CHE 236 NUMERICAL METHODS HOMEWORK II (Due date: 17.04.2015) Use MATLAB programs to apply Koçak's double linearization loop to find all roots given in the original work.Attempt a positive and a negative "h" to start your iterations.Try also Newton, Chebyshev,Halley, and Ostrowski methods. Compare your results with each other and with the original work. Additionally, experiment with Matlab functions fzero and roots. Supplementary information may be found in the articles given Function below. No Roll No Name Surname Article Info π π₯ = πππ₯ π₯ β ππ0.3 = 0.3 0 1 12290014 Ekin Ece AKBULUT 2 10290004 Koray AKCA 3 12290048 Feray ATAGÜN 4 10290048 Irmak Δ°dil ATLIΔ 5 10290053 Gülsinem AYANOΔLU 6 12290061 Tolga AYAS 7 10290057 Fatma AYDIN 8 12290079 Ebru BAKIR 9 12290104 Buket BΔ°LGΔ°Ç 10 12290128 Merve CEBECΔ° 11 12290130 Sedef CENGΔ°Z π π₯ = π₯ 2 β π π₯ β 3π₯ + 2= 0 12 12290138 Gözde ÇAKIR π π₯ = πππ π₯ β π₯= 0 SOLUTION OF EQUATIONS WITH ONE VARIABLE V. S. Abramchuk and S. I. Lyashko Journal of Mathematical Sciences, Vol . 109 , No. 4 , 2002 π π₯ = π π₯ β 1= 0 On the local convergence of fast two-step Newton-like methods for solving nonlinear equations I.K. Argyros, S. Hilout Journal of Computational and Applied Mathematics 245 (2013) 1β9 π π₯ = π₯ 3 + lnx = 0 An analysis of the properties of the variants of Newtonβs method with third order convergence D.K.R. Babajee, M.Z. Dauhoo Applied Mathematics and Computation 183 (2006) 659β684 An analysis of the properties of the variants of Newtonβs method with third order convergence D.K.R. Babajee, M.Z. Dauhoo Applied Mathematics and Computation 183 (2006) 659β684 A new iterative method to compute nonlinear equations Mario Basto, Viriato Semiao, Francisco L. Calheiros Applied Mathematics and Computation 173 (2006) 468β483 A new iterative method to compute nonlinear equations Mario Basto, Viriato Semiao, Francisco L. Calheiros Applied Mathematics and Computation 173 (2006) 468β483 A new iterative method to compute nonlinear equations Mario Basto, Viriato Semiao, Francisco L. Calheiros Applied Mathematics and Computation 173 (2006) 468β483 A new iterative method to compute nonlinear equations Mario Basto, Viriato Semiao, Francisco L. Calheiros Applied Mathematics and Computation 173 (2006) 468β483 From third to fourth order variant of Newtonβs method for simple roots Dhiman Basu Applied Mathematics and Computation 202 (2008) 886β892 From third to fourth order variant of Newtonβs method for simple roots Dhiman Basu Applied Mathematics and Computation 202 (2008) 886β892 From third to fourth order variant of Newtonβs method for simple roots Dhiman Basu Applied Mathematics and Computation 202 (2008) 886β892 From third to fourth order variant of Newtonβs method for simple roots Dhiman Basu Applied Mathematics and Computation 202 (2008) 886β892 π π₯ = π₯ 3 + lnx + 0.15cos(50x)= 0 π π₯ = π₯ 3 + 4π₯ 2 + 8π₯ + 8 = 0 π π₯ = π₯ β 2 β π βπ₯ = 0 π π₯ = π₯ 2 β (1 β x)5 = 0 π π₯ = π π₯ β 3π₯ 2 = 0 π π₯ = π₯ 3 + 4π₯ 2 β 10 = 0 π π₯ = π ππ2 π₯ β π₯ 2 + 1 = 0 =0 π π₯ = (π₯ β 1)3 β1 = 0 13 12290728 A. Sertan ÇAYCI 14 12290156 Mehmet ÇELΔ°K 15 10290634 KΔ±vanç ÇEVΔ°K π π₯ = π₯π π₯ β π ππ2 π₯ + 3πππ π₯ β 10 = 0 16 12290158 Ceren ÇΔ°ÇEKDAΔ π π₯ = (π (π₯ 17 12290717 Birsen DEMΔ°RCΔ°OΔLU 18 13290501 Feyza Hilal DΔ°LEK π π₯ = π₯ 3 β 10= 0 2 2 +7π₯+30) β1) (x-5) = 0 π π₯ = π₯ 5 + π₯ 4 + 4π₯ 2 β 15 = 0 Three-step iterative methods with eighth-order convergence for solving nonlinear equations Weihong Bi , Hongmin Renb, Qingbiao Wua Journal of Computational and Applied Mathematics 225 (2009) 105 112 1 Three-step iterative methods with eighth-order convergence for solving nonlinear equations Weihong Bi , Hongmin Renb, Qingbiao Wua Journal of Computational and Applied Mathematics 225 (2009) 105 112 π π₯ = π ππ π₯ β 3 π₯ = 0 2 19 12290205 Metehan DURUKAN 20 11290191 Mehmet Can EROΔLU 21 12290237 Merve Nur EROΔLU 22 12290240 GülΕah ERSAN 23 12290256 Dilek GENΔ°Ε 24 13290522 Onur KARA 25 12290376 Melike KIRATLI π π₯ = 10π₯π βπ₯ β 1 = 0 π π₯ = π (βπ₯ 2 +π₯+2) From third to fourth order variant of Newtonβs method for simple roots Dhiman Basu Applied Mathematics and Computation 202 (2008) 886β892 From third to fourth order variant of Newtonβs method for simple roots Dhiman Basu Applied Mathematics and Computation 202 (2008) 886β892 From third to fourth order variant of Newtonβs method for simple roots Dhiman Basu Applied Mathematics and Computation 202 (2008) 886β892 From third to fourth order variant of Newtonβs method for simple roots Dhiman Basu Applied Mathematics and Computation 202 (2008) 886β892 Three-step iterative methods with eighth-order convergence for solving nonlinear equations Weihong Bi , Hongmin Renb, Qingbiao Wua Journal of Computational and Applied Mathematics 225 (2009) 105 112 Three-step iterative methods with eighth-order convergence for solving nonlinear equations Weihong Bi , Hongmin Renb, Qingbiao Wua Journal of Computational and Applied Mathematics 225 (2009) 105 112 β 1= 0 π π₯ = π βπ₯ + cos(π₯)= 0 Three-step iterative methods with eighth-order convergence for solving nonlinear equations Weihong Bi , Hongmin Renb, Qingbiao Wua Journal of Computational and Applied Mathematics 225 (2009) 105 112 π π₯ = ln(π₯ 2 + x + 2) β x + 1 = 0 Three-step iterative methods with eighth-order convergence for solving nonlinear equations Weihong Bi , Hongmin Renb, Qingbiao Wua Journal of Computational and Applied Mathematics 225 (2009) 105 112 1 π π₯ = arcsin(π₯ 2 β 1) β 2 x + 1 = 0 Three-step iterative methods with eighth-order convergence for solving nonlinear equations Weihong Bi , Hongmin Renb, Qingbiao Wua Journal of Computational and Applied Mathematics 225 (2009) 105 112 π π₯ = x β tan(x) = 0 An improvement to the fixed point iterative method Jafar Biazar, Alireza Amirteimoori Applied Mathematics and Computation 182 (2006) 567β571 π π₯ = (π₯ + 2)π π₯ β 1 = 0 A new Aitken type method for accelerating iterative sequences Oana Bumbariu Applied Mathematics and Computation 219 (2012) 78β82 =0 π π₯ = π π₯ + 2βπ₯ + 2 cos π₯ β 6= 0 A new Aitken type method for accelerating iterative sequences Oana Bumbariu Applied Mathematics and Computation 219 (2012) 78β82 26 12290423 Emine Εimal MΔ°RZA 27 11290520 Elif Kübra ÖVÜT 28 12290449 Selen TuΔçe ÖZBAΕ 29 12290450 Devrim Ceren ÖZBEY 30 10290526 Salih ÖZDEMΔ°R 31 10290529 Özge ÖZDEMΔ°R 32 12290456 Esin ÖZDEMΔ°R π π₯ = π (π₯ 33 10290354 Durukan SEZEN π π₯ = π ππ π₯ β 2 = 0 Certain improvements of Newtonβs method with fourth-order convergence Changbum Chun , Beny Neta Applied Mathematics and Computation 215 (2009) 821β828 34 12290534 Deniz TELLΔ° π π₯ = π₯ 5 + π₯ β 10000= 0 Certain improvements of Newtonβs method with fourth-order convergence Changbum Chun , Beny Neta Applied Mathematics and Computation 215 (2009) 821β828 35 12290549 Can TUNCER 36 12290705 Oya Nur TURAN 37 12290557 Fulya TÜRKMEN 38 12290574 Emire UYANIK 39 11290547 Εahin BarΔ±Ε ÜNSAL π π₯ = π‘ππβ1 π₯ β 1 = 0 Some new iterative methods with three-order convergence Jinhai Chen Applied Mathematics and Computation 181 (2006) 1519β1522 π π₯ = π π₯β2 β 1 = 0 Some new iterative methods with three-order convergence Jinhai Chen Applied Mathematics and Computation 181 (2006) 1519β1522 2 π π₯ = π₯π π₯ β π ππ2 π₯ + 3πππ π₯ + 5 = 0 Some sixth-order variants of Ostrowski root-finding methods Changbum Chun , YoonMee Ham Applied Mathematics and Computation 193 (2007) 389β394 π π₯ = π ππ π₯ π π₯ + ln(π₯ 2 + 1)= 0 Some sixth-order variants of Ostrowski root-finding methods Changbum Chun , YoonMee Ham Applied Mathematics and Computation 193 (2007) 389β394 π π₯ = (π₯ β 1)3 β2 = 0 Some sixth-order variants of Ostrowski root-finding methods Changbum Chun , YoonMee Ham Applied Mathematics and Computation 193 (2007) 389β394 2 +7π₯+30) β1 =0 π₯ 1 π₯ Certain improvements of Newtonβs method with fourth-order convergence Changbum Chun , Beny Neta Applied Mathematics and Computation 215 (2009) 821β828 β3=0 Certain improvements of Newtonβs method with fourth-order convergence Changbum Chun , Beny Neta Applied Mathematics and Computation 215 (2009) 821β828 π π₯ = π π₯ + π₯ β 20= 0 Certain improvements of Newtonβs method with fourth-order convergence Changbum Chun , Beny Neta Applied Mathematics and Computation 215 (2009) 821β828 π π₯ = lnx + π₯ β 5 = 0 Certain improvements of Newtonβs method with fourth-order convergence Changbum Chun , Beny Neta Applied Mathematics and Computation 215 (2009) 821β828 π π₯ = π₯3 β π₯2 β 1 = 0 Certain improvements of Newtonβs method with fourth-order convergence Changbum Chun , Beny Neta Applied Mathematics and Computation 215 (2009) 821β828 π π₯ = π π₯ sin(x) + ln(1 + π₯ 2 )= 0 A new sixth-order scheme for nonlinear equations Changbum Chun, Beny Neta Applied Mathematics Letters 25 (2012) 185β189 π π₯ = π₯β =0 π π₯ = π₯ 3 + 1= 0 A new sixth-order scheme for nonlinear equations Changbum Chun, Beny Neta Applied Mathematics Letters 25 (2012) 185β189 π π₯ = 11π₯ 11 β 1= 0 A new sixth-order scheme for nonlinear equations Changbum Chun, Beny Neta Applied Mathematics Letters 25 (2012) 185β189 40 11290450 Merve YILMAZ 41 11290461 Halis YURTSEVEN 42 13290467 Öykü AKÇAY π π₯ = 2 + π₯ 2 sin 43 12290033 MüΕerref ALBAYRAK π π₯ = cos 44 12290040 AyΕegül ARAPOΔLU π π₯ = π₯ 4 + sin( 2 ) β 5 = 0 A new sixth-order scheme for nonlinear equations Changbum Chun, Beny Neta Applied Mathematics Letters 25 (2012) 185β189 45 10290040 Ebru ARSLAN π π₯ = π₯ 3 + 4π₯ 2 β 10 2 = 0 A simply constructed third-order modifications of Newtonβs method Changbum Chun J. Comput. Appl. Math. 219 (2008) 81 β 89 46 10290050 Gökçe Nur AVΕAR 47 10290603 Ali AYAΕLI 48 10290060 Okan AYDIN 49 13290480 Ecem BAΔCI 50 12290081 Damla BAL 51 12290090 M. Kübra BAΕARAN 52 12290739 UΔur BAYTAR 53 12290122 Derya CAN π π₯ 2 + π π₯2 1 + 1+π₯4 β ln(π₯ 2 +2x+2) 17 3+1 β 17 = 0 1+π₯ 2 π π₯ π π₯ = π₯ 2 β 2 β π₯ 3= 0 π π₯ = πππ π₯ β π₯π π₯ + π₯ 2 = 0 π π₯ = π π₯ β 1.5 β arctan(π₯) = 0 π π₯ = 8π₯ β πππ π₯ β 2π₯ 2 = 0 π π₯ = π₯ 3 β 9π₯ 2 + 28π₯ β 30 = 0 π π₯ = sin π₯ + π₯πππ π₯ = 0 2 π π₯ = ππ₯ β π 17 3+1 =0 17 2π₯ π π₯ = π ππ π₯ β =0 π₯ 2 =0 2 A new sixth-order scheme for nonlinear equations Changbum Chun, Beny Neta Applied Mathematics Letters 25 (2012) 185β189 A new sixth-order scheme for nonlinear equations Changbum Chun, Beny Neta Applied Mathematics Letters 25 (2012) 185β189 A stable family with high order of convergence for solving nonlinear equations Alicia Cordero , Taher Lotfi, Katayoun Mahdiani, Juan R. Torregrosa Applied Mathematics and Computation 254 (2015) 240β251 Steffensen type methods for solving nonlinear equations Alicia Cordero , Taher Lotfi, Katayoun Mahdiani, Juan R. Torregrosa Journal of Computational and Applied Mathematics 236 (2012) 3058β3064 Steffensen type methods for solving nonlinear equations Alicia Cordero , Taher Lotfi, Katayoun Mahdiani, Juan R. Torregrosa Journal of Computational and Applied Mathematics 236 (2012) 3058β3064 Steffensen type methods for solving nonlinear equations Alicia Cordero , Taher Lotfi, Katayoun Mahdiani, Juan R. Torregrosa Journal of Computational and Applied Mathematics 236 (2012) 3058β3064 Variants of Newtonβs Method using fifth-order quadrature formulas A. Cordero, Juan R. Torregrosa Applied Mathematics and Computation 190 (2007) 686β698 Variants of Newtonβs Method using fifth-order quadrature formulas A. Cordero, Juan R. Torregrosa Applied Mathematics and Computation 190 (2007) 686β698 Variants of Newtonβs Method using fifth-order quadrature formulas A. Cordero, Juan R. Torregrosa Applied Mathematics and Computation 190 (2007) 686β698 Variants of Newtonβs Method using fifth-order quadrature formulas A. Cordero, Juan R. Torregrosa Applied Mathematics and Computation 190 (2007) 686β698 Variants of Newtonβs Method using fifth-order quadrature formulas A. Cordero, Juan R. Torregrosa Applied Mathematics and Computation 190 (2007) 686β698 Variants of Newtonβs Method using fifth-order quadrature formulas A. Cordero, Juan R. Torregrosa Applied Mathematics and Computation 190 (2007) 686β698 Variants of Newtonβs Method using fifth-order quadrature formulas A. Cordero, Juan R. Torregrosa Applied Mathematics and Computation 190 (2007) 686β698 π π₯ = (π₯ β 1)6 β1 = 0 54 12290132 AyΕegül CEYHAN 55 11290612 Hasan Berk COΕKUN π π₯ = 4sin π₯ β π₯ + 1= 0 56 12290151 Gamze ÇELΔ°K π π₯ = arctan π₯ 57 11290129 Sibel DEMΔ°RCAN π π₯ = π₯ 3 β π βπ₯ + 28π₯ β 30 = 0 A new iteration method with cubic convergence to solve nonlinear algebraic equations Tiegang Fang , Fang Guo, Chia-fon F. Lee Applied Mathematics and Computation 175 (2006) 1147β1155 π π₯ = π₯ 3 β 2π₯ 2 + π₯ β 1 = 0 An efficient Newton-type method with fifth-order convergence for solving nonlinear equations LIANG FANG LI SUN and GUOPING HE Comp. Appl. Math., Vol. 27, N. 3, 2008, pp. 269β274 High-order convergence of the k-fold pseudo-Newtonβs irrational method locating a simple real zero Young Hee Geum, Young Ik Kim, Min Surp Rhee Applied Mathematics and Computation 182 (2006) 492β497 High-order convergence of the k-fold pseudo-Newtonβs irrational method locating a simple real zero Young Hee Geum, Young Ik Kim, Min Surp Rhee Applied Mathematics and Computation 182 (2006) 492β497 On developing a higher-order family of double-Newton methods with a bivariate weighting function Young Hee Geum, Young Ik Kim, Beny Neta Applied Mathematics and Computation 254 (2015) 277β290 On developing a higher-order family of double-Newton methods with a bivariate weighting function Young Hee Geum, Young Ik Kim, Beny Neta Applied Mathematics and Computation 254 (2015) 277β290 On developing a higher-order family of double-Newton methods with a bivariate weighting function Young Hee Geum, Young Ik Kim, Beny Neta Applied Mathematics and Computation 254 (2015) 277β290 On developing a higher-order family of double-Newton methods with a bivariate weighting function Young Hee Geum, Young Ik Kim, Beny Neta Applied Mathematics and Computation 254 (2015) 277β290 On developing a higher-order family of double-Newton methods with a bivariate weighting function Young Hee Geum, Young Ik Kim, Beny Neta Applied Mathematics and Computation 254 (2015) 277β290 On developing a higher-order family of double-Newton methods with a bivariate weighting function Young Hee Geum, Young Ik Kim, Beny Neta Applied Mathematics and Computation 254 (2015) 277β290 On developing a higher-order family of double-Newton methods with a bivariate weighting function Young Hee Geum, Young Ik Kim, Beny Neta Applied Mathematics and Computation 254 (2015) 277β290 58 12290203 Kübra DURAN 59 14290616 Aylin DURMAZ π π₯ = π₯2 + 1 60 10290147 Elif DURMUΕ π π₯ = π βπ₯ β π₯πππ ( π₯)β = 0 61 12290208 Merve EDΔ°N 62 12290216 SΔ±la ELDEMΔ°R π π₯ = 2πππ π₯ 2 β ππ 1 + 4π₯ 2 β π β 2= 0 63 11290185 Nilhan EREN π π₯ = π ππ π₯ 3 β 3 + (π₯ + 1)ππ π 3 + π₯ 2 = 0 64 11290190 Havvagül ERMΔ°Ε 65 12290244 Melis ERTOΔAN 66 12290250 Mert FIRTIN 67 11290401 Esra GÜLKOK 2 π 4 sin( π₯) π 4 1 22 + π₯ 4 +1 β 85= 0 1 2 π π₯ = π ππ ππ₯ π π₯ + π₯ β 1 2 = 0 π π₯ = π₯ 5 + π₯ 2 + π₯π 2π₯ β 7= 0 π π₯ = 2π₯ β π β 2 + ππ π 2 + 4π₯ 2 β π 2 = 0 π π₯ = π₯ 4 + π₯ 2 π 1βπ₯ β 2 + sin(2 + π₯ 3 )= 0 π π₯ = π ππ π₯ + 1 + (π₯ + 1)2 = 0 -1= 0 π π₯ = π ππ 2π₯ 2 + ππ 1 + 4π₯ 2 β π -1= 0 68 10290559 ÇaΔla Δ°LTΔ°MUR 69 12290359 Filiz KAYA 70 12290382 Sahra KOCA 71 10290281 Gülcan KOÇ 72 10290285 Begüm KUNDAK 73 12290442 Buket ÖKSÜZ 74 11290519 Celal ÖNCÜ π π₯ = πππ (π₯ β 1)2 + 75 12290464 Esra ÖZTURAN π π₯ = π₯ 2 β 4 + ln 5 + π₯ 2 β 4π₯ = 0 76 94292200 BEHZAT SARIOΔLU π π₯ = π₯ 2 β π 2 + sin(x)ln π₯ + 1 = 0 77 11290358 Sema SAYGIN π π₯ = 4π₯ 2 β π βπ₯ + sin x + 2 β 4 = 0 78 12290496 Sena Nur SEZGΔ°N π π₯ = π π₯ + π₯ + 5= 0 79 12290500 Burçe SOLAK 80 12290514 Selin ΕENGÜL 81 11290395 Ebru TOK π π₯ = π ππ π₯ 3 + 2 β (2π₯ + 1)ππ π 2 + π₯ 2 = 0 π π₯ = π₯ 5 β π₯ 4 + π 2π₯ β 7 = 0 π π₯ = 2π₯ β ππ π 2 + 4π₯ 2 β π 2 + π + 2= 0 π π₯ = πππ ππ₯ + π₯ 2 β π= 0 π π₯ = π ππ π₯ 2 β π₯ππ 1 + π₯ 2 β π = 0 1 32 β ππ π₯β1 2 π π₯ = π₯ 3 + cos 3π₯ 2 + π₯ + 1 = 0 π π₯ = π π₯+1 + xln π₯ 2 + 1 β 2 = 0 π π π₯ = π₯ 2 β 2 3sin(π₯ 2 ) = 0 +1= 0 2 + 33 32 β 1= 0 On developing a higher-order family of double-Newton methods with a bivariate weighting function Young Hee Geum, Young Ik Kim, Beny Neta Applied Mathematics and Computation 254 (2015) 277β290 On developing a higher-order family of double-Newton methods with a bivariate weighting function Young Hee Geum, Young Ik Kim, Beny Neta Applied Mathematics and Computation 254 (2015) 277β290 On developing a higher-order family of double-Newton methods with a bivariate weighting function Young Hee Geum, Young Ik Kim, Beny Neta Applied Mathematics and Computation 254 (2015) 277β290 On developing a higher-order family of double-Newton methods with a bivariate weighting function Young Hee Geum, Young Ik Kim, Beny Neta Applied Mathematics and Computation 254 (2015) 277β290 An Optimal Family of Fast 16th-Order Derivative-Free Multipoint Simple-Root Finders for Nonlinear Equations Young Hee Geum, Young Ik Kim J Optim Theory Appl (2014) 160:608β622 An Optimal Family of Fast 16th-Order Derivative-Free Multipoint Simple-Root Finders for Nonlinear Equations Young Hee Geum, Young Ik Kim J Optim Theory Appl (2014) 160:608β622 An Optimal Family of Fast 16th-Order Derivative-Free Multipoint Simple-Root Finders for Nonlinear Equations Young Hee Geum, Young Ik Kim J Optim Theory Appl (2014) 160:608β622 An Optimal Family of Fast 16th-Order Derivative-Free Multipoint Simple-Root Finders for Nonlinear Equations Young Hee Geum, Young Ik Kim J Optim Theory Appl (2014) 160:608β622 An Optimal Family of Fast 16th-Order Derivative-Free Multipoint Simple-Root Finders for Nonlinear Equations Young Hee Geum, Young Ik Kim J Optim Theory Appl (2014) 160:608β622 An Optimal Family of Fast 16th-Order Derivative-Free Multipoint Simple-Root Finders for Nonlinear Equations Young Hee Geum, Young Ik Kim J Optim Theory Appl (2014) 160:608β622 An Optimal Family of Fast 16th-Order Derivative-Free Multipoint Simple-Root Finders for Nonlinear Equations Young Hee Geum, Young Ik Kim J Optim Theory Appl (2014) 160:608β622 An Optimal Family of Fast 16th-Order Derivative-Free Multipoint Simple-Root Finders for Nonlinear Equations Young Hee Geum, Young Ik Kim J Optim Theory Appl (2014) 160:608β622 An Optimal Family of Fast 16th-Order Derivative-Free Multipoint Simple-Root Finders for Nonlinear Equations Young Hee Geum, Young Ik Kim J Optim Theory Appl (2014) 160:608β622 An Optimal Family of Fast 16th-Order Derivative-Free Multipoint Simple-Root Finders for Nonlinear Equations Young Hee Geum, Young Ik Kim J Optim Theory Appl (2014) 160:608β622 π π₯ = π ππ2 (π₯) β π₯ 2 +1= 0 A family of combined iterative methods for solving nonlinear equation Danfu Han, Peng Wu Applied Mathematics and Computation 195 (2008) 448β453 π π₯ = π₯ 2 + π₯ β 2= 0 A new iteration method for solving algebraic equations Ji-Huan He Applied Mathematics and Computation 135 (2003) 81β84 π π₯ = π₯ 3 β π βπ₯ = 0 A new iteration method for solving algebraic equations Ji-Huan He Applied Mathematics and Computation 135 (2003) 81β84 82 96292104 Celil Öner TOPER 83 11290400 Gökhan TOPRAKÇI 84 12290545 G. Müberra TOSUN 85 12290553 Meltem TURGUT 86 12290576 Fatma UYGUN 87 13290560 Mehtap Nur UYSAL 88 10290408 Fatma Elif UZUN 89 10290641 Merve ÜLGER π π₯ = 2 β sin(π₯)= 0 π π₯ = π₯ β cos(π₯)= 0 Third-order modifications of Newtonβs method based on Stolarsky and Gini means Djordje Herceg, Dragoslav Herceg Journal of Computational and Applied Mathematics 245 (2013) 53β61 π π₯ = π₯ 2 sin(π₯) β cos(π₯)= 0 Third-order modifications of Newtonβs method based on Stolarsky and Gini means Djordje Herceg, Dragoslav Herceg Journal of Computational and Applied Mathematics 245 (2013) 53β61 π π₯ = π βπ₯ sin π₯ + ππ(π₯ 2 + 1)= 0 Third-order modifications of Newtonβs method based on Stolarsky and Gini means Djordje Herceg, Dragoslav Herceg Journal of Computational and Applied Mathematics 245 (2013) 53β61 π π₯ = π₯ 3 + 4π₯ 2 + 8π₯ + 9 = 0 Iterative methods to nonlinear equations M. Javidi Applied Mathematics and Computation 193 (2007) 360β365 π π₯ = π π₯ β 3π₯ 2 = 0 Iterative methods to nonlinear equations M. Javidi Applied Mathematics and Computation 193 (2007) 360β365 π π₯ = π₯ 3 + 2π₯ 2 + 10π₯ + 10 = 0 Some one-parameter families of third-order methods for solving nonlinear equations Dongdong Jiang, Danfu Han Applied Mathematics and Computation 195 (2008) 392β396 π π₯ = (π₯ β 2)2 βln(π₯) = 0 Some one-parameter families of third-order methods for solving nonlinear equations Dongdong Jiang, Danfu Han Applied Mathematics and Computation 195 (2008) 392β396 π π₯ = π₯ 2 β 2= 0 1 90 10290548 Fatma ÜNAL 91 12290590 Fulya YAHYA 92 10290434 Duygu YILDIRIM 93 12290609 Betül Ege YILMAZER 94 11290470 Merve YΔ°ΔΔ°T 95 12290610 Sinem YOΔUN 96 12290612 B. U. Mert YORGUN π π₯ = 2 β sin(π₯)= 0 Helsinki_05_nonlinear_equations-1x2.pdf Third-order modifications of Newtonβs method based on Stolarsky and Gini means Djordje Herceg, Dragoslav Herceg Journal of Computational and Applied Mathematics 245 (2013) 53β61 π π₯ = 3π₯ 2 β π π₯ = 0 Third-order modifications of Newtonβs method based on Stolarsky and Gini means Djordje Herceg, Dragoslav Herceg Journal of Computational and Applied Mathematics 245 (2013) 53β61 π π₯ = (π₯ β 1)3 β2 = 0 Third-order modifications of Newtonβs method based on Stolarsky and Gini means Djordje Herceg, Dragoslav Herceg Journal of Computational and Applied Mathematics 245 (2013) 53β61 π₯ = 01= 0 = 0 Third-order modifications of Newtonβs method based on Stolarsky and Gini means Djordje Herceg, Dragoslav Herceg Journal of Computational and Applied Mathematics 245 (2013) 53β61 βπ₯ π₯ 2 1βπ₯ 3/4 π π₯ π₯ = β sin (π₯)= β051= 0 β 0π =0 π = ππ₯π π₯= + 3
© Copyright 2025