G3 PLC – WS3 Interoperability PHY Layer interoperability process New implementers v0.4 Context This document describes how will be ensured the interoperability of new implementations of the PHY layer of the G3 protocol for the CENELEC-A band, the FCC band and the ARIB band. The proposed interoperability process for the PHY layer of G3 is performed in the form of an « interoperability round » divided in 3 successive steps: − Step 1 : Tests of the digital part of the PHY layer at the simulator level. − Step 2 : Tests of the complete PHY layer at the simulator level. − Step 3 : Plug fest. All information delivered to the implementers in the framework of this process shall be anonymized. Page 1 Step 1 : Test of the digital part of the PHY layer at the simulator level These tests are performed in a stand-alone format. They are performed by the new implementer in its own premisses. The exchanges with TRIALOG are performed via email. The tests are divided in 2 sub-steps: − Tests of the Tx chain. − Tests of the Rx chain. We will use the following decomposition in modules of the PHY layer: PCO12 Preamble FCH Data Scrambler PCO1 Data De-Scrambler PCO1' FCH Reed Salomon Encoder PCO2 Reed Salomon Decoder PCO2' PCO9 PCO10 Conv. Encod. + Repetition Interleaver Mapper + Modulator PCO3 PCO4 PCO5 PCO6 Demodulator PCO6' FFT, …, AFE Viterbi Decoder, Robust combiner PCO3' PCO8' De-Interleaver PCO4' Viterbi Decoder, Robust combiner De-Scrambler PCO7' Mapper + Modulator PCO8 PCO7 PCO11 Interleaver Conv. Encod. + Repetition Scrambler De-Interleaver PCO9' IFFT, …, AFE PCO5' Power Line Demodulator PCO10' PCO11' Preamble PCO12' Each module is seen as a black box and we are interested only in its input / output. That is why we need only to focus on what happens at the PCOs (« PCO » stands for Point of Control and Observation). NB: The Scrambler output (PCO02 and PCO08) does not include the 6 leading bits added by the Convolutional encoder. Page 2 Tests of the Tx chain The new implementer will use the inputs that are described in Annex 1. The description of each input allows the new implementer to define the FCH and Data to inject at PCO7 and PCO1. The new implementer will provide to TRIALOG the FCH and Data injected at PCO7 and PCO1, and the results observed at each PCO, from PCO2 to PCO6 and PCO8 to PCO11, after injecting the FCH and Data at PCO7 and PCO1 in their simulator. The preamble should also be provided at PCO 12. TRIALOG will give to the new implementer the results of the test (correct, incorrect). In case of an incorrect result, TRIALOG will study the result with the new implementer. At the end of this stage TRIALOG will deliver a synthesis of the results of the test. Tests of the Rx chain TRIALOG will provide the inputs to be injected in PCO6', PCO11' and PCO12', i.e. the correct results that was observed at PCO6, PCO11 and PCO12. The new implementer will provide to TRIALOG the result observed at PCO1' and PCO7'. Results observed at the other PCOs are optional. TRIALOG will give to the new implementer the results of the test (correct, incorrect). In case of an incorrect result, TRIALOG will study it with the new implementer. At the end of this stage TRIALOG will deliver a synthesis of the results. Page 3 Step 2 : Tests of the complete PHY layer at the simulator level These tests are performed by the new implementer in its own premisses. The exchanges with TRIALOG are performed via email. A minimum of 2 new implementers is necessary, the more being the best. These tests are divided in 2 sub-steps : − Tests of the Tx with known inputs. − Tests of the Rx with a hidden message. Tests with known inputs The inputs described (common messages) in Annex 1 are passed through the new implementers' transmitter chain in their simulator. Then the final output is synthesized as a time domain signal to be coupled to the physical medium (i.e. powerline) at a specified sampling frequency. TRIALOG will collect the synthesized time domain signals and distribute the files to each new implementer. The recipient will then run their receive simulation on the data files to verify they can decode the supplied time domain signals in their own simulator to extract the common messages. Each new implementer will then report results back to TRIALOG in indicating the result obtained for each test. In case of an incorrect result, TRIALOG will study it with the concerned new implementer. At the end of this stage TRIALOG will deliver a synthesis of the results of the test for all the new implementers. Test with a hidden message The same process as above will be performed with a hidden message. Hidden messages are implementer-chosen and only TRIALOG knows each new implementer’s hidden message. At the end of this stage TRIALOG will deliver a synthesis of the results of the test for all the new implementers. Page 4 Step 3 : Plug fest on the PHY layer The objective of the plug fest is to have a face-to-face meeting in order to demonstrate the interoperability of implementations over the PLC link. This plug fest will gather the new implementers and at least one reference (or golden node), i.e. an implementation having already passed successfully the PHY layer interoperability tests of the G3-PLC Alliance. Depending on the number of new implementers, we propose that each implementation will be confronted to every other ones, and with the reference(s). The confrontation will consist in the following set up: PHY Layer Implementer B PHY Layer Implementer A Power line The set of tests to be executed is described in Annex 1. TRIALOG will collect the outputs generated by each implementation when receiving the PHY frames sent by every other implementations. In case of any misalignment, TRIALOG will study with the new implementers the reason of the issue. At the end of this stage TRIALOG will deliver a report showing the results of each implementation in receiving the PHY frames sent by all other implementations. Page 5 Annex 1 This annex describes the test vectors to be performed for the PHY layer. First the format of the test vector is defined. Then the test vectors are described. Test Vector Requirements Format The first step for the exchange process is the definition of test vectors requirements; these requirements will be used to configure the PHY layer transmitter. The template used to describe the test vector requirement is shown below. Table : Test vector requirement template TEST ID: PARAMETERS NAME: Tone mask Tone map Modulation psduLength Data sequence PDC DT PARAMETERS VALUE The TEST CASE ID refers to the test vector requirement number. The Band-plan / Mode can take the following values: 1. CENELEC-A / differential modulation 2. CENELEC-A / coherent modulation 3. FCC-1 / differential modulation 4. FCC-1 / coherent modulation 5. ARIB / differential modulation 6. ARIB / coherent modulation The Tone mask can assume two configurations: 1. No notching used 2. Notching used (a notching configuration is defined for each band-plan) The Tone map describes the frequency intervals of carriers turned on or turned off. The Modulation can be: 1. ROBO 2. DBPSK / BPSK 3. DQPSK / QPSK 4. D8PSK / 8PSK (not used in ARIB band-plan) 5. 16QAM (FCC coherent mode only) The psduLength is the number of bytes to be transmitted, passed to PHY from MAC layer. Page 6 The Data is the stream of bytes to be transmitted passed to PHY from MAC layer. The Data may be expressed as a binary content in hexadecimal notation. Otherwise, the data sequence containing the byte stream [0, 1, 2, …,n, …, psduLength -1] should be used, where n is the value of the byte expressed as decimal number (e.g. N=189 → 10111101). If the creation of such a sequence is not possible, a random pattern can be used provided that it will be sent together with the generated waveform in order to check the correctness of the payload. If any data padding is required, it has to be added by the implementer at PCO 01. The PDC is the phase detection counter that appears in the FCH bit fields. It assumes an integer value in the range [0, 255]. The DT is the delimiter type that appears in the FCH bit fields. It assumes an integer value in the range [0, 1]. A fixed value, expressed in a decimal format, is provided for each test. Test Vector format Following the specified requirements, test vectors will be generated. Two formats are used : Digital test vectors (step 1) : the proposed data format to save the sampled test vectors is ASCII text files (.txt) filled with column-wised values. The bit sequence at each PCO will be stored as a single bit column vector ordered as they will be feed in the next block. Complex values at PCO 06, 06', 11, 11', 12 and 12' are represented as points on the unitary circle with columnwised values represented in fixed point notation. Two different columns separated by one space are used for real and imaginary part, respectively. Here is an example of what is expected : Symbol_1_carrier_1_Real_part Symbol_1_carrier_1_Imaginary_part Symbol_1_carrier_2_Real_part Symbol_1_carrier_2_Imaginary_part ... Symbol_1_carrier_36_Real_part Symbol_1_carrier_36_Imaginary_part Symbol_2_carrier_1_Real_part Symbol_2_carrier_1_Imaginary_part .... Analog Waveforms (step 2) : the test vectors shall be sampled at 400 kHz for CENELEC tests and 1.2 MHz for FCC and ARIB tests. They should be normalized in order to have values represented with fixed point notation, with a resolution of 16 bits. One file is expected for every PCO of every test case. The naming convention for the ASCII files is : "G3_PHY_COMPANY_TC_XX_PCO_YYZ.txt" where COMPANY will be substituted by the name of the implementer which has generated the test pattern, XX will be substituted by the two digits id of the Test Case, YY will be substituted by the two digits id of the PCO and Z will be replaced by “P” for “prime” PCO and “” (nothing) for the other PCO. Page 7 Test Vector Requirements CENELEC-A band-plan The notching used in CENELEC-A band-plan disables 11 carriers, corresponding to frequencies [60,9375 kHz, 76,5625 kHz]. The tone-map is constituted of 6 groups of 6 carriers, each group is enabled (1) or disabled (0). The tone-map configuration is represented as a string with one character per group, starting with the 35.9380 – 43.7505 kHz group at the left and ending with the 82.8130 – 90.6250 kHz group. Table : Test 1 TEST ID:CENELEC-A-D-01 PARAMETERS NAME: PARAMETERS VALUE Band-plan / ModeCENELEC-A / differential modulation Tone maskNo notching Tone map111111 ModulationROBO psduLength49 bytes Data (hexadecimal 47 33 20 49 53 20 41 20 47 52 45 41 54 20 49 4e 54 45 52 4f 50 45 52 notation) 41 42 4c 45 20 57 4f 52 4c 44 57 49 44 45 20 54 45 43 48 4e 4f 4c 4f 47 59 00 PDC95 DT1 NB : The Data when expressed in ASCII corresponds to the sentence : G3 IS A GREAT INTEROPERABLE WORLDWIDE TECHNOLOGY Table : Test 2 TEST ID:CENELEC-A-D-02 PARAMETERS NAME: PARAMETERS VALUE Band-plan / ModeCENELEC-A / differential modulation Tone maskNo notching Tone map111111 ModulationROBO psduLength133 bytes Data (sequence)0, 1, 2, …, 132 PDC5 DT1 Table : Test 3 TEST ID:CENELEC-A-D-03 PARAMETERS NAME: PARAMETERS VALUE Band-plan / ModeCENELEC-A / differential modulation Page 8 Tone maskNo notching Tone map010111 ModulationDBPSK psduLength73 bytes Data (sequence)0, 1, 2, …, 72 PDC224 DT1 Table : Test 4 TEST ID:CENELEC-A-D-04 PARAMETERS NAME: PARAMETERS VALUE Band-plan / ModeCENELEC-A / differential modulation Tone maskNo notching Tone map111110 ModulationDQPSK psduLength43 bytes Data (sequence)0, 1, 2, …, 36, 0, 0, 0, 0, 0, 0 PDC128 DT1 Table : Test 5 TEST ID:CENELEC-A-D-05 PARAMETERS NAME: PARAMETERS VALUE Band-plan / ModeCENELEC-A / differential modulation Tone maskNotching activated Tone map101111 ModulationD8PSK psduLength40 bytes Data (sequence)0, 1, 2, …, 36, 0, 0, 0 PDC255 DT1 Table : Test 6 TEST ID:CENELEC-A-D-06 (interleaver special case I(1,0) = 0) PARAMETERS NAME: PARAMETERS VALUE Band-plan / ModeCENELEC-A / differential modulation Tone maskNo notching Tone map100011 ModulationDBPSK psduLength64 bytes Data (sequence)0, 1, 2, …, 63 PDC128 DT1 Page 9 Table : Test 7 TEST ID:CENELEC-A-C-01 PARAMETERS NAME: PARAMETERS VALUE Band-plan / ModeCENELEC-A / coherent modulation Tone maskNo notching Tone map111111 ModulationROBO psduLength49 bytes Data (hexadecimal 47 33 20 49 53 20 41 20 47 52 45 41 54 20 49 4e 54 45 52 4f 50 45 52 notation) 41 42 4c 45 20 57 4f 52 4c 44 57 49 44 45 20 54 45 43 48 4e 4f 4c 4f 47 59 00 PDC95 DT1 NB : The Data when expressed in ASCII corresponds to the sentence : G3 IS A GREAT INTEROPERABLE WORLDWIDE TECHNOLOGY Table : Test 8 TEST ID:CENELEC-A-C-02 PARAMETERS NAME: PARAMETERS VALUE Band-plan / ModeCENELEC-A / coherent modulation Tone maskNo notching Tone map111111 ModulationROBO psduLength121 bytes Data (sequence)0, 1, 2, …, 120 PDC5 DT1 Table : Test 9 TEST ID:CENELEC-A-C-03 PARAMETERS NAME: PARAMETERS VALUE Band-plan / ModeCENELEC-A / coherent modulation Tone maskNo notching Tone map010111 ModulationBPSK psduLength76 bytes Data (sequence)0, 1, 2, …, 72, 0, 0, 0 PDC224 DT1 Table : Test 10 TEST ID:CENELEC-A-C-04 Page 10 PARAMETERS NAME: PARAMETERS VALUE Band-plan / ModeCENELEC-A / coherent modulation Tone maskNo notching Tone map111110 ModulationQPSK psduLength37 bytes Data (sequence)0, 1, 2, …, 36 PDC128 DT1 Table : Test 11 TEST ID:CENELEC-A-C-05 PARAMETERS NAME: PARAMETERS VALUE Band-plan / ModeCENELEC-A / coherent modulation Tone maskNotching activated Tone map101111 Modulation8PSK psduLength47 bytes Data (sequence)0, 1, 2, …, 36, 0, 0, …, 0 (10 bytes of 0) PDC255 DT1 ARIB band-plan The notching used in ARIB band-plan disables 11 carriers, corresponding to the frequencies [234,375 kHz, 281,25 kHz]. The tone-map is constituted of 18 groups of 3 carriers, each group is enabled (1) or disabled (0). The tone-map configuration is represented as a string with one character per group, starting with the 154,6875 – 164,0625 kHz group at the left and ending with the 393,75 – 403,125 kHz group. Table : Test 1 TEST ID:ARIB-D-01 PARAMETERS NAME: PARAMETERS VALUE Band-plan / ModeARIB / differential modulation Tone maskNo notching Tone map111111111111111111 ModulationROBO psduLength48 bytes Data (hexadecimal 47 33 20 49 53 20 41 20 47 52 45 41 54 20 49 4e 54 45 52 4f 50 45 52 notation) 41 42 4c 45 20 57 4f 52 4c 44 57 49 44 45 20 54 45 43 48 4e 4f 4c 4f 47 59 PDC95 DT1 Page 11 NB : The Data when expressed in ASCII corresponds to the sentence : G3 IS A GREAT INTEROPERABLE WORLDWIDE TECHNOLOGY Table : Test 2 TEST ID:ARIB-D-02 PARAMETERS NAME: PARAMETERS VALUE Band-plan / ModeARIB / differential modulation Tone maskNo notching Tone map111111111111111111 ModulationROBO psduLength133 bytes Data (sequence)0, 1, 2, …, 132 PDC5 DT1 Table : Test 3 TEST ID:ARIB-D-03 PARAMETERS NAME: PARAMETERS VALUE Band-plan / ModeARIB / differential modulation Tone maskNo notching Tone map111011110011010111 ModulationDBPSK psduLength73 bytes Data (sequence)0, 1, 2, …, 72 PDC224 DT1 Table : Test 4 TEST ID:ARIB-D-04 PARAMETERS NAME: PARAMETERS VALUE Band-plan / ModeARIB / differential modulation Tone maskNotching activated Tone map111111111111111001 ModulationDQPSK psduLength37 bytes Data (sequence)0, 1, 2, …, 36, 0 PDC128 DT1 Table : Test 5 TEST ID:ARIB-D-05 (interleaver special case I(1,0) = 0) PARAMETERS NAME: PARAMETERS VALUE Page 12 Band-plan / ModeARIB / differential modulation Tone maskNo notching Tone map111111111111111111 ModulationDBPSK psduLength226 bytes Data (sequence)0, 1, 2, …, 225 PDC45 DT1 FCC-1 band-plan The notching used in FCC-1 band-plan disables 11 carriers, corresponding to the frequencies [234,375 kHz, 281,25 kHz]. The tone-map is constituted of 24 groups of 3 carriers, each group is enabled (1) or disabled (0). The tone-map configuration is represented as a string with one character per group, starting with the 154,6875 – 164,0625 kHz group at the left and ending with the 478,125 – 487,5 kHz group. Table : Test 1 TEST ID:FCC-1-D-01 PARAMETERS NAME: PARAMETERS VALUE Band-plan / ModeFCC-1 / differential modulation Tone maskNo notching Tone map111111111111111111111111 ModulationROBO psduLength48 bytes Data (hexadecimal 47 33 20 49 53 20 41 20 47 52 45 41 54 20 49 4e 54 45 52 4f 50 45 52 notation) 41 42 4c 45 20 57 4f 52 4c 44 57 49 44 45 20 54 45 43 48 4e 4f 4c 4f 47 59 PDC95 DT1 NB : The Data when expressed in ASCII corresponds to the sentence : G3 IS A GREAT INTEROPERABLE WORLDWIDE TECHNOLOGY Table : Test 2 TEST ID:FCC-1-D-02 PARAMETERS NAME: PARAMETERS VALUE Band-plan / ModeFCC-1 / differential modulation Tone maskNo notching Tone map111111111111111111111111 ModulationROBO psduLength133 bytes Data (sequence)0, 1, 2, …, 132 PDC5 DT1 Page 13 Table : Test 3 TEST ID:FCC-1-D-03 PARAMETERS NAME: PARAMETERS VALUE Band-plan / ModeFCC-1 / differential modulation Tone maskNo notching Tone map111011110011010111110011 ModulationDBPSK psduLength75 bytes Data (sequence)0, 1, 2, …, 72, 0, 0 PDC224 DT1 Table : Test 4 TEST ID:FCC-1-D-04 PARAMETERS NAME: PARAMETERS VALUE Band-plan / ModeFCC-1 / differential modulation Tone maskNo notching Tone map111111111111111001101011 ModulationDQPSK psduLength43 bytes Data (sequence)0, 1, 2, …, 36, 0, 0, 0, 0, 0, 0 PDC128 DT1 Table : Test 5 TEST ID:FCC-1-D-05 PARAMETERS NAME: PARAMETERS VALUE Band-plan / ModeFCC-1 / differential modulation Tone maskNotching activated Tone map110001111111111111111111 ModulationD8PSK psduLength41 bytes Data (sequence)0, 1, 2, …, 36, 0, 0, 0, 0 PDC255 DT1 Table : Test 6 TEST ID:FCC-1-D-06 (interleaver special case I(1,0) = 0) PARAMETERS NAME: PARAMETERS VALUE Band-plan / ModeFCC-1 / differential modulation Tone maskNo notching Page 14 Tone map111101111001111100111011 ModulationDBPSK psduLength226 bytes Data (sequence)0, 1, 2, …, 225 PDC58 DT1 Table : Test 7 TEST ID:FCC-1-D-07 (Two RS blocks used) PARAMETERS NAME: PARAMETERS VALUE Band-plan / ModeFCC-1 / differential modulation Tone maskNo notching Tone map111111111111111111111111 ModulationD8PSK psduLength316 bytes Data (sequence)0, 1, 2, …, 255, 0, 1, …, 43, 0, 0, …, 0 (16 bytes of 0) PDC87 DT0 Table : Test 8 TEST ID:FCC-1-C-01 PARAMETERS NAME: PARAMETERS VALUE Band-plan / ModeFCC-1 / coherent modulation Tone maskNo notching Tone map111111111111111111111111 ModulationROBO psduLength49 bytes Data (hexadecimal 47 33 20 49 53 20 41 20 47 52 45 41 54 20 49 4e 54 45 52 4f 50 45 52 notation) 41 42 4c 45 20 57 4f 52 4c 44 57 49 44 45 20 54 45 43 48 4e 4f 4c 4f 47 59 00 PDC95 DT1 NB : The Data when expressed in ASCII corresponds to the sentence : G3 IS A GREAT INTEROPERABLE WORLDWIDE TECHNOLOGY Table : Test 9 TEST ID:FCC-1-C-02 PARAMETERS NAME: PARAMETERS VALUE Band-plan / ModeFCC-1 / coherent modulation Tone maskNo notching Tone map111111111111111111111111 ModulationROBO psduLength133 bytes Page 15 Data (sequence)0, 1, 2, …, 132 PDC5 DT1 Table : Test 10 TEST ID:FCC-1-C-03 PARAMETERS NAME: PARAMETERS VALUE Band-plan / ModeFCC-1 / coherent modulation Tone maskNo notching Tone map111011110011010111110011 ModulationBPSK psduLength75 bytes Data (sequence)0, 1, 2, …, 72, 0, 0 PDC224 DT1 Table : Test 11 TEST ID:FCC-1-C-04 PARAMETERS NAME: PARAMETERS VALUE Band-plan / ModeFCC-1 / coherent modulation Tone maskNo notching Tone map111111111111111001101011 ModulationQPSK psduLength38 bytes Data (sequence)0, 1, 2, …, 36, 0 PDC128 DT1 Table : Test 12 TEST ID:FCC-1-C-05 PARAMETERS NAME: PARAMETERS VALUE Band-plan / ModeFCC-1 / coherent modulation Tone maskNotching activated Tone map110001111111111111111111 Modulation8PSK psduLength44 bytes Data (sequence)0, 1, 2, …, 36, 0, 0, …, 0 (7 bytes) PDC255 DT1 Table : Test 13 TEST ID:FCC-1-C-06 Page 16 PARAMETERS NAME: PARAMETERS VALUE Band-plan / ModeFCC-1 / coherent modulation Tone maskNo notching Tone map110001111110111000111111 Modulation16QAM psduLength37 bytes Data (sequence)0, 1, 2, …, 36 PDC184 DT1 Page 17
© Copyright 2024