RMN premiers principes appliquée à l’étude des verres de phosphates Filipe Vasconcelos Radboud University Nijmegen, Electronic Structure of Materials École thématique GDR-Verres Marcoule - Mai 2011 Filipe Vasconcelos RMN premiers principes 1 Outline Introduction General context Some elements of the methodology NMR First Principles applied to Glass 8 Motivations 8 How to generate glass configurations ? 8 Case study : Sodium metaphosphate glass (NaPO3 ) { NMR results (spectra, correlations, . . . ) { EFG distributions { Extended Czjzek Model NMR parameters and structure 8 Potential energy landscape (PEL) in glass science. 8 NMR parameters revealing the PEL General Conclusions Filipe Vasconcelos RMN premiers principes 2 Outline Introduction General context Some elements of the methodology NMR First Principles applied to Glass 8 Motivations 8 How to generate glass configurations ? 8 Case study : Sodium metaphosphate glass (NaPO3 ) { NMR results (spectra, correlations, . . . ) { EFG distributions { Extended Czjzek Model NMR parameters and structure 8 Potential energy landscape (PEL) in glass science. 8 NMR parameters revealing the PEL General Conclusions Filipe Vasconcelos RMN premiers principes 2 Introduction General context NMR CRYSTAL STRUCTURE XRD MD Filipe Vasconcelos GLASS AMORPHOUS DISORDER DFT RMN premiers principes 3 Introduction General context NMR CRYSTAL STRUCTURE XRD MD GLASS AMORPHOUS DISORDER DFT NMR : 8 Better resolution → more information Filipe Vasconcelos RMN premiers principes 3 Introduction Solid-State Nuclear Magnetic Resonance (SSNMR) Dynamic Structure Interaction CS Q D J Filipe Vasconcelos Name Chemical Shift Quadrupolar Dipolar coupling Indirect spin-spin coupling RMN premiers principes Tensor CSA EFG D J Parameters δiso , ∆CS , ηCS CQ ,ηQ r Jiso 4 Introduction Solid-State Nuclear Magnetic Resonance (SSNMR) Dynamic Structure Interaction CS Q D J Filipe Vasconcelos Name Chemical Shift Quadrupolar Dipolar coupling Indirect spin-spin coupling RMN premiers principes Tensor CSA EFG D J Parameters δiso , ∆CS , ηCS CQ ,ηQ r Jiso 4 Introduction Solid-State Nuclear Magnetic Resonance (SSNMR) Dynamic Structure Interaction CS Q D J Filipe Vasconcelos Name Chemical Shift Quadrupolar Dipolar coupling Indirect spin-spin coupling RMN premiers principes Tensor CSA EFG D J Parameters δiso , ∆CS , ηCS CQ ,ηQ r Jiso 4 Introduction Overview of 17 O Properties 8 Predominant nucleus in oxides based glasses 8 Two different role in the structure ( BO , NBO ) 8 Wide chemical shift range 8 Low natural abundance (0.037%) 8 Quadrupolar interaction with the surrounding EFG Quadrupolar Interaction 8 I=5/2 8 Q=25.58 mb ηQ −1 2 EFG : V = Vzz 0 0 Filipe Vasconcelos RMN premiers principes 0 −ηQ −1 2 0 0 0 1 5 Introduction Elements of methodology Experimental (NMR) 8 Isotopic enrichment (17 O) 8 High-Field (18.8 T) 8 Multi-nuclei (23 Na, 31 P, 17 O) 8 High-resolution experiments (MAS, MQMAS) Theoretical (Modelisation) 8 Electronic Struct. : DFT 8 NMR parameters : DFT-PAW/GIPAW 8 MD : classical, ab-initio 8 Spectra simulation 8 Used codes : { VASP, Quantum-ESPRESSO, PARATEC { DL_POLY { DMFIT, simpson, gen_mas, gen_MQMAS Filipe Vasconcelos RMN premiers principes 6 Outline Introduction General context Some elements of the methodology NMR First Principles applied to Glass 8 Motivations 8 How to generate glass configurations ? 8 Case study : Sodium metaphosphate glass (NaPO3 ) { NMR results (spectra, correlations, . . . ) { EFG distributions { Extended Czjzek Model NMR parameters and structure 8 Potential energy landscape (PEL) in glass science. 8 NMR parameters revealing the PEL General Conclusions Filipe Vasconcelos RMN premiers principes 7 Sodium metaphosphate glass 3QMAS at 18.8T of NaPO3 Non-bridging oxygens 8 small distribution (CQ , ηQ ) → local order 8 large distribution δiso → long distance disorder F. Vasconcelos et al., Inorg. Chem., 47 7327 (2008) Filipe Vasconcelos RMN premiers principes 8 How to generate glass configurations ? For NMR First-Principles High−T (3500 K) What do we need ? classical−MD 8 Accurate structures , 8 Good statistics (∼ 1000 sites) 8 Small boxes (∼ 100 atoms) Low−T DFT (300 K) 0 TIME Which methods ? Molecular Dynamics (MD) : 8 "Ab-initio" MD : accurate, time consuming, few configurations 8 Classical MD : fast, many configurations, empirical Force-Fields 8 Combined approach : classical and first-principles 8 DL_POLY+ VASP (PARATEC : DFT-PAW/GIPAW) Filipe Vasconcelos RMN premiers principes 9 Q1 NaPO3 (metaphosphate) Structural constraints 31 P Q3 (Na2 O)x −(P2 O5 ) 1-x Na−Na Na−O O−O P−P P−NBO P−BO MD ref [1] d (Å) 3.1 2.31 2.51 3.18 1.50 1.59 Neutron ref [2] d (Å) 3.07 2.33 2.52 2.93 1.48 1.61 our model d (Å) 3.35 2.35 2.55 2.95 1.45 1.65 Q1 Q2 Q3 25% 50% 25% 0% ∼100% 0% 3.5% 93% 3.5% atomic pair Q2 [1] Speghini et al. PCCP 1 p173 (1999) [2] Pickup et al. J. Phys. Condens. Matter 19 p415116 (2007) Filipe Vasconcelos RMN premiers principes 10 NMR/DFT-GIPAW results on MD configurations NMR 17 O dimension isotrope (ppm) 200 -60 80 40 0 O déplacement chimique (ppm) NBO BO -90 150 Filipe Vasconcelos 120 160 17 RMN premiers principes 125 100 75 dimension MAS (ppm) 50 11 DFT-GIPAW results on MD configurations Clark-Grandinetti correlation 17 O CQ (Ω) = a 1 cos Ω + 2 cos Ω − 1 ηQ (Ω) = b cos Ω 1 − 2 cos Ω − 1 Ω !β 1 0,8 10 ηQ CQ (MHz) 11 !α 9 0,6 0,4 8 7 100 Filipe Vasconcelos 0,2 120 140 160 angle Ω (deg) 180 0 100 RMN premiers principes 120 140 160 angle Ω(deg) 180 12 Quadrupolar parameter distributions How can we use this new information ? 6 12 4 8 2 4 0 0 0.2 ηQ 0.4 0.7 0.8 0.9 1 Vzz 4 0 5 4 3 3 2 8 extract experimental quadrupolar parameters see Charpentier et al. (SiO2 ) 8 better understand the distribution of EFG tensor 2 1 0 1 0 0.2 0.4 0.6 ηQ Filipe Vasconcelos 0.8 11 1.2 1.4 1.6 0 1.8 Vzz RMN premiers principes 13 Czjzek Model Gaussian isotropic Model for EFG distribution Analytical formulation P(Vzz , ηQ ) = √ 1 V4 η 2πσ 5 zz Q 1− 2 ηQ 9 " exp − 2 2 Vzz (1+ηQ /3) 2σ 5 # [1] [1] Czjzek et al. Phys. Rev. B 23 p2513 (1981) [2] G. Le Caër et R. A. Brand J. Phys. Condens. Matter 10 p 10715 (1998) Filipe Vasconcelos RMN premiers principes 14 Czjzek Model Example : Application to 27 Al in potassium aluminophosphate glass (50(K2 O)x(Al2 O3 )(50-x)(P2 O5 ) ) Gaussian Czjzek AlO4 AlO6 AlO4 AlO5 exp sim 5% déplacement chimique (ppm) concentration (%) 80 AlO5 40 AlO6 70 60 70 35 60 30 50 25 40 20 30 15 10 20 10 0 -8 25 -10 50 40 30 20 52 50 -12 20 -14 48 -16 15 -18 46 0 5 10 15 % Al2O3 20 10 0 5 10 15 % Al2O3 -20 20 0 5 10 15 % Al2O3 20 DMFIT : Magn. Reson. Chem. 40 70-76 (2002) Filipe Vasconcelos RMN premiers principes 15 Discussion about the Czjzek model an isotropic model 8 No structural information can be extracted from an isotropic distribution [1] 8 In case of 17 O, some structural data can be deduced from lineshape analysis. [2] 2 23 17 Na 4 O NBO 17 4 O BO 1 2 0 0 0,2 0,4 0,6 0,8 ηQ 0 1 0 2 0,2 0,4 0,6 0,8 ηQ 0 1 0 0,2 0,4 0,6 0,8 ηQ 1 [1] G. Caër et al., J. of Phys. : Condens. Matt. 22, 065402 (2010) [2] F. Vasconcelos et al. ( coming soon ! ! ;) Filipe Vasconcelos RMN premiers principes 16 Extended Czjzek Model (Le Caër et al., 1998) A perturbation of an anisotropic EFG tensor V() = V0 + ρ VCzjzek = ρ||VCzjzek || ||V0 || 8 V0 : local EFG tensor local with Vzz (0) and η(0) fixed 8 VCzjzek : Czjzek tensor (isotropic noise) 6 P(Vzz>0) (a) 5 ε f(ηQ) 4 3 0.6 0.3 ρz 1 Filipe Vasconcelos (b) 0.8 0.4 2 0 1 0.2 0.1 0 0.2 0.4 ηQ 0.6 0.8 1 RMN premiers principes 0 (c) 0 1 2 ε 3 4 17 Extended Czjzek Model Quantification of the anisotropy part 6 5 ε = 0.093 ηQ(0) = 0.15 Vzz(0) = 0.853 4 3 2 1 0 0 0,2 0,4 0,6 ηQ 0,8 1 0,7 0,8 0,9 1 Vzz 4 8 ηQ and Vzz distributions accurately reproduced ε = 0.135 ηQ(0) = 0.43 Vzz(0) = 1.387 3 2 1 0 0 0,2 0,4 0,6 ηQ Filipe Vasconcelos 0,8 11 1,2 1,4 1,6 1,8 Vzz RMN premiers principes 18 Extended Czjzek Model . . . looking for structural information Reminder : Tensor distribution 8 tensor components are distributed not the eigenvalues 8 EFG tensor → 5 components (Ui , i = 1, 5) 8 Czjzek Model → all Ui components are normally distributed 15 P(Ui) 23 vxx V = vxy vxz Na 10 5 0 -0,2 -0,1 0 0,1 0,2 Ui (u.a) Filipe Vasconcelos RMN premiers principes vxy vyy vyz vxz vyz vzz U1 = vzz /2 vxz U2 = √ 3 vyz U3 = √ 3 vxy U4 = √ 3 (vxx − vyy ) √ U5 = 2 3 19 Extended Czjzek Model 4 4 3 3 P(Uk) P(U1) . . . distributions of Ui components of 17 O in NaPO3 MD model 2 1 0 2 O NBO 17 O BO 1 -0.4 0 0 0.4 -0.4 0 U1 P(Uk) 2 1 0 -1 -0.5 0 U1 Filipe Vasconcelos 0.4 Uk 2 P(U1) 17 0.5 1 1 0 -1 -0.5 0 0.5 1 Uk RMN premiers principes 20 Extended Czjzek Model 4 4 3 3 P(Uk) P(U1) . . . distributions of Ui components of 17 O in NaPO3 MD model 2 1 0 ONE CHARGE 2 O NBO 17 O BO 1 -0.4 0 0 0.4 -0.4 0 U1 P(Uk) 2 1 0 -1 -0.5 0 U1 Filipe Vasconcelos 0.4 Uk 2 P(U1) 17 0.5 1 1 0 -1 -0.5 0 0.5 1 Uk RMN premiers principes 20 Extended Czjzek Model 4 4 3 3 P(Uk) P(U1) . . . distributions of Ui components of 17 O in NaPO3 MD model 2 1 0 17 2 1 -0.4 0 0 0.4 -0.4 0 U1 P(Uk) 2 1 0 -1 -0.5 0 U1 Filipe Vasconcelos 0.4 Uk 2 P(U1) O NBO 0.5 1 TWO CHARGES 17 1 0 -1 -0.5 0 0.5 O BO 1 Uk RMN premiers principes 20 Extended Czjzek Model 4 4 3 3 P(Uk) P(U1) . . . distributions of Ui components of 17 O in NaPO3 MD model 2 1 0 2 O NBO 17 O BO 1 -0.4 0 0 0.4 -0.4 0 U1 P(Uk) 2 1 0 -1 0.4 Uk 2 P(U1) 17 -0.5 0 U1 0.5 1 1 0 -1 -0.5 0 0.5 1 Uk Distribution of EFG contains structural and geometric information Filipe Vasconcelos RMN premiers principes 20 Perspective : CSA tensor Distributions of CSA parameters (23 Na) 0.6 (a) (b) f(∆CS) × 10 f(ηCS) 1.5 1 0.5 0 I I 0 0.2 0.4 0.6 ηCS 0.8 1 0.4 0.2 0 -40 -20 0 ∆CS (ppm) 20 40 Czjzek distribution on the CSA parameters of 23 Na asymetric and anistotropic CSA parameters plays the same role as the EFG parameters Filipe Vasconcelos RMN premiers principes 21 Perspective : CSA Distributions of tensor components BO and NBO (MD model) 5 5 A00 = −(1/ 3)[σxx + σyy + σzz ] √ A10 = −(i/ 2)[σxy + σyx ] A1±1 = −(1/2)[σzx − σxz ± i(σzy − σyz )] √ A20 = (1/ 6)[3σzz − (σxx + σyy + σzz )] P(Uk) 3 P(U1) √ 2 1 0 3 2 1 -100 0 0 -50 -40 0 U1 NBO BO "Czjzek" P(ηCS) A2±2 = (1/2)[σxx − σyy ± i(σxy − σyx )] 0 RMN premiers principes 40 Uk A2±1 = ∓(1/2)[σxz + σzx ± i(σyz − σzy )] Filipe Vasconcelos NBO BO 4 × 100 × 100 4 0,2 0,4 0,6 ηCS 0,8 1 22 Perspective : CSA Distributions of tensor components BO and NBO (MD model) 5 5 A00 = −(1/ 3)[σxx + σyy + σzz ] √ A10 = −(i/ 2)[σxy + σyx ] A1±1 = −(1/2)[σzx − σxz ± i(σzy − σyz )] √ A20 = (1/ 6)[3σzz − (σxx + σyy + σzz )] P(Uk) 3 P(U1) √ 2 1 0 3 2 1 -100 0 0 -50 -40 0 U1 NBO BO "Czjzek" P(ηCS) A2±2 = (1/2)[σxx − σyy ± i(σxy − σyx )] Experimentally difficult to observe RMN premiers principes 40 Uk A2±1 = ∓(1/2)[σxz + σzx ± i(σyz − σzy )] Filipe Vasconcelos NBO BO 4 × 100 × 100 4 0 0,2 0,4 0,6 ηCS 0,8 1 22 Conclusions . . . from the study of this glass structure Glass structure 8 MD + DFT/PAW-GIPAW are the principal tools to study glass structure 8 Our structural model reproduces accurately NMR observations 8 NMR parameter domains are defined for a given compound Extended Czjzek Model 8 Extended model can reproduce quadrupolar parameters distribution observed on MD model 8 EFG tensor clearly presents local character Filipe Vasconcelos RMN premiers principes 23 Outline Introduction General context Some elements of the methodology NMR First Principles applied to Glass 8 Motivations 8 How to generate glass configurations ? 8 Case study : Sodium metaphosphate glass (NaPO3 ) { NMR results (spectra, correlations, . . . ) { EFG distributions { Extended Czjzek Model NMR parameters and structure 8 Potential energy landscape (PEL) in glass science. 8 NMR parameters revealing the PEL General Conclusions Filipe Vasconcelos RMN premiers principes 24 Potential Energy Landscape (PEL) Concept 8 Function of N-body positions Φ(R1 , ...RN ) [1] 8 Quatilative and quantitative description of glass transitions [2,3] 8 Relation between dynamics and the sampling of PEL thermodynamic and static properties [1] M. Goldstein , J. Chem. Phys., 51, 3728, (1969) [3] S. Sastry, Nature, 409, 164 (2001) [2] P. G. Debenedetti and F. H. Stillinger, Nature, 410, 259 (2001) Filipe Vasconcelos RMN premiers principes 25 Connection between NMR parameter and PEL NMR PEL electronic structure Ψ({ri }, {RI }) potential energy Φ({RI }) Chemical selectivity fixed for a given stoichiometry and density Structural selectivity Filipe Vasconcelos RMN premiers principes 26 NMR parameters distribution/dispersion Filipe Vasconcelos RMN premiers principes 27 Vibrational "disorder" of EFG in NaCl-like structure 8 Binary-Mixture Lennard-Jones potential 8 N = 1728 ; dt = 0.003 ; ρ = 1.58 ; qA = +1 ; qB = -1 8 NVE ensemble (berendsen scaling) 4 4 2 2 0 0 -2 -4 0 1000 2000 30000 time step (dt=0.003) Filipe Vasconcelos 0,2 1 1 0,8 0,8 0,6 0,6 0,4 0,4 -2 0,2 0,2 -4 0,4 0 ηQ Vzz 8 (no electrostatic forces !) 0 P(Vzz) RMN premiers principes 1000 2000 3000 time step (dt=0.003) 0,8 1,6 0 P(ηQ) 28 PEL/NMR representation framework Transition Solid/Liquid 0,4 <Vzz> 0,2 <U²>-<U>² atom A atom B both 0,3 0,1 0 -0,1 -0,2 0,4 0,8 1,2 0,611 2 0,4 6 0,609 5 0,608 0,607 0,606 1,2 1,6 2 T T=2.0 T=1.0 T=0.4 4 3 2 0,605 1 0,604 0 0,5 1 1,5 2 0 T Filipe Vasconcelos 0,8 7 0,61 <g(r)> <ηQ> 1,6 T RMN premiers principes 1 rAB 2 3 29 PEL/NMR representation framework Conclusions 8 Simple connection between NMR/PEL 8 Structure selectivity of NMR 8 The acces to the NMR param. dynamics . . . 8 . . . a way to probe the dynamics of PEL Challenging tasks Experimental : 8 get access to the distribution of the anisotropic terms (separately) 8 get acces to the CSA tensors in solid state (in routine ,) 8 dynamics of NMR parameters in long-time scale ( ? ? ?) Theoretical : 8 following the NMR parameters during the dynamics Filipe Vasconcelos RMN premiers principes 30 General Conclusions NMR First-Principles is essential for glass structure determination 8 Access to distribution (in particular η parameters) 8 Extended Czjzek approach is validated for 17 O 8 EFG tensor distribution contains structural information 8 CSA tensor can be characterized by Czjzek and extended Czjzek models NMR/PEL framework 8 . . . is elegant 8 . . . used in description of dynamics/structure properties of glass. 8 . . . brings challenging experimental and theoretical problems. Filipe Vasconcelos RMN premiers principes 31 Acknowledgement Lille Nijmegen Sylvain Cristol Laurent Delevoye Jean-François Paul Lionel Montagne Chandrakala Gowda (NMR) Ernst van Eck (NMR) Arno Kentgens (NMR) Rob de Groot (ESM) Gilles de Wijs (ESM) Collaborations Georg Kresse (VASP) Martijn Marsman (VASP) Francesco Mauri (PARATEC) Thibault Charpentier (Glass+NMR) Gérard Le Caër (Extended Czjzek) Filipe Vasconcelos RMN premiers principes 32 Glass structure Experimental approach Experimental techniques 8 EXAFS → environment/short range order 8 RAMAN → vibration mode (Boson’s peak) 8 Neutron/XRay scattering → pair distribution function T (r ) 8 ... 8 Solid-State NMR → highly sensitive/ local : short, medium, (long ?) range order Filipe Vasconcelos RMN premiers principes 33 Empirical Force Field Charge of sodium charge qNa = +1 qNa = +0.2 no Na Q0 1 3.1% 0 0% 0 0% Q1 9 28.1% 5 15.6% 1 3.1% Q2 11 34.4% 22 68.8% 30 93.8% Q3 11 34.4% 5 15.6% 1 3.1% Q4 0 0.000% 0 0% 0 0% How can we avoid this « trick » 8 Test finite size effect 8 Test slower (or faster ?) quenching rate by 3 or 4 order magnitude Filipe Vasconcelos RMN premiers principes 34 NaPO3 Calculation details 8 160 atoms : 32Na-32P-96O, density ∼ 2.53 g/ml 8 quench 3500K -> 300K (rate 4 × 1012 K/s) 8 BKS empirical potential 8 NVE, equilibrated during 2 ps at each T 8 15 configurations. -2855.5 ’C_19/out_Etot_19’ -2856 -2856.5 -2857 -2857.5 -2858 -2858.5 -2859 0 Filipe Vasconcelos 2000 4000 6000 8000 10000 12000 RMN premiers principes 35 NaPO3 MD 17 O 3QMAS zoom dimension isotrope (ppm) -40 -50 -60 -70 100 125 75 50 dimension MAS (ppm) Filipe Vasconcelos RMN premiers principes 36 FIG 105 CQ (MHz) 100 δiso (ppm) 95 90 85 80 0,4 6 0,35 5,5 0 1 2 3 4 4 t (ps) 0,25 0 1 2 3 4 0,2 0 t (ps) (a) 150 0,3 5 4,5 75 70 6,5 ηQ Chapitre 3 1 2 3 4 t (ps) (b) 100 50 150 100 50 déplacement chimique (ppm) sites O1 O2 O3 O4 O5 O6 Filipe Vasconcelos δiso (ppm) moyenne écart-type 86.3 6.3 95.5 8.4 133.7 5.4 133.8 2.9 91.9 5.3 81.9 5.0 CQ (MHz) moyenne écart-type 5.20 0.37 5.30 0.52 7.82 0.28 7.74 0.20 5.13 0.28 5.27 0.28 RMN premiers principes ηQ moyenne 0.30 0.15 0.67 0.67 0.15 0.26 écart-type 0.04 0.03 0.08 0.06 0.03 0.04 37 FIG Chapitre 3 sites O1 O2 O3 O4 O5 O6 Filipe Vasconcelos NVE à 400K δiso (ppm) CQ (MHz) 86.3 5.20 95.5 5.30 133.7 7.82 133.9 7.74 91.9 5.13 81.9 5.27 ηQ 0.30 0.15 0.67 0.67 0.15 0.26 optimisé à 0K δiso (ppm) CQ (MHz) 79.2 5.04 86.9 5.10 126.4 7.90 129.3 7.65 85.2 4.95 75.6 5.10 RMN premiers principes ηQ 0.30 0.05 0.61 0.67 0.09 0.26 38 Anhydrous Sodium Phosphates Na3 P3 O9 Na5 P3 O10 Na4 P2 O7 F. Vasconcelos et al., Inorg. Chem., 47 7327 (2008) Filipe Vasconcelos RMN premiers principes 39 Na3 P3 O9 : assisted assignment DFT-GIPAW+MQMAS MQMAS Type NBO NBO NBO BO CQ (MHz) 4.5 4.3 4.3 ∼7.0 ηQ 0.3 0.4 0.1 ∼0.6 δiso (ppm) 75.5 77.5 84.0 ∼120 DFT-GIPAW sites O O1 O2 O3 O4 O5 O6 Type NBO NBO BO BO NBO NBO CQ (MHz) 4.65 4.74 7.72 7.51 4.62 4.78 ηQ 0.31 0.07 0.61 0.66 0.09 0.26 δiso calc (ppm) 78.2 84.4 124.8 126.9 84.3 75.5 F. Vasconcelos et al., Inorg. Chem., 47 7327 (2008) Filipe Vasconcelos RMN premiers principes 40 Discussion Correlation Structure/NMR Observations I No correlation of NBO δiso with local environment I CQ First coordination sphere I ηQ axial/equatorial positions, covalent Site O O1 O2 O5 O6 Filipe Vasconcelos Type NBO NBO NBO NBO RMN premiers principes CQ (MHz) 4.65 4.74 4.62 4.78 ηQ 0.31 0.07 0.09 0.26 δiso calc (ppm) 78.2 84.4 84.3 75.5 41
© Copyright 2024