CS 211: Sorting with Merges Chris Kauffman Week 14-2 Front Matter Deliverables Topics I P7 Now up today, due next week Mon I P7 Overview I Review Sorting I Lab 14: Review and Evaluations I Merge Sort I Attend Lab 14: +1 Day Late Token (!!) I Reading: BJP: Ch 13.4 on Merge Sort Schedule 4/27 5/4 Mon Tue Wed Thu Mon W14 W15 5/4 5/5 5/6 5/7 5/11 12-1:15pm 3-4:15pm 2-4:30pm 1:30-4:15pm 10:30-1:15pm Sorting, Comparators Review Last day for Sec 2 (Review) Makeup day for Sec 4 (Review) Special review office hours Sec 4 (T/R) Final Exam Sec 2 (M/W) Final Exam P7 Quick Overview key 5341 5346 5318 4100 4451 I Generic Maps: key/value association I I I I value Chris Kauffman Mark Snyder Richard Carver Main Office Sean Luke Any kind of key K, any kind of value V put(key,val) association into a map get(key) value associated with given key contains(key) check if an association exists AbstractListMM implements MiniMap<K,V> +-- SimpleListMM : indexOf(key) uses linear search +-- FastGetListMM : indexOf(key) uses binary search P7 Tips on Comparable and Comparator In FastGetListMM, must deal with a Map that has either Comparable keys or a Comparator Exercise Write a function sortEm() public static <T> void sortEm(ArrayList<T> a, Comparator<T> optional) I Wrapper around Collections.sort(a, cmp) and Collections.sort(a) I If optional is not null, use it to sort the a I Otherwise check if a can be caste to ArrayList<Comparable> and use the other version of Collections.sort(..) I If optional is null and the elements of a are not Comparable, throw a RuntimeException This is why you must get 60% on the final exam I P5: https: //www.freelancer.com/jobs/Java/java-project-7467939/ I P5: https: //www.freelancer.com/jobs/Java/java-project-7438281/ I P7: https://www.freelancer.com/jobs/Java/java-proj/ Quick Review Comparing I What’s one way a java class can be made to work with Arrays.sort(..) and Collections.sort(..)? I What’s a different way? Searching I Describe one way to search for data in an array; include any assumptions necessary for this process to work I Describe a fundamentally different way I Compare these two approaches according to their worst case runtime complexity Quick Review Sorting I Describe how one sorting algorithm works I Give give the worst-case runtime complexity of that sorting algorithm I What is the worst-case runtime complexity of the best sorting algorithms? I Given an example of one sorting algorithm that achieves this complexity I What sorting algorithm does Collections.sort(..) use anyway? Runtime of Selection sort public static void selectionSort(int[] a) { for (int i = 0; i < a.length - 1; i++) { int smallest = i; for (int j = i + 1; j < a.length; j++) { if (a[j] < a[smallest]) { smallest = j; } } swap(a, i, smallest); } } public static void swap(int[] a, int i, int j) { int temp = a[i]; a[i] = a[j]; a[j] = temp; } I Each inner loop iteration does a constant amount of work I I Fetch array elements, compare numbers, set variables Good approximation of runtime: total inner loop iterations I For array size 10? size 50? size N? Asymptotic Speeds To Remember Input Data Array of size N Search I Linear search: O(N) I Binary search: O(log N) I Hash tables: O(1) Sort I Selection sort: O(N 2 ) I Insertion sort: O(N 2 ) I Merge sort: O(N log N) I Quick sort: O(N log N) I Radix sort: O(N) via cheating Merge Sort I Fast sorting algorithm: O(N log N) I Exploits recursion I Principles are simple but implementation is non-trivial I Variants have different properties: out-of place vs in-place I Good culmination of CS 211 last two weeks of material Exercise: Merge public static void merge(int[] result, int[] a, int[] b) I I I I a and b are sorted arrays, may not be same size Copy elements from a and b into result so that result is sorted Assume: result.length = =a.length + b.length Target Runtime Complexity: O(N) where N is result.length Example int [] a = {1, 6, 7, 9} int [] b = {0, 2, 3, 4, 8} int [] result = new int[a.length+b.length]; merge(result, a, b); print(result) // [0, 1, 2, 3, 4, 6, 7, 8, 9] Merge Answers Textbook CK preferred public static public static void merge(int[] result, void merge(int[] result, int[] a, int[] b) { int[] a, int[] b) { int i1 = 0; int ai=0, bi=0; int i2 = 0; for(int ri=0; ri<result.length; ri++){ for(int i = 0; i < result.length; i++){ if(ai >= a.length){ if(i2 >= b.length || result[ri] = b[bi]; (i1 < a.length && a[i1] <= b[i2])){ bi++; result[i] = a[i1]; } i1++; else if(bi >= b.length){ } result[ri] = a[ai]; else { ai++; result[i] = b[i2]; } i2++; else if(a[ai]<=b[bi]){ } result[ri] = a[ai]; } ai++; } } else{ result[ri] = b[bi]; bi++; } } Recursive Application public static void mergeSort(int[] a) { if (a.length <= 1) { return; } int[] left = Arrays.copyOfRange(a, 0, a.length/2); int[] right = Arrays.copyOfRange(a, (a.length/2), a.length); mergeSort(left); mergeSort(right); merge(a, left, right); } I An array if 1 element is sorted I If bigger, chop array into two halves I Recursively sort left and right halves I Merge the sorted results into the original array Demonstrate public static void mergeSort(int[] a) { if (a.length <= 1) { return; } int[] left = Arrays.copyOfRange(a, 0, a.length/2); int[] right = Arrays.copyOfRange(a, (a.length/2), a.length); mergeSort(left); mergeSort(right); merge(a, left, right); } Show Execution for int [] a = {14, 32, 67, 76, 23, 41, 58, 85}; mergeSort(list); mergeSortDebug() in CKMergeSort.java is useful to see this Computational Complexity I What is the complexity of mergeSort() I Could you prove it? I What’s one huge disadvantage of this version of merge sort? In-Place Merge Sort I Making copies of arrays takes time and memory I Current version is an out-of-place merge sort I For and array of size 1,000,000, need left and right arrays which total another 1,000,000 units of memory - BAD! I Prefer an in-place version to save memory I Cost: Implementation complexity I Examine: In-place merge sort ported from C++ STL
© Copyright 2024