G3 PLC – WS3 Interoperability PHY Layer - G3

G3 PLC – WS3 Interoperability
PHY Layer interoperability process
New implementers v0.4
Context
This document describes how will be ensured the interoperability of new implementations of the
PHY layer of the G3 protocol for the CENELEC-A band, the FCC band and the ARIB band.
The proposed interoperability process for the PHY layer of G3 is performed in the form of an
« interoperability round » divided in 3 successive steps:
− Step 1 : Tests of the digital part of the PHY layer at the simulator level.
− Step 2 : Tests of the complete PHY layer at the simulator level.
− Step 3 : Plug fest.
All information delivered to the implementers in the framework of this process shall be
anonymized.
Page 1
Step 1 : Test of the digital part of the PHY layer at the simulator level
These tests are performed in a stand-alone format. They are performed by the new implementer in
its own premisses. The exchanges with TRIALOG are performed via email. The tests are divided in
2 sub-steps:
− Tests of the Tx chain.
− Tests of the Rx chain.
We will use the following decomposition in modules of the PHY layer:
PCO12
Preamble
FCH
Data
Scrambler
PCO1
Data
De-Scrambler
PCO1'
FCH
Reed Salomon
Encoder
PCO2
Reed Salomon
Decoder
PCO2'
PCO9
PCO10
Conv. Encod.
+ Repetition
Interleaver
Mapper +
Modulator
PCO3
PCO4
PCO5
PCO6
Demodulator
PCO6'
FFT, …, AFE
Viterbi Decoder,
Robust combiner
PCO3'
PCO8'
De-Interleaver
PCO4'
Viterbi Decoder,
Robust combiner
De-Scrambler
PCO7'
Mapper +
Modulator
PCO8
PCO7
PCO11
Interleaver
Conv. Encod.
+ Repetition
Scrambler
De-Interleaver
PCO9'
IFFT, …, AFE
PCO5'
Power
Line
Demodulator
PCO10'
PCO11'
Preamble
PCO12'
Each module is seen as a black box and we are interested only in its input / output. That is why we
need only to focus on what happens at the PCOs (« PCO » stands for Point of Control and
Observation).
NB: The Scrambler output (PCO02 and PCO08) does not include the 6 leading bits added by the
Convolutional encoder.
Page 2
Tests of the Tx chain
The new implementer will use the inputs that are described in Annex 1. The description of each
input allows the new implementer to define the FCH and Data to inject at PCO7 and PCO1.
The new implementer will provide to TRIALOG the FCH and Data injected at PCO7 and PCO1,
and the results observed at each PCO, from PCO2 to PCO6 and PCO8 to PCO11, after injecting the
FCH and Data at PCO7 and PCO1 in their simulator. The preamble should also be provided at PCO
12.
TRIALOG will give to the new implementer the results of the test (correct, incorrect). In case of an
incorrect result, TRIALOG will study the result with the new implementer.
At the end of this stage TRIALOG will deliver a synthesis of the results of the test.
Tests of the Rx chain
TRIALOG will provide the inputs to be injected in PCO6', PCO11' and PCO12', i.e. the correct
results that was observed at PCO6, PCO11 and PCO12.
The new implementer will provide to TRIALOG the result observed at PCO1' and PCO7'. Results
observed at the other PCOs are optional.
TRIALOG will give to the new implementer the results of the test (correct, incorrect). In case of an
incorrect result, TRIALOG will study it with the new implementer.
At the end of this stage TRIALOG will deliver a synthesis of the results.
Page 3
Step 2 : Tests of the complete PHY layer at the simulator level
These tests are performed by the new implementer in its own premisses. The exchanges with
TRIALOG are performed via email. A minimum of 2 new implementers is necessary, the more
being the best.
These tests are divided in 2 sub-steps :
− Tests of the Tx with known inputs.
− Tests of the Rx with a hidden message.
Tests with known inputs
The inputs described (common messages) in Annex 1 are passed through the new implementers'
transmitter chain in their simulator. Then the final output is synthesized as a time domain signal to
be coupled to the physical medium (i.e. powerline) at a specified sampling frequency.
TRIALOG will collect the synthesized time domain signals and distribute the files to each new
implementer. The recipient will then run their receive simulation on the data files to verify they can
decode the supplied time domain signals in their own simulator to extract the common messages.
Each new implementer will then report results back to TRIALOG in indicating the result obtained
for each test.
In case of an incorrect result, TRIALOG will study it with the concerned new implementer.
At the end of this stage TRIALOG will deliver a synthesis of the results of the test for all the new
implementers.
Test with a hidden message
The same process as above will be performed with a hidden message. Hidden messages are
implementer-chosen and only TRIALOG knows each new implementer’s hidden message.
At the end of this stage TRIALOG will deliver a synthesis of the results of the test for all the new
implementers.
Page 4
Step 3 : Plug fest on the PHY layer
The objective of the plug fest is to have a face-to-face meeting in order to demonstrate the
interoperability of implementations over the PLC link. This plug fest will gather the new
implementers and at least one reference (or golden node), i.e. an implementation having already
passed successfully the PHY layer interoperability tests of the G3-PLC Alliance.
Depending on the number of new implementers, we propose that each implementation will be
confronted to every other ones, and with the reference(s). The confrontation will consist in the
following set up:
PHY Layer
Implementer B
PHY Layer
Implementer A
Power line
The set of tests to be executed is described in Annex 1. TRIALOG will collect the outputs generated
by each implementation when receiving the PHY frames sent by every other implementations.
In case of any misalignment, TRIALOG will study with the new implementers the reason of the
issue.
At the end of this stage TRIALOG will deliver a report showing the results of each implementation
in receiving the PHY frames sent by all other implementations.
Page 5
Annex 1
This annex describes the test vectors to be performed for the PHY layer.
First the format of the test vector is defined. Then the test vectors are described.
Test Vector Requirements Format
The first step for the exchange process is the definition of test vectors requirements; these
requirements will be used to configure the PHY layer transmitter. The template used to describe the
test vector requirement is shown below.
Table : Test vector requirement template
TEST ID:
PARAMETERS NAME:
Tone mask
Tone map
Modulation
psduLength
Data sequence
PDC
DT
PARAMETERS VALUE
The TEST CASE ID refers to the test vector requirement number.
The Band-plan / Mode can take the following values:
1. CENELEC-A / differential modulation
2. CENELEC-A / coherent modulation
3. FCC-1 / differential modulation
4. FCC-1 / coherent modulation
5. ARIB / differential modulation
6. ARIB / coherent modulation
The Tone mask can assume two configurations:
1. No notching used
2. Notching used (a notching configuration is defined for each band-plan)
The Tone map describes the frequency intervals of carriers turned on or turned off.
The Modulation can be:
1. ROBO
2. DBPSK / BPSK
3. DQPSK / QPSK
4. D8PSK / 8PSK (not used in ARIB band-plan)
5. 16QAM (FCC coherent mode only)
The psduLength is the number of bytes to be transmitted, passed to PHY from MAC layer.
Page 6
The Data is the stream of bytes to be transmitted passed to PHY from MAC layer. The Data may be
expressed as a binary content in hexadecimal notation. Otherwise, the data sequence containing the
byte stream [0, 1, 2, …,n, …, psduLength -1] should be used, where n is the value of the byte
expressed as decimal number (e.g. N=189 → 10111101). If the creation of such a sequence is not
possible, a random pattern can be used provided that it will be sent together with the generated
waveform in order to check the correctness of the payload.
If any data padding is required, it has to be added by the implementer at PCO 01.
The PDC is the phase detection counter that appears in the FCH bit fields. It assumes an integer
value in the range [0, 255].
The DT is the delimiter type that appears in the FCH bit fields. It assumes an integer value in the
range [0, 1]. A fixed value, expressed in a decimal format, is provided for each test.
Test Vector format
Following the specified requirements, test vectors will be generated. Two formats are used :
Digital test vectors (step 1) : the proposed data format to save the sampled test vectors is ASCII
text files (.txt) filled with column-wised values. The bit sequence at each PCO will be stored as a
single bit column vector ordered as they will be feed in the next block.
Complex values at PCO 06, 06', 11, 11', 12 and 12' are represented as points on the unitary
circle with columnwised values represented in fixed point notation. Two different columns
separated by one space are used for real and imaginary part, respectively. Here is an example of
what is expected :
Symbol_1_carrier_1_Real_part Symbol_1_carrier_1_Imaginary_part
Symbol_1_carrier_2_Real_part Symbol_1_carrier_2_Imaginary_part
...
Symbol_1_carrier_36_Real_part Symbol_1_carrier_36_Imaginary_part
Symbol_2_carrier_1_Real_part Symbol_2_carrier_1_Imaginary_part
....
Analog Waveforms (step 2) : the test vectors shall be sampled at 400 kHz for CENELEC tests
and 1.2 MHz for FCC and ARIB tests. They should be normalized in order to have values
represented with fixed point notation, with a resolution of 16 bits.
One file is expected for every PCO of every test case. The naming convention for the ASCII
files is :
"G3_PHY_COMPANY_TC_XX_PCO_YYZ.txt"
where COMPANY will be substituted by the name of the implementer which has generated the test
pattern, XX will be substituted by the two digits id of the Test Case, YY will be substituted by the
two digits id of the PCO and Z will be replaced by “P” for “prime” PCO and “” (nothing) for the
other PCO.
Page 7
Test Vector Requirements
CENELEC-A band-plan
The notching used in CENELEC-A band-plan disables 11 carriers, corresponding to frequencies
[60,9375 kHz, 76,5625 kHz].
The tone-map is constituted of 6 groups of 6 carriers, each group is enabled (1) or disabled (0). The
tone-map configuration is represented as a string with one character per group, starting with the
35.9380 – 43.7505 kHz group at the left and ending with the 82.8130 – 90.6250 kHz group.
Table : Test 1
TEST ID:CENELEC-A-D-01
PARAMETERS NAME: PARAMETERS VALUE
Band-plan / ModeCENELEC-A / differential modulation
Tone maskNo notching
Tone map111111
ModulationROBO
psduLength49 bytes
Data (hexadecimal 47 33 20 49 53 20 41 20 47 52 45 41 54 20 49 4e 54 45 52 4f 50 45 52
notation) 41 42 4c 45 20 57 4f 52 4c 44 57 49 44 45 20 54 45 43 48 4e 4f 4c 4f 47
59 00
PDC95
DT1
NB : The Data when expressed in ASCII corresponds to the sentence : G3 IS A GREAT
INTEROPERABLE WORLDWIDE TECHNOLOGY
Table : Test 2
TEST ID:CENELEC-A-D-02
PARAMETERS NAME: PARAMETERS VALUE
Band-plan / ModeCENELEC-A / differential modulation
Tone maskNo notching
Tone map111111
ModulationROBO
psduLength133 bytes
Data (sequence)0, 1, 2, …, 132
PDC5
DT1
Table : Test 3
TEST ID:CENELEC-A-D-03
PARAMETERS NAME: PARAMETERS VALUE
Band-plan / ModeCENELEC-A / differential modulation
Page 8
Tone maskNo notching
Tone map010111
ModulationDBPSK
psduLength73 bytes
Data (sequence)0, 1, 2, …, 72
PDC224
DT1
Table : Test 4
TEST ID:CENELEC-A-D-04
PARAMETERS NAME: PARAMETERS VALUE
Band-plan / ModeCENELEC-A / differential modulation
Tone maskNo notching
Tone map111110
ModulationDQPSK
psduLength43 bytes
Data (sequence)0, 1, 2, …, 36, 0, 0, 0, 0, 0, 0
PDC128
DT1
Table : Test 5
TEST ID:CENELEC-A-D-05
PARAMETERS NAME: PARAMETERS VALUE
Band-plan / ModeCENELEC-A / differential modulation
Tone maskNotching activated
Tone map101111
ModulationD8PSK
psduLength40 bytes
Data (sequence)0, 1, 2, …, 36, 0, 0, 0
PDC255
DT1
Table : Test 6
TEST ID:CENELEC-A-D-06 (interleaver special case I(1,0) = 0)
PARAMETERS NAME: PARAMETERS VALUE
Band-plan / ModeCENELEC-A / differential modulation
Tone maskNo notching
Tone map100011
ModulationDBPSK
psduLength64 bytes
Data (sequence)0, 1, 2, …, 63
PDC128
DT1
Page 9
Table : Test 7
TEST ID:CENELEC-A-C-01
PARAMETERS NAME: PARAMETERS VALUE
Band-plan / ModeCENELEC-A / coherent modulation
Tone maskNo notching
Tone map111111
ModulationROBO
psduLength49 bytes
Data (hexadecimal 47 33 20 49 53 20 41 20 47 52 45 41 54 20 49 4e 54 45 52 4f 50 45 52
notation) 41 42 4c 45 20 57 4f 52 4c 44 57 49 44 45 20 54 45 43 48 4e 4f 4c 4f 47
59 00
PDC95
DT1
NB : The Data when expressed in ASCII corresponds to the sentence : G3 IS A GREAT
INTEROPERABLE WORLDWIDE TECHNOLOGY
Table : Test 8
TEST ID:CENELEC-A-C-02
PARAMETERS NAME: PARAMETERS VALUE
Band-plan / ModeCENELEC-A / coherent modulation
Tone maskNo notching
Tone map111111
ModulationROBO
psduLength121 bytes
Data (sequence)0, 1, 2, …, 120
PDC5
DT1
Table : Test 9
TEST ID:CENELEC-A-C-03
PARAMETERS NAME: PARAMETERS VALUE
Band-plan / ModeCENELEC-A / coherent modulation
Tone maskNo notching
Tone map010111
ModulationBPSK
psduLength76 bytes
Data (sequence)0, 1, 2, …, 72, 0, 0, 0
PDC224
DT1
Table : Test 10
TEST ID:CENELEC-A-C-04
Page 10
PARAMETERS NAME: PARAMETERS VALUE
Band-plan / ModeCENELEC-A / coherent modulation
Tone maskNo notching
Tone map111110
ModulationQPSK
psduLength37 bytes
Data (sequence)0, 1, 2, …, 36
PDC128
DT1
Table : Test 11
TEST ID:CENELEC-A-C-05
PARAMETERS NAME: PARAMETERS VALUE
Band-plan / ModeCENELEC-A / coherent modulation
Tone maskNotching activated
Tone map101111
Modulation8PSK
psduLength47 bytes
Data (sequence)0, 1, 2, …, 36, 0, 0, …, 0 (10 bytes of 0)
PDC255
DT1
ARIB band-plan
The notching used in ARIB band-plan disables 11 carriers, corresponding to the frequencies
[234,375 kHz, 281,25 kHz].
The tone-map is constituted of 18 groups of 3 carriers, each group is enabled (1) or disabled (0).
The tone-map configuration is represented as a string with one character per group, starting with the
154,6875 – 164,0625 kHz group at the left and ending with the 393,75 – 403,125 kHz group.
Table : Test 1
TEST ID:ARIB-D-01
PARAMETERS NAME: PARAMETERS VALUE
Band-plan / ModeARIB / differential modulation
Tone maskNo notching
Tone map111111111111111111
ModulationROBO
psduLength48 bytes
Data (hexadecimal 47 33 20 49 53 20 41 20 47 52 45 41 54 20 49 4e 54 45 52 4f 50 45 52
notation) 41 42 4c 45 20 57 4f 52 4c 44 57 49 44 45 20 54 45 43 48 4e 4f 4c 4f 47
59
PDC95
DT1
Page 11
NB : The Data when expressed in ASCII corresponds to the sentence : G3 IS A GREAT
INTEROPERABLE WORLDWIDE TECHNOLOGY
Table : Test 2
TEST ID:ARIB-D-02
PARAMETERS NAME: PARAMETERS VALUE
Band-plan / ModeARIB / differential modulation
Tone maskNo notching
Tone map111111111111111111
ModulationROBO
psduLength133 bytes
Data (sequence)0, 1, 2, …, 132
PDC5
DT1
Table : Test 3
TEST ID:ARIB-D-03
PARAMETERS NAME: PARAMETERS VALUE
Band-plan / ModeARIB / differential modulation
Tone maskNo notching
Tone map111011110011010111
ModulationDBPSK
psduLength73 bytes
Data (sequence)0, 1, 2, …, 72
PDC224
DT1
Table : Test 4
TEST ID:ARIB-D-04
PARAMETERS NAME: PARAMETERS VALUE
Band-plan / ModeARIB / differential modulation
Tone maskNotching activated
Tone map111111111111111001
ModulationDQPSK
psduLength37 bytes
Data (sequence)0, 1, 2, …, 36, 0
PDC128
DT1
Table : Test 5
TEST ID:ARIB-D-05 (interleaver special case I(1,0) = 0)
PARAMETERS NAME: PARAMETERS VALUE
Page 12
Band-plan / ModeARIB / differential modulation
Tone maskNo notching
Tone map111111111111111111
ModulationDBPSK
psduLength226 bytes
Data (sequence)0, 1, 2, …, 225
PDC45
DT1
FCC-1 band-plan
The notching used in FCC-1 band-plan disables 11 carriers, corresponding to the frequencies
[234,375 kHz, 281,25 kHz].
The tone-map is constituted of 24 groups of 3 carriers, each group is enabled (1) or disabled (0).
The tone-map configuration is represented as a string with one character per group, starting with the
154,6875 – 164,0625 kHz group at the left and ending with the 478,125 – 487,5 kHz group.
Table : Test 1
TEST ID:FCC-1-D-01
PARAMETERS NAME: PARAMETERS VALUE
Band-plan / ModeFCC-1 / differential modulation
Tone maskNo notching
Tone map111111111111111111111111
ModulationROBO
psduLength48 bytes
Data (hexadecimal 47 33 20 49 53 20 41 20 47 52 45 41 54 20 49 4e 54 45 52 4f 50 45 52
notation) 41 42 4c 45 20 57 4f 52 4c 44 57 49 44 45 20 54 45 43 48 4e 4f 4c 4f 47
59
PDC95
DT1
NB : The Data when expressed in ASCII corresponds to the sentence : G3 IS A GREAT
INTEROPERABLE WORLDWIDE TECHNOLOGY
Table : Test 2
TEST ID:FCC-1-D-02
PARAMETERS NAME: PARAMETERS VALUE
Band-plan / ModeFCC-1 / differential modulation
Tone maskNo notching
Tone map111111111111111111111111
ModulationROBO
psduLength133 bytes
Data (sequence)0, 1, 2, …, 132
PDC5
DT1
Page 13
Table : Test 3
TEST ID:FCC-1-D-03
PARAMETERS NAME: PARAMETERS VALUE
Band-plan / ModeFCC-1 / differential modulation
Tone maskNo notching
Tone map111011110011010111110011
ModulationDBPSK
psduLength75 bytes
Data (sequence)0, 1, 2, …, 72, 0, 0
PDC224
DT1
Table : Test 4
TEST ID:FCC-1-D-04
PARAMETERS NAME: PARAMETERS VALUE
Band-plan / ModeFCC-1 / differential modulation
Tone maskNo notching
Tone map111111111111111001101011
ModulationDQPSK
psduLength43 bytes
Data (sequence)0, 1, 2, …, 36, 0, 0, 0, 0, 0, 0
PDC128
DT1
Table : Test 5
TEST ID:FCC-1-D-05
PARAMETERS NAME: PARAMETERS VALUE
Band-plan / ModeFCC-1 / differential modulation
Tone maskNotching activated
Tone map110001111111111111111111
ModulationD8PSK
psduLength41 bytes
Data (sequence)0, 1, 2, …, 36, 0, 0, 0, 0
PDC255
DT1
Table : Test 6
TEST ID:FCC-1-D-06 (interleaver special case I(1,0) = 0)
PARAMETERS NAME: PARAMETERS VALUE
Band-plan / ModeFCC-1 / differential modulation
Tone maskNo notching
Page 14
Tone map111101111001111100111011
ModulationDBPSK
psduLength226 bytes
Data (sequence)0, 1, 2, …, 225
PDC58
DT1
Table : Test 7
TEST ID:FCC-1-D-07 (Two RS blocks used)
PARAMETERS NAME: PARAMETERS VALUE
Band-plan / ModeFCC-1 / differential modulation
Tone maskNo notching
Tone map111111111111111111111111
ModulationD8PSK
psduLength316 bytes
Data (sequence)0, 1, 2, …, 255, 0, 1, …, 43, 0, 0, …, 0 (16 bytes of 0)
PDC87
DT0
Table : Test 8
TEST ID:FCC-1-C-01
PARAMETERS NAME: PARAMETERS VALUE
Band-plan / ModeFCC-1 / coherent modulation
Tone maskNo notching
Tone map111111111111111111111111
ModulationROBO
psduLength49 bytes
Data (hexadecimal 47 33 20 49 53 20 41 20 47 52 45 41 54 20 49 4e 54 45 52 4f 50 45 52
notation) 41 42 4c 45 20 57 4f 52 4c 44 57 49 44 45 20 54 45 43 48 4e 4f 4c 4f 47
59 00
PDC95
DT1
NB : The Data when expressed in ASCII corresponds to the sentence : G3 IS A GREAT
INTEROPERABLE WORLDWIDE TECHNOLOGY
Table : Test 9
TEST ID:FCC-1-C-02
PARAMETERS NAME: PARAMETERS VALUE
Band-plan / ModeFCC-1 / coherent modulation
Tone maskNo notching
Tone map111111111111111111111111
ModulationROBO
psduLength133 bytes
Page 15
Data (sequence)0, 1, 2, …, 132
PDC5
DT1
Table : Test 10
TEST ID:FCC-1-C-03
PARAMETERS NAME: PARAMETERS VALUE
Band-plan / ModeFCC-1 / coherent modulation
Tone maskNo notching
Tone map111011110011010111110011
ModulationBPSK
psduLength75 bytes
Data (sequence)0, 1, 2, …, 72, 0, 0
PDC224
DT1
Table : Test 11
TEST ID:FCC-1-C-04
PARAMETERS NAME: PARAMETERS VALUE
Band-plan / ModeFCC-1 / coherent modulation
Tone maskNo notching
Tone map111111111111111001101011
ModulationQPSK
psduLength38 bytes
Data (sequence)0, 1, 2, …, 36, 0
PDC128
DT1
Table : Test 12
TEST ID:FCC-1-C-05
PARAMETERS NAME: PARAMETERS VALUE
Band-plan / ModeFCC-1 / coherent modulation
Tone maskNotching activated
Tone map110001111111111111111111
Modulation8PSK
psduLength44 bytes
Data (sequence)0, 1, 2, …, 36, 0, 0, …, 0 (7 bytes)
PDC255
DT1
Table : Test 13
TEST ID:FCC-1-C-06
Page 16
PARAMETERS NAME: PARAMETERS VALUE
Band-plan / ModeFCC-1 / coherent modulation
Tone maskNo notching
Tone map110001111110111000111111
Modulation16QAM
psduLength37 bytes
Data (sequence)0, 1, 2, …, 36
PDC184
DT1
Page 17