445.1833 44344.9553 38540.5251 29558.4251 16891.8986 0 496.029557 1926.38957 4194.02999 7187.57607 10780.8508 14832.3975 19185.0022 23665.2164 28082.8793 32230.6405 35883.4822 38798.2422 40713.1362 41347.28 40400.2125 37551.4178 32459.8481 24763.4457 14078.6661 0 disp I disp II total disp rot I m m m rad 0 -3.08E-08 0.00032005 1.3277E-07 0.00032018 0.00015953 2.0126E-05 0.0012723 4.9318E-07 0.00127279 0.0003161 0 0.00284493 1.0245E-06 0.00284595 0.00046972 0 0.00502611 1.6704E-06 0.00502778 0.00062038 0.00780402 2.3756E-06 0.0078064 0.00076808 0.01116683 3.0866E-06 0.01116991 0.00091283 0.01510271 3.7525E-06 0.01510646 0.00105462 0.01959983 4.3264E-06 0.01960416 0.00119345 0.02464637 4.7666E-06 0.02465114 0.00132933 0.0302305 5.0382E-06 0.03023554 0.00146225 0.0363404 5.1152E-06 0.03634552 0.00159221 0.04296423 4.9819E-06 0.04296921 0.00171921 0.05009018 4.636E-06 0.05009481 0.00184326 0.0577064 4.0903E-06 0.05771049 0.00196436 0.06580108 3.3758E-06 0.06580446 0.00208249 0.0743624 2.5443E-06 0.07436494 0.00219767 0.08337851 1.6719E-06 0.08338018 0.00230989 0.0928376 8.6187E-07 0.09283846 0.00241916 0.10272784 2.483E-07 0.10272808 0.00252547 0.11303739 0 0.11303739 0.00262882 -2.943E-08 0.12380661 1.3319E-06 0.12380794 0.00275532 1.5989E-05 0.13507617 4.8457E-06 0.13508101 0.00287899 0.00262882 0.14683477 9.8552E-06 0.14684462 0.00299984 0.11303739 0.15907111 1.5727E-05 0.15908684 0.00311786 0.1717739 2.1886E-05 0.17179579 0.00323306 0.18493184 2.782E-05 0.18495966 0.00334544 0.19853362 3.3085E-05 0.1985667 0.00345498 0.21256795 3.731E-05 0.21260526 0.00356171 0.22702352 4.0204E-05 0.22706373 0.00366561 0.24188904 4.1564E-05 0.24193061 0.00376668 0.25715322 4.1275E-05 0.25719449 0.00386493 0.27280474 3.9323E-05 0.27284406 0.00396036 0.28883231 3.5798E-05 0.28886811 0.00405296 0.30522464 3.0903E-05 0.30525554 0.00414273 0.32197041 2.4958E-05 0.32199537 0.00422968 0.33905834 1.8411E-05 0.33907675 0.00431381 0.35647712 1.1844E-05 0.35648897 0.00439511 0.37421546 5.978E-06 0.37422144 0.00447359 0.39226205 1.6867E-06 0.39226374 0.00454924 0.4106056 0 0.4106056 0.00462206 -3.065E-08 0.42928682 4.0236E-06 0.42929085 0.00471806 1.2183E-05 0.44834614 1.4561E-05 0.4483607 0.00481111 0.00462206 0.46777176 2.9459E-05 0.46780122 0.00490122 0.4106056 0.48755194 4.6765E-05 0.4875987 0.00498838 0.50767488 6.4739E-05 0.50773962 0.0050726 0.52812884 8.1861E-05 0.5282107 0.00515388 0.54890202 9.6844E-05 0.54899887 0.00523222 0.56998267 0.00010864 0.57009131 0.00530761 0.59135901 0.00011646 0.59147547 0.00538007 0.61301927 0.00011978 0.61313905 0.00544957 0.63495169 0.00011833 0.63507002 0.00551614 0.65714448 0.00011216 0.65725663 0.00557977 0.67958588 0.00010158 0.67968746 0.00564045 0.70226412 8.7241E-05 0.70235137 0.00569818 0.72516744 7.01E-05 0.72523754 0.00575298 0.74828404 5.145E-05 0.74833549 0.00580483 0.77160218 3.293E-05 0.77163511 0.00585374 0.79511007 1.6538E-05 0.79512661 0.00589971 0.81879595 4.6429E-06 0.81880059 0.00594274 0.84264804 0 0.84264804 0.00598282 -2.916E-08 0.8667017 8.8519E-06 0.86671055 0.00604354 7.7655E-06 0.89099266 3.1962E-05 0.89102462 0.00610147 0.00598282 0.91550972 6.4514E-05 0.91557423 0.0061566 0.84264804 0.94024169 0.00010218 0.94034386 0.00620892 0.96517737 0.00014113 0.96531849 0.00625845 0.99030556 0.00017805 0.99048361 0.00630518 1.01561508 0.00021015 1.01582524 0.00634911 1.04109472 0.00023522 1.04132995 0.00639024 1.0667333 0.00025159 1.06698488 0.00642858 1.09251961 0.00025816 1.09277777 0.00646411 1.11844245 0.00025447 1.11869692 0.00649685 1.14449064 0.00024065 1.14473129 0.00652678 1.17065298 0.00021746 1.17087044 0.00655392 1.19691827 0.00018635 1.19710462 0.00657826 1.22327532 0.0001494 1.22342472 0.0065998 1.24971292 0.00010941 1.24982233 0.00661854 1.27621989 6.9871E-05 1.27628977 0.00663448 1.30278504 3.5012E-05 1.30282005 0.00664762 1.32939715 9.8078E-06 1.32940696 0.00665797 1.35604505 0 1.35604505 0.00666551 -1.605E-08 1.38274346 2.0163E-05 1.38276362 0.00668344 2.3365E-06 1.40951047 7.2709E-05 1.40958318 0.00669982 0.00666551 1.43633994 0.00014657 1.43648651 0.00671466 1.35604505 1.46322568 0.00023185 1.46345754 0.00672796 1.49016155 0.00031982 1.49048137 0.00673972 1.51714138 0.00040298 1.51754435 0.00674994 1.544159 0.00047505 1.54463405 0.00675862 1.57120826 0.00053104 1.5717393 0.00676576 1.598283 0.00056726 1.59885026 0.00677136 1.62537705 0.00058135 1.6259584 0.00677541 1.65248425 0.00057232 1.65305657 0.00677793 1.67959844 0.00054055 1.68013899 0.00677891 1.70671346 0.00048786 1.70720132 0.00677834 1.73382314 0.00041754 1.73424068 0.00677624 1.76092133 0.00033433 1.76125566 0.0067726 1.78800186 0.00024453 1.78824639 0.00676741 1.81505857 0.00015597 1.81521453 0.00676069 1.8420853 7.8057E-05 1.84216335 0.00675242 1.86907588 2.1839E-05 1.86909772 0.00674261 1.89602416 0 1.89602416 0.00673127 You created this PDF from an application that is not licensed to print to novaPDF printer (http://www.novapdf.com) rot II rad total rot rad 6.4016E-08 1.1382E-07 1.4948E-07 1.7116E-07 1.7921E-07 1.7416E-07 1.5684E-07 1.2837E-07 9.0262E-08 4.4451E-08 -6.65E-09 -6.009E-08 -1.123E-07 -1.592E-07 -1.959E-07 -2.167E-07 -2.152E-07 -1.842E-07 -1.155E-07 0 6.3533E-07 1.0929E-06 1.3854E-06 1.5266E-06 1.5316E-06 1.4168E-06 1.2E-06 9.003E-07 5.3841E-07 1.3651E-07 -2.816E-07 -6.906E-07 -1.063E-06 -1.371E-06 -1.583E-06 -1.666E-06 -1.587E-06 -1.309E-06 -7.936E-07 0 1.914E-06 3.2651E-06 4.1025E-06 4.4779E-06 4.4455E-06 4.0618E-06 3.386E-06 2.48E-06 1.4084E-06 2.3826E-07 -9.602E-07 -2.114E-06 -3.148E-06 -3.982E-06 -4.535E-06 -4.722E-06 -4.455E-06 -3.643E-06 -2.19E-06 0 4.2057E-06 7.1484E-06 8.9473E-06 9.7256E-06 9.6104E-06 8.7329E-06 7.2284E-06 5.2362E-06 2.9E-06 3.6776E-07 -2.208E-06 -4.671E-06 -6.86E-06 -8.609E-06 -9.748E-06 -1.01E-05 -9.491E-06 -7.731E-06 -4.632E-06 0 9.5732E-06 1.6239E-05 2.0281E-05 2.1994E-05 2.1678E-05 1.9638E-05 1.6189E-05 1.1653E-05 6.3595E-06 6.4482E-07 -5.147E-06 -1.066E-05 -1.554E-05 -1.942E-05 -2.192E-05 -2.265E-05 -2.124E-05 -1.726E-05 -1.032E-05 0 0.00015959 0.00031622 0.00046987 0.00062055 0.00076826 0.000913 0.00105477 0.00119358 0.00132942 0.00146229 0.0015922 0.00171915 0.00184315 0.0019642 0.0020823 0.00219745 0.00230968 0.00241897 0.00252535 0.00262882 0.00275595 0.00288008 0.00300122 0.00311939 0.00323459 0.00334685 0.00345618 0.00356261 0.00366615 0.00376682 0.00386465 0.00395967 0.00405189 0.00414136 0.0042281 0.00431214 0.00439352 0.00447228 0.00454844 0.00462206 0.00471997 0.00481437 0.00490532 0.00499286 0.00507705 0.00515794 0.00523561 0.00531009 0.00538147 0.00544981 0.00551518 0.00557765 0.0056373 0.0056942 0.00574845 0.00580011 0.00584929 0.00589607 0.00594055 0.00598282 0.00604775 0.00610862 0.00616554 0.00621865 0.00626806 0.00631391 0.00635634 0.00639548 0.00643148 0.00646448 0.00649464 0.00652211 0.00654706 0.00656965 0.00659005 0.00660844 0.00662499 0.00663989 0.00665334 0.00666551 0.00669301 0.00671606 0.00673494 0.00674995 0.0067614 0.00676958 0.00677481 0.00677741 0.00677771 0.00677606 0.00677278 0.00676824 0.0067628 0.00675682 0.00675068 0.00674476 0.00673945 0.00673516 0.00673229 0.00673127 drift P moment KNm 8.0045E-05 0.00023815 0.00039329 0.00054546 0.00069465 0.00084088 0.00098414 0.00112442 0.00126175 0.0013961 0.00152749 0.00165592 0.0017814 0.00190392 0.00202349 0.00214012 0.00225381 0.00236457 0.00247241 0.00257733 0.00269264 0.00281827 0.0029409 0.00306055 0.00317724 0.00329097 0.00340176 0.00350964 0.00361462 0.00371672 0.00381597 0.00391239 0.00400601 0.00409686 0.00418496 0.00427035 0.00435305 0.00443312 0.00451057 0.00458547 0.00467131 0.00476746 0.00486013 0.00494937 0.00503523 0.00511777 0.00519704 0.00527311 0.00534604 0.00541589 0.00548274 0.00554665 0.00560771 0.00566598 0.00572154 0.00577449 0.0058249 0.00587287 0.0059185 0.00596186 0.00601563 0.00607852 0.0061374 0.00619241 0.00624366 0.00629128 0.00633541 0.00637618 0.00641373 0.00644822 0.00647979 0.00650859 0.00653479 0.00655854 0.00658002 0.0065994 0.00661686 0.00663257 0.00664673 0.00665952 0.00667964 0.00670489 0.00672583 0.00674276 0.00675596 0.00676575 0.00677242 0.00677631 0.00677774 0.00677704 0.00677454 0.00677061 0.00676558 0.00675984 0.00675375 0.00674768 0.00674204 0.0067372 0.00673359 0.00673161 1319.24832 3862.23867 6274.36421 8557.97935 10715.4404 12749.1064 14661.3392 16454.5045 18130.9719 19693.1152 21143.3128 22483.9474 23717.4066 24846.0825 25872.3716 26798.6749 27627.397 28360.9463 29001.7342 29552.1748 30163.5875 30963.6478 31677.2908 32306.5929 32853.6323 33320.4872 33709.2358 34021.955 34260.7194 34427.6006 34524.6657 34553.976 34517.5863 34417.543 34255.8831 34034.6324 33755.8042 33421.3974 33033.3952 32593.763 32197.3785 32070.839 31889.6225 31655.7805 31371.3464 31038.3335 30658.7336 30234.515 29767.6209 29259.967 28713.4401 28129.896 27511.1571 26859.0107 26175.2064 25461.4543 24719.4225 23950.7345 23156.9675 22339.649 21545.2135 21073.2595 20573.4617 20047.5897 19497.3699 18924.4831 18330.563 17717.1934 17085.9062 16438.1794 15775.4345 15099.0345 14410.281 13710.4125 13000.6012 12281.9509 11555.4947 10822.1917 10082.9249 9338.49866 8600.57245 8201.42662 7794.03983 7379.56016 6959.06857 6533.57665 6104.02445 5671.27816 5236.12784 4799.28507 4361.38059 3922.9619 3484.49083 3046.34106 2608.79565 2172.04449 1736.1817 1301.2031 867.00354 433.374213 P F bot KN P F top KN P M bot KNm P M top KNm -4.6998221 -26.070111 -59.998608 -102.69575 -150.68588 -200.79843 -250.1591 -296.18108 -336.55617 -369.24591 -392.47274 -404.71105 -404.67825 -391.3258 -363.83023 -321.5841 -264.18698 -191.43639 -103.31868 0 -107.45778 -209.00462 -302.91409 -387.67912 -462.0042 -524.79767 -575.16384 -612.39519 -635.9646 -645.51751 -640.86411 -621.97157 -588.95632 -542.0763 -481.72336 -408.41559 -322.78988 -225.59443 -117.68147 0 -114.70316 -216.47816 -304.94452 -379.86937 -441.15956 -488.85375 -523.11464 -544.22127 -552.56146 -548.62438 -532.99323 -506.33813 -469.40912 -423.02942 -368.08884 -305.53745 -236.37948 -161.66746 -82.496697 0 -76.754823 -142.2445 -196.73373 -240.57108 -274.18176 -298.06061 -312.76523 -318.90948 -317.15713 -308.21586 -292.8315 -271.78262 -245.87542 -215.939 -182.82095 -147.38341 -110.49942 -73.049794 -35.92042 0 -30.639539 -55.35963 -74.530506 -88.554722 -97.861902 -102.90383 -104.14992 -102.08301 -97.195623 -89.986595 -80.958127 -70.613314 -59.454125 -47.979872 -36.686189 -26.064534 -16.602238 -8.783121 -3.0887001 0 4.69982212 26.0701111 59.9986078 102.695752 150.685881 200.798425 250.1591 296.181081 336.556166 369.245911 392.472743 404.711053 404.67825 391.325799 363.830226 321.584099 264.186984 191.436387 103.318678 0 107.457781 209.004623 302.914093 387.679115 462.004204 524.797673 575.163835 612.395189 635.964604 645.517512 640.864106 621.971568 588.956316 542.076302 481.723356 408.415589 322.789877 225.594432 117.68147 0 114.703161 216.478163 304.944515 379.869366 441.159558 488.853752 523.114642 544.221271 552.561462 548.62438 532.993232 506.338128 469.409118 423.029418 368.08884 305.537452 236.379477 161.667458 82.4966966 0 76.7548229 142.244502 196.733728 240.571077 274.181764 298.06061 312.765232 318.90948 317.157133 308.215863 292.831503 271.782621 245.87542 215.938997 182.820954 147.383411 110.499418 73.0497937 35.9204201 0 30.6395393 55.3596297 74.5305059 88.554722 97.8619017 102.903832 104.149917 102.083007 97.1956231 89.9865951 80.9581272 70.6133142 59.4541247 47.9798717 36.6861889 26.0645338 16.6022375 8.78312095 3.08870011 0 1065.29301 2433.21037 2933.26527 2738.55339 2009.14508 892.437445 -476.49352 -1974.5405 -3490.2121 -4923.2788 -6184.419 -7194.8632 -7886.0377 -8199.2072 -8085.1161 -7503.629 -6423.3698 -4821.3609 -2682.6604 0 24357.0969 19507.0981 14809.1334 10338.1097 6160.05605 2332.4341 -1095.5502 -4082.6346 -6595.1885 -8606.9002 -10098.465 -11057.272 -11477.097 -11357.789 -10704.963 -9529.6971 -7848.2245 -5681.6376 -3055.5891 0 25999.3831 20204.6286 14908.3985 10129.8498 5882.12745 2172.68334 -996.40884 -3628.1418 -5730.267 -7314.9917 -8398.6812 -9001.5667 -9147.4597 -8863.4735 -8179.752 -7129.2072 -5747.2657 -4071.6249 -2142.0195 0 17397.7599 13276.1535 9618.09335 6415.22871 3655.75685 1324.71382 -595.7433 -2126.0632 -3289.0369 -4109.5448 -4614.3146 -4831.691 -4791.4184 -4524.4361 -4062.6879 -3438.9463 -2686.6525 -1839.7726 -932.67056 0 6944.96225 5166.89877 3643.71362 2361.45925 1304.82536 457.350366 -198.38079 -680.55338 -1007.9546 -1199.8213 -1275.7038 -1255.3478 -1158.5932 -1005.2925 -815.24864 -608.17246 -403.66225 -221.20453 -80.197827 0 122.030469 656.580575 1458.78968 2396.23422 3348.57513 4207.2051 4874.89528 5265.44144 5303.30929 4923.27881 4070.08771 2698.07368 770.815714 -1739.2258 -4851.0697 -8575.576 -12915.808 -17867.396 -23418.9 -29552.175 2790.13185 5263.82013 7364.9701 9045.84603 10266.7601 10995.7608 11208.3209 10887.0256 10021.2604 8606.90016 6645.99814 4146.47712 1121.82155 -2409.228 -6422.9781 -10891.082 -15780.838 -21055.48 -26674.467 -32593.763 2978.25751 5452.04263 7414.33723 8863.61854 9803.54574 10242.6501 10194.0289 9675.04481 8707.0291 7314.99174 5527.33722 3375.58752 894.112606 -1880.1307 -4907.8512 -8147.6654 -11556.33 -15088.963 -18699.251 -22339.649 1992.93224 3582.45412 4783.32985 5613.32512 6092.92809 6245.07944 6094.91221 5669.50187 4997.62755 4109.54484 3036.77114 1811.88414 468.334134 -959.72887 -2437.6127 -3930.2243 -5402.1938 -6817.9807 -8141.9619 -9338.4987 795.552951 1394.24253 1812.11426 2066.27685 2174.70893 2156.08029 2029.58813 1814.80901 1531.56739 1199.82127 839.565764 470.755428 113.245952 -213.24387 -489.14918 -695.05424 -811.66494 -819.75796 -700.10536 -433.37421 Stress Factors stories gravity 81 to 100 5185.99496 61 to 80 5670.35091 41 to 60 6756.971 21 to 40 8014.91554 1 to 20 9389.36555 core 1 508593.75 508593.75 508593.75 508593.75 508593.75 core 2 6781250 6781250 6781250 6781250 6781250 core 3 0.00366343 0.0014257 0.00087673 0.00063646 0.00050474 column 542500 542500 542500 542500 542500 column A 0.0489066 0.07582326 0.09600157 0.11197989 0.12545486 Wind Displacements story horizontal 100 0.30553586 80 0.22107105 60 0.13984295 40 0.06993034 20 0.01989762 base 0 rotation 0.00105017 0.00104872 0.00095597 0.00076219 0.00045452 0 vertical A 0.01160755 0.01059798 0.00886057 0.0063923 0.00329004 0 vertical B 0 0 0 0 0 0 vertical C 0 0 0 0 0 0 vertical D 0 0 0 0 0 0 column B 0.06202286 0.10049282 0.12800771 0.14990615 0.16834456 column C 0.06201328 0.10048335 0.12799864 0.14989787 0.16833716 column D 0.06202286 0.10049282 0.12800771 0.14990615 0.16834456 outrigger 0 0 0 0 0 belt 0 0 0 0 0 Wind Moment Reaction story sum bot 81 69019.2794 61 73081.5324 41 75061.4288 21 73319.7564 1 59737.131 Wind Core/Column Stress story core column A column B column C column D 81 521.656135 573.202603 32.3546065 32.3496073 32.3546065 61 1262.43057 1038.2696 126.86521 126.853256 126.86521 41 1983.21043 1529.4251 253.866226 253.848245 253.866226 21 2826.89143 1999.53265 423.7684 423.745 423.7684 1 3985.51212 2284.84862 670.939304 670.909775 670.939304 max Gravity Plus Wind Core/Column Stress core column A column B column C 5707.6511 5759.19757 5218.34957 5218.34457 6932.78147 6708.62051 5797.21612 5797.20416 8740.18142 8286.39609 7010.83722 7010.81924 10841.807 10014.4482 8438.68394 8438.66054 13374.8777 11674.2142 10060.3049 10060.2753 13374.8777 11674.2142 10060.3049 10060.2753 Wind Outrigger Stress story outrig B 100 0 80 0 60 0 40 0 20 0 max 0 Wind Belt Stress belt AB belt BC 0 0 0 0 0 0 0 0 0 0 0 0 outrig D 0 0 0 0 0 0 0 Wind Diag Stress story Vertical StrainHorizontal Strain STRESS 100 0.01862685 0.07114229 3895980.66 80 0.01573998 0.06841611 3652374.2 60 0.0118815 0.05888539 3071283.05 40 0.00725786 0.04214113 2143916.01 20 0.00237221 0.01675919 830302.91 max Seismic Displacements story horizontal 100 1.89602416 80 1.35604505 60 0.84264804 40 0.4106056 20 0.11303739 base 0 vertical A 0.07316596 0.06645574 0.05510068 0.03933276 0.02003899 0 vertical B 0 0 0 0 0 0 vertical C 0 0 0 0 0 0 Seismic Core/Column Stress story core column A 81 4040.26687 3837.88877 61 9085.53901 6849.0175 41 13517.9865 9851.84584 21 17446.4833 12420.5224 1 21846.397 13611.8902 max column B 250.588915 913.031452 1730.4065 2615.33509 3677.72219 column C 250.550196 912.945424 1730.28394 2615.19067 3677.56033 column D 250.588915 913.031452 1730.4065 2615.33509 3677.72219 outrig D 0 0 0 0 0 0 0 Seismic Moment Reaction story sum bot 81 410854.001 61 462945.629 41 341482.945 21 154963.561 1 19112.4217 vertical D 0 0 0 0 0 0 Gravity Plus Seismic Core/Column Stress core column A column B column C 9226.26183 9023.88373 5436.58388 5436.54516 14755.8899 12519.3684 6583.38236 6583.29633 20274.9575 16608.8168 8487.37749 8487.25493 25461.3989 20435.438 10630.2506 10630.1062 31235.7625 23001.2558 13067.0877 13066.9259 31235.7625 23001.2558 13067.0877 13066.9259 Seismic Belt Stress belt AB belt BC 0 0 0 0 0 0 0 0 0 0 0 0 0 Seismic Diagonal Stress story Vertical StrainHorizontal Strain STRESS 100 0.11712002 0.29395426 17840623.9 80 0.09832673 0.30185134 17367728.5 60 0.07356061 0.27091819 14950380.2 40 0.04450489 0.19695873 10479521.1 20 0.01444866 0.07832436 4026349.14 max 17840623.9 belt DE 0 0 0 0 0 0 Wind + Grav Diagonal Stresses 3897487.6 3654021.89 3073246.48 2146244.98 833031.262 3897487.6 rotation 0.00673127 0.00666551 0.00598282 0.00462206 0.00262882 0 Seismic Outrigger Stress story outrig B 100 0 80 0 60 0 40 0 20 0 max 0 belt AD 0 0 0 0 0 0 column D 5218.34957 5797.21612 7010.83722 8438.68394 10060.3049 10060.3049 11674.2142 max belt AD 0 0 0 0 0 0 belt DE 0 0 0 0 0 0 column D 5436.58388 6583.38236 8487.37749 10630.2506 13067.0877 13067.0877 23001.2558 0 Wing + Seismic Diagonal Stress Diag A 17842130.9 17369376.2 14952343.6 10481850.1 4029077.49 17842130.9 You created this PDF from an application that is not licensed to print to novaPDF printer (http://www.novapdf.com)
© Copyright 2025