as a PDF

ChemicalGeology,45 (1984) 33-51
ElsevierSciencePublishersB.V., Amsterdam- Printed in The Netherlands
Bg
COMPOSITIONOF MINERAL FRAC"TIONSOF THE NARBADA AND
TAPTI ESTUARINE PARTICLES AND THE ADJACEIT ARABIAN
SEA SEDIMENTSOFF WESTERNINDIA
M. BASKARAN, M.M. SARIN and B.L.K. SOMAYAJULU
PhysicalResearchLaboratory,Ahmedabad380 009 (India)
(ReceivedMarch 15, 1983;revisedand acceptedOctober26, 1983)
ABSTRACT
Baskaran,M., Sarin, M.M. and Somayajulu,B.L.K., 1984. Compoeition.of-mineralfractions of the Narbadaand Tapti estuarineparticlesand the adjacentArabian Sea sed'
iments off westernIndia. Chem.Geol.,45: 33-51.
Thirty suspendedand bottom sediment samplesfrom the Narbada and Tapti river
eetuarinesystemsof western India were separatedinto magnetic, clay and silt--and fractions, the Al, Fe, Mn, ZnrCr, Co, Ni and Cu concentrationsof which have been determined by atomic absorption spectrophotometry.
On an average,the silt-*and fraction accountsfor >90Voof the suspendedmatter and
bottom sediments.Of the rest, clays are more abundant than the magnetic fraction. For
all fractions there are no major differences, in the region of inveetigation, in mineralogy
between the estuarinesuspendedand the bottom sediments.
The magnetic fraction is enriched in all metals (except Al) by a factor of L.2-4 as
compared to the other two fractiong. The claye, in turn, arc enriched in all metals by a
factor of 1.4 t 0.14 as compared to the siltaand. The metal/Al ratios in the clay aawell
as in the silt-and fractions do not strow any variations beyond t 26Vobetween the
freshwater end-memberof the estuariesand the coastalArabian Sea,thus indicating that
the effect of eetuarine processeson the inorganic solids are within thig limit. In the
magnetic fraction the metal/Al ratios vary by as much as an order of magnitude,whereas
the correspondingmetal/Fe ratios do not vary by more than a factor of 2.
The clay and gilt-and fractions of sedimentsfrom the open shelf and slope regionsof
the Arabian Sea are enriched in Ni and Zn and depleted in Mn by a factor of 2 as compared to the estuarinesuspendedand bottom sediments.Theseenrichments are attributed
to thc reducing nature of the open marine environment.
The inter-elemental conelations in the gilt-and fractions are good, the correlation co'
efficients (for 28 observations)ranging from 0.60 to 0.96 (the highest value ie for FeAl). The suspendedfluxes of metale from the Narbada and Tapti Rivers to the adiacent
shelf and to the deep sea (via clays) are calculated. On average-6Vo of. the total flur to
the ghelf region reachesthe deep sea.
INTRODUCTION
One of the major and better characterisedinputs of material to the
ocean is via rivers and streams.The river- and stream-bornesoluble and suspended loads get affected in estuarieswhere there is continuous mixing between fresh water and seawater(Turekian, 1971, L977; Fukai et al.' 1973;
Krishnaswami,1976; Sholkovitz, L976; Evans et al., L977) by processes
34
such as flocculation, adsorption-desorption,recycling through biological
processes,etc. The estuarineprocesses
thus modify the influx of continental
(Kharkar
et al., 1968; Martin et al., 1971, t9731,
materialsto the ocean
Windom et al., L971; Boyle et al., t974; Borole et al., L977,1982a,b;
Borole, 1980; Carpenterand Hayes,1980; Tlefry and Presley,L982;Ray et
al.,1984).
Borole et al. (7977,1982b) and Trefry (1977) studiedthe total suspended
(U.S.A.)riverestuarine
phasesof the Narbada,Tapti (India) and Mississippi
systemsrespectively,with a view to understandingthe fluvial transport of
someelementsinto the ocean.Tessieret al. (1980) attemptedto study the
speciation of some trace metals in the Yamaska and St. Frangoisrivers
(Canada)by subjectingthe riverine solidsto sequentialleachingprocedures.
Suspendedmaterial/bottom sedimentare compositesof severalminerals.We
thought it worthwhile to separatethe suspendedmaterial/sedimentsinto
(which are denoted as mineral fractions hencethree mineral assemblages
forth), viz. magnetic,clay and silt-sand, and to study the distribution of
some major and sometrace metalsin thesefractions. As clays are the ultimate river- (and stream-) borne input of terrestrial material to the deep
ocean, such a study would allow an estimationto be made of the riverine
fluxes of metalsto the deep sea.We report our studieson Al, Fe, Mn, Zn,
Cr, Co, Ni and Cu in the three fractions of the suspendedmatter/bottom
sedimentsof the Narbadaand Tapti river-estuarinesystemsof westernIndia
and of the adjacentArabian Seasediments.
EXPERIMENTAL
The Narbada and Tapti are the two major rivers (both perennial) on the
west coast of India and the secondand third largestriversof the Indian subcontinent draining an areaof 0.9.10s and 0.65'10s km2, respectively,into
the ArabianSea(Fig. L). Togetherthey dischargeannually0.6'10141water,
sediment,into the ArabianSea;this is
associated
with -0.6.1014g suspended
257oand 60Vo,respectively,of the annualwater and suspendeddischargesof
the largestriver of India, the Indus (Milliman and Meade, 1983). In their
initial stagesthey flow through the basalticterrain of the DeccanTraps,and
- in'the lower reaches- through recentalluvialtracts (Borole, 1980). The
South-westmonsoon,usually occurringbetweenmidJune and mid-September, accounts for 94Voand 77% of. the annual dischargeof the Narbada
(Rao,19?5).Both
(4.07.10131)
respectively
and of the Tapti (1.8.10131),
-30
estuariesare
km long and are tidal. The waters at Broach and Surat
form the freshwaterend membersof the Narbadaand Tapti estuaries,respectively (Fig. 1).
Sampling
Samplingof estuarinewaters was usually done on board country boats
and motor launches,and eachset of sampleswas collectedin one tidal cycle.
35
. t465
69'E
.1471
700E
Fig. 1. Map of the region of study, indicating the locations of the coastal and open Ara'
km
bian Sea sediments. TLe River Narbada has no dam, whereas the Tapti has a dam 200
upstream of Surat. Broach and Surat represent the freshwater end'members of the Narba'
da and Tapti estuariee,respectively.
One-litrewater sampleswereusedfor determiningthe suspendedmatter con'
centrations. Sinceboth rivers are muddy, especiatlythe Narbadawhich has
no dam, amplesuspendedmatter could be collectedfrom the 20'l water sam'
(Borole, 1980). Suspendedmatter
ples collected for uranium measurements
samples(usedfor this study) wereselectedso as to coverthe entire estuarine
region oi noth rivers.Estuarinesedimentswere collected from river banks;
gt".rity cores and grab samplesfrom the near-coastaland open Arabian Sea
Goa.
ur."r ifig. 1) wereprovidedby the National Institute of Oceano$raPhY,
Mineral fractions\ryereseparatedasfollows.
A known weight of the ovendried (110'C) sample was dispersedin a
Teflon@beakerand stirred with a Teflon@-encasedmagneticbar for 5 min.;
the bar was removedand the magneticparticleswere then transferredinto
another container.The procedurewas repeateduntil no particleswere seen
on the bar magnet.The non-magneticmaterial was then separatedinto clay
36
(<4 pm) and silt-and fractions by conventional settling methods (Galehouse,1971).
About 30 mg of eachfraction wasdepositedon a glassslide and subjected
to X-ray diffraction using a Philips@(Eindhoven,The Netherlands)I 730 X'
ray diffractometer (Hutchison, 1974). For clays and silt-sand' Cu-K" Nifiltered radiation were used,whereasfor the magneticfraction, Fe'K" Mnfiltered radiation were used. In order to confirm the presenceof smectite'
the clay mineral fractionswere X-rayedbefore and after glycolation.
Determinationof chemicalcomposition
Known amounts (<0.5 g) of ovendried mineral fractions were brought
into solution in L M HCI after repeatedtreatmentswith HF, HCIO4,HNO3
and HCl. This residue-freesolution wasdiluted to 50 ml and wasusedfor the
determinationof the concentrationsof Al, Fe, Mn, Zn, Ct, Co, Ni and Cu by
atomic absorption spectrophotometry, following standard procedures.
U.S.G.S.rock standardsand blanks were also run along with the samples
(Sarinet al., L979;Boroleet al., 1982).
RESULTS
In Table I are gtven the chlorinity of water (measuredby AgNO3titra'
tion), the particulate matter concentrations(wherevermeasured)and the
concentrationsof the three mineralfractions.The total Fe and Al concentra'
tions of the suspendedmatter/sedimentsalongwith the fractional concentrations of the sameare also gtyer in Table I. Similar data are grvenin Table II
for Mn, Zn and Cr, and for NiSo and Cu in Table III. The reported concentrations are accwate to ! \Vo for all elements,except fot Zn which is accurate to t 6Vo.
DISCUSSION
The particulate concentrationsof the Narbadaand Tapti estuarinewaters
are in the range of. 26.74720 and 19.7-691 mg fl, respectively,with
weighted mean valuesof 1154 and 445 mg f r, respectively(Borole et al.,
1982b); the highestvaluesfor both estuariesoccurring in the monsoonseason (midJune to mid-september).The relatively higher particulate concentrations of the Narbadawaterscomparedto thoseof Tapti can be explained
as due to the damming of the latter. The general high concentrations of
suspendedmatter in these estuarinewaters as comparedto those of the
east-coastrivers, viz. Mahanadi,Godavari and Krishna (Borole et al., L982b;
Sarin et al., 1983; Ray et al., 1984), is most likely due to the tidal range
(5-7 m) at the mouths of theserivers.
37
u ?t : o l q q q e o l \ o l q u ? a
qo:c!qu? cqnq6:\c!q
qqno?1\
U)hB
cD a-
c\i.'lr0coo
(D O) 6) cO cO@
,. bs
d F !,6,i doi
>t
F
O
FO<ic)C{O
iFl
oo6|!.r0
o) O) Or o) €O
d!o)dc-tNNH(0
o| cO Or @ Ol g) ('|
ca(OF-
rOOr+OC{O@o)
F-
di <t,.i q -i
o?H
(QC€g)roc{{irroo
ilF0?
o)F
C- Ol d) F o) ro O) <t: d) O,
F
tr..
{ ci cd F F c.i j
c" ddF
rOoicrtHO)dirO(O
-i
ci ci'j,.i
d d d <, d r.i 'rj.r .i
@ O rO rO (0<€ O
ro $
d rrOOO
H
g\l
H
H
6l
ol
Ng\|
C!
{
d
E:
qt
3O
-
B
BE
"8
6
c
(,
c
>E
I
ar
E
<,
o
a
t
o
t\
3
3
E
<{ rO cO 3s)
d iOdH
F N
iol
q ol q qnol
H !.CD
616ld
c t(o: q
n'1
(0
F- (o (o ts F(o
t-
FF
Ol ro !r (o !@ @ @ @ ts-
(o O O O ('| Ol O
i
o: co or @ o) F- F F
q u ? n o ? n u ?q 6 ? r : o l q q l q c ! 6 : , q 9 q
(o F
3
cl O O
id
O
F
(g (D Fl
d
c\Oro-cO$dtl
c.i ( o d o
ln c! ol {: q
n q q o
F € F- (o co (0 ro to r
ololc!nqn q'qqc'?.1 o?\nq.'?9olc!
O) rO @ cO otol
co co co @ @ao
6|
$
O) @ (o @ N
r{
t{r O:
Hi
rOH
o)t-
(O i
ro d
q qnq
cO $$
r0 FF-
c o o Eo g c c E
d to Ol Fl CA {
1q:
{ F- ro ot c.l 60 € {.
qolu?F?'qqo?\q
F- <r o| tO ro Ctl cr) c{ t{ tO
(o (D @ F g) tl g) o) g) (D
q 9qq
qq€!cogu?\o?q
€.lN
@ rO (o H $
6|
6lN
O
N
F
{
(O F
rO 6.
-Z'
o
o ?I t : q o l t { : q n q
(o
(€
aO
F
(O N
F F
ro i
io F
3
rgCO
l-
qn
Ol 6t r{
i
n o:ol c!u?olq ol
i{
Cl d
60 d
d
F
rO O)
NO:t6
<
HCO
F
mcacad{6t|:6l::!:=:=
o
H N
E
t r
E t r C A
a,
&
€
o
otg)
ts-F
O
O
(a (o to{
t'- to t- F.
Ot i.
F F
@ €
F t-
cO (o(o
O
t- b- (o co
lo @|oqr@|oOrcOO'{O)cA€O
tfFiHt(l!-rlO6|HSGa
F
o
F
'6
g
Ei
6
,
0
o
c
l:
A
g
B8
cqaqqn
1q\qu?
6t Fr!l r0@o d H d(o(o
Or(l|g)cOAo) OrOlOrdr@
c
qqqu?c!u?u?\c'q1 1qo:,q\c\qqq
od)co
30H<r€{
O:Orq:cOgr('r€F
ro€
6 ca@ co@|I)0roc\|$t!
t- OF @OrolcO(Drtgro)(DO)
o: q a I g ol c! q
(o€FiF
<? n6! q 6! q q c! e !q 1 n 6!
{,
<,
c
o
€l?a q q olq q d?o?q 1
,.$
a
t
a
o
o
ll
6
6
a
6
o
o
0
Ci
E
o
c
()
t(t
o
O.
E
r:
9l
e
c
r-(oloar)o
o
c
f
:
r
>t
:
u
c
g
q q q 1 n o? q q q 1 n
i N N d N N O H c O G a g )
o o o
F
d
i
. e
A)a
n a .: o! oCq c? e
N H O O O
F r O d t
. @ .
.{ Fcl o . ' F' : CdO 5- $ e F' ' : e| rr| r| d E ' d E ' d It t
F{(oi
qc\
c
g
t
@
d
do
ro dgfl@ol(or4t|oi.F{
rc)
C{H
tl
= 9
I
c
E
o? d?<i \ = ol \ 4 o! = = = 3e
g
6 a l o ' { O
t r O O O O
!
a
C
I | | | | | | | | I | | |
c
B!
: . q
EE
(,I L
r\ E!
.g oi
.6F{
g
H(0(0
E r e
i|oao
H
EE
fl*
t g
r l L
qnc!16!nnii
0
h
@(0caF{coF
r{
o
E > r
frl
F
c
a
o
u
OOO
tl@Oa)6r
F { d H
OO('|
1
i
o?q46!c
O
c-l{F
q
(O OO(o
d
d
!:1111a11!:1114
o) gr(,) (D('|OI(')OICt:g)(t)(')Ol
H r < H F l d r { r { H H d d F
i
T$E
6 E o
Er::
5:;
: : i h 5 : l : i!ol i i l l S g
i i 5 * x 5 s E 5F$E
ataa
,ori:{x\i"ENys.+l .i i**$**cr
R:
l Q t r l t r lt r t r ! e t r c l t r t r l t r d , o : d d a : o . o . a : ' i
ZZZZZZZZZZZ
E E r Et r H F , t E O (
-.:oo
HPE
sE C)
38
C': AQ
a:-
| o0$@ r o( .o009d!d
dO<rra)3(gcA@O)C\t6t
O ) O ) O ) @ @ @ o|@ AOr @
(0F-6lc\ioF-co(ocoN
i H i
d o) i ca d co F- $
6, cO O, @ o) F- CO F-
oq,q a ol \ a q a?o?6i a
\ q o:
(0
o) ro H F- c: ro co co 9 ro co
@ 6l
rO @ C- F- O) O) F- O) Ol c€ (o o) o) Ol
q a oqo? e-qq a o? ,q 6l ogo?,q q oi oq q n \ \ oqq
(0 ro <r H
|o
e10?1qqqo?qq\
.. bR
q,q q q q ol \ a
H
lo o) co ro co + ro H
d
6l
0 n' <' {
rOCt)
6l
N ot c'l d) <'
(')
Nrl
qt
€
ol9\qu?a
>8
(OH
rO@rOO)cO 6@OO)
@ co H o
c.rH = o o (o(o $
d
c
\q\6!
i c ! C \ F r $ c O = c o { $ r O
q
oq\gq
F
a:-
qt
q
a
6
o
F
()
c
q
c
a
o
q
"8
>g
ts
c"j cd cd€<,,rj,o
co F F: F c.. F
O
H
s- o
aoo
ro ococo
r- F F(6
d) @ @ (O O) s\O
d.ri;:
{oi;;
;;;
FF
5
N
* tj -ro
U d ; 5
{
o
c'- {
i o
(O
d
d
@ F- O: (O O' o)
F- o) c.l H 6l o)
i i
oqo? qnn'q
O
d,
H
CO O) $
ro @ o
d
F
F
Fi
|o
rO F{
r" ol
!Q
o
r.- coto
4
c!t:
!:
to
(^o to r
t:
O
O
F
C- O
CD co r"
t:
(o t:
@or
c4't'(o co o) o)(D
rQ 'r
0Q Ot'-cO{
i q ' i e " i s ! d < t , ' j c dF . - i ' . . di < i c ' i
{ ' j d d i c . i( q
€N
|oFr
d
C'l
Ni'{
'l
r{d
i
ai rri rri o ocoo
a::6
ir
d. - Jc 'i i -d d
o
rO C'l cO \f
q1qq6lce,4 1ne
; :
N
(g cD d
o
H <.
tg o,
\ \ 1 : 1 1 1 3 9 9 e \ ca
c o l n(o F(o?gn o ?. . d' 1? ' r ?1
e
c!
F d Ft o: g) (o (o o c..r !.c)
! : g \ o ? ' q o ? a o l\ q \
U) FQ
ts o 1() (O F
I
6 d o H
d d d i d
o?1
c'?n
qq
aa
rF-(orr(oold:dF-O?
o)O)[email protected])d
i
iil
(Dg\rO
r
=l:
= crl i H a NEE
c
t r c g E
t r
coor o
o o o
d d F i d F l d F l d
qolnd?1-1
n!
-t ' . c- ' < r F c \ c \ t t o
ood't
<o I
; o
co \
i o
a o q q ? q2
al r'+
\ 9( gq o ? - n ! 1 - c: o9E ro 3::
co 3
d
ts(o
E
i
o
s)
F € I
o F o
F t
H H i d d i H 6 ' l
F l r l
tr
@El ===
C tr C C
(gF-FlO
'iO
t"
qi
.9 t'j t9 q A co gi d<j
6l F o !' F F (o 16 <r) (D
F l
t ' - i
6
q d ?q \ q
tu
38
1\
o ?q 1 \
o ?q 9 q
\:!e
o; d F ..; oioi cti o rot. or E (o I6? ogor-iN
oo o o oFcor"
6 A ; o a t c d c i c o- - o o F
I
"?1'qc-{o?1
I 9 c' D?r o a
r o'6:t r"' iC
? i !! d) $ < rI:co
c{ 9
9
( o ! - F ' c o o ) c o t " ( Do t l o o c D o :
o
q
a
q
()
,, Be
M ? , \r e? c ' ? d ?n n : q a \
(odrci
d
c- <| ctic; d
cd F
d ?9 e ? 9 ! l 9 q
(a o)calo i<'o)t"
/
;
dd
'{
u ?c ! ? c ! \ : l
q \1ol
6
i
d
{' roo
otf
6lH
N
3
\e
9oc
ro c! lo ro <l 'i
lo
c
!
G
q
o
6
>g
o
tr
F
I
o l6 l Y q o l d ? 6 ! o ? { e o ? n : o q q ' q c \ 9 ?
d F F <, d d c'i F cdoi o < co c.r s\ - : : .
qn'q_q_
J q C -\ N = (o c-r*
*
E E = E
E
: :
.lQ I d\9a
c.to:ro,{@oo)(9 F-o(c| r! 6
6ito rori:o o Jo toroorc].ll
A+d;i6;t
5- d 6 a i5- 6- ;i 6- a; ci 6 q -l n -f n @ o- o.
o)t"d Qsrl@o)F'o) F coroFr
9
q .J' Fl - t o o o c ' l c o r o d o c o t o ( g s )
o- t- or o- 6l 'rJ o. 3 !o o) rr c\t <' c!
J
J r - r ; ' r
H
r l d d d d
d r l
F l
d
tl
F
m
4
E
C
at
c
N
A
t)
I
o
D!
6t
o
fr:
F l
€
r '
o
H
>l
It)
riZ
EF) ro s
-
o---. ^^^n
!c
"$q$S
; E I i $ l I l I l n i $ i 3 g ? 3 i n : R i v B R BEsB B n sI
222222222223FHFflflFF it d li e 3x : : 36??ir
fr.
39
B8
,.F
G
>8
(gc-F-F@!.
6 cO cO F- F-F
g
O)c')d)(o
@ @ @ cO F
qqd? n d?eq1
q qqqu? q qn 1q qol nol
FO lo O)OO)(OcO
O) @ @ @ cO F (O (O
g i6ro)dO
{
tO F- C- F @ O) F
d
dlo
d)
@o
F- cococa(€
rl
(oq)
o
O<rcO(€@
co 6@oi
F d
rOOl(ntO(gD-dot
c\(€do
c\to
3<t
N H F I
ri d ir 6r FF) rr o <r d
clq
oq
qo?
\ol"l,q
6.1<. F F- u? cato o: to
@ { o o n F- ol o) g) co ro oco
cl 6.1co d co N l'- co c\ co' dH d(l)(o (0 6l cQ lo (') ro (o ca (l)
aq \ \qq
H
@o)
c.toro<.
ro @(0i.
ddd
loO)rrd)CO@
(a roco <,(0D-
Fo a oi o (go
+ c.t ot { (€i.
d d
38
(t
tr
"E
q q gqol
d d d d d d d i
<. O Cl C-l tO
Or Fr o) $ dH
(0ro c.-c{@N ro rrrooo
- cooocoF-co co@coorco
6HOCO{6.1
g: @ @ rt{.cO
(0@ i r{.o
@o) (o (rl N
dH
H
(n@;COlI)C-O6-lc-<lrO
a
6
F
qJ
o
q
>8
F
6t
Hro
{co
ri| ooo(oo6l{
ri
i(n
ot
6lC\
t'- {
cO c)
(o c-o
ro H d
Old
o)!.tolo
<. c€3F-@
C\
ClHi
dt !' 61 O F'
cO O) Or O) O)
i
@ No
ro c?t0F(o
<l'$o)
N
d d(OrO
ttc/i d=(€==
rr c\ca N=
H c l
C
C
F
o) d
ol 6l
==
E E C t r
-
t l H H d i d d d
i
cO H Ol q\ rO 3 (gO
€coll)oo
<.Nrl
€o@@t'-co@@F-
F- 3O)cOOl
O: d O CD @ (o { <' (o
6{ro
o: rota.(06!coo6/rc.loo?o
ro F-F ts-olcot" o:(')!'co €ooq)
6.r (o !.tri.@c'l
o roSc'-t96l!i
t- {OOrF-(g
F- H O) (O Or C€rgFd
Fi
Nr{
(ob'
o) (os\c{a(o
O 6 { t . - r O ( o o ) C . -! t
totsd
C\
r{
6.1
cO
.ri
C\
o)
F-q{OcO
$=
=
6l O loca.={
= $:=
d
6I
tr g
C
C
tr
d)(oiirot.o(oo:co@t-
t-r(.t.-FtO:r+O@
3 |o <. tn O c{ d
rtr{
Ntl6€O|orO(O6d{.CQ
dl
o)F-NNOo)cOg:orF
<.ci! ci tn $64 3 ol C\ oa crl
t{t O) F- rr (O €O {
i
r{ cO r{ F- lO 6.l (o |o
t{. s) !l Cr? Cr: Cr! t€ i.
c\
c'l
tl
€ F{ sOOlrrO
NOcA(o(groo|OrcOcOO
N
it tO (g rOC-O!O
(AOF.€O@cON
N
(DcOOI cO€ cO@r'
O F@l"F'6!!t
rO C\t€O:OloOI
@d)lr'co(0F
rg rtc,
(c)(cl
tl
j.r
N <'d:
r{ do)
OO
cO tl gQ i
C\t C€ r{ d
Cl C- {
F c- (g
d! H Fl
!: t:
tr tr
$
d
6l
O
@
t{
a
It)
a
6
EI
o
E
q)
q
@
r.
o
-
bl
@ D-oa3C€
i(O
rr6O
O cog)g)cO
q'1 6l q I q q C c'?q q
ro r- co!tOO
HHd
f-
cOtococ\t
H
n o! a I d?a n'q
tilO:cO
loiriri6l
F{r-{
r<C-l
QA6!tr!
$t49ql
F'OrF)o)
O $cO
tO rOF
Or o)O)
c! q u?u?o?q q n q 1'q q q 6!
(') $O(od)tlO
ti
NFIFI
|o ri
|l:rlcDF(o
c.|N
c\l
a
tl
(h
6
F
ql
a
o
c
>8
a
c
c
z
c
o
=
q
rocoroocDoN6lrlod
Fi oi cri r cn cd'< oa $
|o {
ro(o
o:
F-o)co
N Fi :: O t: O: (o ro
E
C
@cac'-co
rO (n c{ ot !: = = := t
F r F i C I C g C
r
O t
t
I
U)
l: :l !:
C C E E
;ql
I
tl
6 ! o t c ' ?e q , q 1 c ! o ? d l , r ? o qc ! n : q ' q ' 4 q q
(oFo) c{c-rootto@tO(o(orO
ro or(o6aca
F. rOrO(or0
ro6{o:NN
o
F- (o(o(ot-(o(o(o
,q q \ol 4'-{q \ol qn
!t rolo0coo{,
t-qlc{c{
F- rt F-F-t-t<.r0NiF.rO
q n a
rr r- $
ti !. (O
'd
o
c
bo
(t
it)
E
tl
H
r-r
l
H
.
:
6
z
o
Y
l/
F
F r Z
o
trl
6
!c
' r e i crt T T \To r $o : $ ^
leYaePQI
.^
e-$$$€
I
tr
3 : $ :s: E
sEgEnE -t
B
l i i i * * i;i i*i* 3 i? Fi .iFi Fi l{ Fi S
n +r O\, R
6? < < <
dSS::
zZZZZZZZZZZ
{ E { F .r F
g
llr
40
Concentrationof different mineralfractions
In both the estuarinesuspendedmatter and the sediments,the silt-sand
fraction (weight percent) is the dominating component (Fig. 2), ranging
from 42.7Voto 98.8Vowith a geometric-meanconcentration of 88Vo.The
clay fraction amounts to 0.7-56.8Vo(geometricmean = 6.7Vo)and the mag'
(geometricmean = L.1Vo).The calto 1,.6Vo
netic fraction rangesfrom O.LVo
careousgravity cores,ARB-46 to ARB-65H, containedno magneticfraction
at all (Table I). There are no spectacularvariationsin the concentrationsof
especiallyfor that of silt-sand - from one end of
the mineral assemblages,
the estuaryto the other - aswell as for the shelf and slopesediments(Table
I). The only significantobservationis that at any givenlocation the suspended matter has lessmagneticfraction than the underlyingsediments(samples
NB5-I, NB5-5, NM-20; and NB7-1,N87-2and NBD; TableI) which is to be
expected as the heavy magneticmineralssettle rapidly. Also, there appears
to be an inversecorrelation betweenthe clay and magneticfractional concentrations (Table I). It is also clear from the data that clay is irregularly
distributed in the coastal sediments,the highest concentrationsoccurring
only at Ghoga on the Gulf of Cambaycoast,oppositethe mouth of Narbada
(Fig. 1). The relativelyheavierfractionsare depositedin the Gulf of Cambay
adjacentto the river mouths.
20
S A N D+ S I L T
o
lrJ
J
(L
a
to
t!
o
(r
Ld
d!
3
J
z
PERCENT
Fig. 2, Histogtams of the percentages of magnetic, clay and silt-sand fractions in all sam'
ples.
4L
Mineralogy
The mineralogicalstudieshave been only qualitative, sincethe main aim
has beento find out whetherany major differencesexist betweenthe Narbada
and the Tapti estuarinesuspendedparticlesand the shelf and slopesediments
of the Arabian Sea.The magneticfraction consistsessentiallyof three minerals: maghaemite(by far the most abundant) with traces of ilmenite and
hematite. In the clays, smectiteis the most abundant,whereasillite, kaolinite and quartz are present in traces.In the silt-sand fraction, quartz is the
most abundant mineral. Tracesof plagioclase-feldsparcalcite and mica are
encounteredin most of the samples.In the four gtavity cores (ARB series;
Table I) from the shelf and sloperegions,there is no magneticfraction. The
silt--and fraction further consistsof 31-82.5% CaCOs(90Vocalcite and
L0% amgoniteon an average;Borole et al., 1982b). In general,it can be said
that there are no major differences in the mineralogy of the magnetic fraction separatedfrom the estuarinesuspendedmatter and from the estuarine
and nearcoastal sediments.The sameobservationalso holds in the caseof
clay and silt-and fractions.
Metal concentrations
Our data (Tables I-III) show that the silt--and fraction, which is the
principal component of the suspendedmatter/sediments,controls the metal
concentrationsof the latter. It is, however,important to determinethe composition of the three different fractions to seehow these differ from each
other and to what extent they influence the total suspendedmatter concentrations of the metals reported in this study. In Table IV are presentedthe
mean concentrations of the eight metals, along with the rangefor each fraction. It is clearly seenthat the magneticfraction is enrichedin Fe, Mn, Zn,
Cr, Ni, Co and Cu, comparedto the other two. Transition elementsdo genefally follow Fe geochemistry, which is by far the most abundant (mean =
TABLE IV
Composition of mineral fractions
Element
a
Al (vo)
Fe (Vol
Mn (ppm)
Zn (ppm)
Cr (ppm)
Ni (ppm)
Co (ppm)
Cu (ppm)
4.6
22.2
3,260
619
141
83.5
L27
399
Silt-eand
Clay
Magnetic
3.8--6.1
L2.L-29.9
2,093-4,826
369-898
31.5-397
31.5-128
53.3-326
230-595
R
7.6
8.4
1,103
L42
L20
69.7
48.5
L62
C = concentration(geometricmean);R = range.
6.1-8.6
7.0-10.4
699-1,584
106-836
7L.l-L75
26.9-L49
83.4-tL7
104-266
6.1
6.1
849
86.2
91
56.6
30.9
98
1.3-11.8
1.2-11.6
193-1,164
45.4-L99
28.9-L26
t4.8-76.7
9.9-42.8
27.7-tg3
42
22Vo)element in the magneticfraction. In contrast, Al hasthe lowest abunin the magneticfraction (TableIV). Al is mostly present
dance(mean=4.6Vo)
in the form of alumino-silicateswhich dominate the clay and silt-sand assemblages.All analysedmetals are enrichedin the clay relative to the siltsand fraction by a factor of.t.42 t 0.18, and this is most probably due to
the high quartz content of the latter (quartz is depleted in most metals).
Though the suspendedmatter has lessmagneticfraction comparedto the
underlying sediment at the samelocation, the overall composition of these
two materialsis about the same.This is becausein both suspendedmatter
and sediments,the magneticfraction (as well as the clay) is a minor component (the entire composition of the estuarineand near-coastalsolid material
is controlled by the silt-and fraction).
Comp ositionaluariations in estuarinesuspendedmatter/ sediments
The suspendedmatter/sedimentconcentrationsof Al, Fe, Mn, Zn, Cr, Co,
Ni and Cu in the estuariesshow largescattering,whereasthe metal/Al ratios
show a much smaler one (t 25Voover the mean). Now that the different
fractions of thesematerialshavebeenanalysed,we tried to find out whether
the metal/Al ratios in the three fractions behavedlike thosein the total sus'
pended matter. For clays and silt--and, Al would be a carrier phase.The
variationsof the metal/Al weight ratios in the estuarineregion,as well as in
the adjacentcoastaland open Arabian Seasediments,are shownin Figs. 36. In the freshwaterend-memberregion [referenceis made to Burton and
Liss (19?6) for detailson the end-memberconceptin estuarieslthe metal/Al
ratios of the clay and silt--rand fractions cluster rather closely, whereasin
the magneticfraction the ratios show a largevariation.
Fe/Al and Mn/Al ratios
The Fe/Al ratios of both silt-sand and clay fractions are almostidentical,
and there is no significantvariation in this ratio (1.0) as a function of chlorinity in the estuarineregion nor in the near-coastalregions(Fig. 3). However, in open Arabian Sea sedimentsthere is a slight decreasein the ratio,
especiallyin that of the silt-and fraction, by - 25Vo.There is a tremendous
scatterin the Fe/Al ratio of the magneticfraction.
The Mn/Al ratio is also shown in Fig. 3. Heretoo the ratio remainsabout
the same for both clay and sand-ilt fractions, and (there is no significant
changein the ratio of L.5.10-2) in the estuarineand the near-coastalregions.
In the open Arabian Sea sedimentsthere is depletion by a factor of -2,
which can be attributed to the reducingnature of the environment(Deuser,
7975; Borole et al., 1982b).In suchareas,Mn can diffuse out of the sediments in the form of Mn2*. The Mn/Al ratios in the magneticfraction show
a tremendousvariation.
43
^ CLAY
. MAGNETIC
r S I L T+ S A N D
l.tt
It.o
n
(\I
I
ro
7
o
!
x
1
.5
oo
I
I
=
o
r!
I
I
'
6
t
A
ir
l
.
^
l -oaooo;a68oo
l
Si
&,
I
t
--lp
6
o.5
o.5
8.O
I
6.O
oo
4.O
I
a
A
{
i 0
t
.& o0gggSoAooo
I 3 eo
?O
C H L O R I N I T (Yg / t l
NEAR
COASTAL
Fig. 3. Mn/Al and Fe/Al variations in the Narbada and Tapti estuarine particles (solid
symbols) and sediments (open syrnbols). Data points in the near-coastal and open-sea
regions are offset for the sake of clarity.
Ni/Al and Zn/Al ratios
Thesevariationsare shown in Fig. 4. Both Ni/Al and ZnlAl ratios in the
clays and silt-and fractions are about the same,iz, Ni/Al = 9'10-a and
ZnlAl = 1.5.10-3. From the freshwaterend-memberregionsto the nearcoastalregions,theseratios in the clay and silt-sand fractions do not shoiv
variations beyond t 25Vo.Only in the open Arabian Seasedimentsis there
an increaseby a factor of 2 in both these ratios. Here againthe reducing
nature of the environmentcan account for this increase.Ni and Zn can precipitate from the overlying watersas sulphides,and evidenceexists for sulphatereduction in the generalareafrom which the ARB coreswere collected
(Deuser,L975; Borole et al., 1982b).Therearetremendousvariationsin the
Ni/Rt and ZnlAl ratios of the magneticfraction.
Cu/Al and Co/Al ratios
These variations are shown in Fig. 5. The Cu/Al ratios in the clays are
slightly higher than the correspondingones in the silt-*and fraction (1.8.
10-3) in the estuarineregions.This ratio also showsa slight decreasingtrend
between the freshwaterregion and the near-coastaland open Arabian Sea.
matter from
The Cu/Al data of Boroleet al. (1982b)for the total suspended
44
r MAGNETIC
O S I L T +S A N O
^ CLAY
ro
' 9 2
x
=
l
2
*lo troo
o
a
rt
I
go
5
9 e .o
A
!
o
( s .o
g
N
- 2 .
a
: l
a
o
8
a
oo
I
oSooooSr"o
COASTAL
C H L O R I N I T (Yg / l )
Fig. 4. Ni/Al and,Znly'{ variations in the Narbada and Tapti estuarine particles (eolid
symbots) and sediments (open symbols\ in the three fractions. Data points in the near'
coastaland open*ea regionsare offset for the sakeof clarity.
these estuarineregions did not show any such trend. As usual,the Cu/Al
variesby a factor of 3-4 in the magneticfraction.
The Co/Al ratio is about the samefor the clay and silt-sand fractions (56.10-s) in the estuarineregion,though there is a variation of over a factor of
2 in the freshwaterend-memberregion (Fig. 5). The Co/Al ratio of the clay
fraction shows about a factor of 2 increasein the open Arabian Sea sediments, whereasno such increasecould be seenin the silt--sand fraction. As
in the caseof Ni and Zn, Co can also deposit as authigenic sulphide, but the
fact that the silt-and fraction does not show any increaseindicates that
such a precipitation is small. The Co/Al ratios in the magneticfraction show
variationsby about one order of magnitude.
45
^ CLAY
r MAGNETIC
o S I L T+ S A N D
ro.60
Ia
5.O
s.ss1
4.O
r,
I
= 3.O
*.
=
oo
{o z . o
A
A
A
(J
l.o
r) r 2 . o
I
I
x
a
)
8.O
A
t
A
a .
&
t l
oo3oSo3ooo
o o
;
14?'2
a
a
o
ao
o
a
4.Oi
1
C)
2.O'
S o
a
t t a
A
to
s
I
a
D
l2
14
r6
a
o
o
a
A
o
.^, ogo^loooooo8
o
"
3
1
l8
I
o
o
20
NEAR
COASTAL
C H L O R I N I T Y( 9 / l )
Fig. b. Co/Al and Cu/Al variations in the Narbada and Tapti estuarine particles (solid
symbols) and sediments (open eymbolsl-in the three fractions. Data points in the near'
coastaland open*ea regionsare offset for clarity.
Cr/Al ratio
These ratios for all fractions are shown in Fig. 6. The freshwater end'
member valuescluster around 1.4.10-3 for both clay and silt-sand fractiorfs,
whereasit is higher by about a factor of 2 for the magneticfraction. Unlike
the caseof other elements,the Cr/Al ratio showsconsiderablescatter in the
entire region of study, and more so in the coastal Arabian Sea sediments'
Again there is about one order of magnitude variation of the Cr/Al ratio in
the magneticfraction.
Metal/Fe ratios in the magneticfraction
In view of the rather low and varying Al concentrations of the magnetic
fractions, the metal/Al ratio may not be a good parameter for studying the
behavior of the elementsin this fraction. Since Fe is the major element of
this fraction, we havenormalisedthe metal concentrations(Fig. 7). The Mn/
Fe, Znl$e, Cu/Fe ratios do not then vary by more than a factor of -2,
46
r MAGNETIC
. S I L T+ S A N D
A CLAY
t3
'T' o
9
ro
'9
5
3.O
o
o
o
2.5
x
a
z.o
(J
i
r.5
'
E
ra o^
A
1A
a
I
Sa
8 o
t a oa
8
a
A
! "
o
t.o
o'5o'
20
NEAR
COASTAL
oPEN
C H L O R I N I T(Y9 / l )
Fig. 6. Cr/Al variationsin the Narbadaand Tapti estuarineparticles(solid synrbols)and
sediments (open symbols) in the three fractions. Data points representing the nearcoastaland open*ea regionsare offset for clarity.
U'
lr,
J
o.
.
5
at
l!
o
0a
IJ
@
f
z
,1;766;xrCl-a
tt,
lrJ
J
o.
=
an
t!
o
G
lrJ
@
=
f
z
(ColFc)r lO-a
16u7p6lrtO-3
an
lrJ
J
o-
=
o
L
o
G
t!
ID
=
l
z'
,f
t.9 27
35 4.3
( M n l F e ) rl o - 2
0
1 q 1 7 p s 1trO - 3
Fig. 7. Histogtamsof metal/Fe ratios in the magneticfraction of all samples.
47
I nt er-eIement aI corr elat io ns
The inter-elemental correlations in each of the fractions has been investigated. For most elements in the magnetic fraction, the conelation coefficients (for 27 observations)were <0.5. Only 7 Fe-Mn, 7 Fe-{u t'tFe-Zn and
TFe--Cowere significant,viz. 0.67,0.87, 0.74 and 0.63, respectively.In Fig.
8 are shown the Mn, Cu and Zn corcelationswith Fe. The intercepts at Fe =
0 represent the concentrations of Mn (= 981 ppm), Cu (= 41 ppm) and Zn
(= 104 ppm) associated with non-magnetic phases, and these values are in
good agreement with their corresponding concentration ranges in the clay
and silt-sand fractions (Table IV).
E
m . 2 . 3 5x l O - 3
c =103.9
r = O.74
4500
o
o
.
c
r
= 1.g3xt0-z
=9 8 0 . 5
= 0.67
o
4000
a
a
c
N
a.
E 3500
o
I
c
m= l . 6 l x l O
c =4 l ' 4
rc O.87
E
/'..
300
o
a
250
tv
o
o
f
o
t4
t
a
18 ?2
Fe (%)
26
30
O
Fig. 8. Scatter diagtam of Mn, Cu and Zn vs. Fe in the magnetic fractions. m, c and r
represent slope, intercept and correlation coefficient, respectively.
In the clay fraction, the inter-elemental correlations are poor compared to
those in the silt-and fractions (Table V). We discussspecifically the Al-Fe
and Al-Mn correlations (Fig. 9). The Al-Fe correlation is:
Fe (Vo)= 0.95Al (Vo)+ 0.334
(z = 0.95 for 28 observations)
(1)
This is excellent and as ideal as expected.On the other hand, Borole et al.
(1982b) using the Fe and Al concentrationsof the total suspendedmatter
sedimentsfrom the sameregions,obtained:
and near-coastal
Fe (Vo)= 0.584Al (Vo)+ 2.96
(1 = 0.67 for 82 observations)
(2)
It was the poor correlation coefficient, coupled with the larger intercept
48
TABLE V
Inter-elementalcorrelation matrix for silt--sand fraction
AI
Fe
Cr
Mn
Co
Ni
Cu
Zn
AI
Fe
Cr
Mn
Co
Ni
Cu
Zn
1.00
0.95
1.00
0.64
0.64
1.00
0.87
0.89
0.73
1.00
0.81
0.86
0.68
0.92
1.00
0.89
0.88
0.63
0.91
0.88
1.00
0.87
0.86
0.64
0.94
0.94
o.92
1.00
0.60
0.68
0.65
0.68
0.77
0.63
0.69
1.00
-2
'n=g.29xlO
r o o o- c.=82,4 .
r =O . 8 7
o'
o
?o
t-:y'
h
-9 eo
=
O
800
?o.
.. 1.5gxlO-5
c =3.7
rO.87
40
o 600
c
m =g . O Zx l 0
c =7,8
r .0.89
400
t?
m.O.95
c =0.334
r =0.95
40
d 6
?o s o
i
o)
'
'o=4.2OxlO
.
ta
'
;:3.;, ,/..
a
I
t!
o 2 0
4
O
O
1
to
ro
A 1(%)
ro
t?
t2
At %)
Fig. 9. Scatter diagrams of Fe and Mn vs. Al in the silt--sand fraction of all eamples. m, c
and r represent slope, intercept and correlation coefficient, respectively.
Fig. 10. Scatter diagrams of Co, Ni and Cu vs. Al in the silt-tand fraction. m, c and r
represent slope, intercept and correlation coefficient, respectively.
49
value and relatively lower Fe/Al ratio, that has,in fact, prompted us to separate the suspendedmatter/sedimentsinto the three fractions. Clearly the
magneticfraction is responsiblefor the poor Fe-Al correlation (eq. 2). Our
result (eq. 1) also implies that the separationof the magneticfraction from
silt-rand hasbeensatisfactory.
In the caseof Al-Mn, the correlation is good (Fig. g) and from the very
low intercept value it is seenthat most of the Mn is associatedwith the silicatephases.
Cu, Ni and Co correlatewell with Al (Fig. 10);the correlationcoefficients
(for 28 observations)
are? Al{u = 0.8?,TAI-Ni = 0.89 and ZAI--Co= 0.81.
It is thus seenthat Fe, Mn, Cu, Ni and Co are all brought predominanfly by
the silt--and fraction of the detrital material into the coastal Arabian Sea,
via the Narbadaand Tapti Rivers.
Detrital inputs to the ocean
The averageannual input of detrital material as well as that of Al, Fe, Mn,
Zn, Cr, Co, Ni and Cu in detrital form are estimated(Table VI). Of this total
input to the coastalArabian Sea,only the claysreachthe deepsea.Sincewe
have measuredthe clay content and its compositionin all samples,including
those from the freshwater end-memberregions of both the Narbada and
Tapti, we can calculate the detrital inputs from these rivers to the deep sea
and compare it with the total inputs to the coastal ocean. It is clear from
such a comparison(Table VI) that input to the deep oceanin terms of suspended matter and the analysedmetalsis only -EVo of their inputs to the
coast. Both the Narbada and Tapti behave similarly in this respect. The
Tapti, being a smallerriver (with a dam), has proportionately lower inputs
than the Narbada.
TABI/E VI
Suspended fluxes from the Narbada and Taptt Blvers to the ocean
Matcdal
gJn.r'r
AT
Fe
Mn
Ct
Co
Ni
Cu
Zn
Narbada
1q(r)
(tbeg vr.-r)
"r.-,;
floor.
(%,
1Fo1Fo)
- x too Fo(1)
Fo-
(FolFOxtoo
(1btg vt.-ty
(10'g vr.-')
(%)
50,000
4,2OO
8.8OO
66
48
1.8
3.6
7,L
6.3
2.600
180
2to
2.9
0.26
o.L2
0.16
o.42
0.34
6.0
4.3
6.6
6,2
6.2
6.7
4.6
6.9
6,4
E.OOO
600
630
10
0.73
300
24
26
o.84
o.o42
o.017
o.o22
0.043
0.041
3.8
4.O
4.1
3,4
6.8
6.9
4.!
3.9
3,4
o,2s
o,54
1.1
1.2
.Fc and Fo represent fluxes to the coastal ocean (based
and open ocean (based on clay data). rerpectlvely.
*Except for Cr and Co. data are from Borole et al. (1g82b).
**8.rr1. = suspended matter.
on
total
suspended
matter
data)
50
CONCLUDINGREMARKS
The major fluvial input to the Arabian Sea from the Rivers Indus, Narbada
and Tapti is 1.6.10t0 g yr.-t,.In the presentstudy it is estimatedthat -1Vo
of the combinedsedimentdischargeof the Narbadaand Tapti,viz.0.6'1014
gyr.-l, is in the form of clays.Assumingthat the Indus sedimentdischarge
alsohas- 1Voclay, we estiinatethat 8. 10 " g of claysare annuallydischarged
into the Arabian Sea(area= 7 ,5. L06km2;Robinson,1966) which givesa detrital deposition rate of -0.6 mm/103yr. Clearly this is a lower limit as we
have not consideredaeolianand other modesof input into the Arabian Sea.
This rate of detrital deposition should be much smallerthan that occurring
in the Bay of Bengal.A few meastuementsby Sarin et al. (1979) in the
southernpart of the Bay of Bengalcenteraround 3-4 mm/103yr.
Studiessimilar to the presentone, aswell asthoseof Borole et al. (1982a,
b), would have to be performed on the Indus river-estuarine systembefore
one could quantify the major detrital input to the Arabian Sea.Once the
geochemicaland geochronologicalstudiesof the Arabian Seasedimentshave
been done, one can understandthe effectsof biogeochemicaland diagenetic
processesoperatingin the highty productive marine environmenton the de'
trital material, and material balancescan be attempted.The presentstudy is
a first step in this direction.
ACKNOWLEDGEMENTS
This work was, in part, supported by a grant from the Department of
Scienceand Technology,Governmentof India. The authorsare indebtedto
Mr. H.N. Siddiquie of the National Institute of Oceanography,Goa, for a
samplesusedin this study; and to Profesgeneroussupply of the near-coarital
sor A.S. Naidu of the Institute of Marine Sciences,University of Alaska,
Fairbanks,U.S.A., for a critical reviewof the manuscript.
REFERENCES
Borole, D.V., 1980. Radiometric and trace elementalinvestigationeon Indian estuaries
and adjacentseae.Ph.D. Thesis,Guajaratuniversity, Ahmedabad,155 pp.
Borole, D.V, Krishnaswami,S. and Somayajulu,B.L.K., L9TT.Investigationeon dissolved
uranium, silicon and particulate trace elements in estuaries.Estuarine Coastal Mar.
Sci.,5: 7 43-754.
Borole, D.V., Kriehnaswami,S. and Somayajulu,B.L.K., 1982a. Uranium isotopes in
rivers, estuaries and adjacent coastal sediments of western India: their weathering,
transportationand oceanicbudget.Geochim.Coemochim.Acta, 46: L25-L37,
Borole, D.V., Sadn, M.M. and Somayajulu,B.L.K., 1982b. Composition of Narbadaand
Tapti estuarineparticlesand adjacentArabianseasediments.Ind. J. Mar. Sci., 11: 5162.
Boyle, 8.R., Collier,8., Dengler,A,T., Edmond,J.M., Ng, A.C. and Stallard,R.F., L914.
On the chemicalmassbalancein estuaries.Geochim.Cosmochim.Acta,38:1719L728.
51
Burton, J.D. and Liss,P.S.,1976.EstuarineChemistry.AcademicPress,London, 229 pp.
Carpenter,J.H. and Hayes,W.B., 1980. Annual accretionof Fe-Mn-oxidesand certain
associatedelementsin a streamenvironment.Chem.Geol., 29: 249-259,
Deuser,W.G., 1975. Reducingenvironments.In: J.P. Riley and G. Skirrow (Editors),
Vol. 3 AcademicPress,London, pp. 1-37.
ChemicalOceanography,
recyclingin
Evans,D.W., Cutshall,N.H., Cross,F.A. and Wolfe, D.A., 1977. Manganese
Newport estuary,North Carolina.EstuarineCoastalMar. Sci., 5: 71-80.
and
L., t9TS.Interactionbetweensuspension
Fukai, R., Murray, C.N. and Huygh-Nogoc,
seawateras a possibleregulatingmechanismfor trace element concentrationin nearshorewater - A preliminaryreport. ThalassiaJugosl.,9: 33-37.
Galehouse,J.S., 1971. Sedimentationanalysis.In: R.E. Carver(Editor), Proceduresin
SedimentaryPetrology.Wiley-Interscience,New York, N.Y., pp. 69-94.
Hutchison, C.S., 19?4. Laboratory Handbook of PetrogtaphicTechniques.Wiley, New
York, N.Y., 527 pp.
Kharkar, D.P., Turekian, K.K. and Bertine, K.K., 1968. Stream supply of dissolvedAg,
Mo, Sb, Se, Cr, Co, Rb and Cs to the oceans.Geochim.Cosmochim.Acta, 32:285298.
Krishnaswami,S., 19?6. Authigenictransition elementsin Pacific pelagicclaye.Geochim.
Cosmochim.Acta, 4Qz426-434.
Martin, J.M. and Meybeck,M., 19?9. Elementalmassbalanceof materialcarriedby maior
world rivers.Mar. Chem,,7; t7 9-206.
Martin, J.M., Jednack, J. and Pravotic, V., 19?1. The physicochemicalaspectsof trace
elementbehaviourin estuarineenvironments.ThalassiaJugosl.,7: 619-637.
Martin, J.M., Kulbicki, G. and Degtoot, A.J., 19?3. Terrigenoussupply of radioactiveand
trace elements to the ocean.Proc. Intl. Symp. on Hydrogeochemistryand Biogeo'
chemistry,Vol. 1. The Clarke& Co., Washington,D.C., pp. 463-483.
Milliman, J.D. and Meade, R.H., 1983. World-wide delivery of river sediment to the
oceans.J. Geol.,91: 1-21.
Rao,K.L., 1975.India'sWater\{ealth. Orient Longman,New Delhi, 255 pp.
Ray, S.8., Mohanti, M.M. and Somayajulu,B.L.K., 1984. Suspendedmatter, major ca'
tions and dissolved silicon in the estuarine waters of the Mahanadi River, India. J.
Hydrol.,69: 183-196.
Robineon, M.K., 1966. Arabian Sea.In: R.W. Fairbridge(Editor), The Encyclopediaof
Oceanogtaphy.Van Noetrand-Reinhold, New York, N.Y., pp. 4O-44.
Sarin, M.M., Borole, D.V. and Krishna$ilami,S., 1979. Geochemistryand geochronolqgy
of sedimentsfrom the Bay of Bengaland equatorialIndian Ocean.h'oc. Ind. Acad.
Sci.,88A: 131-164.
Sarin,M.M., Rao, K.S., Bhattacharya,S.K., Ramesh,R. and Somayajulu,B.L.K., 1983.
Geochemicalstudiesof the river estuarinewatersof the Krishna and Godavari'Semin.
on Hydrol. with Spec. Colloq. on National Grid of Rivers, Hyderabad,June 8-10,
1983 (abstract).
Sholkovitz, 8.R., 19?6. Flocculationof dissolvedorganicand inorganicmatter during the
mixing of river water and seawater.Geochim.Coemochim.Acta, 40: 881-845.
Teseier,A., Campbell, P.G.C. and Bisson,M., 1980. Trace metal speciationin Yamaska
and St. Francoiserivers(Quebec).Can.J. Earth Sci., 17: 90-105.
Tlefry, J.H., 197?. The transport of heavy metals by the Mississippiriver and their fate in
the Gulf of Mexico. Ph.D. Thesis,Texas A & M Univereity,CollegeStation, Texas,
223 pp.
Ttefry, J.H. and Presley,8.J., 1982. Manganesefluxes from Mississippidelta sediments.
Geochim.Cosmochim.Acta, 46: L7L6-t726,
Turekian, K.K., 1971. Rivers,tributaries and estuaries.In: D.W. Hood (Editor)' Impinge'
ment of Man on Oceans.lltiley-Interscience,New York, N.Y., pp. 9-73.
Turekian, K,K.,L974. Heavymetalsin estuarinesystems.Oceanus,18: 82-33.
Turekian, K.K., 1977. The fate of metalsin estuaries.In: Estuaries,Geophysicsand Environment, National Academyof Sciences,Washington,D.C., pp, t2l-L27,
Windom, H.L., Beck, K.C. and Smith, R., 19?1. Ttansport of trace elementsto the At'
lantic Oceanby three southeasternrivers.Southeast.Geol., f2: 1109-1181.