Brain-Computer Interfaces @ AIRLab Matteo Matteucci – AIRLab, Politecnico di Milano The Locked-in syndrome Causes • Traumatic brain injury • Brain stem stroke • Neuro-degenerative diseases Effects • Complete paralysis • Patient is aware and awake • Inability to speak Matteo Matteucci – Politecnico di Milano "the closest thing to being buried alive" Brain-Computer interfaces Signal Acquisition Processing Translation Device commands BCI Perception World An alternate communication pathway not requiring muscular activity Matteo Matteucci – Politecnico di Milano Inside the Brain There are 100 billion (1011) neurons Each one is connected to 1000–100,000 others for a total of 1015 connections (synapses) An electric potential travels along the axon 4 Matteo Matteucci – Politecnico di Milano Signals From the Brain Invasive approach • Cortical electrodes • Electrodes arrays Non-invasive approach • Electroencephalography (EEG) • Magnetoencephalography (MEG) • Near-infrared spectroscopy (NIRS) • Function magnetic resonance (fMRI) 5 Matteo Matteucci – Politecnico di Milano Electroencephalography Electrodes displacement •International 10-20 system •EOG electrodes Acquisition device •Amplification •Sampling •Filtering EEG signal •Noisy •Affected by artifacts But information is there! Matteo Matteucci – Politecnico di Milano Event Related Potentials P300: Positive wave around 300 ms after a meaningful/odd stimulus 8 Matteo Matteucci – Politecnico di Milano Moving ideas … • Selection of one out of few options by using the P300 wave • Select robot destination amont a set of pre-defined choiches [P300 speller by E. Donchin's (UIUC, 1980s)] A P300 A 9 Matteo Matteucci – Politecnico di Milano Machines are not perfect … A BCI is not 100% accurate … can we do it better? • Repeate selection • Ask for confirmation • Deeper analysis of EEG (ErrP) ErrP 10 Matteo Matteucci – Politecnico di Milano 2+2=5 No! Write it Again Sam! • We can use ErrP to correct wrong choices … C A O FI C O AI P300 ErrP C A No! Ok O FI CI_ C_ _ CIAO_ CIA_ 11 Matteo Matteucci – Politecnico di Milano Event Related Potentials P300: Positive wave around 300 ms after a meaningful/odd stimulus ErrP: wave generated by (machine) errors 12 Matteo Matteucci – Politecnico di Milano ERP @ Airlab Building a complete BCI based on P300 and error potentials (ErrP) • Recognition of P300 through a genetic algorithm (GA) • Recognition of ErrP through a statistical method Metric to choose design parameters • Realistic • Task-based 13 Matteo Matteucci – Politecnico di Milano How does it look like? Matteo Matteucci – Politecnico di Milano Let me introduce LURCH … BUS Bedroom Kitch en landmark Sensors wheelchair Navigation Living Room Algorithms User Interface Feedback for ErrP EBNeuro Galileo EEG system Odometry Movement command Motion Control Matteo Matteucci – Politecnico di Milano Pattern Recognition How does it look like? Matteo Matteucci – Politecnico di Milano Motor Imagery The motor cortex Motor imagery produces contra-lateral desynchronization of mu and beta rhythms Left hand Right hand Matteo Matteucci – Politecnico di Milano MI @ AIRLab (and ARCS Lab) Development of a motor imagery BCI for a 2 dimensions control: • Recognition of the intention to perform 4 +1 movements (up, down, left, right, and rest) • Integration with a predictive language model Focus on: • Automatic (offline) search for user best frequencies and parameters • Comparison and improvements of spatial filters • Improved feature selection process • Compansation of EOG artifcats 18 Matteo Matteucci – Politecnico di Milano Mixing the two madalities Motor Imagery pipe Bayesian classifier Error Potentials pipe Stimulus presentation Signal translation Signal processing ! Matteo Matteucci – Politecnico di Milano How does it look like? Matteo Matteucci – Politecnico di Milano How should we evaluate and compare systems? ITR Information Transfer Rate (Mutual Information) ITR = log 2 N + p log 2 p + 1 p log 2 21 Matteo Matteucci – Politecnico di Milano 1 p N 1 N: # symbols, p: accuracy An alternative: The Utility Expected average benefit bk E[bk ] U = E T E [ t k ] 0 bk b2 b1 t1 t2 bk-1 bK tk-1 tk tk+1 tK PL|L Computed from models PX|L bk+1 PL|L PBs|Bs PBs|Bs PX|Bs PX|Bs PBs|L PX|L PL|L PBs|Bs PBs|Bs PX|Bs PBs|Bs PX|Bs PBs|L PX|L PL|L PBs|Bs PBs|L PX|L PBs|Bs PX|Bs PL|L PBs|Bs PBs|Bs PBs|Bs Matteo Matteucci – Politecnico di Milano t PBs|L PX|Bs 22 T PBs|L A Bit Too Much Utility vs. ITR 1 tL = 2p 1 Util = log 2 N 1 max{0,2 p 1} 1 p ITR = log 2 N + p log 2 p + 1 p log 2 N 1 ITR overestimates 23 Matteo Matteucci – Politecnico di Milano What’s going on? BCI methods and experiments (ongoing) Audio based Brain Computer Interface Generalization of Utility to generic discrete interfaces Test on real users … Develop algorithms for autonomous wheelchair driving World perception and obstacle avoidance User compliant wheelchair trajectory planning http://www.dei.polimi.it/people/matteucci http://chrome.ws.dei.polimi.it Matteo Matteucci – Politecnico di Milano Brain-Computer Interfaces @ AIRLab Matteo Matteucci – AIRLab, Politecnico di Milano
© Copyright 2024