Publications Related to the development and applications of Markov chain spatial statistics /geostatistics (i.e., the MCRF approach) Major papers 1. Li, W., C. Zhang, M.R. Willig, D.K. Dey, G. Wang, and L. You. 2015. Bayesian Markov chain random field cosimulation for improving land cover classification accuracy. Mathematical Geosciences, 47(2): 123-148. 2. Li, W., C. Zhang, D. K. Dey, and M. R. Willig. 2013. Updating categorical soil maps using limited survey data by Bayesian Markov chain cosimulation. The Scientific World Journal (Soil science section), vol. 2013, Article ID 587284, doi:10.1155/2013/587284. 3. Li, W., C. Zhang and D.K. Dey, 2012. Modeling experimental cross transiograms of neighboring landscape categories with the gamma distribution. International Journal of Geographical Information Science, 26(4): 599-620. 4. Li, W., C. Zhang, D.K. Dey, and S. Wang, 2010. Estimating threshold-exceeding probability maps of continuous environmental variables with Markov chain random fields. Stochastic Environmental Research and Risk Assessment, 24(8): 1113-1126. 5. Li, W. and C. Zhang, 2010. Linear interpolation and joint model fitting of experimental transiograms for Markov chain simulation of categorical spatial variables. International Journal of Geographical Information Science, 24(6): 821-839. 6. Li, W., and C. Zhang, 2008. A single-chain-based multidimensional Markov chain model for subsurface characterization. Environmental and Ecological Statistics, 15(2):157-174. 7. Li, W., and C. Zhang, 2007. A random-path Markov chain algorithm for simulating categorical soil variables from random point samples. Soil Science Society of America Journal, 71(3): 656668. 8. Li, W. 2007b. Transiograms for characterizing spatial variability of soil classes. Soil Science Society of America Journal, 71(3): 881-893. 9. Li, W. 2007a. Markov chain random fields for estimation of categorical variables. Mathematical Geology, 39(3): 321-335. Other publications 1. Li, W. and C. Zhang. 2013. Some further clarification on Markov chain random fields and transiograms. International Journal of Geographical Information Science, 27(3): 423-430. 2. Li, W. and C. Zhang, 2012. Comments on ‘Combining spatial transition probabilities for stochastic simulation of categorical fields’ with communications on some issues related to Markov chain geostatistics. International Journal of Geographical Information Science, 26(10): 1725–1739. 3. Li, W. and C. Zhang, 2012. Comments on ‘An efficient maximum entropy approach for categorical variable prediction’ by D. Allard, D. D’Or & R. Froidevaux. European Journal of Soil Science, 63(1): 120-124. 1 4. Li, W. and C. Zhang, 2011. A Markov chain geostatistical framework for land-cover classification with uncertainty assessment based on expert-interpreted pixels from remotely sensed imagery. IEEE Transactions on Geoscience and Remote Sensing, 49(8): 2983-2992. 5. Li, W. and C. Zhang, 2010. Simulating spatial distribution of clay layer occurrence depth in alluvial soils with a Markov chain geostatistical approach. Environmetrics, 21(1): 21–32. 6. Li, W. and C. Zhang, 2009. Markov chain analysis. International Encyclopedia of Human Geography, 6: 455-460. 7. Zhang, C, and W. Li, 2008. Regional-scale modeling of the spatial distribution of surface and subsurface textural classes in alluvial soils using Markov chain geostatistics. Soil Use and Management, 24(3): 263-272. 8. Zhang, C. and W. Li, 2008. A comparative study of nonlinear Markov chain models in conditional simulation of categorical variables from regular samples. Stochastic Environmental Research and Risk Assessment, 22(2): 217-230. 9. Li, W. 2007c. A fixed-path Markov chain algorithm for conditional simulation of discrete spatial variables. Mathematical Geology, 39(2): 159-176. 10. Zhang, C. and W. Li, 2007. Comparing a fixed-path Markov chain geostatistical algorithm with sequential indicator simulation in categorical variable simulation from regular samples. GIScience & Remote Sensing, 44(3): 251-266. 11. Li, W. 2006. Transiogram: A spatial relationship measure for categorical data. International Journal of Geographical Information Science, 20(6): 693-699. 12. Li, W. and C. Zhang. 2013. Updating categorical soil map with limited survey data by Bayesian Markov chain co-simulation. GeoComputation 2013 Extended Abstracts, May 23-25, Wuhan University, China. http://www.geocomputation.org/2013/papers/55.pdf. 13. Li, W. and C. Zhang. 2012. A Bayesian Markov chain approach for land use classification based on expert interpretation and auxiliary data. GIScience 2012, Sept. 19-21, Columbus, Ohio. http://www.giscience.org/proceedings/abstracts/giscience2012_paper_137.pdf. 14. Li, W. and C. Zhang, 2008. Mapping the probabilities of soil clay layer thickness exceeding some threshold values with Markov chain geostatistics. In: T.J. Cova, H.J. Miller, K. Beard, A.U. Frank, M.F. Goodchild (eds.) GIScience 2008, Park City, UT, Sept 23-26, 2008, pp. 270-274. 15. Li, W., and C. Zhang, 2007. The nonlinear Markov chain geostatistics. In: IAMG 2007, Geomathematics and GIS Analysis of Resources, Environment, and Hazards, IAMG 2007 Annul Conference. Aug. 26-31, Beijing, China. pp. 573-578. 16. Li, W., and C. Zhang, 2007. A middle-insertion algorithm for Markov chain simulation of soil layering. In: ACMGIS 2007, 15th ACM International Symposium on Advances in Geographic Information Systems, Nov. 7-9, 2007, Seattle, USA. pp. 328-331. 17. Li, W. and C. Zhang. 2006. Visualizing spatial uncertainty of multinomial classes in area-class mapping (online article). AutoCarto 2006, June 26-28, Vancouver, Washington, 13 pages. http://www.cartogis.org/docs/proceedings/2006/li_zhang.pdf. 18. Li, W. and C. Zhang. 2005. Transiograms for characterizing soil spatial variability (extended abstract). GeoComputation 2005. University of Michigan, Aug. 1-3, 2005, Ann Arbor, Michigan. http://www.geocomputation.org/2005/LiW.pdf. 2 Earlier publications In modifying the coupled Markov chain model for mapping categorical variables 1. Li, W., and C. Zhang, 2006. A generalized Markov chain approach for conditional simulation of categorical variables from grid samples. Transactions in GIS, 10(4): 651-669. 2. Li, W. and C. Zhang, 2005. Application of transiograms to Markov chain modeling and spatial uncertainty assessment of land cover classes. GIScience & Remote Sensing, 42(4): 297-319. 3. Zhang, C. and W. Li, 2005. Markov chain modeling of multinomial land-cover classes. GIScience & Remote Sensing, 42(1): 1-18. 4. Li, W., C. Zhang, J.E. Burt and A. Zhu, 2005. A Markov chain-based probability vector approach for modeling spatial uncertainties of soil classes. Soil Science Society of America Journal, 69(6): 1931-1942. 5. Li, W., C. Zhang, J.E. Burt, A. Zhu and J. Feyen, 2004. Two-dimensional Markov chain simulation of soil type spatial distribution. Soil Science Society of America Journal, 68(5): 14791490. 6. Zhang, C., and W. Li. 2004. Predictive area class mapping of multinomial land-cover categories using Markov chains. pp. 239-242. In: GIScience 2004 - The Third International Conference on Geographic Information Science, Maryland. 3
© Copyright 2024