No Roll No Name Surname Article Info Use MATLAB programs to

CHE 236 NUMERICAL METHODS HOMEWORK II (Due date: 17.04.2015)
Use MATLAB programs to apply Koçak's double linearization loop to find all roots given in the original work.Attempt a positive and a negative
"h" to start your iterations.Try also Newton, Chebyshev,Halley, and Ostrowski methods. Compare your results with each other and with the
original work. Additionally, experiment with Matlab functions fzero and roots. Supplementary information may be found in the articles given
Function
below.
No Roll No
Name
Surname
Article Info
𝑓 π‘₯ =
𝑙𝑛π‘₯
π‘₯
βˆ’
𝑙𝑛0.3
=
0.3
0
1
12290014 Ekin Ece
AKBULUT
2
10290004 Koray
AKCA
3
12290048 Feray
ATAGÜN
4
10290048 Irmak Δ°dil
ATLIĞ
5
10290053 Gülsinem
AYANOĞLU
6
12290061 Tolga
AYAS
7
10290057 Fatma
AYDIN
8
12290079 Ebru
BAKIR
9
12290104 Buket
BΔ°LGΔ°Ç
10
12290128 Merve
CEBECΔ°
11
12290130 Sedef
CENGΔ°Z
𝑓 π‘₯ = π‘₯ 2 βˆ’ 𝑒 π‘₯ βˆ’ 3π‘₯ + 2= 0
12
12290138 Gözde
ÇAKIR
𝑓 π‘₯ = π‘π‘œπ‘  π‘₯ βˆ’ π‘₯= 0
SOLUTION OF EQUATIONS WITH ONE VARIABLE
V. S. Abramchuk and S. I. Lyashko
Journal of Mathematical Sciences, Vol . 109 , No. 4 , 2002
𝑓 π‘₯ = 𝑒 π‘₯ βˆ’ 1= 0
On the local convergence of fast two-step Newton-like methods for solving nonlinear equations
I.K. Argyros, S. Hilout
Journal of Computational and Applied Mathematics 245 (2013) 1–9
𝑓 π‘₯ = π‘₯ 3 + lnx = 0
An analysis of the properties of the variants of Newton’s method with third order
convergence
D.K.R. Babajee, M.Z. Dauhoo
Applied Mathematics and Computation 183 (2006) 659–684
An analysis of the properties of the variants of Newton’s method with third order
convergence
D.K.R. Babajee, M.Z. Dauhoo
Applied Mathematics and Computation 183 (2006) 659–684
A new iterative method to compute
nonlinear equations
Mario Basto, Viriato Semiao, Francisco L. Calheiros
Applied Mathematics and Computation 173 (2006) 468–483
A new iterative method to compute
nonlinear equations
Mario Basto, Viriato Semiao, Francisco L. Calheiros
Applied Mathematics and Computation 173 (2006) 468–483
A new iterative method to compute
nonlinear equations
Mario Basto, Viriato Semiao, Francisco L. Calheiros
Applied Mathematics and Computation 173 (2006) 468–483
A new iterative method to compute
nonlinear equations
Mario Basto, Viriato Semiao, Francisco L. Calheiros
Applied Mathematics and Computation 173 (2006) 468–483
From third to fourth order variant
of Newton’s method for simple roots
Dhiman Basu
Applied Mathematics and Computation 202 (2008) 886–892
From third to fourth order variant
of Newton’s method for simple roots
Dhiman Basu
Applied Mathematics and Computation 202 (2008) 886–892
From third to fourth order variant
of Newton’s method for simple roots
Dhiman Basu
Applied Mathematics and Computation 202 (2008) 886–892
From third to fourth order variant
of Newton’s method for simple roots
Dhiman Basu
Applied Mathematics and Computation 202 (2008) 886–892
𝑓 π‘₯ = π‘₯ 3 + lnx + 0.15cos(50x)= 0
𝑓 π‘₯ = π‘₯ 3 + 4π‘₯ 2 + 8π‘₯ + 8 = 0
𝑓 π‘₯ = π‘₯ βˆ’ 2 βˆ’ 𝑒 βˆ’π‘₯ = 0
𝑓 π‘₯ = π‘₯ 2 βˆ’ (1 βˆ’ x)5 = 0
𝑓 π‘₯ = 𝑒 π‘₯ βˆ’ 3π‘₯ 2 = 0
𝑓 π‘₯ = π‘₯ 3 + 4π‘₯ 2 βˆ’ 10 = 0
𝑓 π‘₯ = 𝑠𝑖𝑛2 π‘₯ βˆ’ π‘₯ 2 + 1 = 0
=0
𝑓 π‘₯ = (π‘₯ βˆ’ 1)3 βˆ’1 = 0
13
12290728 A. Sertan
ÇAYCI
14
12290156 Mehmet
ÇELΔ°K
15
10290634 KΔ±vanç
ÇEVΔ°K
𝑓 π‘₯ = π‘₯𝑒 π‘₯ βˆ’ 𝑠𝑖𝑛2 π‘₯ + 3π‘π‘œπ‘  π‘₯ βˆ’ 10 = 0
16
12290158 Ceren
ÇΔ°ÇEKDAĞ
𝑓 π‘₯ = (𝑒 (π‘₯
17
12290717 Birsen
DEMİRCİOĞLU
18
13290501 Feyza Hilal
DΔ°LEK
𝑓 π‘₯ = π‘₯ 3 βˆ’ 10= 0
2
2 +7π‘₯+30)
βˆ’1) (x-5) = 0
𝑓 π‘₯ = π‘₯ 5 + π‘₯ 4 + 4π‘₯ 2 βˆ’ 15 = 0
Three-step iterative methods with eighth-order convergence for solving nonlinear
equations
Weihong Bi , Hongmin Renb, Qingbiao Wua
Journal of Computational and Applied Mathematics 225 (2009) 105 112
1
Three-step iterative methods with eighth-order convergence for solving nonlinear
equations
Weihong Bi , Hongmin Renb, Qingbiao Wua
Journal of Computational and Applied Mathematics 225 (2009) 105 112
𝑓 π‘₯ = 𝑠𝑖𝑛 π‘₯ βˆ’ 3 π‘₯ = 0
2
19
12290205 Metehan
DURUKAN
20
11290191 Mehmet Can
EROĞLU
21
12290237 Merve Nur
EROĞLU
22
12290240 Gülşah
ERSAN
23
12290256 Dilek
GENİŞ
24
13290522 Onur
KARA
25
12290376 Melike
KIRATLI
𝑓 π‘₯ = 10π‘₯𝑒 βˆ’π‘₯ βˆ’ 1 = 0
𝑓 π‘₯ = 𝑒 (βˆ’π‘₯
2 +π‘₯+2)
From third to fourth order variant
of Newton’s method for simple roots
Dhiman Basu
Applied Mathematics and Computation 202 (2008) 886–892
From third to fourth order variant
of Newton’s method for simple roots
Dhiman Basu
Applied Mathematics and Computation 202 (2008) 886–892
From third to fourth order variant
of Newton’s method for simple roots
Dhiman Basu
Applied Mathematics and Computation 202 (2008) 886–892
From third to fourth order variant
of Newton’s method for simple roots
Dhiman Basu
Applied Mathematics and Computation 202 (2008) 886–892
Three-step iterative methods with eighth-order convergence for solving nonlinear
equations
Weihong Bi , Hongmin Renb, Qingbiao Wua
Journal of Computational and Applied Mathematics 225 (2009) 105 112
Three-step iterative methods with eighth-order convergence for solving nonlinear
equations
Weihong Bi , Hongmin Renb, Qingbiao Wua
Journal of Computational and Applied Mathematics 225 (2009) 105 112
βˆ’ 1= 0
𝑓 π‘₯ = 𝑒 βˆ’π‘₯ + cos(π‘₯)= 0
Three-step iterative methods with eighth-order convergence for solving nonlinear
equations
Weihong Bi , Hongmin Renb, Qingbiao Wua
Journal of Computational and Applied Mathematics 225 (2009) 105 112
𝑓 π‘₯ = ln(π‘₯ 2 + x + 2) βˆ’ x + 1 = 0
Three-step iterative methods with eighth-order convergence for solving nonlinear
equations
Weihong Bi , Hongmin Renb, Qingbiao Wua
Journal of Computational and Applied Mathematics 225 (2009) 105 112
1
𝑓 π‘₯ = arcsin(π‘₯ 2 βˆ’ 1) βˆ’ 2 x + 1 = 0
Three-step iterative methods with eighth-order convergence for solving nonlinear
equations
Weihong Bi , Hongmin Renb, Qingbiao Wua
Journal of Computational and Applied Mathematics 225 (2009) 105 112
𝑓 π‘₯ = x βˆ’ tan(x) = 0
An improvement to the fixed point iterative method
Jafar Biazar, Alireza Amirteimoori
Applied Mathematics and Computation 182 (2006) 567–571
𝑓 π‘₯ = (π‘₯ + 2)𝑒 π‘₯ βˆ’ 1 = 0
A new Aitken type method for accelerating iterative sequences
Oana Bumbariu
Applied Mathematics and Computation 219 (2012) 78–82
=0
𝑓 π‘₯ = 𝑒 π‘₯ + 2βˆ’π‘₯ + 2 cos π‘₯ βˆ’ 6= 0
A new Aitken type method for accelerating iterative sequences
Oana Bumbariu
Applied Mathematics and Computation 219 (2012) 78–82
26
12290423 Emine Şimal
MΔ°RZA
27
11290520 Elif Kübra
ÖVÜT
28
12290449 Selen Tuğçe
ÖZBAŞ
29
12290450 Devrim Ceren
ÖZBEY
30
10290526 Salih
ÖZDEMΔ°R
31
10290529 Özge
ÖZDEMΔ°R
32
12290456 Esin
ÖZDEMΔ°R
𝑓 π‘₯ = 𝑒 (π‘₯
33
10290354 Durukan
SEZEN
𝑓 π‘₯ = 𝑠𝑖𝑛 π‘₯ βˆ’ 2 = 0
Certain improvements of Newton’s method with fourth-order convergence
Changbum Chun , Beny Neta
Applied Mathematics and Computation 215 (2009) 821–828
34
12290534 Deniz
TELLΔ°
𝑓 π‘₯ = π‘₯ 5 + π‘₯ βˆ’ 10000= 0
Certain improvements of Newton’s method with fourth-order convergence
Changbum Chun , Beny Neta
Applied Mathematics and Computation 215 (2009) 821–828
35
12290549 Can
TUNCER
36
12290705 Oya Nur
TURAN
37
12290557 Fulya
TÜRKMEN
38
12290574 Emire
UYANIK
39
11290547 Şahin Barış
ÜNSAL
𝑓 π‘₯ = π‘‘π‘Žπ‘›βˆ’1 π‘₯ βˆ’ 1 = 0
Some new iterative methods with three-order convergence
Jinhai Chen
Applied Mathematics and Computation 181 (2006) 1519–1522
𝑓 π‘₯ = 𝑒 π‘₯βˆ’2 βˆ’ 1 = 0
Some new iterative methods with three-order convergence
Jinhai Chen
Applied Mathematics and Computation 181 (2006) 1519–1522
2
𝑓 π‘₯ = π‘₯𝑒 π‘₯ βˆ’ 𝑠𝑖𝑛2 π‘₯ + 3π‘π‘œπ‘  π‘₯ + 5 = 0
Some sixth-order variants of Ostrowski root-finding methods
Changbum Chun , YoonMee Ham
Applied Mathematics and Computation 193 (2007) 389–394
𝑓 π‘₯ = 𝑠𝑖𝑛 π‘₯ 𝑒 π‘₯ + ln(π‘₯ 2 + 1)= 0
Some sixth-order variants of Ostrowski root-finding methods
Changbum Chun , YoonMee Ham
Applied Mathematics and Computation 193 (2007) 389–394
𝑓 π‘₯ = (π‘₯ βˆ’ 1)3 βˆ’2 = 0
Some sixth-order variants of Ostrowski root-finding methods
Changbum Chun , YoonMee Ham
Applied Mathematics and Computation 193 (2007) 389–394
2 +7π‘₯+30)
βˆ’1 =0
π‘₯
1
π‘₯
Certain improvements of Newton’s method with fourth-order convergence
Changbum Chun , Beny Neta
Applied Mathematics and Computation 215 (2009) 821–828
βˆ’3=0
Certain improvements of Newton’s method with fourth-order convergence
Changbum Chun , Beny Neta
Applied Mathematics and Computation 215 (2009) 821–828
𝑓 π‘₯ = 𝑒 π‘₯ + π‘₯ βˆ’ 20= 0
Certain improvements of Newton’s method with fourth-order convergence
Changbum Chun , Beny Neta
Applied Mathematics and Computation 215 (2009) 821–828
𝑓 π‘₯ = lnx + π‘₯ βˆ’ 5 = 0
Certain improvements of Newton’s method with fourth-order convergence
Changbum Chun , Beny Neta
Applied Mathematics and Computation 215 (2009) 821–828
𝑓 π‘₯ = π‘₯3 βˆ’ π‘₯2 βˆ’ 1 = 0
Certain improvements of Newton’s method with fourth-order convergence
Changbum Chun , Beny Neta
Applied Mathematics and Computation 215 (2009) 821–828
𝑓 π‘₯ = 𝑒 π‘₯ sin(x) + ln(1 + π‘₯ 2 )= 0
A new sixth-order scheme for nonlinear equations
Changbum Chun, Beny Neta
Applied Mathematics Letters 25 (2012) 185–189
𝑓 π‘₯ = π‘₯βˆ’
=0
𝑓 π‘₯ = π‘₯ 3 + 1= 0
A new sixth-order scheme for nonlinear equations
Changbum Chun, Beny Neta
Applied Mathematics Letters 25 (2012) 185–189
𝑓 π‘₯ = 11π‘₯ 11 βˆ’ 1= 0
A new sixth-order scheme for nonlinear equations
Changbum Chun, Beny Neta
Applied Mathematics Letters 25 (2012) 185–189
40
11290450 Merve
YILMAZ
41
11290461 Halis
YURTSEVEN
42
13290467 Öykü
AKÇAY
𝑓 π‘₯ = 2 + π‘₯ 2 sin
43
12290033 Müşerref
ALBAYRAK
𝑓 π‘₯ = cos
44
12290040 Ayşegül
ARAPOĞLU
𝑓 π‘₯ = π‘₯ 4 + sin( 2 ) βˆ’ 5 = 0
A new sixth-order scheme for nonlinear equations
Changbum Chun, Beny Neta
Applied Mathematics Letters 25 (2012) 185–189
45
10290040 Ebru
ARSLAN
𝑓 π‘₯ = π‘₯ 3 + 4π‘₯ 2 βˆ’ 10 2 = 0
A simply constructed third-order modifications of Newton’s method
Changbum Chun
J. Comput. Appl. Math. 219 (2008) 81 – 89
46
10290050 Gökçe Nur
AVŞAR
47
10290603 Ali
AYAŞLI
48
10290060 Okan
AYDIN
49
13290480 Ecem
BAĞCI
50
12290081 Damla
BAL
51
12290090 M. Kübra
BAŞARAN
52
12290739 Uğur
BAYTAR
53
12290122 Derya
CAN
πœ‹
π‘₯
2
+
πœ‹
π‘₯2
1
+ 1+π‘₯4 βˆ’
ln(π‘₯ 2 +2x+2)
17 3+1
βˆ’ 17 = 0
1+π‘₯ 2
πœ‹
π‘₯
𝑓 π‘₯ = π‘₯ 2 βˆ’ 2 βˆ’ π‘₯ 3= 0
𝑓 π‘₯ = π‘π‘œπ‘  π‘₯ βˆ’ π‘₯𝑒 π‘₯ + π‘₯ 2 = 0
𝑓 π‘₯ = 𝑒 π‘₯ βˆ’ 1.5 βˆ’ arctan(π‘₯) = 0
𝑓 π‘₯ = 8π‘₯ βˆ’ π‘π‘œπ‘  π‘₯ βˆ’ 2π‘₯ 2 = 0
𝑓 π‘₯ = π‘₯ 3 βˆ’ 9π‘₯ 2 + 28π‘₯ βˆ’ 30 = 0
𝑓 π‘₯ = sin π‘₯ + π‘₯π‘π‘œπ‘  π‘₯ = 0
2
𝑓 π‘₯ = 𝑒π‘₯ βˆ’ 𝑒
17 3+1
=0
17
2π‘₯
𝑓 π‘₯ = 𝑠𝑖𝑛 π‘₯ βˆ’
=0
π‘₯
2
=0
2
A new sixth-order scheme for nonlinear equations
Changbum Chun, Beny Neta
Applied Mathematics Letters 25 (2012) 185–189
A new sixth-order scheme for nonlinear equations
Changbum Chun, Beny Neta
Applied Mathematics Letters 25 (2012) 185–189
A stable family with high order of convergence for solving
nonlinear equations
Alicia Cordero , Taher Lotfi, Katayoun Mahdiani, Juan R. Torregrosa
Applied Mathematics and Computation 254 (2015) 240–251
Steffensen type methods for solving nonlinear equations
Alicia Cordero , Taher Lotfi, Katayoun Mahdiani, Juan R. Torregrosa
Journal of Computational and Applied Mathematics 236 (2012) 3058–3064
Steffensen type methods for solving nonlinear equations
Alicia Cordero , Taher Lotfi, Katayoun Mahdiani, Juan R. Torregrosa
Journal of Computational and Applied Mathematics 236 (2012) 3058–3064
Steffensen type methods for solving nonlinear equations
Alicia Cordero , Taher Lotfi, Katayoun Mahdiani, Juan R. Torregrosa
Journal of Computational and Applied Mathematics 236 (2012) 3058–3064
Variants of Newton’s Method using fifth-order
quadrature formulas
A. Cordero, Juan R. Torregrosa
Applied Mathematics and Computation 190 (2007) 686–698
Variants of Newton’s Method using fifth-order
quadrature formulas
A. Cordero, Juan R. Torregrosa
Applied Mathematics and Computation 190 (2007) 686–698
Variants of Newton’s Method using fifth-order
quadrature formulas
A. Cordero, Juan R. Torregrosa
Applied Mathematics and Computation 190 (2007) 686–698
Variants of Newton’s Method using fifth-order
quadrature formulas
A. Cordero, Juan R. Torregrosa
Applied Mathematics and Computation 190 (2007) 686–698
Variants of Newton’s Method using fifth-order
quadrature formulas
A. Cordero, Juan R. Torregrosa
Applied Mathematics and Computation 190 (2007) 686–698
Variants of Newton’s Method using fifth-order
quadrature formulas
A. Cordero, Juan R. Torregrosa
Applied Mathematics and Computation 190 (2007) 686–698
Variants of Newton’s Method using fifth-order
quadrature formulas
A. Cordero, Juan R. Torregrosa
Applied Mathematics and Computation 190 (2007) 686–698
𝑓 π‘₯ = (π‘₯ βˆ’ 1)6 βˆ’1 = 0
54
12290132 Ayşegül
CEYHAN
55
11290612 Hasan Berk
COŞKUN
𝑓 π‘₯ = 4sin π‘₯ βˆ’ π‘₯ + 1= 0
56
12290151 Gamze
ÇELΔ°K
𝑓 π‘₯ = arctan π‘₯
57
11290129 Sibel
DEMΔ°RCAN
𝑓 π‘₯ = π‘₯ 3 βˆ’ 𝑒 βˆ’π‘₯ + 28π‘₯ βˆ’ 30 = 0
A new iteration method with cubic convergence to solve nonlinear algebraic equations
Tiegang Fang , Fang Guo, Chia-fon F. Lee
Applied Mathematics and Computation 175 (2006) 1147–1155
𝑓 π‘₯ = π‘₯ 3 βˆ’ 2π‘₯ 2 + π‘₯ βˆ’ 1 = 0
An efficient Newton-type method with fifth-order
convergence for solving nonlinear equations
LIANG FANG LI SUN and GUOPING HE
Comp. Appl. Math., Vol. 27, N. 3, 2008, pp. 269–274
High-order convergence of the k-fold pseudo-Newton’s irrational method locating a
simple real zero
Young Hee Geum, Young Ik Kim, Min Surp Rhee
Applied Mathematics and Computation 182 (2006) 492–497
High-order convergence of the k-fold pseudo-Newton’s irrational method locating a
simple real zero
Young Hee Geum, Young Ik Kim, Min Surp Rhee
Applied Mathematics and Computation 182 (2006) 492–497
On developing a higher-order family of double-Newton
methods with a bivariate weighting function
Young Hee Geum, Young Ik Kim, Beny Neta
Applied Mathematics and Computation 254 (2015) 277–290
On developing a higher-order family of double-Newton
methods with a bivariate weighting function
Young Hee Geum, Young Ik Kim, Beny Neta
Applied Mathematics and Computation 254 (2015) 277–290
On developing a higher-order family of double-Newton
methods with a bivariate weighting function
Young Hee Geum, Young Ik Kim, Beny Neta
Applied Mathematics and Computation 254 (2015) 277–290
On developing a higher-order family of double-Newton
methods with a bivariate weighting function
Young Hee Geum, Young Ik Kim, Beny Neta
Applied Mathematics and Computation 254 (2015) 277–290
On developing a higher-order family of double-Newton
methods with a bivariate weighting function
Young Hee Geum, Young Ik Kim, Beny Neta
Applied Mathematics and Computation 254 (2015) 277–290
On developing a higher-order family of double-Newton
methods with a bivariate weighting function
Young Hee Geum, Young Ik Kim, Beny Neta
Applied Mathematics and Computation 254 (2015) 277–290
On developing a higher-order family of double-Newton
methods with a bivariate weighting function
Young Hee Geum, Young Ik Kim, Beny Neta
Applied Mathematics and Computation 254 (2015) 277–290
58
12290203 Kübra
DURAN
59
14290616 Aylin
DURMAZ
𝑓 π‘₯ = π‘₯2 + 1
60
10290147 Elif
DURMUŞ
𝑓 π‘₯ = 𝑒 βˆ’π‘₯ βˆ’ π‘₯π‘π‘œπ‘ ( π‘₯)βˆ’ = 0
61
12290208 Merve
EDΔ°N
62
12290216 SΔ±la
ELDEMΔ°R
𝑓 π‘₯ = 2π‘π‘œπ‘  π‘₯ 2 βˆ’ 𝑙𝑛 1 + 4π‘₯ 2 βˆ’ πœ‹ βˆ’ 2= 0
63
11290185 Nilhan
EREN
𝑓 π‘₯ = 𝑠𝑖𝑛 π‘₯ 3 βˆ’ 3 + (π‘₯ + 1)𝑙𝑛 𝑒 3 + π‘₯ 2 = 0
64
11290190 Havvagül
ERMİŞ
65
12290244 Melis
ERTOĞAN
66
12290250 Mert
FIRTIN
67
11290401 Esra
GÜLKOK
2
πœ‹
4
sin( π‘₯)
πœ‹
4
1
22
+ π‘₯ 4 +1 βˆ’ 85= 0
1
2
𝑓 π‘₯ = 𝑠𝑖𝑛 πœ‹π‘₯ 𝑒 π‘₯ + π‘₯ βˆ’ 1 2 = 0
𝑓 π‘₯ = π‘₯ 5 + π‘₯ 2 + π‘₯𝑒 2π‘₯ βˆ’ 7= 0
𝑓 π‘₯ = 2π‘₯ βˆ’ πœ‹ βˆ’ 2 + 𝑙𝑛 𝑒 2 + 4π‘₯ 2 βˆ’ πœ‹ 2 = 0
𝑓 π‘₯ = π‘₯ 4 + π‘₯ 2 𝑒 1βˆ’π‘₯ βˆ’ 2 + sin(2 + π‘₯ 3 )= 0
𝑓 π‘₯ = 𝑠𝑖𝑛 π‘₯ + 1 + (π‘₯ + 1)2 = 0
-1= 0
𝑓 π‘₯ = 𝑠𝑖𝑛 2π‘₯ 2 + 𝑙𝑛 1 + 4π‘₯ 2 βˆ’ πœ‹ -1= 0
68
10290559 Çağla
Δ°LTΔ°MUR
69
12290359 Filiz
KAYA
70
12290382 Sahra
KOCA
71
10290281 Gülcan
KOÇ
72
10290285 Begüm
KUNDAK
73
12290442 Buket
ÖKSÜZ
74
11290519 Celal
ÖNCÜ
𝑓 π‘₯ = π‘π‘œπ‘ (π‘₯ βˆ’ 1)2 +
75
12290464 Esra
ÖZTURAN
𝑓 π‘₯ = π‘₯ 2 βˆ’ 4 + ln 5 + π‘₯ 2 βˆ’ 4π‘₯ = 0
76
94292200 BEHZAT
SARIOĞLU
𝑓 π‘₯ = π‘₯ 2 βˆ’ πœ‹ 2 + sin(x)ln π‘₯ + 1 = 0
77
11290358 Sema
SAYGIN
𝑓 π‘₯ = 4π‘₯ 2 βˆ’ 𝑒 βˆ’π‘₯ + sin x + 2 βˆ’ 4 = 0
78
12290496 Sena Nur
SEZGΔ°N
𝑓 π‘₯ = 𝑒 π‘₯ + π‘₯ + 5= 0
79
12290500 Burçe
SOLAK
80
12290514 Selin
ŞENGÜL
81
11290395 Ebru
TOK
𝑓 π‘₯ = 𝑠𝑖𝑛 π‘₯ 3 + 2 βˆ’ (2π‘₯ + 1)𝑙𝑛 𝑒 2 + π‘₯ 2 = 0
𝑓 π‘₯ = π‘₯ 5 βˆ’ π‘₯ 4 + 𝑒 2π‘₯ βˆ’ 7 = 0
𝑓 π‘₯ = 2π‘₯ βˆ’ 𝑙𝑛 𝑒 2 + 4π‘₯ 2 βˆ’ πœ‹ 2 + πœ‹ + 2= 0
𝑓 π‘₯ = π‘π‘œπ‘  πœ‹π‘₯ + π‘₯ 2 βˆ’ πœ‹= 0
𝑓 π‘₯ = 𝑠𝑖𝑛 π‘₯ 2 βˆ’ π‘₯𝑙𝑛 1 + π‘₯ 2 βˆ’ πœ‹ = 0
1
32
βˆ’ 𝑙𝑛
π‘₯βˆ’1
2
𝑓 π‘₯ = π‘₯ 3 + cos 3π‘₯ 2 + π‘₯ + 1 = 0
𝑓 π‘₯ = 𝑒 π‘₯+1 + xln π‘₯ 2 + 1 βˆ’ 2 = 0
πœ‹
𝑓 π‘₯ = π‘₯ 2 βˆ’ 2 3sin(π‘₯ 2 ) = 0
+1= 0
2
+
33
32
βˆ’ 1= 0
On developing a higher-order family of double-Newton
methods with a bivariate weighting function
Young Hee Geum, Young Ik Kim, Beny Neta
Applied Mathematics and Computation 254 (2015) 277–290
On developing a higher-order family of double-Newton
methods with a bivariate weighting function
Young Hee Geum, Young Ik Kim, Beny Neta
Applied Mathematics and Computation 254 (2015) 277–290
On developing a higher-order family of double-Newton
methods with a bivariate weighting function
Young Hee Geum, Young Ik Kim, Beny Neta
Applied Mathematics and Computation 254 (2015) 277–290
On developing a higher-order family of double-Newton
methods with a bivariate weighting function
Young Hee Geum, Young Ik Kim, Beny Neta
Applied Mathematics and Computation 254 (2015) 277–290
An Optimal Family of Fast 16th-Order Derivative-Free Multipoint Simple-Root Finders
for Nonlinear Equations
Young Hee Geum, Young Ik Kim
J Optim Theory Appl (2014) 160:608–622
An Optimal Family of Fast 16th-Order Derivative-Free Multipoint Simple-Root Finders
for Nonlinear Equations
Young Hee Geum, Young Ik Kim
J Optim Theory Appl (2014) 160:608–622
An Optimal Family of Fast 16th-Order Derivative-Free Multipoint Simple-Root Finders
for Nonlinear Equations
Young Hee Geum, Young Ik Kim
J Optim Theory Appl (2014) 160:608–622
An Optimal Family of Fast 16th-Order Derivative-Free Multipoint Simple-Root Finders
for Nonlinear Equations
Young Hee Geum, Young Ik Kim
J Optim Theory Appl (2014) 160:608–622
An Optimal Family of Fast 16th-Order Derivative-Free Multipoint Simple-Root Finders
for Nonlinear Equations
Young Hee Geum, Young Ik Kim
J Optim Theory Appl (2014) 160:608–622
An Optimal Family of Fast 16th-Order Derivative-Free Multipoint Simple-Root Finders
for Nonlinear Equations
Young Hee Geum, Young Ik Kim
J Optim Theory Appl (2014) 160:608–622
An Optimal Family of Fast 16th-Order Derivative-Free Multipoint Simple-Root Finders
for Nonlinear Equations
Young Hee Geum, Young Ik Kim
J Optim Theory Appl (2014) 160:608–622
An Optimal Family of Fast 16th-Order Derivative-Free Multipoint Simple-Root Finders
for Nonlinear Equations
Young Hee Geum, Young Ik Kim
J Optim Theory Appl (2014) 160:608–622
An Optimal Family of Fast 16th-Order Derivative-Free Multipoint Simple-Root Finders
for Nonlinear Equations
Young Hee Geum, Young Ik Kim
J Optim Theory Appl (2014) 160:608–622
An Optimal Family of Fast 16th-Order Derivative-Free Multipoint Simple-Root Finders
for Nonlinear Equations
Young Hee Geum, Young Ik Kim
J Optim Theory Appl (2014) 160:608–622
𝑓 π‘₯ = 𝑠𝑖𝑛2 (π‘₯) βˆ’ π‘₯ 2 +1= 0
A family of combined iterative methods for solving
nonlinear equation
Danfu Han, Peng Wu
Applied Mathematics and Computation 195 (2008) 448–453
𝑓 π‘₯ = π‘₯ 2 + π‘₯ βˆ’ 2= 0
A new iteration method for solving algebraic equations
Ji-Huan He
Applied Mathematics and Computation 135 (2003) 81–84
𝑓 π‘₯ = π‘₯ 3 βˆ’ 𝑒 βˆ’π‘₯ = 0
A new iteration method for solving algebraic equations
Ji-Huan He
Applied Mathematics and Computation 135 (2003) 81–84
82
96292104 Celil Öner
TOPER
83
11290400 Gökhan
TOPRAKÇI
84
12290545 G. Müberra
TOSUN
85
12290553 Meltem
TURGUT
86
12290576 Fatma
UYGUN
87
13290560 Mehtap Nur
UYSAL
88
10290408 Fatma Elif
UZUN
89
10290641 Merve
ÜLGER
𝑓 π‘₯ = 2 βˆ’ sin(π‘₯)= 0
𝑓 π‘₯ = π‘₯ βˆ’ cos(π‘₯)= 0
Third-order modifications of Newton’s method based on
Stolarsky and Gini means
Djordje Herceg, Dragoslav Herceg
Journal of Computational and Applied Mathematics 245 (2013) 53–61
𝑓 π‘₯ = π‘₯ 2 sin(π‘₯) βˆ’ cos(π‘₯)= 0
Third-order modifications of Newton’s method based on
Stolarsky and Gini means
Djordje Herceg, Dragoslav Herceg
Journal of Computational and Applied Mathematics 245 (2013) 53–61
𝑓 π‘₯ = 𝑒 βˆ’π‘₯ sin π‘₯ + 𝑙𝑛(π‘₯ 2 + 1)= 0
Third-order modifications of Newton’s method based on
Stolarsky and Gini means
Djordje Herceg, Dragoslav Herceg
Journal of Computational and Applied Mathematics 245 (2013) 53–61
𝑓 π‘₯ = π‘₯ 3 + 4π‘₯ 2 + 8π‘₯ + 9 = 0
Iterative methods to nonlinear equations
M. Javidi
Applied Mathematics and Computation 193 (2007) 360–365
𝑓 π‘₯ = 𝑒 π‘₯ βˆ’ 3π‘₯ 2 = 0
Iterative methods to nonlinear equations
M. Javidi
Applied Mathematics and Computation 193 (2007) 360–365
𝑓 π‘₯ = π‘₯ 3 + 2π‘₯ 2 + 10π‘₯ + 10 = 0
Some one-parameter families of third-order methods for solving nonlinear equations
Dongdong Jiang, Danfu Han
Applied Mathematics and Computation 195 (2008) 392–396
𝑓 π‘₯ = (π‘₯ βˆ’ 2)2 βˆ’ln(π‘₯) = 0
Some one-parameter families of third-order methods for solving nonlinear equations
Dongdong Jiang, Danfu Han
Applied Mathematics and Computation 195 (2008) 392–396
𝑓 π‘₯ = π‘₯ 2 βˆ’ 2= 0
1
90
10290548 Fatma
ÜNAL
91
12290590 Fulya
YAHYA
92
10290434 Duygu
YILDIRIM
93
12290609 Betül Ege
YILMAZER
94
11290470 Merve
YİĞİT
95
12290610 Sinem
YOĞUN
96
12290612 B. U. Mert
YORGUN
𝑓 π‘₯ = 2 βˆ’ sin(π‘₯)= 0
Helsinki_05_nonlinear_equations-1x2.pdf
Third-order modifications of Newton’s method based on
Stolarsky and Gini means
Djordje Herceg, Dragoslav Herceg
Journal of Computational and Applied Mathematics 245 (2013) 53–61
𝑓 π‘₯ = 3π‘₯ 2 βˆ’ 𝑒 π‘₯ = 0
Third-order modifications of Newton’s method based on
Stolarsky and Gini means
Djordje Herceg, Dragoslav Herceg
Journal of Computational and Applied Mathematics 245 (2013) 53–61
𝑓 π‘₯ = (π‘₯ βˆ’ 1)3 βˆ’2 = 0
Third-order modifications of Newton’s method based on
Stolarsky and Gini means
Djordje Herceg, Dragoslav Herceg
Journal of Computational and Applied Mathematics 245 (2013) 53–61
π‘₯
= 01= 0 = 0
Third-order modifications of Newton’s method based on
Stolarsky and Gini means
Djordje Herceg, Dragoslav Herceg
Journal of Computational and Applied Mathematics 245 (2013) 53–61
βˆ’π‘₯
π‘₯
2 1βˆ’π‘₯
3/4
𝑓 π‘₯
π‘₯ =
βˆ’
sin
(π‘₯)=
βˆ’051=
0 βˆ’ 0𝑒 =0
𝑓
= 𝑒π‘₯𝑒
π‘₯=
+
3