The Hashemite University Electrical Engineering Department Fall 11-12 A Probability: Final Exam َ◌(50%) Instructor: Drs: A Al-Nimrat, A. Byati Student Name:………….. Serial number: ………….. Section: Table (1) 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 [30 points] Q1)Fill-in Table (1) above with the alphabet of the most correct answer for the following questions: 1. Tickets numbered 1 to 20 are mixed up and then a ticket is drawn at random. the probability that the ticket drawn has a number which is a multiple of 3 or 5 is a) 1 2 b) 8 15 c) 2 5 d) 9 20 e)None 2.A bag contains 2 red, 3 green, and 2 blue balls. Two balls are drawn at random. the probability that none of the balls drawn is blue is 10 11 2 5 b) c) d) e) None a) 21 21 7 7 3. the probability of getting a sum 9 from two throws of a dice is 1 1 1 a) b) c) 6 8 9 d) 1 12 e) None 4. for a data entry job a candidate must take two exams; oral and written. If the probability to pass the oral is 0.7, probability to pass the written is 0.5, and the probability to pass both is 0.25, then the probability that a candidate pass neither exam is a) 0.45 b) 0.75 c) 0.95 d) 0.05 e) None 5. Suppose we have a bowl with 10 marbles - 2 red marbles, 3 green marbles, and 5 blue marbles. We randomly select 4 marbles from the bowl, with replacement. the probability of selecting 2 green marbles and 2 blue marbles is a) 0.135 b) 0.35 c) 0.432 1 d) 0.25 e) None 6. The average number of homes sold a company is 2 homes per day. the probability that exactly 3 homes will be sold in 3 days is a) 0.32 b) 0.026 c) 0.089 d) 0.45 e)None 7. Suppose scores on a test are normally distributed. If the test has a mean of 100 and a standard deviation of 10, then the probability that a person who takes the test will score between 90 and 110 (hint: F(1)= 0.84) is a) 0.52 b) 0.68 c) 0.45 d) 0.78 e) None 8. If the probability that a student is absent in class is (0.02), then the probability that there will be zero absence in a class of 40 students is a) 1 b) 0.98 c)0.225 d)0.445 e)None • For the jpdf of X, Y 1 xy f X (x ) = 4 o Answer (9,10,11) 9. P [X > 1,Y > 1] equals 5 9 a) b) 16 16 c) 10. the correlation R X Y 5 16 a) b) 16 9 2 2 11. the E [X +Y ] equals c) : 0 p X < 2, 0 p Y < 2 : o.w 3 8 1 8 d) d) 16 5 1 8 e) None e)None a) 6 b) 2 c) 4 d) 8 e)None • the jpdf of X, Y is f X Y (x= , y ) 0.12δ (x − 1)δ ( y − 1) + 0.18δ (x − 1)δ ( y − 2) + 0.28δ (x − 2)δ ( y − 1) + 0.42δ (x − 2)δ ( y − 2) answer (12,13) 12. the correlation R X Y a) 1.75 b) 2.72 c) 4.25 13. the mean value of X equals a) 1.2 b) 0.7 c) 2.6 d) 3 e)None d) 1.7 e)None k (1 + x ) : 0 < x < 2 for f x (x ) = , answer (14,15) : o.w 0 14. the value of K that makes f X (x ) a valid pdf equals a) -0.25 b) 0.25 c) 0.5 d) 1.5 e)None 4 15. the E [X ] equals • a) 64 15 b) 32 21 c) 45 15 2 d) 5 7 e) None [10 points] Q2) X ,Y are independent uniformly distributed random variables in [0,1] , if = Z (X +Y ) 2 Find: a) The cumulative distribution function FZ (z ) . b) The probability density function f Z (z ) . [10 points] Q3) the jpdf of X ,Y is given by 1 : 0 p x < 2, 0 p y < 2, y < x (x + y ) f X (x ) = 4 o : o.w Find: a) The marginal pdf f Y ( y ) . b) The conditional density f X (x 0.5 < y < 1.5) . 3 The Hashemite University Electrical Engineering Department Spring 11-12 A Probability: Final Exam (50%) Instructor: Dr. A Al-Nimrat. Student Name:………….. Serial number: ………….. Table (1) 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 [30 points] Q1)Fill-in Table (1) above with the alphabet of the most correct answer for the following questions: 1. Tickets numbered 1 to 20 are mixed up and then a ticket is drawn at random. the probability that the ticket drawn has a number which is prime number of is a) 1 2 b) 8 15 c) 2 5 d) 9 20 e)None 2.A bag contains 2 red, 3 green, and 2 blue balls. Two balls are drawn at random without replacement. the probability of the balls drawn are (G,B) is 11 5 6 6 a) b) c) d) e) None 21 42 21 7 3. The probability of getting even number from two throws of a dice is 1 1 1 3 a) b) c) d) e) None 12 8 9 12 4.In a box, there are 8 red, 7 blue, and 6 green balls. One ball is picked up randomly. the probability that it is neither red nor green 1 3 8 7 b) c) d) e) None 3 4 21 19 5.Three unbiased coins are tossed. the probability of getting at most two heads is 1 3 7 3 a) b) c) d) e) None 4 4 8 8 6.In a class, there are 15 boys and 10 girls. Three students are selected at random. The probability that 1 girl and 2 boys are selected, is a) 1 a) 21 46 b) 1 50 c) 25 117 d) 3 25 e) None 7. Suppose we have a bowl with 10 marbles - 2 red marbles, 3 green marbles, and 5 blue marbles. We randomly select 4 marbles from the bowl with replacement. the probability of selecting 2 green marbles and 2 blue marbles is a) 0.135 b) 0.35 c) 0.432 d) 0.25 e) None 8.From a pack of 52 cards, two cards are drawn together at random. the probability of both the cards being queens is 1 25 35 1 a) b) c) d) e) None 15 57 256 221 9. The average number of homes sold by a company is 2 homes per day. the probability that exactly 3 homes will be sold in 3 days is a) 0.32 b) 0.026 c) 0.089 d) 0.45 e)None 10. Suppose scores on a test are normally distributed. If the test has a mean of 100 and a standard deviation of 10, then the probability that a person who takes the test will score at least a 100 is b) 0.50 c) 0.45 d) 0.78 e) None a) 0.52 11. If the probability that a student is absent in class is (0.02), then the probability that there will be zero absence in a class of 40 students is a) 1 b) 0.98 c)0.225 d)0.445 e)None k (1 + x ) : 0 < x < 2 , answer (12,13) for f x (x ) = : o.w 0 12. the value of K that makes f X (x ) a valid pdf equals a) -0.25 b) 0.25 c) 0.5 d) 1.5 e)None 4 13. the E [X ] equals • 64 32 45 5 b) c) d) e) None 15 21 15 7 14.The probability that a student is accepted to a college is 0.3. If 5 students from the same school apply, the probability that at most 2 are accepted is a) 0.246 b) 0.580 c)0.837 d)0.345 e)None a) 15. if X is N(0,1) and Y = X 2 then mean value of Y equals a) 0 b) 1 c)0.5 d)-1 e)None 16. if the sample space of a random experiment is S = {0,1, 2.5,6} , if the random variable X (s ) = cos(π s ) , the range of X is a){-1,0,1} b){-1,0} c){-1,1} d){0,1} e) None 16. if X is uniform R.V. in [0,1] and Y = e − X , then f Y ( y ) equals 2 a) e − y u ( y ) d) b) 1 [u ( y − e −1 ) − u ( y − 1)] y −1 [u ( y − e −1 ) − u ( y − 1)] y c) 1[u ( y ) − u ( y − 1)] e)None 17. the mean value of Y in(16) equals a) e −1 − 1 b) e −1 e c) e −1 d) 1 − e e) None 18. if X is bernoulli R.V. with pmf : p [ X = 0] = q , p [ X = 1] = p , p + q = 1 , then the moment generating function M X (s ) equals a) (q + p ) n b) (q + e s p ) d) ( p + e − s q ) n c) ( p + e s q ) n e)None 19. The characteristic function of R.V. X is Q X (ω= ) (q + e jw p ) n , then the variance of X equals a) − p b) np c) nq d) npq e) None 20. if X is uniform R.V. in [ 0, π ] , and Y = sin X ,then f Y ( y ) equals a) 2 π 1− y 1 π 1+ y 2 2 [u ( y + 1) − u ( y − 1)] [u ( y + 1) − u ( y )] b) d) 1 π 1+ y 2 2 π 1− y 2 [u ( y ) − u ( y − 1)] [u ( y ) − u ( y − 1)] c) e) None 21. the pdf of R.V. X is f X= ( x ) 0.3δ ( x ) + 0.4δ ( x − 1) + 0.3δ ( x − 2) , if Y = X ! , then FY ( y ) equals a) 0.3u ( y ) + 0.7u ( y − 2) b) 0.6u ( y − 1) + 0.4u ( y − 4) c) 0.7u ( y − 1) + 0.3u ( y − 2) d) 0.7u ( y ) + 0.3u ( y − 4) 22. The value of b that makes f X Y a) 2 b) 4 e)None x 2 + y 2 2 :x + y2 pb , a valid jpdf is (x , y ) = π 0 :otherwise c) 2 d) -4 e) None π x π y 23. The value of b that makes FX Y ( x , y ) = b + tan −1 + tan −1 , a valid jcdf 2 2 2 2 is a) π b) 2π c) π 2 d) 3 1 π2 e) None 24. The jpdf f X Y 2 π cos xy : −1 p x , y p 1 , then marginal pdf of X equals (x , y ) = 2 0 :otherwise 1 a) sin π x [u (x + 1) − u (x − 1) ] π 1 b) 1 + sin π x [u ( x ) − u ( x − 1)] πx c) [1 + sin π x ][u (x + 1) − u (x − 1) ] 1 sin π x [u ( x + 1) − u ( x − 1)] d) 1 + πx e) None 25. the jcdf FX Y (1 − e −α x )(1 − e − β y ) : x , y ≥ 0, α , β f 0 , then the marginal cdf of Y; (x , y ) = :otherwise 0 FY ( y ) equals b) (1 − e − β y )u ( y ) a) (1 − e − β y )u (− y ) d) (−e − β y )u ( y ) d) (−e − β y )u ( y ) e) c) u ( y ) e) None 26.the joint moment generating function of X,Y in (25) is a) αβ e − (αs1 + β s2 ) b) αβ (α − s1 )( β − s 2 ) c) u ( y ) None 27. the correlation of X,Y R X Y in (25) equals a) αβ b) α c) 1 (αβ ) 2 d)0 e) None d)0 e) None 28. the covariance of X,Y C X Y equals a) αβ b) α c) 1 (αβ ) 2 29.the correlation coefficient of X,Y ρ X Y in (25)equals a) αβ b) α c) 1 (αβ ) 2 d)0 e) None 30. X,Y in (25) are a)independent b)uncorrelated c) orthogonal 4 d)a+b e)b+c [10 points] Q2) a random current is described by the sample space S = {−4 ≤ i ≤ 12} , if the random varable X is defined as −2 : i ≤ −2 i : −2 p i ≤ 1 X (i ) = 1:1 p i ≤ 4 6 : i f 4 Find: a) The range of R.V X. b) What is the type of X. c) The cdf FX ( x ) and plot it. d) The pdf f X ( x ) and plot it. 5 [10 points] 0.5 Q3) the jpdf f X Y ( x , y ) = 0 : 0 p x p 1,0 p y p 2 :otherwise a) Find an expression for FX Y (x , y ) . b) are X and Y independent? Justify your answer. c) find the pdf f W (ω ) of W if W= X +Y . 6 The Hashemite University Electrical Engineering Department Spring 11-12 B Probability: Final Exam (50%) Student Name:………….. Instructor: Dr. A Al-Nimrat. Serial number: ………….. Table (1) 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 [30 points] Q1)Fill-in Table (1) above with the alphabet of the most correct answer for the following questions: 1. In a class, there are 15 boys and 10 girls. Three students are selected at random. The probability that 1 girl and 2 boys are selected, is 21 1 3 25 a) b) c) d) e) None 46 50 25 117 2. Suppose we have a bowl with 10 marbles - 2 red marbles, 3 green marbles, and 5 blue marbles. We randomly select 4 marbles from the bowl with replacement. the probability of selecting 2 green marbles and 2 blue marbles is a) 0.135 b) 0.35 c) 0.432 d) 0.25 e) None 3.From a pack of 52 cards, two cards are drawn together at random. the probability of both the cards being queens is 1 25 35 1 a) b) c) d) e) None 15 57 256 221 4. The average number of homes sold by a company is 2 homes per day. the probability that exactly 3 homes will be sold in 3 days is a) 0.32 b) 0.026 c) 0.089 d) 0.45 e)None 5. Suppose scores on a test are normally distributed. If the test has a mean of 100 and a standard deviation of 10, then the probability that a person who takes the test will score at least a 100 is a) 0.52 b) 0.50 c) 0.45 d) 0.78 e) None 6. Tickets numbered 1 to 20 are mixed up and then a ticket is drawn at random. the probability that the ticket drawn has a number which is prime number of is 1 a) 1 2 b) 8 15 c) 2 5 d) 9 20 e)None 7.A bag contains 2 red, 3 green, and 2 blue balls. Two balls are drawn at random without replacement. the probability of the balls drawn are (G,B) is 11 5 6 6 b) c) d) e) None a) 21 42 21 7 8. The probability of getting even number from two throws of a dice is 1 1 1 3 a) b) c) d) 12 8 12 9 e) None 9.In a box, there are 8 red, 7 blue, and 6 green balls. One ball is picked up randomly. the probability that it is neither red nor green a) 1 3 b) 3 4 c) 8 21 d) 7 19 e) None 10.Three unbiased coins are tossed. the probability of getting at most two heads is 7 3 1 3 a) b) c) d) e) None 8 8 4 4 11. If the probability that a student is absent in class is (0.02), then the probability that there will be zero absence in a class of 40 students is a) 1 b) 0.98 c)0.225 d)0.445 e)None k (1 + x ) : 0 < x < 2 for f x (x ) = , answer (12,13) : o.w 0 11. the value of K that makes f X (x ) a valid pdf equals a) -0.25 b) 0.25 c) 0.5 d) 1.5 4 12. the E [X ] equals • a) 64 15 b) 32 21 c) 45 15 e)None d) 5 7 e) None 13.The probability that a student is accepted to a college is 0.3. If 5 students from the same school apply, the probability that at most 2 are accepted is a) 0.246 b) 0.580 c)0.837 d)0.345 e)None 14. if X is N(0,1) and Y = X 2 then mean value of Y equals a) 0 b) 1 c)0.5 d)-1 e)None 15. the pdf of R.V. X is f X= ( x ) 0.3δ ( x ) + 0.4δ ( x − 1) + 0.3δ ( x − 2) , if Y = X ! , then FY ( y ) equals a) 0.3u ( y ) + 0.7u ( y − 2) b) 0.6u ( y − 1) + 0.4u ( y − 4) 2 c) 0.7u ( y − 1) + 0.3u ( y − 2) d) 0.7u ( y ) + 0.3u ( y − 4) 16. The value of b that makes f X Y a) 2 b) 4 e)None x 2 + y 2 2 :x + y2 pb , a valid jpdf is (x , y ) = π 0 :otherwise c) 2 17. The value of b that makes FX Y d) -4 e) None π x π y b + tan −1 + tan −1 , a valid jcdf (x , y ) = 2 2 2 2 is 1 a) π 18. The jpdf f X Y c) π b) 2π 2 π cos xy (x , y ) = 2 0 2 d) π 2 e) None : −1 p x , y p 1 , then marginal pdf of X equals :otherwise 1 a) sin π x [u (x + 1) − u (x − 1) ] π 1 b) 1 + sin π x [u ( x ) − u ( x − 1)] πx c) [1 + sin π x ][u (x + 1) − u (x − 1) ] 1 sin π x [u ( x + 1) − u ( x − 1)] d) 1 + πx e) None (1 − e −α x )(1 − e − β y ) : x , y ≥ 0, α , β f 0 19. the jcdf FX Y (x , y ) = , then the marginal cdf of Y; 0 :otherwise FY ( y ) equals b) (1 − e − β y )u ( y ) a) (1 − e − β y )u (− y ) c) u ( y ) d) (−e − β y )u ( y ) e) None 20. if the sample space of a random experiment is S = {0,1, 2.5,6} , if the random variable X (s ) = cos(π s ) , the range of X is a){-1,0,1} b){-1,0} c){-1,1} d){0,1} e) None 21.if X is uniform R.V. in [0,1] and Y = e − X , then f Y ( y ) equals a) e − y u ( y ) d) b) 1 [u ( y − e −1 ) − u ( y − 1)] y −1 [u ( y − e −1 ) − u ( y − 1)] y e)None 22. the mean value of Y in(16) equals 3 c) 1[u ( y ) − u ( y − 1)] a) e −1 − 1 b) e −1 e c) e −1 d) 1 − e e) None 23. if X is bernoulli R.V. with pmf : p [ X = 0] = q , p [ X = 1] = p , p + q = 1 , then the moment generating function M X (s ) equals a) (q + p ) n d) ( p + e − s q ) n c) ( p + e s q ) n b) (q + e s p ) e)None 24. The characteristic function of R.V. X is Q X (ω= ) (q + e jw p ) n , then the variance of X equals a) − p b) np c) nq d) npq e) None 25. if X is uniform R.V. in [ 0, π ] , and Y = sin X ,then f Y ( y ) equals a) c) 2 π 1− y 2 1 π 1+ y 2 [u ( y + 1) − u ( y − 1)] [u ( y + 1) − u ( y )] b) 1 π 1+ y 2 2 d) π 1− y 2 [u ( y ) − u ( y − 1)] [u ( y ) − u ( y − 1)] e) None 26.the joint moment generating function of X,Y in (19) is a) αβ e − (αs1 + β s2 ) b) αβ (α − s1 )( β − s 2 ) c) αβ e (αs1 + β s2 ) d) α − (α s + β s e β 1 2) e) None 27. the correlation of X,Y R X Y in (19) equals a) αβ b) α c) 1 (αβ ) 2 d)0 e) None d)0 e) None 28. the covariance of X,Y C X Y in (19) equals a) αβ b) α c) 1 (αβ ) 2 29.the correlation coefficient of X,Y ρ X Y in (19)equals a) αβ b) α 1 (αβ ) 2 c) d)0 e) None 30. X,Y in (19) are a)independent b)uncorrelated c) orthogonal 4 d)a+b e)b+c [10 points] Q2) a random current is described by the sample space S = {−4 ≤ i ≤ 12} , if the random varable X is defined as −2 : i ≤ −2 i : −2 p i ≤ 1 X (i ) = 1:1 p i ≤ 4 6 : i f 4 Find: a) The range of R.V X. b) What is the type of X. c) The cdf FX ( x ) and plot it. d) The pdf f X ( x ) and plot it. 5 [10 points] 0.5 Q3) the jpdf f X Y ( x , y ) = 0 : 0 p x p 1,0 p y p 2 :otherwise a) Find an expression for FX Y (x , y ) . b) are X and Y independent? Justify your answer. c) find the pdf f W (ω ) of W if W= X +Y . 6 The Hashemite University Electrical Engineering Department Spring 11-12 A Probability: First Exam َ◌(25%) Instructor: Dr. A Al-Nimrat. Student Name:………….. Serial number: ………….. Table (1) 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 [30 points] Q1)Fill-in Table (1) above with the alphabet of the most correct answer for the following questions: 1. Tickets numbered 1 to 20 are mixed up and then a ticket is drawn at random. the probability that the ticket drawn has a number which is a multiple of 3 or 5 is a) 1 2 b) 8 15 c) 2 5 d) 9 20 e)None 2.A bag contains 2 red, 3 green, and 2 blue balls. Two balls are drawn at random. the probability that none of the balls drawn is blue is 10 11 2 5 b) c) d) e) None a) 21 21 7 7 3. The probability of getting a sum 9 from two throws of a dice is 1 1 1 1 a) b) c) d) e) None 6 8 9 12 4.In a box, there are 8 red, 7 blue, and 6 green balls. One ball is picked up randomly. the probability that it is neither red nor green 1 3 8 7 b) c) d) e) None 3 4 21 19 5.Three unbiased coins are tossed. the probability of getting at most two heads is 1 3 7 3 b) c) d) e) None a) 4 4 8 8 6.In a class, there are 15 boys and 10 girls. Three students are selected at random. The probability that 1 girl and 2 boys are selected, is 21 1 25 3 a) b) c) d) e) None 46 50 117 25 a) 1 7. Suppose we have a bowl with 10 marbles - 2 red marbles, 3 green marbles, and 5 blue marbles. We randomly select 4 marbles from the bowl with replacement. the probability of selecting 2 green marbles and 2 blue marbles is a) 0.135 b) 0.35 c) 0.432 d) 0.25 e) None 8.From a pack of 52 cards, two cards are drawn together at random. the probability of both the cards being kings is 1 25 35 1 a) b) c) d) e) None 15 57 256 221 9. The average number of homes sold by a company is 2 homes per day. the probability that exactly 3 homes will be sold in 3 days is a) 0.32 b) 0.026 c) 0.089 d) 0.45 e)None 10. Suppose scores on a test are normally distributed. If the test has a mean of 100 and a standard deviation of 10, then the probability that a person who takes the test will score between 90 and 110 (hint: F(1)= 0.84) is b) 0.68 c) 0.45 d) 0.78 e) None a) 0.52 11. If the probability that a student is absent in class is (0.02), then the probability that there will be zero absence in a class of 40 students is a) 1 b) 0.98 c)0.225 d)0.445 e)None k (1 + x ) : 0 < x < 2 for f x (x ) = , answer (12,13) : o.w 0 12. the value of K that makes f X (x ) a valid pdf equals a) -0.25 b) 0.25 c) 0.5 d) 1.5 e)None 4 13. the E [X ] equals • 64 32 45 5 b) c) d) e) None 15 21 15 7 14.The probability that a student is accepted to a college is 0.3. If 5 students from the same school apply, the probability that at most 2 are accepted is a) 0.246 b) 0.580 c)0.837 d)0.345 e)None a) 15. if X is N(0,1) and Y = X 2 then mean value of Y equals a) 0 b) 1 c)0.5 d)-1 e)None 16. if the sample space of a random experiment is S = {0,1, 2.5,6} , if the random variable X (s ) = cos(π s ) , the range of X is a){-1,0,1} b){-1,0} c){-1,1} d){0,1} e) None [10 points] Q2) a random current is described by the sample space S = {−4 ≤ i ≤ 12} , if the random varable X is defined as 2 −2 : i ≤ −2 i : −2 p i ≤ 1 X (i ) = 1:1 p i ≤ 4 6 : i f 4 Find: a) The range of R.V X. b) What is the type of X. c) The cdf FX ( x ) d) The pdf f X ( x ) Q3) the pdf of X is given by 1 − x2 f X ( x ) = e u ( x ) , if event A = {1 p X ≤ 3}, B = {X ≤ 2.5},C =A I B . 2 Find: a) The cpdf f X ( x / B ) . b) The probability of C. 3
© Copyright 2024