Chapter 10 Solar Energy 10.1Summary KEy mESSagES • Solarenergyisavastandlargelyuntappedresource.Australiahasthehighestaveragesolar radiationpersquaremetreofanycontinentintheworld. • Solarenergyisusedmainlyinsmalldirect-useapplicationssuchaswaterheating.Itaccountsfor only0.1percentoftotalprimaryenergyconsumption,inAustraliaaswellasglobally. • SolarenergyuseinAustraliaisprojectedtoincreaseby5.9percentperyearto24PJin 2029–30. • Theoutlookforelectricitygenerationfromsolarenergydependscriticallyonthecommercialisation oflarge-scalesolarenergytechnologiesthatwillreduceinvestmentcostsandrisks. • Governmentpolicysettingswillcontinuetobeanimportantfactorinthesolarenergymarket outlook.Research,developmentanddemonstrationbyboththepublicandprivatesectorswill becrucialinacceleratingthedevelopmentandcommercialisationofsolarenergyinAustralia, especiallylarge-scalesolarpowerstations. 10.1.1 World solar energy resources and market • Theworld’soverallsolarenergyresourcepotential isaround5.6gigajoules(GJ)(1.6megawatt-hours (MWh))persquaremetreperyear.Thehighest solarresourcepotentialisintheRedSeaarea, includingEgyptandSaudiArabia. • Solarenergyaccountedfor0.1percentofworld totalprimaryenergyconsumptionin2007,although itsusehasincreasedsignificantlyinrecentyears. • Governmentpoliciesandfallinginvestment costsandrisksareprojectedtobethemain factorsunderpinningfuturegrowthinworld solar energy use. • TheInternationalEnergyAgency(IEA)inits referencecaseprojectstheshareofsolarenergy intotalelectricitygenerationwillincreaseto1.2 percentin2030–1.7percentinOECDcountries and0.9percentinnon-OECDcountries. islikelytorequireinvestmentintransmission infrastructure(figure10.1). • Therearealsosignificantsolarenergyresources inareaswithaccesstotheelectricitygrid.The solarenergyresource(annualsolarradiation)in areasofflattopographywithin25kmofexisting transmissionlines(excludingNationalParks),is nearly500timesgreaterthantheannualenergy consumptionofAustralia. 10.1.3KeyfactorsinutilisingAustralia’s solar resources • Solarradiationisintermittentbecauseofdaily andseasonalvariations.However,thecorrelation betweensolarradiationanddaytimepeakelectricity demandmeansthatsolarenergyhasthepotential toprovideelectricityduringpeakdemandtimes. • TheannualsolarradiationfallingonAustralia isapproximately58millionpetajoules(PJ), approximately10000timesAustralia’sannual energyconsumption. • Solarthermaltechnologiescanalsooperatein hybridsystemswithfossilfuelpowerplants,and, withappropriatestorage,havethepotentialto providebaseloadelectricitygeneration.Solar thermaltechnologiescanalsopotentiallyprovide electricitytoremotetownshipsandmining centreswherethecostofalternativeelectricity sourcesishigh. • Solarenergyresourcesaregreaterinthe northwestandcentreofAustralia,inareasthat donothaveaccesstothenationalelectricitygrid. Accessingsolarenergyresourcesintheseareas • Photovoltaicsystemsarewellsuitedtooff-grid electricitygenerationapplications,andwhere costsofelectricitygenerationfromothersources arehigh(suchasinremotecommunities). 10.1.2Australia’ssolarenergyresources AU S T RA LIA N E N E RGY RE S O U RC E A S SES SMENT 261 120° 130° Annual Average Solar Radiation 140° 150° 10° DARWIN 0 750 km 20° BRISBANE 30° PERTH SYDNEY ADELAIDE Megajoules/m² per day 262 MELBOURNE Existing solar power > 100 kW 12 18 13 19 100 - 300 kW 300 - 600 kW 14 20 600 - 1000 kW 15 21 16 22 17 24 HOBART 40° 1000 - 2000 kW Transmission lines AERA 10.1 Figure 10.1 Annualaveragesolarradiation(inMJ/m )andcurrentlyinstalledsolarpowerstationswithacapacity ofmorethan10kW 2 Source: BureauofMeteorology2009;GeoscienceAustralia • Relativelyhighcapitalcostsandrisksremain theprimarylimitationtomorewidespreaduseof solarenergy.Governmentclimatechangepolicies, andresearch,developmentanddemonstration (RD&D)byboththepublicandprivatesectors willbecriticalinthefuturecommercialisationof largescalesolarenergysystemsforelectricity generation. • TheAustralianGovernmenthasestablisheda SolarFlagshipsProgramatacostof$1.5billion aspartofitsCleanEnergyInitiativetosupportthe constructionanddemonstrationoflargescale(up to1000MW)solarpowerstationsinAustralia. 10.1.4Australia’ssolarenergymarket • In2007–08,Australia’ssolarenergyuse represented0.1percentofAustralia’stotal primaryenergyconsumption.Solarthermalwater heatinghasbeenthepredominantformofsolar energyusetodate,butelectricitygenerationis increasingthroughthedeploymentofphotovoltaic AUSTRA L I AN E N E R GY R E S O U R C E A S S E S S M E NT andconcentratingsolarthermaltechnologies. • InABARE’slatestlong-termenergyprojections, whichincludetheRenewableEnergyTarget,a5 percentemissionsreductiontarget,andother governmentpolicies,solarenergyuseinAustralia isprojectedtoincreasefrom7PJin2007–08 to24PJin2029–30(figure10.2).Electricity generationfromsolarenergyisprojectedto increasefrom0.1TWhin2007–08to4TWhin 2029–30(figure10.3). 10.2Backgroundinformation andworldmarket 10.2.1Definitions Solarpowerisgeneratedwhenenergyfromthesun (sunlight)isconvertedintoelectricityorusedtoheatair, water,orotherfluids.Asillustratedinfigure10.4,there aretwomaintypesofsolarenergytechnologies: C H A P T E R 1 0 : S O LAR ENER GY • Solar photovoltaic (PV)convertssunlight directlyintoelectricityusingphotovoltaic cells.PVsystemscanbeinstalledon rooftops,integratedintobuildingdesigns andvehicles,orscaleduptomegawatt scalepowerplants.PVsystemscanalso beusedinconjunctionwithconcentrating mirrorsorlensesforlargescalecentralised power. • Solar thermalistheconversionofsolarradiation intothermalenergy(heat).Thermalenergy carriedbyair,water,orotherfluidiscommonly useddirectly,forspaceheating,ortogenerate electricityusingsteamandturbines.Solarthermal iscommonlyusedforhotwatersystems.Solar thermalelectricity,alsoknownasconcentrating solarpower,istypicallydesignedforlargescale powergeneration. 3.0 0.20 Share of total (%) 12 0.15 8 0.10 4 0.05 2.5 TWh PJ 16 3.5 0.25 Solar energy consumption (PJ) 1.1 4.0 % 20 0.30 0.9 Solar electricity generation (TWh) 0.8 Share of total (%) 0.6 2.0 % 24 0.5 1.5 0.3 1.0 0 0 0.2 0.5 0 0 1999- 2000- 2001- 2002- 2003- 2004- 2005- 2006- 2007- 202904 00 01 02 03 05 06 07 08 30 1999- 2000- 2001- 2002- 2003- 2004- 2005- 2006- 2007- 202900 01 02 03 04 05 06 07 08 30 Year Year AERA 10.2 AERA 10.3 Figure 10.2 Projectedprimaryconsumptionofsolar energyinAustralia Figure 10.3 Projectedelectricitygenerationfromsolar energyinAustralia Source: ABARE2009a,2010 Source: ABARE2009a,2010 Solar Radiation 263 Photovoltaics (PV) Solar cells, photovoltaic arrays Solar Thermal Heat exchange Solar Hot Water Concentrating Solar Thermal Parabolic trough, power tower, parabolic dish, fresnel reflector Electricity AERA 10.4 Process Heat Space heating, food processing and cooking, distillation, desalination, industrial hot water Figure 10.4 Solarenergyflows Source: ABAREandGeoscienceAustralia AU S T RA LIA N E N E RGY RE S O U RC E A S SES SMENT SolarthermalandPVtechnologycanalsobe combinedintoasinglesystemthatgeneratesboth heatandelectricity.Furtherinformationonsolar thermalandPVtechnologiesisprovidedinboxes 10.2and10.3insection10.4. Thehighestsolarresourcepotentialperunitland areaisintheRedSeaarea.Australiaalsohashigher incidentsolarenergyperunitlandareathanany othercontinentintheworld.However,thedistribution ofsolarenergyuseamongstcountriesreflects governmentpolicysettingsthatencourageitsuse, ratherthanresourceavailability. 10.2.2Solarenergysupplychain ArepresentationoftheAustraliansolarindustryis giveninfigure10.5.Thepotentialforusingsolar energyatagivenlocationdependslargelyonthe solarradiation,theproximitytoelectricityload centres,andtheavailabilityofsuitablesites.Large scalesolarpowerplantsrequireapproximately 2hectaresoflandperMWofpower.Smallscale technologies(solarwaterheaters,PVmodulesand small-scalesolarconcentrators)canbeinstalled onexistingstructures,suchasrooftops.Oncea solarprojectisdeveloped,theenergyiscapturedby heatingafluidorgasorbyusingphotovoltaiccells. Thisenergycanbeuseddirectlyashotwatersupply, convertedtoelectricity,usedasprocessheat,or storedbyvariousmeans,suchasthermalstorage, batteries,pumpedhydroorsynthesisedfuels. World solar resources Theamountofsolarenergyincidentontheworld’s landareafarexceedstotalworldenergydemand. Solarenergythushasthepotentialtomakeamajor contributiontotheworld’senergyneeds.However, largescalesolarenergyproductioniscurrently limitedbyitshighcapitalcost. Theannualsolarresourcevariesconsiderably aroundtheworld.Thesevariationsdependon severalfactors,includingproximitytotheequator, cloudcover,andotheratmosphericeffects. Figure10.6illustratesthevariationsinsolar energyavailability. TheEarth’ssurface,onaverage,hasthepotential tocapturearound5.4GJ(1.5MWh)ofsolarenergy persquaremetreayear(WEC2007).Thehighest resourcepotentialisintheRedSeaarea,including EgyptandSaudiArabia(figure10.6).Australiaand theUnitedStatesalsohaveagreatersolarresource potentialthantheworldaverage.Muchofthis potentialcanbeexplainedbyproximitytotheequator andaverageannualweatherpatterns. 10.2.3Worldsolarenergymarket 264 Theworldhaslargesolarenergyresourceswhich havenotbeengreatlyutilisedtodate.Solarenergy currentlyaccountsforaverysmallshareofworld primaryenergyconsumption,butitsuseisprojected toincreasestronglyovertheoutlookperiodto2030. Development and Production Resource Exploration Processing, Transport, Storage End Use Market Battery storage Industry Solar photovoltaic Electricity Development decision Solar collection Thermal storage Commercial Power plants Resource potential Solar thermal Electricity Water heating Residential AERA 10.5 Figure 10.5 Australia’ssolarenergysupplychain Source: ABAREandGeoscienceAustralia AUSTRA L I AN E N E R GY R E S O U R C E A S S E S S M E NT C H A P T E R 1 0 : S O LAR ENER GY Primary energy consumption increasingatanaveragerateof10percentperyear from2000to2007(table10.1).Increasedconcern withenvironmentalissuessurroundingfossilfuels, coupledwithgovernmentpoliciesthatencourage solarenergyuse,havedrivenincreaseduptakeof solartechnologies,especiallyPV. Sincesolarenergycannotcurrentlybestoredfor morethanseveralhours,nortradedinitsprimary form,solarenergyconsumptionisequaltosolar energyproduction.Longtermstorageofsolarenergy iscurrentlyundergoingresearchanddevelopment, buthasnotyetreachedcommercialstatus. From1985to1989,worldsolarenergyconsumption increasedatanaveragerateof19percentperyear (figure10.7).From1990to1998,therateofgrowth insolarenergyconsumptiondecreasedto5percent peryear,beforeincreasingstronglyagainfrom1999 to2007(figure10.7). Solarenergycontributesonlyasmallproportionto Australia’sprimaryenergyneeds,althoughitsshare iscomparabletotheworldaverage.Whilesolar energyaccountsforonlyaround0.1percentof worldprimaryenergyconsumption,itsusehasbeen 120°W 60°W 0° 60°E 120°E 60°N Hours of sunlight per day 30°N Nil 1.0 - 1.9 0° 2.0 - 2.9 3.0 - 3.9 30°S 4.0 - 4.9 5.0 - 5.9 0 6.0 - 6.9 5000 km AERA 10.6 Figure 10.6 Hoursofsunlightperday,duringtheworstmonthoftheyearonanoptimallytiltedsurface Source: SunwizeTechnologies2008 Table 10.1 Keystatisticsforthesolarenergymarket unit australia 2007–08 OECD 2008 World 2007 Primary energy consumptiona PJ 6.9 189.4 401.8 Shareoftotal % 0.12 0.09 0.08 Averageannualgrowth,from2000 % 7.2 4.3 9.6 Electricity generation Electricityoutput TWh 0.1 8.2 4.8 Shareoftotal % 0.04 0.08 0.02 Averageannualgrowth,from2000 % 26.1 36.3 30.8 GW 0.1 8.3 14.7 Electricitycapacity a Energyproductionandprimaryenergyconsumptionareidentical Source:IEA2009b;ABARE2009a;Watt2009;EPIA2009 AU S T RA LIA N E N E RGY RE S O U RC E A S SES SMENT 265 theremainderisusedforspaceheatingeither residentiallyorcommercially,andforheating swimmingpools.Alloftheenergyusedfor thesepurposesiscollectedusingsolarthermal technology. Themajorityofsolarenergyisproducedusing solarthermaltechnology;solarthermalcomprised 96percentoftotalsolarenergyproductionin 2007(figure10.7).Aroundhalfisusedfor waterheatingintheresidentialsector.Mostof 5.0 450 400 Solar thermal Solar thermal 3.0 TWh 300 PV 4.0 PJ 350 PJ 250 2.0 200 150 1.0 100 0 50 1985 0 1985 1988 1991 1994 1997 2000 2003 Year 1991 1994 1997 2000 2003 Year 2006 2006 AERA 10.9 AERA 10.7 Figure 10.7 Worldprimarysolarenergyconsumption, bytechnology Figure 10.9 Worldelectricitygenerationfromsolar energy,bytechnology Source: IEA2009b Source: IEA2009b a) Solar thermal use 266 1988 a) Solar electricity generation China Germany United States United States Spain Israel China Republic of Korea Italy Japan Turkey Germany Netherlands Greece Switzerland Australia Canada India Portugal Brazil Australia 0 50 100 150 200 0 1 2 PJ 3 4 TWh b) Share in primary energy consumption b) Share in total electricity generation China Germany United States United States Spain Israel China Republic of Korea Italy Japan Turkey Germany Netherlands Greece Switzerland Australia Canada India Portugal Brazil Australia AERA 10.8 0 1 2 3 4 AERA 10.10 0 % 0.2 0.4 0.6 % Figure 10.8 Directuseofsolarthermalenergy, bycountry,2007 Figure 10.10 Electricitygenerationfromsolarenergy, majorcountries,2007 Source: IEA2009b Source: IEA2009b AUSTRA L I AN E N E R GY R E S O U R C E A S S E S S M E NT C H A P T E R 1 0 : S O LAR ENER GY Solar thermal energy consumption Thelargestusersofsolarthermalenergyin2007 wereChina(180PJ),theUnitedStates(62PJ), Israel(31PJ)andJapan(23PJ).However,Israel hasasignificantlylargershareofsolarthermalin itstotalprimaryenergyconsumptionthananyother country(figure10.8).Growthinsolarthermalenergy useinthesecountrieshasbeenlargelydrivenby governmentpolicies. Electricity generation Electricitygenerationaccountsforaround5per centofprimaryconsumptionofsolarenergy.All solarphotovoltaicenergyiselectricity,whilearound 3percentofsolarthermalenergyisconvertedto electricity.Until2003,moresolarthermalenergywas usedtogenerateelectricitythansolarphotovoltaic energy(figure10.9). Thelargestproducersofelectricityfromsolar energyin2007wereGermany(3.1TWh),theUnited States(0.7TWh)andSpain(0.5TWh),withallother countrieseachproducing0.1TWhorless(figure 10.10).Germanyhadthelargestshareofsolar energyinelectricitygeneration,at0.5percent.Itis importanttonotethattheseelectricitygeneration datadonotincludeoff-gridPVinstallations,which representalargepartofPVuseinsomecountries. Table 10.2 IEAreferencecaseprojectionsforworldsolarelectricitygeneration unit OECD 2007 2030 TWh 4.60 220 Shareoftotal % 0.05 1.66 Averageannualgrowth,2007–2030 % - 18 Non-OECD TWh 0.18 182 Shareoftotal % 0.00 0.86 Averageannualgrowth,2007–2030 % - 35 World TWh 4.79 402 Shareoftotal % 0.02 1.17 Averageannualgrowth,2007–2030 % - 21 Source: IEA2009a 267 9000 8 8000 7 7000 Peak capacity (MW) 6000 5 5000 4 4000 3 3000 % share of solar PV market 6 2 2000 1 1000 AERA 10.11 0 1992 1993 1994 1995 1996 1997 1998 1999 2000 2001 2002 2003 2004 2005 2006 0 2007 Year Other United States Germany Spain Japan Australia’s share of solar PV market (%) Figure 10.11 WorldPVCapacity,1992–2007,includingoff-gridinstallations Source: IEA-PVPS2008 AU S T RA LIA N E N E RGY RE S O U RC E A S SES SMENT Installed PV generation capacity increasetoalmost280TWhin2030,while electricitygeneratedfromconcentratingsolar powersystemsisprojectedtoincreasetoalmost 124TWhby2030(IEA2009a). TheIEA’sestimatesoftotalPVelectricitygeneration capacity(includingoff-gridgeneration)showthat Japan(1.9GW)andtheUnitedStates(0.8GW)had thesecondandthirdlargestPVcapacityin2007, followingGermanywith3.9GW(figure10.11).Over 90percentofthiscapacitywasconnectedtogrids (WEC2009). 10.3Australia’ssolarenergy resources and market World market outlook 10.3.1Solarresources Governmentincentives,fallingproductioncostsand risingelectricitygenerationpricesareprojectedto resultinincreasesinsolarelectricitygeneration. Electricitygenerationfromsolarenergyisprojected toincreaseto402TWhby2030,growingatan averagerateof21percentperyeartoaccountfor 1.2percentoftotalgeneration(table10.2).Solar electricityisprojectedtoincreasemoresignificantly innon-OECDcountriesthaninOECDcountries,albeit fromamuchsmallerbase. Asalreadynoted,theAustraliancontinenthasthe highestsolarradiationpersquaremetreofany continent(IEA2003);however,theregionswiththe highestradiationaredesertsinthenorthwestand centreofthecontinent(figure10.12). PVsystemsinstalledinbuildingsareprojectedto bethemainsourceofgrowthinsolarelectricity generationto2030.PVelectricityisprojectedto 120° Australiareceivesanaverageof58millionPJofsolar radiationperyear(BoM2009),approximately10000 timeslargerthanitstotalenergyconsumptionof5772 PJin2007–08(ABARE2009a).Theoretically,then,if only0.1percentoftheincomingradiationcouldbe convertedintousableenergyatanefficiencyof10per cent,allofAustralia’senergyneedscouldbesupplied bysolarenergy.Similarly,theenergyfallingonasolar 130° Annual Average Solar Radiation 140° 150° 10° DARWIN 0 750 km 268 20° BRISBANE 30° PERTH SYDNEY ADELAIDE MELBOURNE Megajoules/m² per day 3 19 - 21 4-6 22 - 24 7-9 25 - 27 10 - 12 28 - 30 13 - 15 31 - 33 Transmission lines HOBART 40° 16 - 18 AERA 10.12 Figure 10.12 Annualaveragesolarradiation Source: BureauofMeteorology2009 AUSTRA L I AN E N E R GY R E S O U R C E A S S E S S M E NT C H A P T E R 1 0 : S O LAR ENER GY farmcovering50kmby50kmwouldbesufficientto meetallofAustralia’selectricityneeds(Stein2009a). Giventhisvastandlargelyuntappedresource,the challengeistofindeffectiveandacceptablewaysof exploitingit. WhiletheareasofhighestsolarradiationinAustralia aretypicallylocatedinland,therearesomegridconnectedareasthathaverelativelyhighsolar radiation.WyldGroupandMMA(2008)identified anumberoflocationsthataresuitableforsolar thermalpowerplants,basedonhighsolarradiation levels,proximitytolocalloads,andhighelectricity costsfromalternativesources.WithintheNational ElectricityMarket(NEM)gridcatchmentarea,they identifiedthePortAugustaregioninSouthAustralia, north-westVictoria,andcentralandnorth-west NewSouthWalesasregionsofhighpotentialfor solarthermalpower.TheyalsonominatedKalbarri, nearGeraldton,WesternAustralia,ontheSouthWestInterconnectedSystem,theDarwin-Katherine InterconnectedSystem,andAliceSprings-Tennant Creekaslocationsofhighpotentialforsolar thermalpower. 120° Concentrating solar power Figure10.12showstheradiationfallingonaflat plane.Thisistheappropriatemeasureofradiation forflatplatePVandsolarthermalheatingsystems, butnotforconcentratingsystems.Forconcentrating solarpower,includingbothsolarthermalpowerand concentratingPV,theDirectNormalIrradiance(DNI) isamorerelevantmeasureofthesolarresource. Thisisbecauseconcentratingsolartechnologiescan onlyfocussunlightcomingfromonedirection,and usetrackingmechanismstoaligntheircollectors withthedirectionofthesun.Theonlydataset currentlyavailableforDNIthatcoversallofAustralia isfromtheSurfaceMeteorologyandSolarEnergy datasetfromtheNationalAeronauticsandSpace Administration(NASA).ThisdatasetprovidesDNIat acoarseresolutionof1degree,equatingtoagrid lengthofapproximately100km.Theannualaverage DNIfromthisdatasetisshowninfigure10.13. Sincethegridcellsizeisaround10000km2,this datasetprovidesonlyafirstorderindicationofthe DNIacrossbroadregionsofAustralia.However,itis adequatetodemonstratethatthespatialdistribution 130° Direct Normal Irradiance 140° 150° 10° DARWIN 0 750 km 269 20° BRISBANE 30° PERTH SYDNEY ADELAIDE MELBOURNE Megajoules/m² per day 3 19 - 21 4-6 22 - 24 7-9 25 - 27 10 - 12 28 - 30 13 - 15 31 - 33 HOBART 40° 16 - 18 AERA 10.13 Figure 10.13 DirectNormalSolarIrradiance Source: NASA2009 AU S T RA LIA N E N E RGY RE S O U RC E A S SES SMENT ofDNIdiffersfromthatofthetotalradiationshown infigure10.12.Inparticular,thereareareasofhigh DNIincentralNewSouthWalesandcoastalregions ofWesternAustraliathatarelessevidentinthe totalradiation.MoredetailedmappingofDNIacross Australiaisneededtoassessthepotential forconcentratingsolarpoweratalocalscale. Sometypesofsolarthermalpowerplants,including parabolictroughsandFresnelreflectors,needto beconstructedonflatland.Itisestimatedthat about2hectaresoflandarerequiredperMWof powerproduced(Stein2009a).Figure10.14shows solarradiation,wherelandwithaslopeofgreater than1percent,andlandfurtherthan25kmfrom existingtransmissionlineshasbeenexcluded. LandwithinNationalParkshasalsobeenexcluded. Theseexclusionthresholdsofslopeanddistance togridarenotpreciselimitsbutintendedtobe indicativeonly.Evenwiththeselimits,theannual radiationfallingonthecolouredareasinfigure10.14 is2.7millionPJ,whichamountstonearly500times theannualenergydemandofAustralia.Moreover, 120° powertowers,dishesandPVsystemsarenot restrictedtoflatland,whichrenderseventhisfigure aconservativeestimate. Seasonal variations in resource availability Therearealsosignificantseasonalvariationsinthe amountofsolarradiationreachingAustralia.While summerradiationlevelsaregenerallyveryhigh acrossallofinlandAustralia,winterradiationhasa muchstrongerdependenceonlatitude.Figures10.15 and10.16showacomparisonoftheDecemberand Juneaveragedailysolarradiation.Thesamecolour schemehasbeenusedthroughoutfigures10.12to 10.16toallowvisualcomparisonoftheamountof radiationineachfigure. Insomestates,suchasVictoria,SouthAustralia andQueensland,theseasonalvariationinsolar radiationcorrelateswithaseasonalvariationin electricitydemand.Thesesummerpeakdemand periods–causedbyair-conditioningloads–coincide withthehoursthatthesolarresourceisatitsmost abundant.However,thetotaldemandacrossthe NationalElectricityMarket(comprisingallofthe 130° Annual Average Solar Radiation (Slope < 1%) 140° 150° 10° DARWIN 0 750 km 270 20° BRISBANE 30° PERTH SYDNEY ADELAIDE MELBOURNE Megajoules/m² per day 3 19 - 21 4-6 22 - 24 7-9 25 - 27 10 - 12 28 - 30 13 - 15 31 - 33 16 - 18 40° HOBART Transmission lines AERA 10.14 Figure 10.14 Annualsolarradiation,excludinglandwithaslopeofgreaterthan1percentandareasfurther than25kmfromexistingtransmissionlines Source: BureauofMeteorology2009;GeoscienceAustralia AUSTRA L I AN E N E R GY R E S O U R C E A S S E S S M E NT C H A P T E R 1 0 : S O LAR ENER GY easternstates,SouthAustraliaandTasmania) isrelativelyconstantthroughouttheyear,and occasionallypeaksinwinterduetoheatingloads (AER2009). 10.3.2Solarenergymarket Australia’smodestproductionanduseofsolarenergy isfocussedonoff-gridandresidentialinstallations. Whilesolarthermalwaterheatinghasbeenthe predominantformofsolarenergyusetodate, productionofelectricityfromPVandconcentrating solarthermaltechnologiesisincreasing. Primary energy consumption Australia’sprimaryenergyconsumptionofsolar energyaccountedfor2.4percentofallrenewable energyuseandaround0.1percentofprimary energyconsumptionin2007–08(ABARE2009a). Productionandconsumptionofsolarenergyarethe same,becausesolarenergycanonlybestoredfor severalhoursatpresent. Overtheperiodfrom1999–2000to2007–08, Australia’ssolarenergyuseincreasedatanaverage rateof7.2percentperyear.However,asillustrated 120° infigure10.17,thegrowthratewasnotconstant; therewasconsiderablevariationfromyeartoyear. Thebulkofgrowthoverthisperiodwasintheform ofsolarthermalsystemsusedfordomesticwater heating.PVisalsousedtoproduceasmallamount ofelectricity.Intotal,Australia’ssolarenergy consumptionin2007–08was6.9PJ(1.9TWh),of which6.5PJ(1.8TWh)wereusedforwaterheating (ABARE2009a). Consumption of solar thermal energy, by state StatisticsonPVenergyconsumptionbystateare notavailable.However,PVrepresentsonly5.8per centoftotalsolarenergyconsumption;onthat basis,statisticsonsolarthermalconsumptionby stateprovideareasonableapproximationofthe distributionoftotalsolarenergyconsumption. WesternAustraliahasthehighestsolarenergy consumptioninAustralia,contributing40percent ofAustralia’stotalsolarthermalusein2007–08 (figure10.18).NewSouthWalesandQueensland contributedanother26percentand15percent respectively.Therateofgrowthofsolarenergyuse 130° December Average Solar Radiation 140° 150° 10° DARWIN 0 750 km 271 20° BRISBANE 30° PERTH SYDNEY ADELAIDE MELBOURNE Megajoules/m² per day 3 19 - 21 4-6 22 - 24 7-9 25 - 27 10 - 12 28 - 30 13 - 15 31 - 33 HOBART 40° 16 - 18 AERA 10.15 Figure 10.15 Decemberaveragesolarradiation Source: BureauofMeteorology2009 AU S T RA LIA N E N E RGY RE S O U RC E A S SES SMENT 120° 130° June Average Solar Radiation 140° 150° 10° DARWIN 0 750 km 20° BRISBANE 30° PERTH SYDNEY ADELAIDE MELBOURNE Megajoules/m² per day 272 3 19 - 21 4-6 22 - 24 7-9 25 - 27 10 - 12 28 - 30 13 - 15 31 - 33 40° HOBART 16 - 18 AERA 10.16 Figure 10.16 Juneaveragesolarradiation Source: BureauofMeteorology2009 7 6 PV Solar thermal PJ 5 4 3 2 1 0 1974-75 1977-78 1980-81 1983-84 1986-87 1989-90 1992-93 1995-96 Year Figure 10.17 Australia’sprimaryconsumptionofsolarenergy,bytechnology Source: IEA2009b;ABARE2009a AUSTRA L I AN E N E R GY R E S O U R C E A S S E S S M E NT 1998-99 2001-02 2004-05 2007-08 AERA 10.17 C H A P T E R 1 0 : S O LAR ENER GY overthepastdecadehasbeensimilarinallstates andterritories,rangingfromanaverageannual growthof7percentintheNorthernTerritoryand Victoria,toanaverageannualgrowthof11percent inNewSouthWales. ofboththeirthermalfuelinput,andtheirelectrical output.Theresultofthisdifferencebetweenfuel inputsandenergyoutputforfossilfuelsisthatsolar representsalargershareofelectricitygeneration outputthanoffuelinputstoelectricitygeneration. Arangeofgovernmentpolicysettingsfromboth AustralianandStategovernmentshaveresultedina significantincreaseintheuptakeofsmall-scalesolar hotwatersystemsinAustralia.Thecombinationof drivers,includingthesolarhotwaterrebate,state buildingcodes,theinclusionofsolarhotwaterunder theRenewableEnergyTargetandthemandated phase-outofelectrichotwaterby2012,haveall contributedtotheincreaseduptakeofsolarhotwater systemsfrom7percentoftotalhotwatersystem installationsin2007to13percentin2008(BIS Shrapnel2008;ABARE2009a). In2007–08,0.11TWh(0.4PJ)ofelectricitywere generatedfromsolarenergy,representing0.04per centofAustralianelectricitygeneration(figure10.19). Despiteitssmallshare,solarelectricitygeneration hasincreasedrapidlyinrecentyears. ElectricitygenerationfromsolarenergyinAustralia iscurrentlyalmostentirelysourcedfromPV installations,primarilyfromsmalloff-gridsystems. Electricitygenerationfromsolarthermalsystems iscurrentlylimitedtosmallpilotprojects,although interestinsolarthermalsystemsforlargescale electricitygenerationisincreasing. Somecareinanalysisofgenerationdatainenergy statisticsiswarranted.Forenergyaccounting purposes,thefuelinputstoasolarenergysystem areassumedtoequaltheenergygeneratedbythe solarsystem.Thus,thesolarelectricityfuelinputs inenergystatisticsrepresentthesolarenergy capturedbysolarenergysystems,ratherthanthe significantlylargermeasureoftotalsolarradiation fallingonsolarenergysystems;howeverthis radiationisnotmeasuredinenergystatistics.Fossil fuelssuchasgasandcoalaremeasuredinterms MostAustralianstatesandterritorieshaveinplace,or areplanningtoimplement,feed-intariffs.Whilethere issomecorrelationoftheirintroductionwithincreased consumeruptake,itistooearlytosuggestthatthese tariffshavebeensignificantcontributorstoit.The combinationofgovernmentpolicies,associatedpublic andprivateinvestmentinRD&Dmeasuresandbroader marketconditionsarelikelytobethemaininfluences. Northern Territory 3% TW TWh h South Australia 8% Australia’stotalPVcapacityhasincreased significantlyoverthelastdecade(figure10.20), andinparticularoverthelasttwoyears.Thishas beendrivenprimarilybytheSolarHomesand CommunitiesPlanforon-gridapplicationsandthe RemoteRenewablePowerGenerationProgramfor off-gridapplications.Overthelasttwoyears,there hasbeenadramaticincreaseinthetake-upofsmall scalePV,withmorethan40MWinstalledin2009 (figures10.20,10.23).Thisisduetoacombination offactors:supportprovidedthroughtheSolarHomes andCommunitiesprogram,greaterpublicawareness ofsolarPV,adropinthepriceofPVsystems, attributablebothtogreaterinternationalcompetition amonganincreasednumberofsuppliersanda decreaseinworldwidedemandasaresultofthe globalfinancialcrisis,astrongAustraliandollar,and highlyeffectivemarketingbyPVretailers. New South Wales 26% Western Australia 40% Victoria 6% Queensland 15% 0.12 0.12 0.06 0.06 0.10 0.10 0.05 0.05 0.08 0.08 0.04 0.04 0.06 0.06 0.03 0.03 0.04 0.04 0.02 0.02 0.02 0.02 0.01 0.01 0 0 1992-93 1992-93 Tasmania 2% 1995-96 1995-96 1998-99 1998-99 2001-02 2001-02 Year Year 2004-05 2004-05 2007-08 2007-08 %% Electricity generation Installed electricity generation capacity 0 0 Solar electricity generation (TWh) Solar electricity generation (TWh) Share of total electricity generation (%) Share of total electricity generation (%) AERA 10.18 AERA 10.19 AERA 10.19 Figure 10.18 Solarthermalenergyconsumption, bystate,2007–08 Figure 10.19 Australianelectricitygenerationfrom solar energy Source: ABARE2009a Source: ABARE AU S T RA LIA N E N E RGY RE S O U RC E A S SES SMENT 273 120 100 Off grid non-domestic Grid distributed Diesel grids Off grid domestic Peak capacity (MW) 80 Grid centralised 60 40 20 AERA 10.20 0 1992 1993 1994 1995 1996 1997 1998 1999 Figure 10.20 PVinstalledcapacityfrom1992–2008 2000 2001 2002 2003 2004 2005 2006 2007 2008 Year Note: TheseestimatesrepresentthepeakpoweroutputofPVsystems.Theydonotrepresenttheaveragepoweroutputoverayear,assolar radiationvariesaccordingtofactorssuchasthetimeofday,thenumberofdaylighthours,theangleofthesunandthecloudcover.These capacityestimatesareconsistentwiththePVproductiondatapresentedinthisreport Source: Watt2009 274 Thelargestcomponentofinstalledsolarelectricity capacityisusedforoff-gridindustrialandagricultural purposes(41MW),withsignificantcontributions comingfromoff-gridresidentialsystems(31MW), andgridconnecteddistributedsystems(30MW).This largeoff-gridusagereflectsthecapacityofPVsystems tobeusedasstand-alonegeneratingsystems, particularlyforsmallscaleapplications.Therehave alsobeenseveralcommercialsolarprojectsthat provideelectricitytothegrid. Recently completed solar projects Fivecommercial-scalesolarprojectswithacombined capacityofaround5MWhavebeencommissioned inAustraliasince1998(table10.3).Allof theseprojectsarelocatedinNewSouthWales. Commissionedsolarprojectstodatehavehadsmall capacitieswithfourofthefiveprojectscommissioned havingacapacityoflessthanorequalto1MW.The onlyprojecttohaveacapacityofmorethan1MW Table 10.3 Recentlycompletedsolarprojects Project Company State Start up Capacity Singleton Energy Australia NSW 1998 0.4MW Newington Private NSW 2000 0.7MW BrokenHill Australian Inland Energy NSW 2000 1MW Newcastle CSIRO NSW 2005 0.6MW Liddell Ausra NSW Late 2008 2MW Source: GeoscienceAustralia2009 AUSTRA L I AN E N E R GY R E S O U R C E A S S E S S M E NT isAusra’s2008solarthermalattachmenttoLiddell powerplant,whichhasapeakelectricpowercapacity of2MW(Ausra2009).Whilesomewhatlarger thanthemorecommondomesticorcommercial installations,thesearemodestly-sizedplants. However,thereareplansforconstructionofseveral largescalesolarpowerplantsundertheAustralian Government’sSolarFlagshipsProgram,whichwill usebothsolarthermalandPVtechnologies. 10.4Outlookto2030for Australia’sresourcesandmarket Solarenergyisarenewableresource:increaseduse oftheresourcedoesnotaffectresourceavailability. However,thequantityoftheresourcethatcanbe economicallycapturedchangesovertimethrough technologicaldevelopments. TheoutlookfortheAustraliansolarmarket dependsonthecostofsolarenergyrelativeto otherenergyresources.Atpresent,solarenergyis moreexpensiveforelectricitygenerationthanother currentlyusedrenewableenergysources,suchas hydro,wind,biomassandbiogas.Therefore,the outlookforincreasedsolarenergyuptakedepends onfactorsthatwillreduceitscostsrelativetoother renewablefuels.Thecompetitivenessofsolarenergy andrenewableenergysourcesgenerallywillalso dependongovernmentpoliciesaimedatreducing greenhousegasemissions. Solarenergyislikelytobeaneconomicallyattractive optionforremoteoff-gridelectricitygeneration.The long-termcompetitivenessofsolarenergyinlarge- C H A P T E R 1 0 : S O LAR ENER GY scalegrid-connectedapplicationsdependsinlarge measureontechnologicaldevelopmentsthatenhance theefficiencyofenergyconversionandreducethe capitalandoperatingcostofsolarenergysystems andcomponentry.TheAustralianGovernment’s $1.5billionSolarFlagshipsprogram,announcedas partoftheCleanEnergyInitiative,willsupportthe constructionanddemonstrationoflargescale (upto1000MW)solarpowerstationsinAustralia. Itwillacceleratedevelopmentsolartechnologyand helppositionAustraliaasaworldleaderinthatfield. 10.4.1Keyfactorsinfluencingthefuture developmentofAustralia’ssolarenergy resources Australiaisaworldleaderindevelopingsolar technologies(LovegroveandDennis2006),but uptakeofthesetechnologieswithinAustraliahas beenrelativelylow,principallybecauseoftheir highcost.Anumberoffactorsaffecttheeconomic viabilityofsolarinstallations. Solar energy technologies and costs ResearchintobothsolarPVandsolarthermal technologiesislargelyfocussedonreducingcosts andincreasingtheefficiencyofthesystems. • Electricity generation–commercial-scale generationprojectshavebeendemonstrated tobepossiblebutthecostofthetechnologyis stillrelativelyhigh,makingsolarlessattractive andhigherriskforinvestors.Small-scalesolar PVarraysarecurrentlybestsuitedtoremote andoff-gridapplications,withotherapplications largelydependentonresearchorgovernment fundingtomakethemviable.Informationonsolar energytechnologiesforelectricitygenerationis presentedinbox10.1. • Direct-use applications–solarthermalhotwater systemsfordomesticuserepresentthemost widelycommercialisedsolarenergytechnology. Solarwaterheatersarecontinuingtobe developedfurther,andcanalsobeintegrated withPVarrays.Otherdirectusesinclude passivesolarheating,andsolarairconditioning. Informationonsolarenergytechnologiesfor direct-useapplicationsispresentedinbox10.2. WithbothsolarPVandsolarthermalgeneration,the majorityofcostsareborneinthecapitalinstallation phase,irrespectiveofthescaleorsizeofthe project(figure10.21).Thelargestcostcomponents ofPVinstallationsarethecellsorpanelsandthe associatedcomponentsrequiredtoinstalland connectthepanelsasapowersource.Inaddition, theinverterthatconvertsthedirectcurrentto alternatingcurrentneedstobereplacedatleastonce every10years(Borenstein2008).However,there arenofuelcosts–oncethesystemisinstalled, apartfromreplacingtheinverter,thereshouldbe nocostsassociatedwithrunningthesystemuntil theendofitsusefullife(20to25years).Themajor challenge,therefore,isinitialoutlay,withsomewhat moremodestperiodiccomponentreplacement, andpaybackperiodfortheinvestment. Currently,thecostofsolarenergyishigherthan othertechnologiesinmostcountries.Theminimum costforsolarPVinareaswithhighsolarradiation isaroundUS23centsperkWh(EIA2009). SolarthermalsystemshaveasimilarprofiletoPV, dependingonthescaleandtypeofinstallation. Thecostofelectricityproductionfromsolarenergy isexpectedtodeclineasnewtechnologiesare developedandeconomiesofscaleimproveinthe productionprocesses. Thecostofinstallingsolarcapacityhasgenerally beendecreasing.BothPVandsolarthermal technologiescurrentlyhavesubstantialresearch anddevelopmentfundsdirectedtowardthem,and newproductionprocessesareexpectedtoresultina continuationofthistrend(figure10.22).IntheUnited 6 Costs 2007 US$ per watt 5 4 3 2 PV 1 Years = 25 installation inverter replacement Solar thermal AERA 10.22 0 2011 2013 2015 2017 2019 2021 2023 2025 2027 2029 Year AERA 10.21 Figure 10.21 IndicativesolarPVproductionprofile and costs Figure 10.22 Projectedaveragecapitalcostsfor newelectricitygenerationplantsusingsolarenergy, 2011to2030 Source: ABARE Source: EIA2009 AU S T RA LIA N E N E RGY RE S O U RC E A S SES SMENT 275 States,thecapitalcostofnewPVplantsisprojected tofallby37percent(inrealterms)from2009to 2030(EIA2009). 276 TheElectricPowerResearchInstitute(EPRI)has developedestimatesofthelevelisedcostof technologya,includingarangeofsolartechnologies, toenablethecomparisonoftechnologiesatdifferent levelsofmaturity(Chapter2,figures2.18,2.19).The solartechnologiesconsideredareparabolictroughs, centralreceiversystems,fixedPVsystemsand trackingPVsystems.Centralreceiversolarsystems withstorageareforecasttohavethelowestcosts oftechnologyin2015.Addingstoragetothecentral receiversystemsortoparabolictroughsisestimated todecreasethecostperKWhproduced,asitallows thesystemtoproduceahigherelectricityoutput. TrackingPVsystemsareforecasttohavethelowest costoftheoptionsthatdonotincorporatestorage. TheEPRItechnologystatusdatainfigures2.18 and2.19showthat,althoughsolartechnologies remainrelativelyhighcostoptionsthroughoutthe outlookperiod,significantreductionsincostare anticipatedby2030.ThesubstantialglobalRD&D (bygovernmentsandtheprivatesector)intosolar technologies,includingtheAustralianGovernment’s $1.5billionSolarFlagshipsProgramtosupportthe constructionanddemonstrationoflargescalesolar powerstationsinAustralia,isexpectedtoplayakey roleinacceleratingthedevelopmentanddeployment ofsolarenergy. Thetimetakentoinstallordevelopasolarsystem ishighlydependentonthesizeandscaleofthe project.Solarhotwatersystemscanbeinstalled inaroundfourhours.Small-scalePVsystems cansimilarlybeinstalledquiterapidly.However, commercialscaledevelopmentstakeconsiderably longer,dependingonthetypeofinstallation andotherfactors,includingbroaderlocationor environmentalconsiderations. Location of the resource InAustralia,thebestsolarresourcesarecommonly distantfromthenationalelectricitymarket(NEM), especiallythemajorurbancentresontheeastern seaboard.Thisposesachallengefordeveloping newsolarpowerplants,asthereneedstobea balancebetweenmaximisingthesolarradiationand minimisingthecostsofconnectivitytotheelectricity grid.However,thereispotentialforsolarthermal energyapplicationtoprovidebaseandintermediate loadelectricitywithfossil-fuelplants(suchasgas turbinepowerstations)inareaswithisolatedgrid systemsandgoodinsolationresources.Thereportby theWyldGroupandMMA(2008)identifiedMountIsa, AliceSprings,TennantCreekandthePilbararegionas areaswiththesecharacteristics.AccesstoAustralia’s majorsolarenergyresources–aswithotherremote renewableenergysources–islikelytorequire investmenttoextendtheelectricitygrid. Stand-alonePVsystemscanbelocatedcloseto customers(forexampleonroofareasofresidential buildings),whichreducesthecostsofelectricity transmissionanddistribution.However,concentrating solarthermaltechnologiesrequiremorespecific conditionsandlargeareasofland(Lorenz,Pinner andSeitz2008)whichareoftenonlyavailablelong distancesfromthecustomersneedingtheenergy. InAustralia,installingsmall-scaleresidentialor mediumscalecommercialsystems(bothPVand thermal)canbehighlyattractiveoptionsforremote areaswhereelectricityinfrastructureisdifficultor costlytoaccess,andalternativelocalsourcesof electricityareexpensive. government policies Governmentpolicieshavebeenimplementedat severalstagesofthesolarenergyproductionchain inAustralia.Rebatesprovidedforsolarwaterheating systemsandresidentialPVinstallationsreduce thecostofthesetechnologiesforconsumersand encouragetheiruptake. TheSolarHomesandCommunitiesPlan(2000to June2009)providedrebatesfortheinstallation ofsolarPVsystems.ThecapacityofPVsystems installedbyAustralianhouseholdsincreased significantlyunderthisprogram(figure10.23). TheexpandedRETschemeincludestheSolar Creditsinitiative,whichprovidesamultipliedcredit forelectricitygeneratedbysmallsolarPVsystems. Solar Creditsprovidesanup-frontcapitalsubsidy towardstheinstallationofsmallsolarPVsystems. TheAustralianGovernmenthasalsoannounced $1.5billionofnewfundingforitsSolarFlagships program.Thisprogramaimstoinstalluptofour newsolarpowerplants,withacombinedpower outputofupto1000MW,madeupofbothPVand solarthermalpowerplants,withthelocationsand technologiestobedeterminedbyacompetitive tenderprocess.Theprogramaimstodemonstrate newsolartechnologiesatacommercialscale, therebyacceleratinguptakeofsolarenergyingeneral andprovidingtheopportunityforAustraliatodevelop leadershipinsolarenergytechnology(RET2009b). TheAustralianGovernmenthasalsoallocated fundingtoestablishtheAustralianSolarInstitute (ASI),whichwillbebasedinNewcastle.Itwillhave strongcollaborativelinkswithCSIROandUniversities undertakingR&Dinsolartechnologies.Theinstitute willaimtodrivedevelopmentofsolarthermaland PVtechnologiesinAustralia,includingtheareasof efficiencyandcosteffectiveness(RET2009a). Othergovernmentpolicies,includingfeed-intariffs, whichareproposedoralreadyinplaceinmost Australianstatesandterritories,mayalsoencourage theuptakeofsolarenergy. a ThisEPRItechnologystatusdataenablesthecomparisonoftechnologiesatdifferentlevelsofmaturity. Itshouldnotbeusedtoforecastmarketandinvestmentoutcomes. AUSTRA L I AN E N E R GY R E S O U R C E A S S E S S M E NT C H A P T E R 1 0 : S O LAR ENER GY 50 theenergyrequiredtoproduceitovera20year systemlifespan(MacKay2009).Inareaswithless solarradiation,suchasCentral-NorthernEurope,the energyyieldratioisestimatedtobearoundfour.This positiveenergyyieldratioalsomeansthatgreenhouse gasemissionsgeneratedfromtheproductionof solarenergysystemsaremorethanoffsetoverthe systems’lifecycle,astherearenogreenhousegas emissionsgeneratedfromtheiroperation. 40 MW 30 20 10 0 2000 2001 2002 2003 2004 2005 Year 2006 2007 2008 2009 AERA 10.23 Figure 10.23 ResidentialPVcapacityinstalledunderthe SolarHomesandCommunitiesPlan(asofOctober2009) Source: DEWHA2009 Infrastructure issues Thelocationoflargescalesolarpowerplants inAustraliawillbeinfluencedbythecostof connectiontotheelectricitygrid.Intheshortterm, developmentsarelikelytofocusonisolatedgrid systemsornodestotheexistingelectricitygrid, sincethisminimisesinfrastructurecosts. Inthelongerterm,theextensionofthegridtoaccess remotesolarenergyresourcesindesertregionsmay requirebuildinglongdistancetransmissionlines.The technologyneededtoachievethisexists:highvoltage directcurrent(HVDC)transmissionlinesareableto transferelectricityoverthousandsofkilometres,with minimallosses.SomeHVDClinesarealreadyinuse inAustralia,andarebeingusedtoforminterstategrid connections;thelongestexamplebeingtheHVDC linkbetweenTasmaniaandVictoria.However,building aHVDClinktoasolarpowerstationindesertareas wouldrequirealargeup-frontinvestment. Theideaofgeneratinglargescalesolarenergyin remotedesertregionshasbeenproposedona muchlargerscaleinternationally.InJune2009the DESERTECFoundationoutlinedaproposaltobuild largescalesolarfarmsinthesun-richregionsofthe MiddleEastandNorthernAfrica,andexporttheir powertoEuropeusinglongdistanceHVDClines. Morerecently,anAsiaPacificSunbeltDevelopment Projecthasbeenestablishedwiththeaimofmoving solarenergybywayoffuelratherthanelectricityfrom regionssuchasAustraliatothoseAsiancountries whoimportenergy,suchasJapanandKorea.These projectsillustratethegrowinginternationalinterest inutilisinglargescalesolarpowerfromremote andinhospitableareas,despitetheinfrastructure challengesintransmittingortransportingenergyover longdistances. Environmental issues Aroof-mounted,grid-connectedsolarsystemin Australiaisestimatedtoyieldmorethanseventimes Mostsolarthermalelectricitygenerationsystems requirewaterforsteamproductionandthiswateruse affectstheefficiencyofthesystem.Themajorityof thiswaterisconsumedin‘wetcooling’towers,which useevaporativecoolingtocondensethesteamafter ithaspassedthroughtheturbine.Inaddition,solar thermalsystemsrequirewatertowashthemirrors, tomaintaintheirreflectivity(Jones2008).Itis possibletouse‘drycooling’towers,whicheliminate mostofthewaterconsumption,butthisreducesthe efficiencyofthesteamcyclebyapproximately10per cent(Stein2009b). Afurtheroptionunderdevelopmentistheuseofhigh temperatureBraytoncycles,whichdonotusesteam turbinesandthusdonotconsumewater.Brayton cyclesaremoreefficientthanconventionalRankine (steam)cycles,buttheycanonlybeachievedby point-focussingsolarthermaltechnologies(power towersanddishes). 10.4.2Outlookforsolarenergymarket AlthoughsolarenergyismoreabundantinAustralia thanotherrenewableenergysources,plansfor expandingsolarenergyinAustraliagenerallyrely onsubsidiestobeeconomicallyviable.There arecurrentlyonlyasmallnumberofproposed commercialsolarenergyprojects,mostlyofsmall scale.Solarenergyiscurrentlymoreexpensiveto producethanotherformsofrenewableenergy,such ashydro,windandbiomass(WyldGroupandMMA 2008).Intheshortterm,therefore,solarenergywill finditdifficulttocompetecommerciallywithother formsofcleanenergyforelectricitygenerationinthe NEM.However,asglobaldeploymentofsolarenergy technologiesincreases,thecostofthetechnologies islikelytodecrease.Moreover,technological developmentsandgreenhousegasemission reductionpoliciesareexpectedtodriveincreased useofsolarenergyinthemediumandlongterm. Key projections to 2029–30 ABARE’slatest(2010)Australianenergyprojections includetheRET,a5percentemissionsreduction target,andothergovernmentpolicies.Solarenergy useinAustraliaisprojectedtomorethantriple,from 7PJin2007–08to24PJin2029–30,growingatan averagerateof5.9percentayear(figure10.27,table 10.4).Whilesolarwaterheatingisprojectedtoremain thepredominantuseforsolarenergy,theshareofPVin totalsolarenergyuseisprojectedtoincrease. AU S T RA LIA N E N E RGY RE S O U RC E A S SES SMENT 277 BOx 10.1SOLARENERGyTECHNOLOGIESFORELECTRICITyGENERATION Sunlighthasbeenusedforheatingbygenerating fireforhundredsofyears,butcommercial technologiesspecificallytousesolarenergyto directlyheatwaterorgeneratepowerwerenot developeduntilthe1800s.Solarwaterheaters developedandinstalledbetween1910and1920 werethefirstcommercialapplicationofsolar energy.ThefirstPVcellscapableofconverting enoughenergyintopowertorunelectrical equipmentwerenotdevelopeduntilthe1950sand thefirstsolarpowerstations(thermalandPV)with capacityofatleast1megawattstartedoperatingin the1980s. Solar thermal electricity Solarthermalelectricityisproducedbyconverting sunlightintoheat,andthenusingtheheattodrive agenerator.Thesunlightisconcentratedusing mirrors,andfocussedontoasolarreceiver.This receivercontainsaworkingfluidthatabsorbs theconcentratedsunlight,andcanbeheatedup toveryhightemperatures.Heatistransferred fromtheworkingfluidtoasteamturbine,similar tothoseusedinfossilfuelandnuclearpower stations.Alternatively,theheatcanbestoredfor lateruse(seebelow). 278 Therearefourmaintypesofconcentratingsolar receivers,showninfigure10.24.Twoofthese typesareline-focussing(parabolictroughandLinear Fresnelreflector);theothertwoarepoint-focussing (paraboloidaldishandpowertower).Eachofthese typesisdesignedtoconcentratealargeareaof sunlightontoasmallreceiver,whichenablesfluid tobeheatedtohightemperatures.Therearetradeoffsbetweenefficiency,landcoverage,andcosts ofeachtype. Themostwidelyusedsolarconcentratoristhe parabolictrough.Parabolictroughsfocuslightinone axisonly,whichmeansthattheyneedonlyasingle axistrackingmechanismtofollowthedirectionofthe sun.ThelinearFresnelreflectorachievesasimilar line-focus,butinsteadusesanarrayofalmostflat mirrors.LinearFresnelreflectorsachieveaweaker focus(thereforelowertemperaturesandefficiencies) thanparabolictroughs.However,linearFresnel reflectorshavecost-savingfeaturesthatcompensate forlowerenergyefficiencies,includingagreateryield perunitland,andsimplerconstructionrequirements. Theparaboloidaldishisanalternatedesignwhich focusessunlightontoasinglepoint.Thisdesignis abletoproduceamuchhighertemperatureatthe a b c d Figure 10.24 Thefourtypesofsolarthermalconcentrators: (a)parabolictrough,(b)compactlinearFresnelreflector, (c)paraboloidaldish,and(d)powertower Source: WikimediaCommons,photographbykjkolb;WikimediaCommons,originaluploaderwasLkruijswaten.wikipedia; AustralianNationalUniversity2009a;CSIRO AUSTRA L I AN E N E R GY R E S O U R C E A S S E S S M E NT C H A P T E R 1 0 : S O LAR ENER GY receiver,whichincreasestheefficiencyofenergy conversion.Theparaboloidaldishhasthegreatest potentialtobeusedinmodularform,whichmay givethisdesignanadvantageinoff-gridandremote applications.However,tofocusthesunlightonto asinglepoint,paraboloidaldishesneedtotrack thedirectionofsunlightontwoaxes.Thisrequires amorecomplextrackingmechanism,andismore expensivetobuild.Theotherpointfocusingdesign isthe‘powertower’,whichusesaseriesofgroundbasedmirrorstofocusontoanelevatedcentral receiver.Powertowermirrorsalsorequiretwo-axis trackingmechanisms;howevertheuseofsmaller, flatmirrorscanreducecosts. Theparabolictroughhasthemostwidespread commercialuse.Anarrayofnineparabolictrough plantsproducingacombined354MWhaveoperated inCaliforniasincethe1980s.Severalnewoneshave beenbuiltinSpainandNevadainthelastfewyears atarounda50–60MWscale,andtherearemany parabolictroughplantseitherintheconstructionor planningphase.Whileparabolictroughshavethe majorityofthecurrentmarketshare,allfourdesigns aregainingrenewedcommercialinterest.Thereisan 11MWsolarpowertowerplantoperatinginSpain, andasimilar20MWplanthasrecentlybegun operatingatthesamelocation.ThelinearFresnel reflectorhasbeendemonstratedonasmall scale(5MW),anda177MWplantisplannedfor constructioninCalifornia.Theparaboloidaldishhas alsobeendemonstratedonasmallscale,andthere areplansforlargescaledishplants. Methodsofpowerconversionandthermalstorage varyfromtypetotype.Whilesolarthermalplantsare generallysuitedtolargescaleplants(greaterthan 50MW),theparaboloidaldishhasthepotentialto beusedinmodularform.Thismaygivedishsystems anadvantageinremoteandoff-gridapplications. Efficiency of solar thermal Theconversionefficiencyofsolarthermalpower plantsdependsonthetypeofconcentratorused, andtheamountofsunlight.Ingeneral,thepointfocusingconcentrators(paraboloidaldishand powertower)canachievehigherefficienciesthan linefocussingtechnologies(parabolictroughand Fresnelreflector).Thisispossiblebecausethepointfocussingtechnologiesachievehighertemperatures forhigherthermodynamiclimits. Thehighestvalueofsolar-to-electricefficiencyever recordedforasolarthermalsystemwas31.25per cent,usingasolardishinpeaksunlightconditions (Sandia2009).Parabolictroughscanachieveapeak solar-to-electricefficiencyofover20percent(SEGS 2009).However,theconversionefficiencydrops significantlywhentheradiationdropsinintensity, sotheannualaverageefficienciesaresignificantly lower.AccordingtoBegay-Campbell(2008),the annualsolar-to-electricefficiencyisapproximately 12–14percentforparabolictroughs,12percent forpowertowers(althoughemergingtechnologies canachieve18–20percent),and22–25percentfor paraboloidaldishes.LinearFresnelreflectorsachieve asimilarefficiencytoparabolictroughs,withan annualsolar-to-electricefficiencyofapproximately 12percent(Millsetal.2002). Energy storage Solarthermalelectricitysystemshavethepotential tostoreenergyoverseveralhours.Theworkingfluid usedinthesystemcanbeusedtotemporarilystore heat,andcanbeconvertedintoelectricityafterthe sunhasstoppedshining.Thismeansthatsolar thermalplantshavethepotentialtodispatchpower atpeakdemandtimes.Itshouldbenoted,however, thatperiodsofsustainedcloudyweathercutthe productivecapacityofsolarthermalpower. Theseasonalityofsunshinealsoreducespower outputinwinter. Thermalstorageisoneofthekeyadvantagesof solarthermalpower,andcreatesthepotentialfor intermediateorbase-loadpowergeneration.Although thermalstoragetechnologyisrelativelynew,several recentlyconstructedsolarthermalpowerplantshave includedthermalstorageofapproximately7hours’ powergeneration.Inaddition,therearenewpower towerdesignsthatincorporateupto16hoursof thermalstorage,allowing24hourpowergeneration inappropriateconditions.Thedevelopmentofcost effectivestoragetechnologiesmayenableamuch higheruptakeofsolarthermalpowerinthefuture (WyldGroupandMMA2008). Currentresearchisdevelopingalternativeenergy storagemethods,includingchemicalstorage,and phase-changematerials.Chemicalstorageoptions includedissociatedammoniaandsolar-enhanced naturalgas.Thesenewstoragemethodshavethe potentialtoprovideseasonalstorageofsolarenergy, ortoconvertsolarenergyintoportablefuels.Infuture, itmaybepossibleforsolarfuelstobeusedinthe transportsector,orevenforexportingsolarenergy. Hybrid operation with fossil fuel plants Solarthermalpowerplantscanmakeuseof existingturbinetechnologiesthathavebeen developedandrefinedovermanydecadesinfossil fueltechnologies.Usingthismaturetechnology canreducemanufacturingcostsandincreasethe efficiencyofpowergeneration.Inaddition,solar thermalheatcollectorscanbeusedinhybrid operationwithfossilfuelburners.Anumberof existingsolarthermalpowerplantsusegasburners toboostpowersupplyduringlowlevelsofsunlight. AU S T RA LIA N E N E RGY RE S O U RC E A S SES SMENT 279 Combiningsolarthermalpowerwithgascanprovide ahedgeagainsttheintermittencyofsunlight. Solarthermalheatcollectorscanbeattachedto existingcoalorgaspowerstationstopre-heatthe waterusedintheseplants.Thisispossiblesincesolar thermalheatcollectorsperformaverysimilarfunction tofossilfuelburners.Inthisway,solarthermalpower canmakeuseofexistinginfrastructure.Thisoption isnotaffectedbyintermittencyofsunlight,sincethe fossilfuelburnersprovidefirmcapacityofproduction. Internationally,thereareseveralnewintegratedsolar combinedcycle(ISCC)plantsplannedforconstruction. ISCCplantsaresimilartocombinedcyclegasplants (usingbothagasturbine,andasteamturbine),but usesolarthermalheatcollectorstoboostthesteam turbineproduction. Solar updraft towers Analternativesolarthermalpowertechnologyisthe solarupdrafttower,alsoknownasasolarchimney. Theupdrafttowercapturessolarenergyusingalarge greenhouse,whichheatsairbeneathatransparent roof.Averytallchimneyisplacedatthecentreof thegreenhouse,andtheheatedaircreatespressure differencesthatdriveairflowupthechimney. Electricityisgeneratedfromtheairflowusingwind turbinesatthebaseofthechimney. 280 Solarupdrafttowershavebeentestedatarelatively smallscale,witha50kWplantinSpainbeingthe onlyworkingprototypeatpresent.Thereareplansto upscalethistechnology,includingaproposed200 MWplantinBuronga,NSW.Themaindisadvantageof solarupdrafttowersisthattheydeliversignificantly lesspowerperunitareathanconcentratingsolar thermalandPVsystems(Enviromission2009). Photovoltaic systems ThecostsofproducingPVcellshasdeclinedrapidly inrecentyearsasuptakehasincreased(Fthenakis etal.2009)andanumberofPVtechnologieshave beendeveloped.Thecostofmodulescanbereduced infourmainways: • makingthinnerlayers–reducingmaterialand processingcosts; • integratingPVpanelswithbuildingelementssuch asglassandroofs–reducingoverallsystem costs; • makingadhesiveonsite–reducingmaterials costs;and • improvingdecisionsaboutmakingorbuying inputs,increasingeconomiesofscale,and improvingthedesignofPVmodules. TherearethreemaintypesofPVtechnology: crystallinesilicon,thin-filmandconcentratingPV. Crystallinesiliconistheoldestandmostwidespread technology.Thesecellsarebecomingmoreefficient overtime,andcostshavefallensteadily. Thin-filmPVisanemerginggroupoftechnologies, targetedatreducingcostsofPVcells.Thin-filmPV isatanearlierstageofdevelopment,andcurrently deliversalowerefficiencythancrystallinesilicon, estimatedataround10percent,althoughmany ofthenewervarietiesstilldeliverefficienciesof lessthanthis(Prowse2009).However,thisis compensatedbylowercosts,andtherearestrong prospectsforefficiencyimprovementsinthefuture. Thin-filmPVcanbeinstalledonmanydifferent substrates,givingitgreatflexibilityinitsapplications. ConcentratingPVsystemsuseeithermirrorsor lensestofocusalargeareaofsunlightontoacentral receiver(figure10.25).Thisincreasestheintensity ofthelight,andallowsagreaterpercentageofits energytobeconvertedintoelectricity.Thesesystems aredesignedprimarilyforlargescalecentralised Figure 10.25 (a)ExampleofarooftopPVsystem. (b)AschematicconcentratingPVsystem,wherealargenumberof mirrorsfocussunlightontocentralPVreceivers Source: CERP,WikimediaCommons;EnergyInnovationsInc.underWikipedialicencecc-by-sa-2.5 AUSTRA L I AN E N E R GY R E S O U R C E A S S E S S M E NT C H A P T E R 1 0 : S O LAR ENER GY power,duetothecomplexitiesofthereceivers. ConcentratingPVisthemostefficientformofPV, deliveringatypicalsystemefficiencyofaround 20percent,andhasachievedefficienciesofjustover 40percentinideallaboratoryconditions(NREL2008). wherePVcellscaneitherreplace,orbeintegrated withexistingmaterials.BIPVhasthepotentialto reducecostsofPVsystems,andtoincreasethe surfaceareaavailableforcapturingsolarenergy withinabuilding(NREL2009b). AnadvantageofusingconcentratingPVisthatit reducestheareaofsolarcellsneededtocapture thesunlight.PVcellsareoftenexpensivetoproduce, andthemirrorsorlensesusedtoconcentratethe lightaregenerallycheaperthanthecells.However, theuseofsolarconcentratorsgenerallyrequiresa largersystemthatcannotbescaleddownaseasily asflat-platePVcells. Efficiency of photovoltaic systems ArelativelyrecentareaofgrowthforPVapplications isinBuilding-integratedPV(BIPV)systems.BIPV systemsincorporatePVtechnologyintomany differentcomponentsofanewbuilding.These componentsincluderooftops,wallsandwindows, Currently,themaximumefficiencyofcommercially availablePVmodulesisaround20to25percent, withefficienciesofaround40percentachieved inlaboratories.MostcommerciallyavailablePV systemshaveanaverageconversionefficiencyof around10percent.Newdevelopments(suchas multi-junctiontandemcells)suggestsolarcells withconversionefficienciesofgreaterthan40per centcouldbecomecommerciallyavailableinthe future.Fthenakisetal.(2009)positthatincreases inefficiencyofPVmoduleswillcomefromfurther technologyimprovements. BOx 10.2SOLARENERGyTECHNOLOGIESFORDIRECT-USEAPPLICATIONS Solar thermal heating Solarthermalheatingusesdirectheatfromsunlight, withouttheneedtoconverttheenergyintoelectricity. Thesimplestformofsolarthermalheatingisachieved simplybypumpingwaterthroughasystemoflightabsorbingtubes,usuallymountedonarooftop.The tubesabsorbsunlight,andheatthewaterflowing withinthem.Themostcommonuseforsolarthermal heatingishotwatersystems,buttheyarealsoused forswimmingpoolheatingorspaceheating. Therearetwomaintypesofsolarwaterheaters: flat-plateandevacuatedtubesystems(figure10.26). Flat-platesystemsarethemostwidespreadand maturetechnology.Theyuseanarrayofverysmall tubes,coveredbyatransparentglazingforinsulation. Evacuatedtubesconsistofasunlightabsorbing metaltube,insidetwoconcentrictransparentglass tubes.Thespacebetweenthetwoglasstubesis evacuatedtopreventlossesduetoconvection. Evacuatedtubeshavelowerheatlossesthanflat platecollectors,givingthemanadvantageinwinter conditions.However,flat-platesystemsaregenerally cheaper,duetotheirrelativecommercialmaturity. Solarthermalheatingisamaturetechnologyand relativelyinexpensivecomparedtoothersolar technologies.Thiscostadvantagehasmeant thatsolarthermalheatinghasthelargestenergy productionofanysolartechnology.Insomecountries withfavourablesunlightconditions,solarwater heatershavegainedasubstantialmarketshare ofwaterheaters.Forexample,theproportionof householdswithsolarwaterheatersintheNorthern Territorywas54percentin2008(CEC2009) whereasinIsraelthisproportionisapproximately 90percent(CSIRO2010). Figure 10.26 (a)Flat-platesolarwaterheater. (b)Evacuatedtubesolarwaterheater Source: WesternAustralianSustainableEnergyDevelopmentOffice2009;HillsSolar(SolarSolutionsforLife)2009 AU S T RA LIA N E N E RGY RE S O U RC E A S SES SMENT 281 Solar air conditioning Solarthermalenergycanalsobeusedtodrive air-conditioningsystems.Sorptioncoolingusesa heatsourcetodrivearefrigerationcycle,andcan beintegratedwithsolarthermalheatcollectors toprovidesolarair-conditioning.Sincesunlight isgenerallystrongwhenair-conditioningismost needed,solarair-conditioningcanbeusedtobalance peaksummerelectricityloads.However,anumber ofdevelopmentsarerequiredbeforesolarairconditioningbecomescostcompetitiveinAustralia (CSIRO2010). Passive solar heating Solarenergycanalsobeusedtoheatbuildings directly,throughdesigningbuildingsthatcapture sunlightandstoreheatthatcanbeusedatnight. Thisprocessiscalledpassivesolarheating,andcan saveenergy(electricityandgas)thatwouldotherwise beneededtoheatbuildingsduringcoldweather. Newbuildingscanbeconstructedwithpassivesolar heatingfeaturesatminimalextracost,providinga reliablesourceofheatingthatcangreatlyreduce energydemandsinwinter(AZSC2009). Passivesolarheatingusuallyrequirestwo Proposed development projects AsatOctober2009,therewerenosolarprojects nearingcompletioninAustralia(table10.5).There arecurrentlyfiveproposedsolarprojects,with acombinedcapacityof116MW.Thelargestof theseprojectsisWizardPower’s$355million WhyallaSolarOasis,whichwillbelocatedin SouthAustralia.Theprojectisexpectedtohave acapacityof80MWandisscheduledtobe completedby2012. 3.5 0.25 Solar energy consumption (PJ) 3.0 0.20 Share of total (%) 12 0.15 8 0.10 4 0.05 1.1 4.0 2.5 % 16 0.30 TWh 20 AtechnologyunderdevelopmentinAustraliaand overseasisthecombinedheatandpowersystem, combiningsolarthermalheatingwithPVtechnology (ANU2009).Typicallythisconsistsofasmall-scale concentratingparabolictroughsystemwithacentral PVreceiver,wherethereceiveriscoupledtoa coolingfluid.WhilethePVproduceselectricity,heat isextractedfromthecoolingfluidandcanbeusedin thesamewayasaconventionalsolarthermalheater. Thesesystemscanachieveagreaterefficiencyof energyconversion,byusingthesamesunlightfor twopurposes.Thesesystemsarebeingtargetedfor small-scalerooftopapplications. 0.9 Solar electricity generation (TWh) 0.8 Share of total (%) 0.6 2.0 % 24 Combined heat and power systems programsandtheproposedemissionsreduction targetareallexpectedtounderpinthegrowthof solarenergyovertheoutlookperiod. Whilehighinvestmentcostscurrentlyrepresent abarriertomorewidespreaduseofsolarenergy, thereisconsiderablescopeforthecostofsolar technologiestodeclinesignificantlyovertime.The competitivenessofsolarenergywillalsodependon governmentpolicies.TheRET,theresultsofRD&D PJ 282 Electricitygenerationfromsolarenergyisprojected toincreasestrongly,fromonly0.1TWhin2007–08 to4TWhin2029–30,representinganaverage annualgrowthrateof17.4percent(figure10.28). Theshareofsolarenergyinelectricitygeneration isalsoprojectedtoincrease,from0.04percentin 2007–08to1percentin2029–30. basicelements:anorth-facing(intheSouthern Hemisphere)windowoftransparentmaterialthat allowssunlighttoenterthebuilding;andathermal storagematerialthatabsorbsandstoresheat. Passivesolarheatingmustalsobeintegratedwith insulationtoprovideefficientstorageofheat,and roofdesignsthatcanmaximiseexposureinwinter, andminimiseexposureinsummer.Althoughsomeof thesefeaturescanberetrofittedtoexistingbuildings, thebestprospectsforpassivesolarheatingarein thedesignofnewbuildings. 0.5 1.5 0.3 1.0 0 0 0.2 0.5 0 0 1999- 2000- 2001- 2002- 2003- 2004- 2005- 2006- 2007- 202904 00 01 02 03 05 06 07 08 30 1999- 2000- 2001- 2002- 2003- 2004- 2005- 2006- 2007- 202900 01 02 03 04 05 06 07 08 30 Year Year AERA 10.2 AERA 10.3 Figure 10.27 Projectedprimaryenergyconsumption ofsolarenergy Figure 10.28 Projectedelectricitygenerationfrom solar energy Source: ABARE2009a,2010 Source: ABARE2009a,2010 AUSTRA L I AN E N E R GY R E S O U R C E A S S E S S M E NT C H A P T E R 1 0 : S O LAR ENER GY Table 10.4 OutlookforAustralia’ssolarmarketto2029–30 unit 2007–08 2029–30 Primary energy consumption PJ 7 24 Shareoftotal % 0.1 0.3 Averageannualgrowth,2007–08to20029–30 % 5.9 Electricity generation Electricityoutput TWh 0.1 4 Shareoftotal % 0.04 1.0 Averageannualgrowth,2007–08to2029–30 % 17.4 a Energyproductionandprimaryenergyconsumptionareidentical Source: ABARE2009a,2010 Table 10.5 Proposedsolarenergyprojects Project Company Location Status Start up Capacity Capital expenditure SolarGasOne CSIROandQld Government Qld Government grantreceived 2012 1MW na LakeCargelligo solarthermal project LloydEnergy Systems LakeCargelligo, NSW Government grantreceived na 3MW na Cloncurrysolar thermalpower station LloydEnergy Systems Cloncurry,Qld Government grantreceived 2010 10MW $31m ACTsolarpower plant ACTGovernment Tobe determined,ACT Pre-feasibility studycompleted 2012 22MW $141m WhyallaSolar Oasis WizardPower Whyalla,SA Feasibilitystudy underway 2012 80MW $355m 283 Source: ABARE2009c;LloydEnergySystems2007 10.5References ABARE(AustralianBureauofAgriculturalandResource Economics),2010,Australianenergyprojectionsto2029–30, ABAREresearchreport10.02,preparedfortheDepartment ofResources,EnergyandTourism,Canberra ABARE,2009a,AustralianEnergyStatistics,Canberra, August ABARE,2009b,Electricitygeneration:Majordevelopment projects–October2009listing,Canberra,November AER(AustralianEnergyRegulator),2008,Stateofthe EnergyMarket2008,<http://www.aer.gov.au/content/ index.phtml/itemId/723386> dwellingsinAustralia,NorthSydney,<http://www.bis.com.au/ reports/hot_water_systems_nd_in_aust.html> BorensteinS,2008,TheMarketValueandCostofSolar PhotovoltaicElectricityProduction,CentrefortheStudyof EnergyMarkets,UniversityofCalifornia BureauofMeteorology,2009,AverageDailySolarExposure, <http://www.bom.gov.au/climate/averages/climatology/solar_ radiation/IDCJCM0019_solar_exposure.shtml> CEC(CleanEnergyCouncil),2009,SolarIndustrySnapshot, <http://www.bcse.or.au/cec/resourcecentre/reports/ mainColumnParagraphs/00/text_files/file15/CEC%20 Solar%20Sheet_revised_2.pdf> Ausra,2009,TheLiddellSolarThermalPowerStation, <http://www.ausra.com/pdfs/LiddellOverview.pdf> ClimateActionNewcastle,2009,Newcastle’sGoingSolar, <http://www.climateaction.org.au/files/images/solar%20 panel%20photo_0.jpg> ANU(AustralianNationalUniversity),2009a,SolarThermal EnergyResearch,<http://solar-thermal.anu.edu.au/pages/ DownloadPics.php> CSIRO,2010,EnergytechnologyinAustralia:overviewand prospectsforthefuture,AreportfortheDepartmentof Resources,EnergyandTourism,Canberra(forthcoming) ANU,2009b,CombinedHeatandPowerSolar(CHAPS) ConcentratorSystem,<http://solar.anu.edu.au/projects/ chaps_proj.php> DESERTEC,2009,CleanPowerFromDeserts.Whitebook4th Edition,<http://www.desertec.org/en/concept/whitebook/> AZSC(ArizonaSolarCenter),2009,PassiveSolarHeating andCooling,<http://www.azsolarcenter.com/technology/ pas-2.html> Begay-CampbellS,2008,ConcentratingSolarTechnologies andApplications:SandiaNationalLaboratories,<http:// apps1.eere.energy.gov/tribalenergy/pdfs/course_tcd0801_ ca17ax.pdf> BISShrapnel,2008,Hotwatersystemsinstalledinnew Desertec-UK,2009,ConcentratingSolarThermalPower, <http://www.trec-uk.org.uk/images/schott_parabolic_trough. jpg> DEWHA(DepartmentofEnvironment,Water,Heritageand theArts),2009,Solarhomesandcommunitiesplanwebsite, <http://www.environment.gov.au/settlements/renewable/pv/ index.html> EIA(EnergyInformationAdministrationoftheUnitedStates), 2009,InternationalEnergyOutlook2009,WashingtonDC AU S T RA LIA N E N E RGY RE S O U RC E A S SES SMENT Enviromission,2009,TechnologyOverview,<http:// www.enviromission.com.au/EVM/content/technology_ technologyover.html> EPIA(EuropeanPhotovoltaicIndustryAssociation),2009, GlobalMarketOutlookforPhotovoltaicsUntil2013, <http://www.epia.org/publications/epia-publications.html> ProwseR,2009,Personalcommunication,5/6/2009. CentreManager,CentreforSustainableEnergySystems, AustralianNationalUniversity FthenakisV,MasonJEandZweibelK,2009,Thetechnical, geographical,andeconomicfeasibilityforsolarenergyto supplytheenergyneedsoftheUS,EnergyPolicy,vol37, no2,387–399 RET(DepartmentofResources,EnergyandTourism), 2009a,AustralianSolarInstituteFactSheet,<http://www. ret.gov.au/energy/Documents/ASI%20Fact%20sheet%20 14Jan%20cleared%20by%20MO.pdf> GeoscienceAustralia,2009,RenewableEnergyPower Stations,<http://www.ga.gov.au/renewable/operating/ operating_renewable.xls> RET,2009b,SolarFlagshipsProgramFactSheet,<http:// www.ret.gov.au/energy/Documents/Solar%20Flagships%20 factsheet%20-%20Oct%202009.pdf> Greenpeace,2009,ConcentratingSolarPower,Global Outlook09,<http://www.greenpeace.org/international/ press/reports/concentrating-solar-power-2009> Sandia,2009,LabAccomplishments2009:SandiaNational Laboratories,<http://www.sandia.gov/LabNews/labsaccomplish/2009/lab_accomplish-2009.pdf> IEA(InternationalEnergyAgency),2003,GreenhouseGas ResearchandDevelopmentProgramme–Thepotentialof solarelectricitytoreduceCO2emissions,Paris IEA,2009a,WorldEnergyOutlook2009,Paris IEA,2009b,WorldEnergyBalances,2009,Paris IEA-PVPS,2008,TrendsinPhotovoltaicApplications:Survey reportofselectedIEAcountriesbetween1992and2007, IEAPhotovoltaicPowerSystemsProgramme JiaxingDyiSolarEnergyCo,2009,SolarWater Heater-1,<http://jxdiyi.en.made-in-china.com/product/ sqdnACbhfQDM/China-Flat-Solar-Water-Heater-1.html> JonesJ,2008,ConcentratingSolarThermalPower, RenewableEnergyWorldMagazine 284 NREL,2009b,PhotovoltaicResearch–Building-Integrated PV,<http://www.nrel.gov/pv/building_integrated_pv.html> LloydEnergySystems,2007,CloncurrySolarThermal StorageProject,<http://www.lloydenergy.com/ presentations/Cloncurry%20Solar%20Thermal%20 Storage%20Project.pdf> LorenzP,PinnerDandSeitzT,2008,TheEconomicsof SolarPower.TheMcKinseyQuarterly,June2008 LovegroveKandDennisM,2006,Solarthermalenergy systemsinAustralia.InternationalJournalofEnvironmental Studies.63(6):791–802 MacKayDJC,2009,SustainableEnergy–WithouttheHot Air.UIT,Cambridge,<http://www.withouthotair.com/> McKinsey&Company,2008,TheEconomicsofSolar Power,inMcKinseyQuarterly,June2008,<http://www. mckinseyquarterly.com> MillsD,MorrisonGandLeLievreP,2002,ProjectProposalfor aCompactLinearFresnelReflectorSolarThermalPlantinthe HunterValley,<http://solar1.mech.unsw.edu.au/glm/papers/ Mills_projectproposal_newcastle.pdf> NationalAeronauticsandSpaceAdministration(NASA), 2009,SurfaceMeteorologyandSolarEnergyDataset, <http://eosweb.larc.nasa.gov/sse> NREL,2009a,PhotographicInformationExchange, <http://www.nrel.gov/data/pix/searchpix.html> AUSTRA L I AN E N E R GY R E S O U R C E A S S E S S M E NT SEGS,2009,SolarElectricityGeneratingSystemswebsite, <http://www.flagsol.com/SEGS_tech.htm> Sellsius,2006,TheWorld’sMostEfficientSolarEnergy, <http://blog.sellsiusrealestate.com/technology/the-worldsmost-efficient-solar-energy/2006/08/06/> SolarSystems,2009,154MWVictorianProject,<http:// www.solarsystems.com.au/154MWVictorianProject.html> SolarTubeCompany,2009,SolarWaterHeatingSystem, <http://www.solartubecompany.co.uk/solar-water-heating/> SteinW,2009a,personalcommunication,4/8/2009. Manager,NationalSolarEnergyCentre,CSIRODivisionof EnergyTechnology SteinW,2009b,personalcommunication,3/11/2009. Manager,NationalSolarEnergyCentre,CSIRODivisionof EnergyTechnology SunwizeTechnologies,2008,SunWizeWorldInsolation Map,<http://www.sunwize.com/info_center/solarinsolation-map.php> WattM,2009,NationalSurveyReportofPVPower ApplicationsinAustralia2008:AustralianPVAssociation WEC(WorldEnergyCouncil),2007,SurveyofEnergy Resources2007,London,September2007,<http:// www.worldenergy.org/pugblications/survey_of_energy_ resources_2007/default.asp> WEC,2009,Surveyofenergyresources:Interimupdate 2009.London,July2009,<http://www.worldenergy. org/publications/survey_of_energy_resources_interim_ update_2009/default.asp> WyldGroupandMMA,2008,HighTemperatureSolar ThermalTechnologyRoadmap.PreparedfortheNSWand VictorianGovernmentsbyWyldGroupandMcLennan MagasanikAssociates,<http://www.coag.gov.au/reports/ docs/HTSolar_thermal_roadmap.pdf>
© Copyright 2024