Solar Energy Chapter 10 10.1 Summary

Chapter 10
Solar Energy
10.1Summary
KEy mESSagES
•
Solarenergyisavastandlargelyuntappedresource.Australiahasthehighestaveragesolar
radiationpersquaremetreofanycontinentintheworld.
•
Solarenergyisusedmainlyinsmalldirect-useapplicationssuchaswaterheating.Itaccountsfor
only0.1percentoftotalprimaryenergyconsumption,inAustraliaaswellasglobally.
•
SolarenergyuseinAustraliaisprojectedtoincreaseby5.9percentperyearto24PJin
2029–30.
•
Theoutlookforelectricitygenerationfromsolarenergydependscriticallyonthecommercialisation
oflarge-scalesolarenergytechnologiesthatwillreduceinvestmentcostsandrisks.
•
Governmentpolicysettingswillcontinuetobeanimportantfactorinthesolarenergymarket
outlook.Research,developmentanddemonstrationbyboththepublicandprivatesectorswill
becrucialinacceleratingthedevelopmentandcommercialisationofsolarenergyinAustralia,
especiallylarge-scalesolarpowerstations.
10.1.1 World solar energy resources
and market
• Theworld’soverallsolarenergyresourcepotential
isaround5.6gigajoules(GJ)(1.6megawatt-hours
(MWh))persquaremetreperyear.Thehighest
solarresourcepotentialisintheRedSeaarea,
includingEgyptandSaudiArabia.
• Solarenergyaccountedfor0.1percentofworld
totalprimaryenergyconsumptionin2007,although
itsusehasincreasedsignificantlyinrecentyears.
• Governmentpoliciesandfallinginvestment
costsandrisksareprojectedtobethemain
factorsunderpinningfuturegrowthinworld
solar energy use.
• TheInternationalEnergyAgency(IEA)inits
referencecaseprojectstheshareofsolarenergy
intotalelectricitygenerationwillincreaseto1.2
percentin2030–1.7percentinOECDcountries
and0.9percentinnon-OECDcountries.
islikelytorequireinvestmentintransmission
infrastructure(figure10.1).
• Therearealsosignificantsolarenergyresources
inareaswithaccesstotheelectricitygrid.The
solarenergyresource(annualsolarradiation)in
areasofflattopographywithin25kmofexisting
transmissionlines(excludingNationalParks),is
nearly500timesgreaterthantheannualenergy
consumptionofAustralia.
10.1.3KeyfactorsinutilisingAustralia’s
solar resources
• Solarradiationisintermittentbecauseofdaily
andseasonalvariations.However,thecorrelation
betweensolarradiationanddaytimepeakelectricity
demandmeansthatsolarenergyhasthepotential
toprovideelectricityduringpeakdemandtimes.
• TheannualsolarradiationfallingonAustralia
isapproximately58millionpetajoules(PJ),
approximately10000timesAustralia’sannual
energyconsumption.
• Solarthermaltechnologiescanalsooperatein
hybridsystemswithfossilfuelpowerplants,and,
withappropriatestorage,havethepotentialto
providebaseloadelectricitygeneration.Solar
thermaltechnologiescanalsopotentiallyprovide
electricitytoremotetownshipsandmining
centreswherethecostofalternativeelectricity
sourcesishigh.
• Solarenergyresourcesaregreaterinthe
northwestandcentreofAustralia,inareasthat
donothaveaccesstothenationalelectricitygrid.
Accessingsolarenergyresourcesintheseareas
• Photovoltaicsystemsarewellsuitedtooff-grid
electricitygenerationapplications,andwhere
costsofelectricitygenerationfromothersources
arehigh(suchasinremotecommunities).
10.1.2Australia’ssolarenergyresources
AU S T RA LIA N E N E RGY RE S O U RC E A S SES SMENT
261
120°
130°
Annual Average Solar Radiation
140°
150°
10°
DARWIN
0
750 km
20°
BRISBANE
30°
PERTH
SYDNEY
ADELAIDE
Megajoules/m² per day
262
MELBOURNE
Existing solar power
> 100 kW
12
18
13
19
100 - 300 kW
300 - 600 kW
14
20
600 - 1000 kW
15
21
16
22
17
24
HOBART
40°
1000 - 2000 kW
Transmission lines
AERA 10.1
Figure 10.1 Annualaveragesolarradiation(inMJ/m )andcurrentlyinstalledsolarpowerstationswithacapacity
ofmorethan10kW
2
Source: BureauofMeteorology2009;GeoscienceAustralia
• Relativelyhighcapitalcostsandrisksremain
theprimarylimitationtomorewidespreaduseof
solarenergy.Governmentclimatechangepolicies,
andresearch,developmentanddemonstration
(RD&D)byboththepublicandprivatesectors
willbecriticalinthefuturecommercialisationof
largescalesolarenergysystemsforelectricity
generation.
• TheAustralianGovernmenthasestablisheda
SolarFlagshipsProgramatacostof$1.5billion
aspartofitsCleanEnergyInitiativetosupportthe
constructionanddemonstrationoflargescale(up
to1000MW)solarpowerstationsinAustralia.
10.1.4Australia’ssolarenergymarket
• In2007–08,Australia’ssolarenergyuse
represented0.1percentofAustralia’stotal
primaryenergyconsumption.Solarthermalwater
heatinghasbeenthepredominantformofsolar
energyusetodate,butelectricitygenerationis
increasingthroughthedeploymentofphotovoltaic
AUSTRA L I AN E N E R GY R E S O U R C E A S S E S S M E NT
andconcentratingsolarthermaltechnologies.
• InABARE’slatestlong-termenergyprojections,
whichincludetheRenewableEnergyTarget,a5
percentemissionsreductiontarget,andother
governmentpolicies,solarenergyuseinAustralia
isprojectedtoincreasefrom7PJin2007–08
to24PJin2029–30(figure10.2).Electricity
generationfromsolarenergyisprojectedto
increasefrom0.1TWhin2007–08to4TWhin
2029–30(figure10.3).
10.2Backgroundinformation
andworldmarket
10.2.1Definitions
Solarpowerisgeneratedwhenenergyfromthesun
(sunlight)isconvertedintoelectricityorusedtoheatair,
water,orotherfluids.Asillustratedinfigure10.4,there
aretwomaintypesofsolarenergytechnologies:
C H A P T E R 1 0 : S O LAR ENER GY
• Solar photovoltaic (PV)convertssunlight
directlyintoelectricityusingphotovoltaic
cells.PVsystemscanbeinstalledon
rooftops,integratedintobuildingdesigns
andvehicles,orscaleduptomegawatt
scalepowerplants.PVsystemscanalso
beusedinconjunctionwithconcentrating
mirrorsorlensesforlargescalecentralised
power.
• Solar thermalistheconversionofsolarradiation
intothermalenergy(heat).Thermalenergy
carriedbyair,water,orotherfluidiscommonly
useddirectly,forspaceheating,ortogenerate
electricityusingsteamandturbines.Solarthermal
iscommonlyusedforhotwatersystems.Solar
thermalelectricity,alsoknownasconcentrating
solarpower,istypicallydesignedforlargescale
powergeneration.
3.0
0.20
Share of total (%)
12
0.15
8
0.10
4
0.05
2.5
TWh
PJ
16
3.5
0.25
Solar energy consumption (PJ)
1.1
4.0
%
20
0.30
0.9
Solar electricity generation (TWh)
0.8
Share of total (%)
0.6
2.0
%
24
0.5
1.5
0.3
1.0
0
0
0.2
0.5
0
0
1999- 2000- 2001- 2002- 2003- 2004- 2005- 2006- 2007- 202904
00
01
02
03
05
06
07
08
30
1999- 2000- 2001- 2002- 2003- 2004- 2005- 2006- 2007- 202900
01
02
03
04
05
06
07
08
30
Year
Year
AERA 10.2
AERA 10.3
Figure 10.2 Projectedprimaryconsumptionofsolar
energyinAustralia
Figure 10.3 Projectedelectricitygenerationfromsolar
energyinAustralia
Source: ABARE2009a,2010
Source: ABARE2009a,2010
Solar Radiation
263
Photovoltaics (PV)
Solar cells, photovoltaic arrays
Solar Thermal
Heat exchange
Solar Hot Water
Concentrating Solar Thermal
Parabolic trough, power tower,
parabolic dish, fresnel reflector
Electricity
AERA 10.4
Process Heat
Space heating, food processing
and cooking, distillation,
desalination, industrial
hot water
Figure 10.4 Solarenergyflows
Source: ABAREandGeoscienceAustralia
AU S T RA LIA N E N E RGY RE S O U RC E A S SES SMENT
SolarthermalandPVtechnologycanalsobe
combinedintoasinglesystemthatgeneratesboth
heatandelectricity.Furtherinformationonsolar
thermalandPVtechnologiesisprovidedinboxes
10.2and10.3insection10.4.
Thehighestsolarresourcepotentialperunitland
areaisintheRedSeaarea.Australiaalsohashigher
incidentsolarenergyperunitlandareathanany
othercontinentintheworld.However,thedistribution
ofsolarenergyuseamongstcountriesreflects
governmentpolicysettingsthatencourageitsuse,
ratherthanresourceavailability.
10.2.2Solarenergysupplychain
ArepresentationoftheAustraliansolarindustryis
giveninfigure10.5.Thepotentialforusingsolar
energyatagivenlocationdependslargelyonthe
solarradiation,theproximitytoelectricityload
centres,andtheavailabilityofsuitablesites.Large
scalesolarpowerplantsrequireapproximately
2hectaresoflandperMWofpower.Smallscale
technologies(solarwaterheaters,PVmodulesand
small-scalesolarconcentrators)canbeinstalled
onexistingstructures,suchasrooftops.Oncea
solarprojectisdeveloped,theenergyiscapturedby
heatingafluidorgasorbyusingphotovoltaiccells.
Thisenergycanbeuseddirectlyashotwatersupply,
convertedtoelectricity,usedasprocessheat,or
storedbyvariousmeans,suchasthermalstorage,
batteries,pumpedhydroorsynthesisedfuels.
World solar resources
Theamountofsolarenergyincidentontheworld’s
landareafarexceedstotalworldenergydemand.
Solarenergythushasthepotentialtomakeamajor
contributiontotheworld’senergyneeds.However,
largescalesolarenergyproductioniscurrently
limitedbyitshighcapitalcost.
Theannualsolarresourcevariesconsiderably
aroundtheworld.Thesevariationsdependon
severalfactors,includingproximitytotheequator,
cloudcover,andotheratmosphericeffects.
Figure10.6illustratesthevariationsinsolar
energyavailability.
TheEarth’ssurface,onaverage,hasthepotential
tocapturearound5.4GJ(1.5MWh)ofsolarenergy
persquaremetreayear(WEC2007).Thehighest
resourcepotentialisintheRedSeaarea,including
EgyptandSaudiArabia(figure10.6).Australiaand
theUnitedStatesalsohaveagreatersolarresource
potentialthantheworldaverage.Muchofthis
potentialcanbeexplainedbyproximitytotheequator
andaverageannualweatherpatterns.
10.2.3Worldsolarenergymarket
264
Theworldhaslargesolarenergyresourceswhich
havenotbeengreatlyutilisedtodate.Solarenergy
currentlyaccountsforaverysmallshareofworld
primaryenergyconsumption,butitsuseisprojected
toincreasestronglyovertheoutlookperiodto2030.
Development and
Production
Resource Exploration
Processing, Transport,
Storage
End Use Market
Battery
storage
Industry
Solar photovoltaic
Electricity
Development
decision
Solar collection
Thermal
storage
Commercial
Power plants
Resource potential
Solar thermal
Electricity
Water heating
Residential
AERA 10.5
Figure 10.5 Australia’ssolarenergysupplychain
Source: ABAREandGeoscienceAustralia
AUSTRA L I AN E N E R GY R E S O U R C E A S S E S S M E NT
C H A P T E R 1 0 : S O LAR ENER GY
Primary energy consumption
increasingatanaveragerateof10percentperyear
from2000to2007(table10.1).Increasedconcern
withenvironmentalissuessurroundingfossilfuels,
coupledwithgovernmentpoliciesthatencourage
solarenergyuse,havedrivenincreaseduptakeof
solartechnologies,especiallyPV.
Sincesolarenergycannotcurrentlybestoredfor
morethanseveralhours,nortradedinitsprimary
form,solarenergyconsumptionisequaltosolar
energyproduction.Longtermstorageofsolarenergy
iscurrentlyundergoingresearchanddevelopment,
buthasnotyetreachedcommercialstatus.
From1985to1989,worldsolarenergyconsumption
increasedatanaveragerateof19percentperyear
(figure10.7).From1990to1998,therateofgrowth
insolarenergyconsumptiondecreasedto5percent
peryear,beforeincreasingstronglyagainfrom1999
to2007(figure10.7).
Solarenergycontributesonlyasmallproportionto
Australia’sprimaryenergyneeds,althoughitsshare
iscomparabletotheworldaverage.Whilesolar
energyaccountsforonlyaround0.1percentof
worldprimaryenergyconsumption,itsusehasbeen
120°W
60°W
0°
60°E
120°E
60°N
Hours of
sunlight
per day
30°N
Nil
1.0 - 1.9
0°
2.0 - 2.9
3.0 - 3.9
30°S
4.0 - 4.9
5.0 - 5.9
0
6.0 - 6.9
5000 km
AERA 10.6
Figure 10.6 Hoursofsunlightperday,duringtheworstmonthoftheyearonanoptimallytiltedsurface
Source: SunwizeTechnologies2008
Table 10.1 Keystatisticsforthesolarenergymarket
unit
australia
2007–08
OECD
2008
World
2007
Primary energy consumptiona
PJ
6.9
189.4
401.8
Shareoftotal
%
0.12
0.09
0.08
Averageannualgrowth,from2000
%
7.2
4.3
9.6
Electricity generation
Electricityoutput
TWh
0.1
8.2
4.8
Shareoftotal
%
0.04
0.08
0.02
Averageannualgrowth,from2000
%
26.1
36.3
30.8
GW
0.1
8.3
14.7
Electricitycapacity
a Energyproductionandprimaryenergyconsumptionareidentical
Source:IEA2009b;ABARE2009a;Watt2009;EPIA2009
AU S T RA LIA N E N E RGY RE S O U RC E A S SES SMENT
265
theremainderisusedforspaceheatingeither
residentiallyorcommercially,andforheating
swimmingpools.Alloftheenergyusedfor
thesepurposesiscollectedusingsolarthermal
technology.
Themajorityofsolarenergyisproducedusing
solarthermaltechnology;solarthermalcomprised
96percentoftotalsolarenergyproductionin
2007(figure10.7).Aroundhalfisusedfor
waterheatingintheresidentialsector.Mostof
5.0
450
400
Solar thermal
Solar thermal
3.0
TWh
300
PV
4.0
PJ
350
PJ
250
2.0
200
150
1.0
100
0
50
1985
0
1985
1988
1991
1994
1997
2000
2003
Year
1991
1994
1997
2000
2003
Year
2006
2006
AERA 10.9
AERA 10.7
Figure 10.7 Worldprimarysolarenergyconsumption,
bytechnology
Figure 10.9 Worldelectricitygenerationfromsolar
energy,bytechnology
Source: IEA2009b
Source: IEA2009b
a) Solar thermal use
266
1988
a) Solar electricity generation
China
Germany
United States
United States
Spain
Israel
China
Republic of
Korea
Italy
Japan
Turkey
Germany
Netherlands
Greece
Switzerland
Australia
Canada
India
Portugal
Brazil
Australia
0
50
100
150
200
0
1
2
PJ
3
4
TWh
b) Share in primary energy consumption
b) Share in total electricity generation
China
Germany
United States
United States
Spain
Israel
China
Republic of
Korea
Italy
Japan
Turkey
Germany
Netherlands
Greece
Switzerland
Australia
Canada
India
Portugal
Brazil
Australia
AERA 10.8
0
1
2
3
4
AERA 10.10
0
%
0.2
0.4
0.6
%
Figure 10.8 Directuseofsolarthermalenergy,
bycountry,2007
Figure 10.10 Electricitygenerationfromsolarenergy,
majorcountries,2007
Source: IEA2009b
Source: IEA2009b
AUSTRA L I AN E N E R GY R E S O U R C E A S S E S S M E NT
C H A P T E R 1 0 : S O LAR ENER GY
Solar thermal energy consumption
Thelargestusersofsolarthermalenergyin2007
wereChina(180PJ),theUnitedStates(62PJ),
Israel(31PJ)andJapan(23PJ).However,Israel
hasasignificantlylargershareofsolarthermalin
itstotalprimaryenergyconsumptionthananyother
country(figure10.8).Growthinsolarthermalenergy
useinthesecountrieshasbeenlargelydrivenby
governmentpolicies.
Electricity generation
Electricitygenerationaccountsforaround5per
centofprimaryconsumptionofsolarenergy.All
solarphotovoltaicenergyiselectricity,whilearound
3percentofsolarthermalenergyisconvertedto
electricity.Until2003,moresolarthermalenergywas
usedtogenerateelectricitythansolarphotovoltaic
energy(figure10.9).
Thelargestproducersofelectricityfromsolar
energyin2007wereGermany(3.1TWh),theUnited
States(0.7TWh)andSpain(0.5TWh),withallother
countrieseachproducing0.1TWhorless(figure
10.10).Germanyhadthelargestshareofsolar
energyinelectricitygeneration,at0.5percent.Itis
importanttonotethattheseelectricitygeneration
datadonotincludeoff-gridPVinstallations,which
representalargepartofPVuseinsomecountries.
Table 10.2 IEAreferencecaseprojectionsforworldsolarelectricitygeneration
unit
OECD
2007
2030
TWh
4.60
220
Shareoftotal
%
0.05
1.66
Averageannualgrowth,2007–2030
%
-
18
Non-OECD
TWh
0.18
182
Shareoftotal
%
0.00
0.86
Averageannualgrowth,2007–2030
%
-
35
World
TWh
4.79
402
Shareoftotal
%
0.02
1.17
Averageannualgrowth,2007–2030
%
-
21
Source: IEA2009a
267
9000
8
8000
7
7000
Peak capacity (MW)
6000
5
5000
4
4000
3
3000
% share of solar PV market
6
2
2000
1
1000
AERA 10.11
0
1992
1993
1994
1995
1996
1997
1998
1999
2000
2001
2002
2003
2004
2005
2006
0
2007
Year
Other
United States
Germany
Spain
Japan
Australia’s share of
solar PV market (%)
Figure 10.11 WorldPVCapacity,1992–2007,includingoff-gridinstallations
Source: IEA-PVPS2008
AU S T RA LIA N E N E RGY RE S O U RC E A S SES SMENT
Installed PV generation capacity
increasetoalmost280TWhin2030,while
electricitygeneratedfromconcentratingsolar
powersystemsisprojectedtoincreasetoalmost
124TWhby2030(IEA2009a).
TheIEA’sestimatesoftotalPVelectricitygeneration
capacity(includingoff-gridgeneration)showthat
Japan(1.9GW)andtheUnitedStates(0.8GW)had
thesecondandthirdlargestPVcapacityin2007,
followingGermanywith3.9GW(figure10.11).Over
90percentofthiscapacitywasconnectedtogrids
(WEC2009).
10.3Australia’ssolarenergy
resources and market
World market outlook
10.3.1Solarresources
Governmentincentives,fallingproductioncostsand
risingelectricitygenerationpricesareprojectedto
resultinincreasesinsolarelectricitygeneration.
Electricitygenerationfromsolarenergyisprojected
toincreaseto402TWhby2030,growingatan
averagerateof21percentperyeartoaccountfor
1.2percentoftotalgeneration(table10.2).Solar
electricityisprojectedtoincreasemoresignificantly
innon-OECDcountriesthaninOECDcountries,albeit
fromamuchsmallerbase.
Asalreadynoted,theAustraliancontinenthasthe
highestsolarradiationpersquaremetreofany
continent(IEA2003);however,theregionswiththe
highestradiationaredesertsinthenorthwestand
centreofthecontinent(figure10.12).
PVsystemsinstalledinbuildingsareprojectedto
bethemainsourceofgrowthinsolarelectricity
generationto2030.PVelectricityisprojectedto
120°
Australiareceivesanaverageof58millionPJofsolar
radiationperyear(BoM2009),approximately10000
timeslargerthanitstotalenergyconsumptionof5772
PJin2007–08(ABARE2009a).Theoretically,then,if
only0.1percentoftheincomingradiationcouldbe
convertedintousableenergyatanefficiencyof10per
cent,allofAustralia’senergyneedscouldbesupplied
bysolarenergy.Similarly,theenergyfallingonasolar
130°
Annual Average Solar Radiation
140°
150°
10°
DARWIN
0
750 km
268
20°
BRISBANE
30°
PERTH
SYDNEY
ADELAIDE
MELBOURNE
Megajoules/m² per day
3
19 - 21
4-6
22 - 24
7-9
25 - 27
10 - 12
28 - 30
13 - 15
31 - 33
Transmission lines
HOBART
40°
16 - 18
AERA 10.12
Figure 10.12 Annualaveragesolarradiation
Source: BureauofMeteorology2009
AUSTRA L I AN E N E R GY R E S O U R C E A S S E S S M E NT
C H A P T E R 1 0 : S O LAR ENER GY
farmcovering50kmby50kmwouldbesufficientto
meetallofAustralia’selectricityneeds(Stein2009a).
Giventhisvastandlargelyuntappedresource,the
challengeistofindeffectiveandacceptablewaysof
exploitingit.
WhiletheareasofhighestsolarradiationinAustralia
aretypicallylocatedinland,therearesomegridconnectedareasthathaverelativelyhighsolar
radiation.WyldGroupandMMA(2008)identified
anumberoflocationsthataresuitableforsolar
thermalpowerplants,basedonhighsolarradiation
levels,proximitytolocalloads,andhighelectricity
costsfromalternativesources.WithintheNational
ElectricityMarket(NEM)gridcatchmentarea,they
identifiedthePortAugustaregioninSouthAustralia,
north-westVictoria,andcentralandnorth-west
NewSouthWalesasregionsofhighpotentialfor
solarthermalpower.TheyalsonominatedKalbarri,
nearGeraldton,WesternAustralia,ontheSouthWestInterconnectedSystem,theDarwin-Katherine
InterconnectedSystem,andAliceSprings-Tennant
Creekaslocationsofhighpotentialforsolar
thermalpower.
120°
Concentrating solar power
Figure10.12showstheradiationfallingonaflat
plane.Thisistheappropriatemeasureofradiation
forflatplatePVandsolarthermalheatingsystems,
butnotforconcentratingsystems.Forconcentrating
solarpower,includingbothsolarthermalpowerand
concentratingPV,theDirectNormalIrradiance(DNI)
isamorerelevantmeasureofthesolarresource.
Thisisbecauseconcentratingsolartechnologiescan
onlyfocussunlightcomingfromonedirection,and
usetrackingmechanismstoaligntheircollectors
withthedirectionofthesun.Theonlydataset
currentlyavailableforDNIthatcoversallofAustralia
isfromtheSurfaceMeteorologyandSolarEnergy
datasetfromtheNationalAeronauticsandSpace
Administration(NASA).ThisdatasetprovidesDNIat
acoarseresolutionof1degree,equatingtoagrid
lengthofapproximately100km.Theannualaverage
DNIfromthisdatasetisshowninfigure10.13.
Sincethegridcellsizeisaround10000km2,this
datasetprovidesonlyafirstorderindicationofthe
DNIacrossbroadregionsofAustralia.However,itis
adequatetodemonstratethatthespatialdistribution
130°
Direct Normal Irradiance
140°
150°
10°
DARWIN
0
750 km
269
20°
BRISBANE
30°
PERTH
SYDNEY
ADELAIDE
MELBOURNE
Megajoules/m² per day
3
19 - 21
4-6
22 - 24
7-9
25 - 27
10 - 12
28 - 30
13 - 15
31 - 33
HOBART
40°
16 - 18
AERA 10.13
Figure 10.13 DirectNormalSolarIrradiance
Source: NASA2009
AU S T RA LIA N E N E RGY RE S O U RC E A S SES SMENT
ofDNIdiffersfromthatofthetotalradiationshown
infigure10.12.Inparticular,thereareareasofhigh
DNIincentralNewSouthWalesandcoastalregions
ofWesternAustraliathatarelessevidentinthe
totalradiation.MoredetailedmappingofDNIacross
Australiaisneededtoassessthepotential
forconcentratingsolarpoweratalocalscale.
Sometypesofsolarthermalpowerplants,including
parabolictroughsandFresnelreflectors,needto
beconstructedonflatland.Itisestimatedthat
about2hectaresoflandarerequiredperMWof
powerproduced(Stein2009a).Figure10.14shows
solarradiation,wherelandwithaslopeofgreater
than1percent,andlandfurtherthan25kmfrom
existingtransmissionlineshasbeenexcluded.
LandwithinNationalParkshasalsobeenexcluded.
Theseexclusionthresholdsofslopeanddistance
togridarenotpreciselimitsbutintendedtobe
indicativeonly.Evenwiththeselimits,theannual
radiationfallingonthecolouredareasinfigure10.14
is2.7millionPJ,whichamountstonearly500times
theannualenergydemandofAustralia.Moreover,
120°
powertowers,dishesandPVsystemsarenot
restrictedtoflatland,whichrenderseventhisfigure
aconservativeestimate.
Seasonal variations in resource availability
Therearealsosignificantseasonalvariationsinthe
amountofsolarradiationreachingAustralia.While
summerradiationlevelsaregenerallyveryhigh
acrossallofinlandAustralia,winterradiationhasa
muchstrongerdependenceonlatitude.Figures10.15
and10.16showacomparisonoftheDecemberand
Juneaveragedailysolarradiation.Thesamecolour
schemehasbeenusedthroughoutfigures10.12to
10.16toallowvisualcomparisonoftheamountof
radiationineachfigure.
Insomestates,suchasVictoria,SouthAustralia
andQueensland,theseasonalvariationinsolar
radiationcorrelateswithaseasonalvariationin
electricitydemand.Thesesummerpeakdemand
periods–causedbyair-conditioningloads–coincide
withthehoursthatthesolarresourceisatitsmost
abundant.However,thetotaldemandacrossthe
NationalElectricityMarket(comprisingallofthe
130°
Annual Average Solar Radiation
(Slope < 1%)
140°
150°
10°
DARWIN
0
750 km
270
20°
BRISBANE
30°
PERTH
SYDNEY
ADELAIDE
MELBOURNE
Megajoules/m² per day
3
19 - 21
4-6
22 - 24
7-9
25 - 27
10 - 12
28 - 30
13 - 15
31 - 33
16 - 18
40°
HOBART
Transmission lines
AERA 10.14
Figure 10.14 Annualsolarradiation,excludinglandwithaslopeofgreaterthan1percentandareasfurther
than25kmfromexistingtransmissionlines
Source: BureauofMeteorology2009;GeoscienceAustralia
AUSTRA L I AN E N E R GY R E S O U R C E A S S E S S M E NT
C H A P T E R 1 0 : S O LAR ENER GY
easternstates,SouthAustraliaandTasmania)
isrelativelyconstantthroughouttheyear,and
occasionallypeaksinwinterduetoheatingloads
(AER2009).
10.3.2Solarenergymarket
Australia’smodestproductionanduseofsolarenergy
isfocussedonoff-gridandresidentialinstallations.
Whilesolarthermalwaterheatinghasbeenthe
predominantformofsolarenergyusetodate,
productionofelectricityfromPVandconcentrating
solarthermaltechnologiesisincreasing.
Primary energy consumption
Australia’sprimaryenergyconsumptionofsolar
energyaccountedfor2.4percentofallrenewable
energyuseandaround0.1percentofprimary
energyconsumptionin2007–08(ABARE2009a).
Productionandconsumptionofsolarenergyarethe
same,becausesolarenergycanonlybestoredfor
severalhoursatpresent.
Overtheperiodfrom1999–2000to2007–08,
Australia’ssolarenergyuseincreasedatanaverage
rateof7.2percentperyear.However,asillustrated
120°
infigure10.17,thegrowthratewasnotconstant;
therewasconsiderablevariationfromyeartoyear.
Thebulkofgrowthoverthisperiodwasintheform
ofsolarthermalsystemsusedfordomesticwater
heating.PVisalsousedtoproduceasmallamount
ofelectricity.Intotal,Australia’ssolarenergy
consumptionin2007–08was6.9PJ(1.9TWh),of
which6.5PJ(1.8TWh)wereusedforwaterheating
(ABARE2009a).
Consumption of solar thermal energy, by state
StatisticsonPVenergyconsumptionbystateare
notavailable.However,PVrepresentsonly5.8per
centoftotalsolarenergyconsumption;onthat
basis,statisticsonsolarthermalconsumptionby
stateprovideareasonableapproximationofthe
distributionoftotalsolarenergyconsumption.
WesternAustraliahasthehighestsolarenergy
consumptioninAustralia,contributing40percent
ofAustralia’stotalsolarthermalusein2007–08
(figure10.18).NewSouthWalesandQueensland
contributedanother26percentand15percent
respectively.Therateofgrowthofsolarenergyuse
130°
December Average Solar
Radiation
140°
150°
10°
DARWIN
0
750 km
271
20°
BRISBANE
30°
PERTH
SYDNEY
ADELAIDE
MELBOURNE
Megajoules/m² per day
3
19 - 21
4-6
22 - 24
7-9
25 - 27
10 - 12
28 - 30
13 - 15
31 - 33
HOBART
40°
16 - 18
AERA 10.15
Figure 10.15 Decemberaveragesolarradiation
Source: BureauofMeteorology2009
AU S T RA LIA N E N E RGY RE S O U RC E A S SES SMENT
120°
130°
June Average Solar Radiation
140°
150°
10°
DARWIN
0
750 km
20°
BRISBANE
30°
PERTH
SYDNEY
ADELAIDE
MELBOURNE
Megajoules/m² per day
272
3
19 - 21
4-6
22 - 24
7-9
25 - 27
10 - 12
28 - 30
13 - 15
31 - 33
40°
HOBART
16 - 18
AERA 10.16
Figure 10.16 Juneaveragesolarradiation
Source: BureauofMeteorology2009
7
6
PV
Solar thermal
PJ
5
4
3
2
1
0
1974-75
1977-78
1980-81
1983-84
1986-87
1989-90
1992-93
1995-96
Year
Figure 10.17 Australia’sprimaryconsumptionofsolarenergy,bytechnology
Source: IEA2009b;ABARE2009a
AUSTRA L I AN E N E R GY R E S O U R C E A S S E S S M E NT
1998-99
2001-02
2004-05
2007-08
AERA 10.17
C H A P T E R 1 0 : S O LAR ENER GY
overthepastdecadehasbeensimilarinallstates
andterritories,rangingfromanaverageannual
growthof7percentintheNorthernTerritoryand
Victoria,toanaverageannualgrowthof11percent
inNewSouthWales.
ofboththeirthermalfuelinput,andtheirelectrical
output.Theresultofthisdifferencebetweenfuel
inputsandenergyoutputforfossilfuelsisthatsolar
representsalargershareofelectricitygeneration
outputthanoffuelinputstoelectricitygeneration.
Arangeofgovernmentpolicysettingsfromboth
AustralianandStategovernmentshaveresultedina
significantincreaseintheuptakeofsmall-scalesolar
hotwatersystemsinAustralia.Thecombinationof
drivers,includingthesolarhotwaterrebate,state
buildingcodes,theinclusionofsolarhotwaterunder
theRenewableEnergyTargetandthemandated
phase-outofelectrichotwaterby2012,haveall
contributedtotheincreaseduptakeofsolarhotwater
systemsfrom7percentoftotalhotwatersystem
installationsin2007to13percentin2008(BIS
Shrapnel2008;ABARE2009a).
In2007–08,0.11TWh(0.4PJ)ofelectricitywere
generatedfromsolarenergy,representing0.04per
centofAustralianelectricitygeneration(figure10.19).
Despiteitssmallshare,solarelectricitygeneration
hasincreasedrapidlyinrecentyears.
ElectricitygenerationfromsolarenergyinAustralia
iscurrentlyalmostentirelysourcedfromPV
installations,primarilyfromsmalloff-gridsystems.
Electricitygenerationfromsolarthermalsystems
iscurrentlylimitedtosmallpilotprojects,although
interestinsolarthermalsystemsforlargescale
electricitygenerationisincreasing.
Somecareinanalysisofgenerationdatainenergy
statisticsiswarranted.Forenergyaccounting
purposes,thefuelinputstoasolarenergysystem
areassumedtoequaltheenergygeneratedbythe
solarsystem.Thus,thesolarelectricityfuelinputs
inenergystatisticsrepresentthesolarenergy
capturedbysolarenergysystems,ratherthanthe
significantlylargermeasureoftotalsolarradiation
fallingonsolarenergysystems;howeverthis
radiationisnotmeasuredinenergystatistics.Fossil
fuelssuchasgasandcoalaremeasuredinterms
MostAustralianstatesandterritorieshaveinplace,or
areplanningtoimplement,feed-intariffs.Whilethere
issomecorrelationoftheirintroductionwithincreased
consumeruptake,itistooearlytosuggestthatthese
tariffshavebeensignificantcontributorstoit.The
combinationofgovernmentpolicies,associatedpublic
andprivateinvestmentinRD&Dmeasuresandbroader
marketconditionsarelikelytobethemaininfluences.
Northern
Territory
3%
TW
TWh
h
South
Australia
8%
Australia’stotalPVcapacityhasincreased
significantlyoverthelastdecade(figure10.20),
andinparticularoverthelasttwoyears.Thishas
beendrivenprimarilybytheSolarHomesand
CommunitiesPlanforon-gridapplicationsandthe
RemoteRenewablePowerGenerationProgramfor
off-gridapplications.Overthelasttwoyears,there
hasbeenadramaticincreaseinthetake-upofsmall
scalePV,withmorethan40MWinstalledin2009
(figures10.20,10.23).Thisisduetoacombination
offactors:supportprovidedthroughtheSolarHomes
andCommunitiesprogram,greaterpublicawareness
ofsolarPV,adropinthepriceofPVsystems,
attributablebothtogreaterinternationalcompetition
amonganincreasednumberofsuppliersanda
decreaseinworldwidedemandasaresultofthe
globalfinancialcrisis,astrongAustraliandollar,and
highlyeffectivemarketingbyPVretailers.
New South
Wales
26%
Western
Australia
40%
Victoria
6%
Queensland
15%
0.12
0.12
0.06
0.06
0.10
0.10
0.05
0.05
0.08
0.08
0.04
0.04
0.06
0.06
0.03
0.03
0.04
0.04
0.02
0.02
0.02
0.02
0.01
0.01
0
0
1992-93
1992-93
Tasmania
2%
1995-96
1995-96
1998-99
1998-99
2001-02
2001-02
Year
Year
2004-05
2004-05
2007-08
2007-08
%%
Electricity generation
Installed electricity generation capacity
0
0
Solar electricity generation (TWh)
Solar electricity generation (TWh)
Share of total electricity generation (%)
Share of total electricity generation (%)
AERA 10.18
AERA 10.19
AERA 10.19
Figure 10.18 Solarthermalenergyconsumption,
bystate,2007–08
Figure 10.19 Australianelectricitygenerationfrom
solar energy
Source: ABARE2009a
Source: ABARE
AU S T RA LIA N E N E RGY RE S O U RC E A S SES SMENT
273
120
100
Off grid
non-domestic
Grid distributed
Diesel grids
Off grid domestic
Peak capacity (MW)
80
Grid centralised
60
40
20
AERA 10.20
0
1992
1993
1994
1995
1996
1997
1998
1999
Figure 10.20 PVinstalledcapacityfrom1992–2008
2000
2001
2002
2003
2004
2005
2006
2007
2008
Year
Note: TheseestimatesrepresentthepeakpoweroutputofPVsystems.Theydonotrepresenttheaveragepoweroutputoverayear,assolar
radiationvariesaccordingtofactorssuchasthetimeofday,thenumberofdaylighthours,theangleofthesunandthecloudcover.These
capacityestimatesareconsistentwiththePVproductiondatapresentedinthisreport
Source: Watt2009
274
Thelargestcomponentofinstalledsolarelectricity
capacityisusedforoff-gridindustrialandagricultural
purposes(41MW),withsignificantcontributions
comingfromoff-gridresidentialsystems(31MW),
andgridconnecteddistributedsystems(30MW).This
largeoff-gridusagereflectsthecapacityofPVsystems
tobeusedasstand-alonegeneratingsystems,
particularlyforsmallscaleapplications.Therehave
alsobeenseveralcommercialsolarprojectsthat
provideelectricitytothegrid.
Recently completed solar projects
Fivecommercial-scalesolarprojectswithacombined
capacityofaround5MWhavebeencommissioned
inAustraliasince1998(table10.3).Allof
theseprojectsarelocatedinNewSouthWales.
Commissionedsolarprojectstodatehavehadsmall
capacitieswithfourofthefiveprojectscommissioned
havingacapacityoflessthanorequalto1MW.The
onlyprojecttohaveacapacityofmorethan1MW
Table 10.3 Recentlycompletedsolarprojects
Project
Company
State
Start up
Capacity
Singleton
Energy
Australia
NSW
1998
0.4MW
Newington
Private
NSW
2000
0.7MW
BrokenHill
Australian
Inland
Energy
NSW
2000
1MW
Newcastle
CSIRO
NSW
2005
0.6MW
Liddell
Ausra
NSW
Late
2008
2MW
Source: GeoscienceAustralia2009
AUSTRA L I AN E N E R GY R E S O U R C E A S S E S S M E NT
isAusra’s2008solarthermalattachmenttoLiddell
powerplant,whichhasapeakelectricpowercapacity
of2MW(Ausra2009).Whilesomewhatlarger
thanthemorecommondomesticorcommercial
installations,thesearemodestly-sizedplants.
However,thereareplansforconstructionofseveral
largescalesolarpowerplantsundertheAustralian
Government’sSolarFlagshipsProgram,whichwill
usebothsolarthermalandPVtechnologies.
10.4Outlookto2030for
Australia’sresourcesandmarket
Solarenergyisarenewableresource:increaseduse
oftheresourcedoesnotaffectresourceavailability.
However,thequantityoftheresourcethatcanbe
economicallycapturedchangesovertimethrough
technologicaldevelopments.
TheoutlookfortheAustraliansolarmarket
dependsonthecostofsolarenergyrelativeto
otherenergyresources.Atpresent,solarenergyis
moreexpensiveforelectricitygenerationthanother
currentlyusedrenewableenergysources,suchas
hydro,wind,biomassandbiogas.Therefore,the
outlookforincreasedsolarenergyuptakedepends
onfactorsthatwillreduceitscostsrelativetoother
renewablefuels.Thecompetitivenessofsolarenergy
andrenewableenergysourcesgenerallywillalso
dependongovernmentpoliciesaimedatreducing
greenhousegasemissions.
Solarenergyislikelytobeaneconomicallyattractive
optionforremoteoff-gridelectricitygeneration.The
long-termcompetitivenessofsolarenergyinlarge-
C H A P T E R 1 0 : S O LAR ENER GY
scalegrid-connectedapplicationsdependsinlarge
measureontechnologicaldevelopmentsthatenhance
theefficiencyofenergyconversionandreducethe
capitalandoperatingcostofsolarenergysystems
andcomponentry.TheAustralianGovernment’s
$1.5billionSolarFlagshipsprogram,announcedas
partoftheCleanEnergyInitiative,willsupportthe
constructionanddemonstrationoflargescale
(upto1000MW)solarpowerstationsinAustralia.
Itwillacceleratedevelopmentsolartechnologyand
helppositionAustraliaasaworldleaderinthatfield.
10.4.1Keyfactorsinfluencingthefuture
developmentofAustralia’ssolarenergy
resources
Australiaisaworldleaderindevelopingsolar
technologies(LovegroveandDennis2006),but
uptakeofthesetechnologieswithinAustraliahas
beenrelativelylow,principallybecauseoftheir
highcost.Anumberoffactorsaffecttheeconomic
viabilityofsolarinstallations.
Solar energy technologies and costs
ResearchintobothsolarPVandsolarthermal
technologiesislargelyfocussedonreducingcosts
andincreasingtheefficiencyofthesystems.
• Electricity generation–commercial-scale
generationprojectshavebeendemonstrated
tobepossiblebutthecostofthetechnologyis
stillrelativelyhigh,makingsolarlessattractive
andhigherriskforinvestors.Small-scalesolar
PVarraysarecurrentlybestsuitedtoremote
andoff-gridapplications,withotherapplications
largelydependentonresearchorgovernment
fundingtomakethemviable.Informationonsolar
energytechnologiesforelectricitygenerationis
presentedinbox10.1.
• Direct-use applications–solarthermalhotwater
systemsfordomesticuserepresentthemost
widelycommercialisedsolarenergytechnology.
Solarwaterheatersarecontinuingtobe
developedfurther,andcanalsobeintegrated
withPVarrays.Otherdirectusesinclude
passivesolarheating,andsolarairconditioning.
Informationonsolarenergytechnologiesfor
direct-useapplicationsispresentedinbox10.2.
WithbothsolarPVandsolarthermalgeneration,the
majorityofcostsareborneinthecapitalinstallation
phase,irrespectiveofthescaleorsizeofthe
project(figure10.21).Thelargestcostcomponents
ofPVinstallationsarethecellsorpanelsandthe
associatedcomponentsrequiredtoinstalland
connectthepanelsasapowersource.Inaddition,
theinverterthatconvertsthedirectcurrentto
alternatingcurrentneedstobereplacedatleastonce
every10years(Borenstein2008).However,there
arenofuelcosts–oncethesystemisinstalled,
apartfromreplacingtheinverter,thereshouldbe
nocostsassociatedwithrunningthesystemuntil
theendofitsusefullife(20to25years).Themajor
challenge,therefore,isinitialoutlay,withsomewhat
moremodestperiodiccomponentreplacement,
andpaybackperiodfortheinvestment.
Currently,thecostofsolarenergyishigherthan
othertechnologiesinmostcountries.Theminimum
costforsolarPVinareaswithhighsolarradiation
isaroundUS23centsperkWh(EIA2009).
SolarthermalsystemshaveasimilarprofiletoPV,
dependingonthescaleandtypeofinstallation.
Thecostofelectricityproductionfromsolarenergy
isexpectedtodeclineasnewtechnologiesare
developedandeconomiesofscaleimproveinthe
productionprocesses.
Thecostofinstallingsolarcapacityhasgenerally
beendecreasing.BothPVandsolarthermal
technologiescurrentlyhavesubstantialresearch
anddevelopmentfundsdirectedtowardthem,and
newproductionprocessesareexpectedtoresultina
continuationofthistrend(figure10.22).IntheUnited
6
Costs
2007 US$ per watt
5
4
3
2
PV
1
Years = 25
installation
inverter replacement
Solar thermal
AERA 10.22
0
2011
2013
2015
2017
2019
2021 2023
2025
2027
2029
Year
AERA 10.21
Figure 10.21 IndicativesolarPVproductionprofile
and costs
Figure 10.22 Projectedaveragecapitalcostsfor
newelectricitygenerationplantsusingsolarenergy,
2011to2030
Source: ABARE
Source: EIA2009
AU S T RA LIA N E N E RGY RE S O U RC E A S SES SMENT
275
States,thecapitalcostofnewPVplantsisprojected
tofallby37percent(inrealterms)from2009to
2030(EIA2009).
276
TheElectricPowerResearchInstitute(EPRI)has
developedestimatesofthelevelisedcostof
technologya,includingarangeofsolartechnologies,
toenablethecomparisonoftechnologiesatdifferent
levelsofmaturity(Chapter2,figures2.18,2.19).The
solartechnologiesconsideredareparabolictroughs,
centralreceiversystems,fixedPVsystemsand
trackingPVsystems.Centralreceiversolarsystems
withstorageareforecasttohavethelowestcosts
oftechnologyin2015.Addingstoragetothecentral
receiversystemsortoparabolictroughsisestimated
todecreasethecostperKWhproduced,asitallows
thesystemtoproduceahigherelectricityoutput.
TrackingPVsystemsareforecasttohavethelowest
costoftheoptionsthatdonotincorporatestorage.
TheEPRItechnologystatusdatainfigures2.18
and2.19showthat,althoughsolartechnologies
remainrelativelyhighcostoptionsthroughoutthe
outlookperiod,significantreductionsincostare
anticipatedby2030.ThesubstantialglobalRD&D
(bygovernmentsandtheprivatesector)intosolar
technologies,includingtheAustralianGovernment’s
$1.5billionSolarFlagshipsProgramtosupportthe
constructionanddemonstrationoflargescalesolar
powerstationsinAustralia,isexpectedtoplayakey
roleinacceleratingthedevelopmentanddeployment
ofsolarenergy.
Thetimetakentoinstallordevelopasolarsystem
ishighlydependentonthesizeandscaleofthe
project.Solarhotwatersystemscanbeinstalled
inaroundfourhours.Small-scalePVsystems
cansimilarlybeinstalledquiterapidly.However,
commercialscaledevelopmentstakeconsiderably
longer,dependingonthetypeofinstallation
andotherfactors,includingbroaderlocationor
environmentalconsiderations.
Location of the resource
InAustralia,thebestsolarresourcesarecommonly
distantfromthenationalelectricitymarket(NEM),
especiallythemajorurbancentresontheeastern
seaboard.Thisposesachallengefordeveloping
newsolarpowerplants,asthereneedstobea
balancebetweenmaximisingthesolarradiationand
minimisingthecostsofconnectivitytotheelectricity
grid.However,thereispotentialforsolarthermal
energyapplicationtoprovidebaseandintermediate
loadelectricitywithfossil-fuelplants(suchasgas
turbinepowerstations)inareaswithisolatedgrid
systemsandgoodinsolationresources.Thereportby
theWyldGroupandMMA(2008)identifiedMountIsa,
AliceSprings,TennantCreekandthePilbararegionas
areaswiththesecharacteristics.AccesstoAustralia’s
majorsolarenergyresources–aswithotherremote
renewableenergysources–islikelytorequire
investmenttoextendtheelectricitygrid.
Stand-alonePVsystemscanbelocatedcloseto
customers(forexampleonroofareasofresidential
buildings),whichreducesthecostsofelectricity
transmissionanddistribution.However,concentrating
solarthermaltechnologiesrequiremorespecific
conditionsandlargeareasofland(Lorenz,Pinner
andSeitz2008)whichareoftenonlyavailablelong
distancesfromthecustomersneedingtheenergy.
InAustralia,installingsmall-scaleresidentialor
mediumscalecommercialsystems(bothPVand
thermal)canbehighlyattractiveoptionsforremote
areaswhereelectricityinfrastructureisdifficultor
costlytoaccess,andalternativelocalsourcesof
electricityareexpensive.
government policies
Governmentpolicieshavebeenimplementedat
severalstagesofthesolarenergyproductionchain
inAustralia.Rebatesprovidedforsolarwaterheating
systemsandresidentialPVinstallationsreduce
thecostofthesetechnologiesforconsumersand
encouragetheiruptake.
TheSolarHomesandCommunitiesPlan(2000to
June2009)providedrebatesfortheinstallation
ofsolarPVsystems.ThecapacityofPVsystems
installedbyAustralianhouseholdsincreased
significantlyunderthisprogram(figure10.23).
TheexpandedRETschemeincludestheSolar
Creditsinitiative,whichprovidesamultipliedcredit
forelectricitygeneratedbysmallsolarPVsystems.
Solar Creditsprovidesanup-frontcapitalsubsidy
towardstheinstallationofsmallsolarPVsystems.
TheAustralianGovernmenthasalsoannounced
$1.5billionofnewfundingforitsSolarFlagships
program.Thisprogramaimstoinstalluptofour
newsolarpowerplants,withacombinedpower
outputofupto1000MW,madeupofbothPVand
solarthermalpowerplants,withthelocationsand
technologiestobedeterminedbyacompetitive
tenderprocess.Theprogramaimstodemonstrate
newsolartechnologiesatacommercialscale,
therebyacceleratinguptakeofsolarenergyingeneral
andprovidingtheopportunityforAustraliatodevelop
leadershipinsolarenergytechnology(RET2009b).
TheAustralianGovernmenthasalsoallocated
fundingtoestablishtheAustralianSolarInstitute
(ASI),whichwillbebasedinNewcastle.Itwillhave
strongcollaborativelinkswithCSIROandUniversities
undertakingR&Dinsolartechnologies.Theinstitute
willaimtodrivedevelopmentofsolarthermaland
PVtechnologiesinAustralia,includingtheareasof
efficiencyandcosteffectiveness(RET2009a).
Othergovernmentpolicies,includingfeed-intariffs,
whichareproposedoralreadyinplaceinmost
Australianstatesandterritories,mayalsoencourage
theuptakeofsolarenergy.
a ThisEPRItechnologystatusdataenablesthecomparisonoftechnologiesatdifferentlevelsofmaturity.
Itshouldnotbeusedtoforecastmarketandinvestmentoutcomes.
AUSTRA L I AN E N E R GY R E S O U R C E A S S E S S M E NT
C H A P T E R 1 0 : S O LAR ENER GY
50
theenergyrequiredtoproduceitovera20year
systemlifespan(MacKay2009).Inareaswithless
solarradiation,suchasCentral-NorthernEurope,the
energyyieldratioisestimatedtobearoundfour.This
positiveenergyyieldratioalsomeansthatgreenhouse
gasemissionsgeneratedfromtheproductionof
solarenergysystemsaremorethanoffsetoverthe
systems’lifecycle,astherearenogreenhousegas
emissionsgeneratedfromtheiroperation.
40
MW
30
20
10
0
2000
2001 2002
2003
2004
2005
Year
2006
2007
2008
2009
AERA 10.23
Figure 10.23 ResidentialPVcapacityinstalledunderthe
SolarHomesandCommunitiesPlan(asofOctober2009)
Source: DEWHA2009
Infrastructure issues
Thelocationoflargescalesolarpowerplants
inAustraliawillbeinfluencedbythecostof
connectiontotheelectricitygrid.Intheshortterm,
developmentsarelikelytofocusonisolatedgrid
systemsornodestotheexistingelectricitygrid,
sincethisminimisesinfrastructurecosts.
Inthelongerterm,theextensionofthegridtoaccess
remotesolarenergyresourcesindesertregionsmay
requirebuildinglongdistancetransmissionlines.The
technologyneededtoachievethisexists:highvoltage
directcurrent(HVDC)transmissionlinesareableto
transferelectricityoverthousandsofkilometres,with
minimallosses.SomeHVDClinesarealreadyinuse
inAustralia,andarebeingusedtoforminterstategrid
connections;thelongestexamplebeingtheHVDC
linkbetweenTasmaniaandVictoria.However,building
aHVDClinktoasolarpowerstationindesertareas
wouldrequirealargeup-frontinvestment.
Theideaofgeneratinglargescalesolarenergyin
remotedesertregionshasbeenproposedona
muchlargerscaleinternationally.InJune2009the
DESERTECFoundationoutlinedaproposaltobuild
largescalesolarfarmsinthesun-richregionsofthe
MiddleEastandNorthernAfrica,andexporttheir
powertoEuropeusinglongdistanceHVDClines.
Morerecently,anAsiaPacificSunbeltDevelopment
Projecthasbeenestablishedwiththeaimofmoving
solarenergybywayoffuelratherthanelectricityfrom
regionssuchasAustraliatothoseAsiancountries
whoimportenergy,suchasJapanandKorea.These
projectsillustratethegrowinginternationalinterest
inutilisinglargescalesolarpowerfromremote
andinhospitableareas,despitetheinfrastructure
challengesintransmittingortransportingenergyover
longdistances.
Environmental issues
Aroof-mounted,grid-connectedsolarsystemin
Australiaisestimatedtoyieldmorethanseventimes
Mostsolarthermalelectricitygenerationsystems
requirewaterforsteamproductionandthiswateruse
affectstheefficiencyofthesystem.Themajorityof
thiswaterisconsumedin‘wetcooling’towers,which
useevaporativecoolingtocondensethesteamafter
ithaspassedthroughtheturbine.Inaddition,solar
thermalsystemsrequirewatertowashthemirrors,
tomaintaintheirreflectivity(Jones2008).Itis
possibletouse‘drycooling’towers,whicheliminate
mostofthewaterconsumption,butthisreducesthe
efficiencyofthesteamcyclebyapproximately10per
cent(Stein2009b).
Afurtheroptionunderdevelopmentistheuseofhigh
temperatureBraytoncycles,whichdonotusesteam
turbinesandthusdonotconsumewater.Brayton
cyclesaremoreefficientthanconventionalRankine
(steam)cycles,buttheycanonlybeachievedby
point-focussingsolarthermaltechnologies(power
towersanddishes).
10.4.2Outlookforsolarenergymarket
AlthoughsolarenergyismoreabundantinAustralia
thanotherrenewableenergysources,plansfor
expandingsolarenergyinAustraliagenerallyrely
onsubsidiestobeeconomicallyviable.There
arecurrentlyonlyasmallnumberofproposed
commercialsolarenergyprojects,mostlyofsmall
scale.Solarenergyiscurrentlymoreexpensiveto
producethanotherformsofrenewableenergy,such
ashydro,windandbiomass(WyldGroupandMMA
2008).Intheshortterm,therefore,solarenergywill
finditdifficulttocompetecommerciallywithother
formsofcleanenergyforelectricitygenerationinthe
NEM.However,asglobaldeploymentofsolarenergy
technologiesincreases,thecostofthetechnologies
islikelytodecrease.Moreover,technological
developmentsandgreenhousegasemission
reductionpoliciesareexpectedtodriveincreased
useofsolarenergyinthemediumandlongterm.
Key projections to 2029–30
ABARE’slatest(2010)Australianenergyprojections
includetheRET,a5percentemissionsreduction
target,andothergovernmentpolicies.Solarenergy
useinAustraliaisprojectedtomorethantriple,from
7PJin2007–08to24PJin2029–30,growingatan
averagerateof5.9percentayear(figure10.27,table
10.4).Whilesolarwaterheatingisprojectedtoremain
thepredominantuseforsolarenergy,theshareofPVin
totalsolarenergyuseisprojectedtoincrease.
AU S T RA LIA N E N E RGY RE S O U RC E A S SES SMENT
277
BOx 10.1SOLARENERGyTECHNOLOGIESFORELECTRICITyGENERATION
Sunlighthasbeenusedforheatingbygenerating
fireforhundredsofyears,butcommercial
technologiesspecificallytousesolarenergyto
directlyheatwaterorgeneratepowerwerenot
developeduntilthe1800s.Solarwaterheaters
developedandinstalledbetween1910and1920
werethefirstcommercialapplicationofsolar
energy.ThefirstPVcellscapableofconverting
enoughenergyintopowertorunelectrical
equipmentwerenotdevelopeduntilthe1950sand
thefirstsolarpowerstations(thermalandPV)with
capacityofatleast1megawattstartedoperatingin
the1980s.
Solar thermal electricity
Solarthermalelectricityisproducedbyconverting
sunlightintoheat,andthenusingtheheattodrive
agenerator.Thesunlightisconcentratedusing
mirrors,andfocussedontoasolarreceiver.This
receivercontainsaworkingfluidthatabsorbs
theconcentratedsunlight,andcanbeheatedup
toveryhightemperatures.Heatistransferred
fromtheworkingfluidtoasteamturbine,similar
tothoseusedinfossilfuelandnuclearpower
stations.Alternatively,theheatcanbestoredfor
lateruse(seebelow).
278
Therearefourmaintypesofconcentratingsolar
receivers,showninfigure10.24.Twoofthese
typesareline-focussing(parabolictroughandLinear
Fresnelreflector);theothertwoarepoint-focussing
(paraboloidaldishandpowertower).Eachofthese
typesisdesignedtoconcentratealargeareaof
sunlightontoasmallreceiver,whichenablesfluid
tobeheatedtohightemperatures.Therearetradeoffsbetweenefficiency,landcoverage,andcosts
ofeachtype.
Themostwidelyusedsolarconcentratoristhe
parabolictrough.Parabolictroughsfocuslightinone
axisonly,whichmeansthattheyneedonlyasingle
axistrackingmechanismtofollowthedirectionofthe
sun.ThelinearFresnelreflectorachievesasimilar
line-focus,butinsteadusesanarrayofalmostflat
mirrors.LinearFresnelreflectorsachieveaweaker
focus(thereforelowertemperaturesandefficiencies)
thanparabolictroughs.However,linearFresnel
reflectorshavecost-savingfeaturesthatcompensate
forlowerenergyefficiencies,includingagreateryield
perunitland,andsimplerconstructionrequirements.
Theparaboloidaldishisanalternatedesignwhich
focusessunlightontoasinglepoint.Thisdesignis
abletoproduceamuchhighertemperatureatthe
a
b
c
d
Figure 10.24 Thefourtypesofsolarthermalconcentrators: (a)parabolictrough,(b)compactlinearFresnelreflector,
(c)paraboloidaldish,and(d)powertower
Source: WikimediaCommons,photographbykjkolb;WikimediaCommons,originaluploaderwasLkruijswaten.wikipedia;
AustralianNationalUniversity2009a;CSIRO
AUSTRA L I AN E N E R GY R E S O U R C E A S S E S S M E NT
C H A P T E R 1 0 : S O LAR ENER GY
receiver,whichincreasestheefficiencyofenergy
conversion.Theparaboloidaldishhasthegreatest
potentialtobeusedinmodularform,whichmay
givethisdesignanadvantageinoff-gridandremote
applications.However,tofocusthesunlightonto
asinglepoint,paraboloidaldishesneedtotrack
thedirectionofsunlightontwoaxes.Thisrequires
amorecomplextrackingmechanism,andismore
expensivetobuild.Theotherpointfocusingdesign
isthe‘powertower’,whichusesaseriesofgroundbasedmirrorstofocusontoanelevatedcentral
receiver.Powertowermirrorsalsorequiretwo-axis
trackingmechanisms;howevertheuseofsmaller,
flatmirrorscanreducecosts.
Theparabolictroughhasthemostwidespread
commercialuse.Anarrayofnineparabolictrough
plantsproducingacombined354MWhaveoperated
inCaliforniasincethe1980s.Severalnewoneshave
beenbuiltinSpainandNevadainthelastfewyears
atarounda50–60MWscale,andtherearemany
parabolictroughplantseitherintheconstructionor
planningphase.Whileparabolictroughshavethe
majorityofthecurrentmarketshare,allfourdesigns
aregainingrenewedcommercialinterest.Thereisan
11MWsolarpowertowerplantoperatinginSpain,
andasimilar20MWplanthasrecentlybegun
operatingatthesamelocation.ThelinearFresnel
reflectorhasbeendemonstratedonasmall
scale(5MW),anda177MWplantisplannedfor
constructioninCalifornia.Theparaboloidaldishhas
alsobeendemonstratedonasmallscale,andthere
areplansforlargescaledishplants.
Methodsofpowerconversionandthermalstorage
varyfromtypetotype.Whilesolarthermalplantsare
generallysuitedtolargescaleplants(greaterthan
50MW),theparaboloidaldishhasthepotentialto
beusedinmodularform.Thismaygivedishsystems
anadvantageinremoteandoff-gridapplications.
Efficiency of solar thermal
Theconversionefficiencyofsolarthermalpower
plantsdependsonthetypeofconcentratorused,
andtheamountofsunlight.Ingeneral,thepointfocusingconcentrators(paraboloidaldishand
powertower)canachievehigherefficienciesthan
linefocussingtechnologies(parabolictroughand
Fresnelreflector).Thisispossiblebecausethepointfocussingtechnologiesachievehighertemperatures
forhigherthermodynamiclimits.
Thehighestvalueofsolar-to-electricefficiencyever
recordedforasolarthermalsystemwas31.25per
cent,usingasolardishinpeaksunlightconditions
(Sandia2009).Parabolictroughscanachieveapeak
solar-to-electricefficiencyofover20percent(SEGS
2009).However,theconversionefficiencydrops
significantlywhentheradiationdropsinintensity,
sotheannualaverageefficienciesaresignificantly
lower.AccordingtoBegay-Campbell(2008),the
annualsolar-to-electricefficiencyisapproximately
12–14percentforparabolictroughs,12percent
forpowertowers(althoughemergingtechnologies
canachieve18–20percent),and22–25percentfor
paraboloidaldishes.LinearFresnelreflectorsachieve
asimilarefficiencytoparabolictroughs,withan
annualsolar-to-electricefficiencyofapproximately
12percent(Millsetal.2002).
Energy storage
Solarthermalelectricitysystemshavethepotential
tostoreenergyoverseveralhours.Theworkingfluid
usedinthesystemcanbeusedtotemporarilystore
heat,andcanbeconvertedintoelectricityafterthe
sunhasstoppedshining.Thismeansthatsolar
thermalplantshavethepotentialtodispatchpower
atpeakdemandtimes.Itshouldbenoted,however,
thatperiodsofsustainedcloudyweathercutthe
productivecapacityofsolarthermalpower.
Theseasonalityofsunshinealsoreducespower
outputinwinter.
Thermalstorageisoneofthekeyadvantagesof
solarthermalpower,andcreatesthepotentialfor
intermediateorbase-loadpowergeneration.Although
thermalstoragetechnologyisrelativelynew,several
recentlyconstructedsolarthermalpowerplantshave
includedthermalstorageofapproximately7hours’
powergeneration.Inaddition,therearenewpower
towerdesignsthatincorporateupto16hoursof
thermalstorage,allowing24hourpowergeneration
inappropriateconditions.Thedevelopmentofcost
effectivestoragetechnologiesmayenableamuch
higheruptakeofsolarthermalpowerinthefuture
(WyldGroupandMMA2008).
Currentresearchisdevelopingalternativeenergy
storagemethods,includingchemicalstorage,and
phase-changematerials.Chemicalstorageoptions
includedissociatedammoniaandsolar-enhanced
naturalgas.Thesenewstoragemethodshavethe
potentialtoprovideseasonalstorageofsolarenergy,
ortoconvertsolarenergyintoportablefuels.Infuture,
itmaybepossibleforsolarfuelstobeusedinthe
transportsector,orevenforexportingsolarenergy.
Hybrid operation with fossil fuel plants
Solarthermalpowerplantscanmakeuseof
existingturbinetechnologiesthathavebeen
developedandrefinedovermanydecadesinfossil
fueltechnologies.Usingthismaturetechnology
canreducemanufacturingcostsandincreasethe
efficiencyofpowergeneration.Inaddition,solar
thermalheatcollectorscanbeusedinhybrid
operationwithfossilfuelburners.Anumberof
existingsolarthermalpowerplantsusegasburners
toboostpowersupplyduringlowlevelsofsunlight.
AU S T RA LIA N E N E RGY RE S O U RC E A S SES SMENT
279
Combiningsolarthermalpowerwithgascanprovide
ahedgeagainsttheintermittencyofsunlight.
Solarthermalheatcollectorscanbeattachedto
existingcoalorgaspowerstationstopre-heatthe
waterusedintheseplants.Thisispossiblesincesolar
thermalheatcollectorsperformaverysimilarfunction
tofossilfuelburners.Inthisway,solarthermalpower
canmakeuseofexistinginfrastructure.Thisoption
isnotaffectedbyintermittencyofsunlight,sincethe
fossilfuelburnersprovidefirmcapacityofproduction.
Internationally,thereareseveralnewintegratedsolar
combinedcycle(ISCC)plantsplannedforconstruction.
ISCCplantsaresimilartocombinedcyclegasplants
(usingbothagasturbine,andasteamturbine),but
usesolarthermalheatcollectorstoboostthesteam
turbineproduction.
Solar updraft towers
Analternativesolarthermalpowertechnologyisthe
solarupdrafttower,alsoknownasasolarchimney.
Theupdrafttowercapturessolarenergyusingalarge
greenhouse,whichheatsairbeneathatransparent
roof.Averytallchimneyisplacedatthecentreof
thegreenhouse,andtheheatedaircreatespressure
differencesthatdriveairflowupthechimney.
Electricityisgeneratedfromtheairflowusingwind
turbinesatthebaseofthechimney.
280
Solarupdrafttowershavebeentestedatarelatively
smallscale,witha50kWplantinSpainbeingthe
onlyworkingprototypeatpresent.Thereareplansto
upscalethistechnology,includingaproposed200
MWplantinBuronga,NSW.Themaindisadvantageof
solarupdrafttowersisthattheydeliversignificantly
lesspowerperunitareathanconcentratingsolar
thermalandPVsystems(Enviromission2009).
Photovoltaic systems
ThecostsofproducingPVcellshasdeclinedrapidly
inrecentyearsasuptakehasincreased(Fthenakis
etal.2009)andanumberofPVtechnologieshave
beendeveloped.Thecostofmodulescanbereduced
infourmainways:
• makingthinnerlayers–reducingmaterialand
processingcosts;
• integratingPVpanelswithbuildingelementssuch
asglassandroofs–reducingoverallsystem
costs;
• makingadhesiveonsite–reducingmaterials
costs;and
• improvingdecisionsaboutmakingorbuying
inputs,increasingeconomiesofscale,and
improvingthedesignofPVmodules.
TherearethreemaintypesofPVtechnology:
crystallinesilicon,thin-filmandconcentratingPV.
Crystallinesiliconistheoldestandmostwidespread
technology.Thesecellsarebecomingmoreefficient
overtime,andcostshavefallensteadily.
Thin-filmPVisanemerginggroupoftechnologies,
targetedatreducingcostsofPVcells.Thin-filmPV
isatanearlierstageofdevelopment,andcurrently
deliversalowerefficiencythancrystallinesilicon,
estimatedataround10percent,althoughmany
ofthenewervarietiesstilldeliverefficienciesof
lessthanthis(Prowse2009).However,thisis
compensatedbylowercosts,andtherearestrong
prospectsforefficiencyimprovementsinthefuture.
Thin-filmPVcanbeinstalledonmanydifferent
substrates,givingitgreatflexibilityinitsapplications.
ConcentratingPVsystemsuseeithermirrorsor
lensestofocusalargeareaofsunlightontoacentral
receiver(figure10.25).Thisincreasestheintensity
ofthelight,andallowsagreaterpercentageofits
energytobeconvertedintoelectricity.Thesesystems
aredesignedprimarilyforlargescalecentralised
Figure 10.25 (a)ExampleofarooftopPVsystem. (b)AschematicconcentratingPVsystem,wherealargenumberof
mirrorsfocussunlightontocentralPVreceivers
Source: CERP,WikimediaCommons;EnergyInnovationsInc.underWikipedialicencecc-by-sa-2.5
AUSTRA L I AN E N E R GY R E S O U R C E A S S E S S M E NT
C H A P T E R 1 0 : S O LAR ENER GY
power,duetothecomplexitiesofthereceivers.
ConcentratingPVisthemostefficientformofPV,
deliveringatypicalsystemefficiencyofaround
20percent,andhasachievedefficienciesofjustover
40percentinideallaboratoryconditions(NREL2008).
wherePVcellscaneitherreplace,orbeintegrated
withexistingmaterials.BIPVhasthepotentialto
reducecostsofPVsystems,andtoincreasethe
surfaceareaavailableforcapturingsolarenergy
withinabuilding(NREL2009b).
AnadvantageofusingconcentratingPVisthatit
reducestheareaofsolarcellsneededtocapture
thesunlight.PVcellsareoftenexpensivetoproduce,
andthemirrorsorlensesusedtoconcentratethe
lightaregenerallycheaperthanthecells.However,
theuseofsolarconcentratorsgenerallyrequiresa
largersystemthatcannotbescaleddownaseasily
asflat-platePVcells.
Efficiency of photovoltaic systems
ArelativelyrecentareaofgrowthforPVapplications
isinBuilding-integratedPV(BIPV)systems.BIPV
systemsincorporatePVtechnologyintomany
differentcomponentsofanewbuilding.These
componentsincluderooftops,wallsandwindows,
Currently,themaximumefficiencyofcommercially
availablePVmodulesisaround20to25percent,
withefficienciesofaround40percentachieved
inlaboratories.MostcommerciallyavailablePV
systemshaveanaverageconversionefficiencyof
around10percent.Newdevelopments(suchas
multi-junctiontandemcells)suggestsolarcells
withconversionefficienciesofgreaterthan40per
centcouldbecomecommerciallyavailableinthe
future.Fthenakisetal.(2009)positthatincreases
inefficiencyofPVmoduleswillcomefromfurther
technologyimprovements.
BOx 10.2SOLARENERGyTECHNOLOGIESFORDIRECT-USEAPPLICATIONS
Solar thermal heating
Solarthermalheatingusesdirectheatfromsunlight,
withouttheneedtoconverttheenergyintoelectricity.
Thesimplestformofsolarthermalheatingisachieved
simplybypumpingwaterthroughasystemoflightabsorbingtubes,usuallymountedonarooftop.The
tubesabsorbsunlight,andheatthewaterflowing
withinthem.Themostcommonuseforsolarthermal
heatingishotwatersystems,buttheyarealsoused
forswimmingpoolheatingorspaceheating.
Therearetwomaintypesofsolarwaterheaters:
flat-plateandevacuatedtubesystems(figure10.26).
Flat-platesystemsarethemostwidespreadand
maturetechnology.Theyuseanarrayofverysmall
tubes,coveredbyatransparentglazingforinsulation.
Evacuatedtubesconsistofasunlightabsorbing
metaltube,insidetwoconcentrictransparentglass
tubes.Thespacebetweenthetwoglasstubesis
evacuatedtopreventlossesduetoconvection.
Evacuatedtubeshavelowerheatlossesthanflat
platecollectors,givingthemanadvantageinwinter
conditions.However,flat-platesystemsaregenerally
cheaper,duetotheirrelativecommercialmaturity.
Solarthermalheatingisamaturetechnologyand
relativelyinexpensivecomparedtoothersolar
technologies.Thiscostadvantagehasmeant
thatsolarthermalheatinghasthelargestenergy
productionofanysolartechnology.Insomecountries
withfavourablesunlightconditions,solarwater
heatershavegainedasubstantialmarketshare
ofwaterheaters.Forexample,theproportionof
householdswithsolarwaterheatersintheNorthern
Territorywas54percentin2008(CEC2009)
whereasinIsraelthisproportionisapproximately
90percent(CSIRO2010).
Figure 10.26 (a)Flat-platesolarwaterheater. (b)Evacuatedtubesolarwaterheater
Source: WesternAustralianSustainableEnergyDevelopmentOffice2009;HillsSolar(SolarSolutionsforLife)2009
AU S T RA LIA N E N E RGY RE S O U RC E A S SES SMENT
281
Solar air conditioning
Solarthermalenergycanalsobeusedtodrive
air-conditioningsystems.Sorptioncoolingusesa
heatsourcetodrivearefrigerationcycle,andcan
beintegratedwithsolarthermalheatcollectors
toprovidesolarair-conditioning.Sincesunlight
isgenerallystrongwhenair-conditioningismost
needed,solarair-conditioningcanbeusedtobalance
peaksummerelectricityloads.However,anumber
ofdevelopmentsarerequiredbeforesolarairconditioningbecomescostcompetitiveinAustralia
(CSIRO2010).
Passive solar heating
Solarenergycanalsobeusedtoheatbuildings
directly,throughdesigningbuildingsthatcapture
sunlightandstoreheatthatcanbeusedatnight.
Thisprocessiscalledpassivesolarheating,andcan
saveenergy(electricityandgas)thatwouldotherwise
beneededtoheatbuildingsduringcoldweather.
Newbuildingscanbeconstructedwithpassivesolar
heatingfeaturesatminimalextracost,providinga
reliablesourceofheatingthatcangreatlyreduce
energydemandsinwinter(AZSC2009).
Passivesolarheatingusuallyrequirestwo
Proposed development projects
AsatOctober2009,therewerenosolarprojects
nearingcompletioninAustralia(table10.5).There
arecurrentlyfiveproposedsolarprojects,with
acombinedcapacityof116MW.Thelargestof
theseprojectsisWizardPower’s$355million
WhyallaSolarOasis,whichwillbelocatedin
SouthAustralia.Theprojectisexpectedtohave
acapacityof80MWandisscheduledtobe
completedby2012.
3.5
0.25
Solar energy consumption (PJ)
3.0
0.20
Share of total (%)
12
0.15
8
0.10
4
0.05
1.1
4.0
2.5
%
16
0.30
TWh
20
AtechnologyunderdevelopmentinAustraliaand
overseasisthecombinedheatandpowersystem,
combiningsolarthermalheatingwithPVtechnology
(ANU2009).Typicallythisconsistsofasmall-scale
concentratingparabolictroughsystemwithacentral
PVreceiver,wherethereceiveriscoupledtoa
coolingfluid.WhilethePVproduceselectricity,heat
isextractedfromthecoolingfluidandcanbeusedin
thesamewayasaconventionalsolarthermalheater.
Thesesystemscanachieveagreaterefficiencyof
energyconversion,byusingthesamesunlightfor
twopurposes.Thesesystemsarebeingtargetedfor
small-scalerooftopapplications.
0.9
Solar electricity generation (TWh)
0.8
Share of total (%)
0.6
2.0
%
24
Combined heat and power systems
programsandtheproposedemissionsreduction
targetareallexpectedtounderpinthegrowthof
solarenergyovertheoutlookperiod.
Whilehighinvestmentcostscurrentlyrepresent
abarriertomorewidespreaduseofsolarenergy,
thereisconsiderablescopeforthecostofsolar
technologiestodeclinesignificantlyovertime.The
competitivenessofsolarenergywillalsodependon
governmentpolicies.TheRET,theresultsofRD&D
PJ
282
Electricitygenerationfromsolarenergyisprojected
toincreasestrongly,fromonly0.1TWhin2007–08
to4TWhin2029–30,representinganaverage
annualgrowthrateof17.4percent(figure10.28).
Theshareofsolarenergyinelectricitygeneration
isalsoprojectedtoincrease,from0.04percentin
2007–08to1percentin2029–30.
basicelements:anorth-facing(intheSouthern
Hemisphere)windowoftransparentmaterialthat
allowssunlighttoenterthebuilding;andathermal
storagematerialthatabsorbsandstoresheat.
Passivesolarheatingmustalsobeintegratedwith
insulationtoprovideefficientstorageofheat,and
roofdesignsthatcanmaximiseexposureinwinter,
andminimiseexposureinsummer.Althoughsomeof
thesefeaturescanberetrofittedtoexistingbuildings,
thebestprospectsforpassivesolarheatingarein
thedesignofnewbuildings.
0.5
1.5
0.3
1.0
0
0
0.2
0.5
0
0
1999- 2000- 2001- 2002- 2003- 2004- 2005- 2006- 2007- 202904
00
01
02
03
05
06
07
08
30
1999- 2000- 2001- 2002- 2003- 2004- 2005- 2006- 2007- 202900
01
02
03
04
05
06
07
08
30
Year
Year
AERA 10.2
AERA 10.3
Figure 10.27 Projectedprimaryenergyconsumption
ofsolarenergy
Figure 10.28 Projectedelectricitygenerationfrom
solar energy
Source: ABARE2009a,2010
Source: ABARE2009a,2010
AUSTRA L I AN E N E R GY R E S O U R C E A S S E S S M E NT
C H A P T E R 1 0 : S O LAR ENER GY
Table 10.4 OutlookforAustralia’ssolarmarketto2029–30
unit
2007–08
2029–30
Primary energy consumption
PJ
7
24
Shareoftotal
%
0.1
0.3
Averageannualgrowth,2007–08to20029–30
%
5.9
Electricity generation
Electricityoutput
TWh
0.1
4
Shareoftotal
%
0.04
1.0
Averageannualgrowth,2007–08to2029–30
%
17.4
a Energyproductionandprimaryenergyconsumptionareidentical
Source: ABARE2009a,2010
Table 10.5 Proposedsolarenergyprojects
Project
Company
Location
Status
Start up
Capacity
Capital
expenditure
SolarGasOne
CSIROandQld
Government
Qld
Government
grantreceived
2012
1MW
na
LakeCargelligo
solarthermal
project
LloydEnergy
Systems
LakeCargelligo,
NSW
Government
grantreceived
na
3MW
na
Cloncurrysolar
thermalpower
station
LloydEnergy
Systems
Cloncurry,Qld
Government
grantreceived
2010
10MW
$31m
ACTsolarpower
plant
ACTGovernment
Tobe
determined,ACT
Pre-feasibility
studycompleted
2012
22MW
$141m
WhyallaSolar
Oasis
WizardPower
Whyalla,SA
Feasibilitystudy
underway
2012
80MW
$355m
283
Source: ABARE2009c;LloydEnergySystems2007
10.5References
ABARE(AustralianBureauofAgriculturalandResource
Economics),2010,Australianenergyprojectionsto2029–30,
ABAREresearchreport10.02,preparedfortheDepartment
ofResources,EnergyandTourism,Canberra
ABARE,2009a,AustralianEnergyStatistics,Canberra,
August
ABARE,2009b,Electricitygeneration:Majordevelopment
projects–October2009listing,Canberra,November
AER(AustralianEnergyRegulator),2008,Stateofthe
EnergyMarket2008,<http://www.aer.gov.au/content/
index.phtml/itemId/723386>
dwellingsinAustralia,NorthSydney,<http://www.bis.com.au/
reports/hot_water_systems_nd_in_aust.html>
BorensteinS,2008,TheMarketValueandCostofSolar
PhotovoltaicElectricityProduction,CentrefortheStudyof
EnergyMarkets,UniversityofCalifornia
BureauofMeteorology,2009,AverageDailySolarExposure,
<http://www.bom.gov.au/climate/averages/climatology/solar_
radiation/IDCJCM0019_solar_exposure.shtml>
CEC(CleanEnergyCouncil),2009,SolarIndustrySnapshot,
<http://www.bcse.or.au/cec/resourcecentre/reports/
mainColumnParagraphs/00/text_files/file15/CEC%20
Solar%20Sheet_revised_2.pdf>
Ausra,2009,TheLiddellSolarThermalPowerStation,
<http://www.ausra.com/pdfs/LiddellOverview.pdf>
ClimateActionNewcastle,2009,Newcastle’sGoingSolar,
<http://www.climateaction.org.au/files/images/solar%20
panel%20photo_0.jpg>
ANU(AustralianNationalUniversity),2009a,SolarThermal
EnergyResearch,<http://solar-thermal.anu.edu.au/pages/
DownloadPics.php>
CSIRO,2010,EnergytechnologyinAustralia:overviewand
prospectsforthefuture,AreportfortheDepartmentof
Resources,EnergyandTourism,Canberra(forthcoming)
ANU,2009b,CombinedHeatandPowerSolar(CHAPS)
ConcentratorSystem,<http://solar.anu.edu.au/projects/
chaps_proj.php>
DESERTEC,2009,CleanPowerFromDeserts.Whitebook4th
Edition,<http://www.desertec.org/en/concept/whitebook/>
AZSC(ArizonaSolarCenter),2009,PassiveSolarHeating
andCooling,<http://www.azsolarcenter.com/technology/
pas-2.html>
Begay-CampbellS,2008,ConcentratingSolarTechnologies
andApplications:SandiaNationalLaboratories,<http://
apps1.eere.energy.gov/tribalenergy/pdfs/course_tcd0801_
ca17ax.pdf>
BISShrapnel,2008,Hotwatersystemsinstalledinnew
Desertec-UK,2009,ConcentratingSolarThermalPower,
<http://www.trec-uk.org.uk/images/schott_parabolic_trough.
jpg>
DEWHA(DepartmentofEnvironment,Water,Heritageand
theArts),2009,Solarhomesandcommunitiesplanwebsite,
<http://www.environment.gov.au/settlements/renewable/pv/
index.html>
EIA(EnergyInformationAdministrationoftheUnitedStates),
2009,InternationalEnergyOutlook2009,WashingtonDC
AU S T RA LIA N E N E RGY RE S O U RC E A S SES SMENT
Enviromission,2009,TechnologyOverview,<http://
www.enviromission.com.au/EVM/content/technology_
technologyover.html>
EPIA(EuropeanPhotovoltaicIndustryAssociation),2009,
GlobalMarketOutlookforPhotovoltaicsUntil2013,
<http://www.epia.org/publications/epia-publications.html>
ProwseR,2009,Personalcommunication,5/6/2009.
CentreManager,CentreforSustainableEnergySystems,
AustralianNationalUniversity
FthenakisV,MasonJEandZweibelK,2009,Thetechnical,
geographical,andeconomicfeasibilityforsolarenergyto
supplytheenergyneedsoftheUS,EnergyPolicy,vol37,
no2,387–399
RET(DepartmentofResources,EnergyandTourism),
2009a,AustralianSolarInstituteFactSheet,<http://www.
ret.gov.au/energy/Documents/ASI%20Fact%20sheet%20
14Jan%20cleared%20by%20MO.pdf>
GeoscienceAustralia,2009,RenewableEnergyPower
Stations,<http://www.ga.gov.au/renewable/operating/
operating_renewable.xls>
RET,2009b,SolarFlagshipsProgramFactSheet,<http://
www.ret.gov.au/energy/Documents/Solar%20Flagships%20
factsheet%20-%20Oct%202009.pdf>
Greenpeace,2009,ConcentratingSolarPower,Global
Outlook09,<http://www.greenpeace.org/international/
press/reports/concentrating-solar-power-2009>
Sandia,2009,LabAccomplishments2009:SandiaNational
Laboratories,<http://www.sandia.gov/LabNews/labsaccomplish/2009/lab_accomplish-2009.pdf>
IEA(InternationalEnergyAgency),2003,GreenhouseGas
ResearchandDevelopmentProgramme–Thepotentialof
solarelectricitytoreduceCO2emissions,Paris
IEA,2009a,WorldEnergyOutlook2009,Paris
IEA,2009b,WorldEnergyBalances,2009,Paris
IEA-PVPS,2008,TrendsinPhotovoltaicApplications:Survey
reportofselectedIEAcountriesbetween1992and2007,
IEAPhotovoltaicPowerSystemsProgramme
JiaxingDyiSolarEnergyCo,2009,SolarWater
Heater-1,<http://jxdiyi.en.made-in-china.com/product/
sqdnACbhfQDM/China-Flat-Solar-Water-Heater-1.html>
JonesJ,2008,ConcentratingSolarThermalPower,
RenewableEnergyWorldMagazine
284
NREL,2009b,PhotovoltaicResearch–Building-Integrated
PV,<http://www.nrel.gov/pv/building_integrated_pv.html>
LloydEnergySystems,2007,CloncurrySolarThermal
StorageProject,<http://www.lloydenergy.com/
presentations/Cloncurry%20Solar%20Thermal%20
Storage%20Project.pdf>
LorenzP,PinnerDandSeitzT,2008,TheEconomicsof
SolarPower.TheMcKinseyQuarterly,June2008
LovegroveKandDennisM,2006,Solarthermalenergy
systemsinAustralia.InternationalJournalofEnvironmental
Studies.63(6):791–802
MacKayDJC,2009,SustainableEnergy–WithouttheHot
Air.UIT,Cambridge,<http://www.withouthotair.com/>
McKinsey&Company,2008,TheEconomicsofSolar
Power,inMcKinseyQuarterly,June2008,<http://www.
mckinseyquarterly.com>
MillsD,MorrisonGandLeLievreP,2002,ProjectProposalfor
aCompactLinearFresnelReflectorSolarThermalPlantinthe
HunterValley,<http://solar1.mech.unsw.edu.au/glm/papers/
Mills_projectproposal_newcastle.pdf>
NationalAeronauticsandSpaceAdministration(NASA),
2009,SurfaceMeteorologyandSolarEnergyDataset,
<http://eosweb.larc.nasa.gov/sse>
NREL,2009a,PhotographicInformationExchange,
<http://www.nrel.gov/data/pix/searchpix.html>
AUSTRA L I AN E N E R GY R E S O U R C E A S S E S S M E NT
SEGS,2009,SolarElectricityGeneratingSystemswebsite,
<http://www.flagsol.com/SEGS_tech.htm>
Sellsius,2006,TheWorld’sMostEfficientSolarEnergy,
<http://blog.sellsiusrealestate.com/technology/the-worldsmost-efficient-solar-energy/2006/08/06/>
SolarSystems,2009,154MWVictorianProject,<http://
www.solarsystems.com.au/154MWVictorianProject.html>
SolarTubeCompany,2009,SolarWaterHeatingSystem,
<http://www.solartubecompany.co.uk/solar-water-heating/>
SteinW,2009a,personalcommunication,4/8/2009.
Manager,NationalSolarEnergyCentre,CSIRODivisionof
EnergyTechnology
SteinW,2009b,personalcommunication,3/11/2009.
Manager,NationalSolarEnergyCentre,CSIRODivisionof
EnergyTechnology
SunwizeTechnologies,2008,SunWizeWorldInsolation
Map,<http://www.sunwize.com/info_center/solarinsolation-map.php>
WattM,2009,NationalSurveyReportofPVPower
ApplicationsinAustralia2008:AustralianPVAssociation
WEC(WorldEnergyCouncil),2007,SurveyofEnergy
Resources2007,London,September2007,<http://
www.worldenergy.org/pugblications/survey_of_energy_
resources_2007/default.asp>
WEC,2009,Surveyofenergyresources:Interimupdate
2009.London,July2009,<http://www.worldenergy.
org/publications/survey_of_energy_resources_interim_
update_2009/default.asp>
WyldGroupandMMA,2008,HighTemperatureSolar
ThermalTechnologyRoadmap.PreparedfortheNSWand
VictorianGovernmentsbyWyldGroupandMcLennan
MagasanikAssociates,<http://www.coag.gov.au/reports/
docs/HTSolar_thermal_roadmap.pdf>