M I X I N G O F V I S C O U S N E W T O N I A NA N D NON- NEWTONIAN FLUIDS V. V. Chavan u,.",of#I""]'i,1" i,""1;"J,, ""rs and R.A. Mashelkar C h e m i c aE l r gr i n e e rni g D i v i s i o n N a t i o n a lC h e m i c a lL a b o r a t o r y P u n e 4 1 10 0 8 ,l n d i a 1 Conceptsand Criteria 210 Li Small ScaleScgregalion 1 . 2 L a r g eS c a l eS e g r e g a t i o(nR a n d o m ) 1.3 Large ScaleSegregation(Systematic) l 4 Laminar I\4ixing 1 . 5 D i s t r i b u l i v eM i x i n g Meausof Mixirrg 220 -). Batch Mixing 221 3.1 Flow Pat{ornsand Velocity Distrjbution 3.2 Florv Patternsand yelocity Distribution in viscous NewtorrianFluids 3.3 Florv Pattc.rs and velocity Distribution in Non-NewtonianFruids 3'4 DischargeRates,circuration capacitiesancrcirculation Times 3.5 PowerConsumption 3.6 Mixing Tin.res 4 . ContinuousMixing 23t 4 . 1 R e s i d e n cT eime Distribution 4.2 Micromixing Concluding Remarks 245 Nomenclattrre References 1. Concepts and Criteria By 'mixing'we understandspatialintermirrglingof clifferentconstituents. This can be brought about by severarmechaniims:(i) by mechanicalry Mixing of Vistous Newtonian and Non'Newtonian Fluids 2ll breakingandseparatingtheconstituentsinsmallerelementsandthen r e c o m b i n i n g t h e m , ( i i ) b y d e f o r m i n g t h e c o n s t i t u e n t s u stoi nthe g s hother earortensile' constituent (iii) by transieriingthe elementof one stresses, and (iv) by moleculardjffusion' by forcedor natural "onutJtion, or more of thesemechanisms In any industrialmixing operation.one upon the physical propertiesof may prevail at the sametlme, depending conditions. It is of practical the materialsinvolveJ and tie operating 'mixing' by manipulatingthe con-a^1lil1s :"- lli: interest to propagate is to acqutre can be usedto our advantage'The purpos€ thesemechanisms the word mixture' For any quantitalive investigation a 'homogeneous' o:11"^o''-,It o,oog.i"ous' or 'homogeneity'shouldbe properly i' 'of the same kind" If tbis The dictionarymeaningof homogentou* In the technical be homogeneous' were a requirement'''ooiti^tu'e "in which we generallyimply "compo.t:dof.jp.urts" world by 'homogeneous' 'parts' there defined' is well these are all of the samet ioA". If"the scaieof This scalewas.termedby rvill be no ambiguityin the term homogeneity' words' the scaleof (1953)as'scale of scrutiny'' ln other Danckrverts s c r u t i n y i s t h e m i n i m u m s i z e c o n s i d e r e d f o r a n y a nthat a l y sthe i s 'mixture Tlreanalysisof regionson this scaieshouldleadoneto conclude segregated i s h e t e r o g e n e o u s ( n o t o | t h e s a m e k i n d'mixture' ) . T h e s c a l to e o be f s cused' r u t i n For yverymuch is dependsupon the iu'po'" for which the things'a of toilet soap (rvhich is' amongstmany example,in the ""," of scrutiny dependsupon the mixture of a pigment and soap) the scale to the-prod.uctused' For resolvingpower of the eye' It may correspond one tablet' For a detergent the drugsin tablettorm'it is the weight of of commachine'In.Jhe.case .-*hi.h mix it is the u'eightput into rhe washing of grain inclividual the pounde.Jrubber, it is thc t.olunreo,'.l. a d d i t i r cc a n b c a c t i v c ' scaleat which the homoThus, the scaleof scrutinyconsidersthe doesnot give any quantitative geneityshouldbe scrutinized' tlo-t?utl' it ,tromog"n.iry'. statisticalnleasures'suchas experimentally criteriontor 52 are definedas estintatedstandardieviaiioT S or variance s': - l- .lVs- ,L \ i': ,l a , - C,,)2 (1.1) coefficientof variancc C" defined Flere the mean C,,,can be estimated' The AS I .a ,:l I L r: S x 100 --7;- (1.2) 9tn Howevei:' these measures suffer can be used as a measure of mixability' referred to any generalstandard referfrom the disadvantageof not being e n c e . T h e m o r e e l a b o r a t e a p p r o a c h e s u s e c l t o c l e s c r i b e t h e . dconveegree'or 'goodness' of mixing are diviied into three parts for .11-^.t1Y"t (b) large-sca1esegregation(random)' nience: (a) smatl-scut" **g'"gu'ion' and (c) large-sca1esegregation(systeniattcl' 212 V. V. Chavanond R. A. Moshelkar l.l Small-Scale Segregation In this case,Danckwerts(1953)proposed two quantitiesto descrjbea mixture'Theseare(i) scaleor'r.gr.gutio'n, and 1ii)intensityof segregation. 1.1.1 Scarr or SrcRecerloN Scareof segregation simprymeansthe dinrension the size of the crumpso[ an unmixed component that characterizes in the mixture. For a mixture of two conrponentswith the n.,.un (vorunreor weightfractions) C^and, *.a1,.)lthe,point,values "on.rntration of the concentration wi' be ci and'1 - cii the!t.'point' hereis the scareof scrutiny.If the concentrationsmeasuredat tlvo points which are at a distancer apart are Ce and C,, a coefficient of correlationcan be definedas (1.3) At r : 0' R(r): r' within a segregated clunrp,fi(r) wirrrecruce fiom 1 to 0' wrrcnone of the poinrs is outsidcthe crump, ,urr.r"i;;';;;" concertratio. is c,,, ft0')rvit bezero. This,of course, is the idealcase.For small_ scalesegregation it is assu'redthat beyondthe segregaled zoneconcentrationsdo not fluctuatevery much aroundthe mean.In other words, after a finite value of r, thereare minor fluctuations ,h" ,puo u to r) in R(r) around zero and as/->co, 1in"oropu.iroo.rio R(r)-rb. Fo, large-scale segregation, howe'er,R(r) rviil fluctuatebetween*l-l and --r. A typicar correlogramfor small_scale segregation is shownin Fig. i. Fig.I A correlogrant for small-scale segregation Dancklerts defined a scale of segregation on a linear scale ,''.9')and a v o l u m e s c a l e( Z ' ) a s f o l l o w s : J': 'fa I; R(r) dr v' : 2; I Jo rzR1r1 ctr I t I (1.4) (1,5) Contributionto the area under the curve decreases rapidlyfor r I f .1 I I Mix,ing of l/iscousNen'tonianand Non'NewtonianFluids 213 a finite f. The and consequently the limit of tntegral can be taken at the size of the as sense -ugnltua. of S; a,,d V' will vary in the same in a random define to which by irselt is not always possible ;ffi;, unambiguous a s p . o " . r r . F o r t h i s r e a s o n i t i s c o n v e n i e n tt o u s e t h e m is not significance r.urur", of scale of segregation' even though their m easure t o e a s i l y v i s u a l i z e d .D a n c k w e r t s h a s a l s o d i s c u s s e dt h e m e t h o d s or S' and I/', which mainly constitute measurements of the 'point-values' more being the contents in the line sample or in a volume sample (volume than a point and much smaller than the total bulk volume)' 1.1.2 INrtuslrY op Sncnpca'rtox The intensity of segregationcan be defined as, *2 '|-- ---:c^(l-c^) (1.6) a s1;31st'lof two where o2 is the expectedpopulation variance. consider into two zones with miscible liquids. InitiallS;, when they' are separated when the conpoint concentrations either I or 0, 1is ecluirlto 1' Finally' C,,,,l becomeszero' ientration becomesuniform throughout at a value of of 1 for misI gradually reducesfrom 1 to 0. The fractional decay ii,, c i b l el i q u i d si s g i v e nb Y : ._6Elo+{,1,:, _+(H): (1.7) the lrrolecular It can be further argued that for rapid reduction in /, either c o n s t a nt flattening' diffusibility should be very high or there must be c o n c e n t r a t i o ng r a d i e L o n g a t i o n - osr u b d i v i s i o no f t h e c l u m p s s o t h a t l t i g h u s ed to obtain e n t s a r e a l r v a i ' sp r e s e n ta t t h e b o u n d a r i e s , T l - r em e t h o d s as o2 can be t h e s c a l eo f s e g r e g a l L o ne n a b l e o n e t o c a l c u l a t e 1 , a s l o n g s u ggestedby as estinraled rvith sufhcient confidence- Alternatively, nleasuresuch Danqkrverts, an in[initely rapid reaction can be used fbr ments. for Zrvietering (1959)extended the concepts proposed by Danckrverts c o n t i n u o u sm i x i n g . T h e s e a r e d i s c u s s e di n S e c ' 4 ' 1.2 Large-ScaleSegregation(Random) viscous w h e n m i x i n g t | o i m m i s c i b l e l i q u i d s o r d i s p e r s i n gp i g m e n t s i n l a r g es c a l e . i s o n a s e g r e g a t i o n t h e m a t e r i a l s o r m i x i n g p o r v d e r so r p a s t e s , a v e r y slorv b e c o m e s d i f l u s i o n This is quite common when molecular F u nction 0 . o r I e i t h e r a r e p r o c e s s .T h e p o i n t - v a l u e so f c o n c e n t r a t i o n c a s ea r e i n t h i s m i x i n g o f h 1 r ; n o n nf l u c t u a t e sw i t h i n t 1 " T h e m e a s u r e s m i x i n g ' p o w d e r provided mainly by the work done in the area of a s s l t l n ea s i n c e a l I t l i e s ea p p r o a c h e sa s s u n e c o r n p l e t e r a n d o r t l n e s sw, e considered' brriomial distribution when a two-colnponent system is 214 V. V. Chavanand R. A. Mashelkar Tireprobabilitydistributionin thiscaseis givenby: Pt(C) : (1.)".",' - C,,)*-*' (1.8) w h e r e x i s t h e ' u m b e r o f p a r t i c l e si r r a s a r ' p l e a n d n " i s t h e n u m b e r o f particles of the. component whose concentration or volume-fraction & we denote a.s c. C,,, is the population average of c, which is known in nany cases.P6(C) denotes the probability that x" particlcs (of the kind w h o s ec o n c e n t r a t i o ni s c ) a r e i n a s a m p r eo f x p a r t i c l e s a n d /x\ (" ./ : x! ilG x.r t ( l' e) The population mean is Cn,and the population variance o2 is (C_(I _ C,,)I x), when lactois such as size distrib'tion of the particles uno"'it" density differences are considered the variance assunes different form (Lacey, 1 9 5 7 ;v a l l e n t i n , 1 9 6 7 ) .B e f o r e t h e c o n s t i t u e n t sa r e r a n c l o m l y distributed, i.e., when there are two sepafate zones of the two constiiuents the population yariance can be obtained as C,,,(l _ C,,,).Various methods have been describedin literature where the experimentally obtained variance s2 i s c o m p a r e dw i t h o l a n d , o f r , t og i v e a n e m p i r i c a l m i x i n g index. A typical f o r m c a n b e s e e ni n t h e i n d e x p r o p o s e db y L a c e y ( 1 9 5 7 ) . M ' : l - q : 0 6 -I6 ; (r . 1 0 ) T o e a s e t i r e p r o c e s so f e v a l u a t i o n , t h e b i n o m i a l d i s t r i b u t i o n m a y be a p p r o x i m a t e db y n o r m a l d i s t r i b u t i o n u n d e r s o m ec o n d i t i o n s( H a l d , 1 9 5 2 ) , T h e m i x t u r e u n d e r e v a l u a t i o n i s p o s t u l a t e d t o b e r a n d o m ; r v h e t h e rt h e s a m p l es i z e a n d t h e n u m b e r o f s a m p l e sa r e a p p r o p r i a t ew i t h t h e h y p o t h e s i s of randomness can be verifiet by conrparing the estirnated rnean and variance rvith c,,, and 12 using /-test or x2-test (see lv{ohr (1959) for urore d e t a i l s ) .T h e c o e { i c i e n t o f v a r i a n c c f o r t h e p o p u l a t i o n i s c,:r',|i: ll_=,,, L, ry iq;- (l'11) This is the parameterwhichcharacterizes the intensityof segregatrorr. For a fixedsamplesize(from the scaleof scrutiny)anclreasonablylarge numberof samples (to coverthe bulk), the testoflrandomness or the population coefficient of variancedetermines the degreeof mixing. converselS., for a fixedvariance,Buslik(1973)suggests the sanplesizeas the mixing index.If the weightof the particlesis constantthen the weightof the sampleis directlyproportionalto the numberof particles. on thebasisof the weightof thesampleBuslik(1973)suggesrs a homogeneity index.This indexseems to be usefulespecially for immiscibleIiquids,wherethereere no disintegrated particles,Hon'ever,determination of Buslik,sindex ir a practicalcaseis likely to be a laboriousprocedure.For the mixins of lvlixing of YiscousNewtonian antl Non-Newtonian Fluicls 275 €xperimerlts for liquid or paste, a suitable approach is to carry out scaleof scrutiny diifcrent sample sizeswithin a iange predeterminedby the method for this using While randomness' tests for *nA,5"n p.rior. the doesnct one that the fact by created is ambiguity liquids and pastessome v a l u ef o r f i c t i t i o u s a a s s u t n e t o b e w i l l b e s t way ,.olty huu. iarticles. The c l o s e l y is one m c r e x , v a l u e o f h i g h e r t h e x , b e a r i n gi n m i n d t h a t t h e have a wili coeflicient expected the that looking *ithin the sample and iower value. for intensi.iy Although thc methods describedabove provide a meastlle segregation. o f t h e s c a l e cf segregitio', thev do not give any idea aborit w h i chconsidels ( 1 9 7 3 ) In tliis ,.rp.rt the 'rethod iescribedby Kristensen the between the variance within the sample, aloug with the variance s a n r p l e ,r v i l l b e u s e f u l. mixing of The above ideas have been quantitatively utiiized in the and Hali and p a s t e sb y N { i c h a e l sa n d P u z i n a n k a s ( 1 9 5 4 ) , E a r l e ( 1 9 5 9 ) . o r i n s t a n c e ,I { a l l a n d G o d f | e } ' t a k e x a s G o c l f . , . e(y1 9 6 5 ) ,a m o n g o t h e r - s F , l r e f r e q u e n t L yf i n d s t l c : q i r a r eo f i h e g r i c ld i n i e n s i o * f o r a n a r e a s a r n p l eO i n l i t e r a t u r e w h i l e u s i L i gs t a t i s t i c a lc o n c e p t sf o r t h e i n i e r p r e t a conil-rsion b e h e l p f L r li n t i o n o f i l r i x i n g d a t a a n d t h e f o r e g o i n g d i s c u s s i o ns h o u l d a v o i d i n gs t r c hc o n f u s i o u ' 1.3 Large-scaleScgregation(Systemrtic) o b s e r v e cal n d 1 n t h i s c a s e , t h e s c a l e o f s c g r e g a t i o nc a n b e v i s u a l l y due to shear or i n e a s u r e d .I n v e f y v i s c o u s l i q u i c l s r n i x i n g o c c t l r s e i t h e r s t r e a m l i n ed i v i s i o n t en r : i l ed e f o r m a t i o n s( l a m i n a r r n i x i n g ) ; o f h r e o a l l soef t h e m i x i n g ) ' a n t l r e c l i s t r i b u t i o n( d i s t r i b u t i v e is nreasttretl' l i t h e c o n c e n t r a t r o tal t a n y p o i n t i n t h e n l i r t u r e ( o I n l i r c i ) e t p p e a' fT h e t a p r - ' r $ ' i l l 2 ( b ) o r 2 ( a ) F i g . i n s h o w n a plot siuiilar to the one a l t h o r r g l rp r e - s e t r ti 's r v h i c h C i f f L r s i o n , i n I j i g . , r - ( b )i s d u e 1 o m o l e c u l a r i n this clse, c l e f i n e d i : a s i l y b e c a n s e g r e g a t i o n n e g l i g l b t ys i i - , , i 1T1h. e s c a l eo f a l r v a y sb e n o t r v i l l i t e t c . S i n c e i ' . , , / ' " , . n s l t i o i t i b e t h r s i z eo f t h c -c l u s t e r s i ndex" a s a n u s c d a n d d e f i n c d c o n s t a n t ,a r e p r e s e n t a t i v cv a l u e c a n b e 1 9 5 9 ) ( M o h r , d e f i n e d a s T h e i n t e n s i t y o f s e g r c g a t i o ni s u o r v ,:5r1 (r,r2) variance is A l t h o L r g ht h e p o l p u l a t i o n m e a n C , , ,i s k n o w n , t h e p o p u l a t i o n intensity of not knolvn, and thus there is no equivalent of expected b e d e p e n c l e no tn w i l l i n t e n s i t v T h e m i x t u r c ) . s e g r . e g a t i o(na s i n a r a n d o n t is It scrutiny. of scale the by be cletertri'ed uuir.,pi"size, rvhich should a c o r r e ct l b r ( r r , t l r a n b e t n o r e s h o u l d o b v i o L r st h a t t h e s a n r p l ev o l u m e ",r)3 m i x t u r e ' t l t e o f s e g r e g a t i o n r e p r e s c n t a t i o no f t h e i n t e n s i t y o f t h e ' l i r t l ' ri i t a r F o r a b e t t e r u n d e r s t a n c i i n go f n l i x i n g i n t h i s c a t e g . t r y ,ilisrributive sontedetail, in exantined be mixing' should mixing, arid tire 216 V, Y. Chavanand R, A, Ii:[ashe]i<ar J cm rl I I I I I - -t -- l*-i- /cl [e-. it /\ t\ ts* (b) Fig.2 Largc scale scgregation (s]'stematic) in the absence of ( F i - l : .2 a ) a n d j n t h e p r e s e n c e o f ( F i g . 2 b j m o l e c u h r diliusion 1,4 LaminarMixing The averagestriationthickness(scaleof segregation) can be computed from the ratio of the interfaciirlsurfacearea betwcenthe components and the total yolumeof the system(N,Iohr,1959). 2V "A; ( 1 .l 3 ) This expression is a resultof picturingthe materialas beingdeformcdby mixingprocess into roughlyplaneparallelsheets. The anaiysisofSpencer and Wiley (1951)lbr undirectiorLal sliear(sirnpieshear.flr.iwbetrveentivo Mixing of Viscousitieu'tonian ond Non-Newtonian Fluids 217 infinite parallelplates)leadsto the followingequationfor the changesin the interfacialareas. (*")': (#," , - r(#,x r) cos& 1 C O S& 2 f t ) c o s 2a 1 ( 1 . 1 4 ) where 11 and A1o are the final and i n i t i a l i n t erfacial &raos. !/1 is the veiocity; the gradient of rvhich is in the direction x2, cos d1 ond cos w2 ' ..:4,, :,'l'ttt/Z' :122 - 2'-t: Z :':2' are the direction cosines of the Att,t)?.i:u H H blr normal to the original surface with -=fl respect to x1 and #2, respectively'. t . ' r' 8 rg t The above equation points clearly lt"-.::.-:.7....:.:-./.a:,.:a.7:-,-,,7a7.-?:-717 towards important factors in the problem, Iaminar for mixing instance, the importance of the - . -,,,':-''' /', "2,212 t-:"^-:1"-: orientation of the original surface betweenthe trvo species.It is obvious that cos o1 should be finite for the 1n: deformations to change the interfacial area or to reduce the striation t h i c k n e s s( s e eF i g . 3 ) . Fig. 3 Influenceof orientationin laminar Bergen (1959) describes a twos h e a rm i x i n g dimensionalpicture of the ohanges i n s t r i a t i o n t h i c k n e s sf o r a c o u e t t ef l o w b e t w e e nt l o c o n c e n t r i c c y l i n d e r s ( s e eF i g . 4 ) . I f o n e d e s c r i b e st h e f f o r v i n c y l i n d r i c a l c o o r d i n a t e st h e n t h e : '41-CfL1:a' -f>" '.rY " ) - - ' * F - ' - xr \ \'' 41.1..:\i \ ',, /\t. I Fig. 4 Laminar shear mixing in con.:entricc5'hndelststems -- 1 218 V. V. Chavanand R. A' Mashelkar shearrate can be written as i,: -rdtv'l) : f,(,OoO,) and if the inner cylinder is rotating rvith an angular velocity J?, tlren ,,:ryi , * 12 -{*L.t \rCi _ ni/ At any radialposition,rvehave , \' : I * cot2p : {'-l : cosec2g \,'" / r^. d0 j": -;' when, Furtlrermore, lr, l .' rs r , + (,f,)' (r.r5) (r'16) dr F o r a s t e a d yf l o w ( s i r l c ei < i c e sn o t c h a n g e w i t h 0 o r t ) i n a n i n t e r v a l o f time At, one obtains r, l R1, )rz ( 1. 1 7 ) ' #t rr' 1 1R'/R2)21 ; : o r c o n s i d e r i n gt l t a t A U i revolutiotts rs 2 r N , o w e o b t a i n i n t e r n l s o f the nuniber of lt ,4' "l R - , ru);'(, r, - (t tR ' i R 2 ) 2 1 ( r .l 8 ) ;: T h u s t h e m i n i m u t n c h a n g e so c c u r a t r : R r a n d m a x i n r u m a t r : R 2 ' S i m p l e c a l c r - r l a t i ocna n b e d o n e t o s h o l v t h a t t h e t i m e r e q u i r e d t o o b t a i n t h e m a x i r n u n rs t r i a t i o n t h i c k n e s st o b e m u c h l e s st h a n t h e s c a l eo f s c | u 1 i n r ' . T h e a b o v e r e l a t i o n sh o l c lf o r t t N e r v t o n i a nf l u i d , a n d i t i s e a s y t o s h o r v t h a t f t r r a n o n - N e i v t o n i e np o w e r l a r v { l u i d , /-: /so _ ii(r1R^,,)t"' _ (Rr//tr)2) ,, (l.Le) *T!\r s lore I t i s s e e nt h a t r v i t h i n c r e a s e dp s e i i d o - p l a s t i c i t y3 6 t u . m i x i r r g b e c o n t e n dillicult. S o n r ec a l c u l a t i { l n so l t h e c h a n g e s i n t h e s t r i a t i o n t h i c k n e s s h a v e b e e n m a d e b y s h r e n k , e t a l . ( 1 9 6 3 , 1 9 6 9 ) .T h e y h a v e c l i s c u s s e ds p e c i f i c a l l yt h e f l o w t h r o u g h a u a n n u l a r c h a n n e lr v i t h r o t a t i n g w a l l s u n d e r t h e c o n t l i t i o n s o f a n a x i a l p r e s s u r cf k r w . l n a n o t h e r w o r k , f l o w i n t h e r e r t a t i r r gt L r b ci s c o n s i d e r e d .O n t h e b a s i s o [ s i m p l e c a l c u l a t i o n s f o r t h e l l o r v o f v i s c o t t s Newtonian liquids they obtained the distribution of striations aI a particular axial lelgth in r-0'plane. Their analysis considcrsthe t l e n d i n g o f t l o \ ' i s c o u sN e r v t o n i a nl i q u i d s a t l o r v R e y n o l d s n u m b e r s a n d s h o r v sa g o o d a g r e e n t e nfto r t h e n t i x i n g o f b l a c k ( c a r b o n b l a c k ) a n d w h r l e ( T i O 2 ) p i g m e n t e dp o l y s t y r e n e .M o h r , e t a l ' ( 1 9 5 7 )h a v e e x t e n d e dt h e b a s i c o f I a m i n a r s h e a rm i x i n g t o o b t a i n t h e d i s t r i b u t i o n o f s t r i a t i o n s "on..pi, on the f o r a , i e x t r u i l e r .T h e y e x p l a i n t h e e f f e c t o f g e o m e l r i c a l v a r i a b l e s bv u't r e c e i v e d o f s h e a r r ' n r t x i m u ms t r i a t i o n t h i c l i n e s s .T h e t o t a t a l n o u n t and rate shear the product of eleinent was obtained as the suin of the Mixing of Viscous Newtonian and Non-Newtonian Fluids 219 residence time for eachpart in the flow path, The hydrodynamicsused was approximateand wasvalid only for Newtonianliquids.Recentstudies in hydrodynamicsof extrusionfor Newtonian(McKelvey,1959)and nonNervtonianliquids (Bigg and Middleman, 1974)aremore closeto reality. However,the laminar shear mixing conceptshave not yet been used to study and interpret the mixing phenomena.Furthermore, only nondirectionalflows have been considered.The direct extensionfor more complicatedhydrodynamicsituationsis likely to be tedious.Chavan,et al. (1975a)have usedtheseconceptsto explainthe rnixingtime (definedlater) resultsfor a helical screw mixer in a draught tube. N{ohr, et al. have proposedan equation for laminar shear mixing of two liquids rvith differentviscosity.The changesin the striationthicknessare described by an equation 'r:3Y2 ( r .20) MtPt r"o w h e r e M l i s t h e n e t a m o u n t o f s h e a r i n gs t r a i n i n t h e m a j o r c o m p o n e n t ,I r 1 is the viscosity of the major component and p,2is the viscosity of the minor component. Note that the changes in the striation thicknessrvithin the m i n o r c o m p o n e n t( s a m e v i s c o s i t yp r . t2h r o u g h o u t ) i n t e r m s o l t h e s h e a r i n g s t r a i n i n t h e r n a j o r c o m p o n e n ta r e p r e d i c t e d .F u r t h e r m o r e ,n o n . d i r e c t i o n a l s t r a t i f i e df l o r v o f t w o i n t m i s c i b l el i q u i d s i s c o n s i d e r e dT. h e r e i s a p p a r e n t l y a n e e d f o r t h e s o l u t i o n o f f l u i d d S r n a r n i cp r o b l c m s i n v o l v i n g t h e f l o w o f t r v o o r m o r e i m m i s c i b l ep h a s e s . M u r a k a m i e t a l . ( 1 9 7 2 ) s h o w e d e x p e r i m e n t a l l y( o n : ! c o u e a n d p l a t e v i s c o m e t e r )t h a t o n e c a n d i s c a r d c o r n p l e t e l yM o h r ' s e q u a t i o r . r1 ' o rb l e n d i n g . T h e y o b s e r v e d t h a t t h e s t r i a t i o n t h i c k n e s so f t h c m i n o r c o i l l p o n e n t ( v i s c o s i t yp 2 ) d o e s n o t c h a n g en t u c h w i t h t i r e r , i s c o s i t 5 ' r a t i o( 0 . 6 . < -p 2 l p t 1 < 3 i . T h i s i s v a l i d o n l S , 1 y 1 . t " tnh e r r r i n o rc o m p o l t e r r ti s p l a c e d p e r p e n d i c u l a r t o t h e d i r e c t i o n o f f l o w a n d w h e n i t i s s h e a r e df o r a l i r u i t e c tl i n t e . I n p r i n c i p l e , o n c e t h e i n i t i a l p o s i t i o n o f t h e m i n o r c o n t p o n e n t i s r : l r a n g e di t w i l l t r y t o o r i e n t i t s e l f a n d d e f o r m s o t h a t e q ' . r a l i t yo I s t r e s s e sa u d v e l o c i t i e s i s s a t i s f i e da t t h e i n t e r f a c e s S o f a r c h a n g e si n s t r i a t i o n so n l y d u e t o s t r e s s d e f o r m a t i o n h a v c b e e n d i s c u s s e dI.n f l o w i n g r n e d i a , t e n s i l ed e f o r n r a t i o n sa l s o p r e v a i l . T h e s e a r e brought about by changesin the velocities in the direction of florv due tcr g r a d i e n t ss u c h a s ! , " ('X * I uIz anA lt! d.f M o h r ( 1 9 5 9 ) p e r f o r n r e c la n a n a l l , s i s t f o r t h e c a l c u l a t i o no f c h a n g e si n i n t e r f a c i a la r e a u n d e r s u c hc i r c u r n s t a n c e s : COS &l (*,)' ,Yt , ' COS rv2 X, , ' COS &3 Xt (r . 2 1 ) w h e r e X r , X z a n d f 3 a r e r e l a t i v e c h a n g e si n d i r e c t i o n . r r , . r 2a n d . x 3 . l - l o d e t a i l e dc a l c t r l a t i o n so n a n a c t u a l l l o r v p r o b l e n h a v e b e e n d o n e s o f a r trnd they are clearly desirable. 220 V. V. Chavan and R. A. Mashelkar 1.5 Distributive Mixing When shear and tensile deformations are small, mixing occurs due to t h e d i v i s i o n o f s t r e a m l i n e s a n d r e d i s t r i b u t i o n . S h e a r e r( 1 9 7 3 ) a n a l y s e d the changesin the striation thickness in the plane perpendicular to the flow for (a) an assemblyof rotating blades,(b) a stackedarray of helically flighted ducts, (c) an assembly of planetary rollers. I-iere, the author is p*U^t ty justitied iri assuming a plug flow, since the changesin the striaiion thicknessin the plane perpendrcularto the flow (r-0' plane) are uttder consideration, whereas the main shear gradient exists in other plane (.r-z plane). The tensile deformaticns can be neglected, if the rate of uog" of velocities in the direction of florv is negligible. Thus the .distributive mixing' can be used. The method used is as "t approach of fotiows: knorving the initial striation thickness and following the flow (while keeping proper count of the number of subdivisiols and the resulti n g r e d i s t i l U L r t i o no) n e i s a b l e t o o b t a i n a s i m p l e r e l a t i o n f o r t h e f i n a l s t r i a t i o n t h i c k n e s sa n d t h e n u m b e r o f t i m e s t h e m a t e r i a l h a s b e e n s u b d i v i d e d a n d r e d i s t r i b u t e d .T h e h y d r o d y p a m i c sa s s u t n e si m p o r t a n c c i r t a n i n d i r e c t w a y , i . e . , i n o b t a i n i n g t h e a v e r a g er e s i d e n c et i m e . S p e n c e ra l d W i l e y ( 1 9 5 6 )h a v e p r o p o s e da m e t h o d w h e r e c o m p r e s s i o n a n d d i s t r i b u t i o n c a o b e c o n s i d e r e dt o g e t h e r . T h i s i s u s e f u l e s p e c i a l l yi n s t u d y i n gt h e b l e n d i n go n a r o l l e r m i x e r . T h e r e c e n tr v o r k o f B i g g ( 1 9 7 5 )o n m i x i n g i n p o l y m e r f l o r v s y s t e m si s o f c o n s i c l e r a b l ei n t e r e s t . H i s s t u d y s h o w s t h a t r e s i d e n c et i m e c l i s t r i b u t i o n c u r v e s( s e e s e c .4 . 1 . 3 ) g i v e i n f o r m a t i o n o n t h e d i s t r i b u t i o n o l ' m a t e r i a l along the primary'floiv direction, Ilolvever, they do not provide informat i o n o n m i x i n g i n t h e t r a n s v e r s ef l o w d i r e c t i o n f o r l a m i n a r 1 1 o ws y s t e m s . For rnost pol,rrmerprocessingapplications, mixing ilr tfansversedirectiot.t i s v e r y i m p o r t a n t , B i g g c o r r s i d e r sa t r u n i b e r o f c a s e s ,s u c h a s m i x i n g i n s c r e r ve x t r u d e r s ,m i x i n g i n r o t a t i n g c y l i n d e r sa n d s t a ' r i ct t t i x e t s ,a n d s h o v ' ' s t h a t t h e s t r i a t i o n t l t i c k n e s sa n d s t r a i n a r e c l o s e l yr e l a t e d .F r o m t h e s h a p e s o f t h e c u r v e sr e l a t i n g s t r i a t i o n t h i c k n e s sw i t h s t r a i n i t i s c l e a r t h a t m i x e r design is an impcrtant factor in eliiciently utilizing strain to optintize nixing. 2. Means of Mixing t ixing, proper conditions will have to be created and F o r e f f i . s i e nm t h e t m r c h a n i s m s d e s c r i b e di n s e c . I c o u l d p r e v a i l . T h e s o maintained m i x e r i s o b v i o u s l y d e p e n d e n t u p o n t h e s p e c i f i cc a s eu n d e r s e l e c t i o no f a c o n s i c l e r a t i o nA . f r e q u e n t l y u s e d s e l e c t i o ng u i d e i s g i v e n b y H o a n d Krvong (1973). lt is evident from this that the choice of agitator is largely g o u . r n . i b y t h e l i q u i d v i s c o s i t ya n d t o a l e s s e re x t e n t b y t h e m i x i n g t a n k i i z e . T h e g u i c l ei s s o l n e v r h alti m i t e d i n a p p l i c a t i o ns i n c es o m e v a r i a t i o n i n t h e t l e s i g na n d o p e r a t i i ' r gv a r i a b l e sc a n s h i f t t h e s e l e c t i o np r o c e d u r ec o n s l derably. In adrlitron, ot course. probleuis of construction, endurarice of Mixing of YiscousNeu'tonian and Non-N(utonian Ffuids 121 equipment, etc,, come in; a useful discussionof these aspects is given by Uhl and Gray (1966). It is also conceivable that a multitude of modifications to the impeller design are possible, addition of each of rvhich would mean that we may have to study an infinite number of individual problems. Fortunately, this is not the case and all the mixers can be b r o a d l y s u b d i v i d e d o n t h e b a s i s o f t h e i r s h a p e a n d a c t i o n ; a u s e f u li n f o r m a t i o n c a n b e f o u n d i n U h l a n d G r a y ( 1 9 6 6 ) .T h e s t a t i c m i x e r s w h i c h a r e u s e d i n p i p e s h a v e b e e n d e s c r i b e db y C h e n ( 1 9 i 3 ) . Different mixers act by prodLicing different flow patterns. A detailed k n o r v l e d g eo f t h e h y d r o d y n a r n i c si n a m i x i n g . v e s s e lw i l l b e m o s t u s e l u l i u n o t o n l y a n a l y s i n gt h e m i x e r p e r f o r m a n c e b u t a l s o i n s c a l i n gu p . A n a p r i o r i k n o w l e d g eo f h y d r o d y n a m i c sa p p e a r st o b e a l m o s t i m p o s s i b l ei n v i e w o [ t h e p r e s e n c eo f a c o m p l e x t i m e - d e p e n d e n tt h r e e - d i m e n s i o n a l l e a s u r e m e n tosf v e l o c i t y l a m i n a r o r t u r b u l e n t f l o w . D e t a i l e d e x p e r i m e n t am d i s t r i b u t i o n i n t h e s t i r r e d v e s s e li s a n o b v i o u s a n s w e r ;b u t i n v i e w o f t h e n u m b e r o f v a r i a b l e si n v o l v e d ,t h i s b e c o m e st o o e x p e n s i v ea n d t i m e - c o n s u m i n g . [ r o r t u n a t e l y ,a n a l t e r n a t i v ec a n b e f o u n d i n w h i c h s o r n eg r o s si n t e g r a l q u a n l i t i e sc a n b e m o r e e a s i l y m e a s u r e d T . h e s eg i v e u s e f u li n f o r m a t i o n c o n c e r n i n g t h e h y d l o d y n a n r i c si n t h e m i x i n g v e s s e l .I n w h a t f o l l o w s u , e s h a l l d i s c u s si n s o n r ed e t a i l t h e d e f i n i t i o n s m , e a s u r e m e ntle c h n i q u e sa n d u t i l i t y o f t h e s eq u a n t i t i e s . T h e i r r e l a t i o n t o a c t u a l h y d r o d y n a m i c s v , , i l l b e d i s c u s s e di n a s u b s e q u e n ts e c t i o n . W e s h a l l c o n s i d e r t h c p r o c e s so f b a t c h m i x i n g a n d c o n t i n u o u sr L r i x i n gs e p a r a t e l y . 3. Batch Mixing I n b a l c h r n i x i n g e x p e r i m e n t su s u a l l y t h e n r e a s u r e m e n tosf t h e f o l l o v l i n g are made: l. 2. 3. 4. F l o w p a t t e r n s a n d v e l o c i t Sd' i s t r i b u t i o n O v e r a l l d i s c h a r g er a t c s . c i r c u l a t i o n c a p a c i t i e sa n d c i r c u l a t i o n t i m e s P o r v e rc o n s u n r p t i o r r Mixing times I n w h a t f o l l o w s , r v e s h a l l d e s c r i b et h e n r e a s u r e m e ntte c h n i q u e su s e df o r e a c h p u r p o s e r a t h e r b r i e f J ya n d t h e n e l a b o r a t eo n t h e a v a i l a b l e i n f o r r u a tion obtained with viscous Newtonian and non-Newtonian fluids. It s h o u l d b e e m p h a s i z e dh e r e t h a t a g r e a t d e a l o f i n f o r m a t i o n d e a l i n g w i t h t h e a b o v e a s p e c t se x i s t s i n l i t e r a t u r e p a r l i c u l a r l y i n r e l a t i o n t o t h e t u r u u lent region florv of low-viscosity Newtonian fluids, but due to lack of space this rvill not be reviewed here; only pertinent referenceswill be pointed out. 3,1 Flow Patterns anil Velocity Distribution T h e k n o w l e d g eo f f l o w p a t t e r n s a n d v e l o c i t y d i s t r i b u t i o n i s h e l p f u l i n 222 V. V. Chavanand R. A. Mashelkar understanding the mixer performance and in building up realistic physical m o d e l s . F u r t h e r m o r e ,i t h e l p s i n l i n k i n g i t u p w i t h t h e o t h e r i n t e g r a l q u a n t i t i e s s u c h a s c i r c u l a t i o n c a p a c i t i e s ,c i r c u l a t i o n t i m e s , p o w e r c o n sumption, mixing time, etc. A gross observation on flow patterns (obtained, for example, by injecting a dye tracer) gives an idea about the o v e r a l I m o t i o n i n t h e v e s s e l ,p o i n t s o u t t h e d e a d z o n e s ,e t c . T h e d e t a i l e d o b s e r v a t i o n so n v e l o c i t y d i s t r i b u t i o n , h o w e v e r , a r e t h e m o r e i m p o r t a n t o n e s ,s i n c et h e y h e l p i n t h e e s t i m a t i o n o f v e l o c i t i e s ,v e l o c i t y g r a d i e n t s , t o t a l s t r a i n s ,e t c . , i n d i f f e r e n t p a r t s o [ t h e v e s s e l . 3.1.1 MsasuRnlrsNr TecHrqreues There are several measurement techniques which can be used,.In the follolving, we shall review very briefly some of them; in each case pointing out their linitations in rclation to the high viscosityNewtonian and non-Nswtonian iiquids u,itir rvhich we are concernedhere. (l) Particle tc<.hnique: In this case a neutrally buoyant particle of, s a y , p o l y c t h y l e n eo r p o l 5 ' s t y r e n e i s s u s p c n d e di n t h e l i q u i d i n t h e v e s s e la n d m o v e m e n to f t h e f l u i d i s t r a c k e d b y a c a m e r a . B y u s i n g a p p r o p r i a t em e a s u r e m e n p t r o c e d u r e( s e e ,e . g . , K e l k a r , e t o l . , l g 7 3 ; P e t e r sa n d s m i t h , 1 9 6 7 ) a t h r e e - d i m e n s i o n a 'le l o c i t y d i s t r i b u t i o n can be obtained. The particle migration eflects (which are particuiarll, complex in viscoelastic non-Ne.,vtonian fluids) should be taken care of; absence of such effects could be, for instnnce, e n s u r e db y I o o k i n g f o r c i o s e d c i r c u l a t i o n l o o p s . A s t r e a k p h o t o g r a p h y m e t h o d ( e . g . S e y e ra n d M c t z n e r , 1 9 6 9 )i s e s s e n t i a l l ys i m i l a r a n d a s u s p e n s i o no f r n i c r . b u b b l e s o f a i r i s w h a t i s u s e d i n t h i s l e c h n i q u e . S o m e t i n ' r e sa c l o u d o f l i n e p a r t i c l e s o f a l u m i r r i u m o r n . p h t h a l e' e ( o r o t h e r m a t e r i a l c a p a b l c o f r e f l e c t i n gl i g h t ) i s u s e d . A thin flat hea'of b r i g h t c o l l i m a t e dl i g h t i s p a s s e di n t o t h c t r a n s p a r e n tl i q u i d a n d a t i v o - d i n r e n s i o n a vl e l o c i t y d i s t r i b u t i o n i s obtained. (it) Pitot tube, This classical technique should be used rvith great c a r e w i t h v i s c o e l a s t i cn o n - N e r v t o n i a nf l u i d s . A n y s t a g n a t i o n p o i n t v e l o c i t y o r p r e s s u r em e a s u r e n r e nct a n g i v e s p u r i o u sl e s u l t s ( s e ce , g . Metzner and Astarita, 1967) due to the abnormal kinernatic conditions w'hich the viscoelastic fluids develop under conditions of rapidli' ciranging deformarions. (.iii) Hot-t+'ireane,nometer: The principle of this technique is again w e l l - e s t a b l i s h e db, u t r v h e n u s e d w i t h v i s c o e l a s t i cn o n - N e r v t o n i a n f l r " r i d st h i s c a n g i v e s o m e p r o b l e m s . I n d e e d , t h e s t u d i e s o f J a m e s and Aco:ta (1970) showed tha,t the heat transfer rate from a c , v l i n d c ri m m e r s e di n a v i s c o e l a s t i cf l u i d b e c o m e si n d e p e n d e n to I the freestream velccityafter a certlin critical velocity is reachecl. u l t n r e n a n d l ) e n n ( 1 9 7 0 )h a v e a n a l y s e d t h i s p r o b l e n a n d s h o * , n t h i s t . b e c o n s i s t e n tr . v i t h t h e p r e s e n c e. f a s h e a r w a v e v e l o c i t y , I l I { I Mixing of ViscousNewtonian and Non-Newto:tianFluids 221 w i t h w h i c h t h e i n f o r m a t i o n i s t r a n s p o r t e di n e l a s t i c f l u i d s . (iv\ Laser-Dopler method: This method, which involves the measurement of Dopler shift of a thin laser beam is perhaps the best to use since the flow field is left undisturbed rhus avoiding any anomalons effects. In recent years, there has been an increasing trend to usethis nethod in the study of velocity distributjon in n o n - N e w t o n i a n f l u i d s 1 e . g . ,R u d d , t 9 7 l ) . 3,2 FIon Patterns and Veloci(y Distribu(ion in V i s c o u sN e w t o n i a nF l u i d s The study of florv patterns for various types of inrpellers has been e x t e n s i v e l yr e p o r t e d ( G r a y , 1 9 6 6 ) . A t l o r v R e y n o l d s n u m b e r s , a t u r b i n e a g i t a t e d v e s s e le s s e n t i a l l yp r o d u c e sa t a n g e n t i a lm o t i o n . A t h i g h R e y n o l d s n u n r b e r s ,t h e s e c o n d a r yc i r c u l a t i o n b e g i n s d u e t o t h e c e n t r i f u g a l f o r c e s . T h e f l u i d i s t h r o w n a w a y r a d i a l l l , a n d b y r e a s o n so f c o n t i n u i t y , i t i s broughtin axially, I n t h e c a s eo f p r o p e l l c r sa n d p i r c h e db l a d e t u r b i n e s ,t i r c r ei s p r i m a r i l y a n a x i a l r n o t i o n a l o n g r v i t h t h e t a n g e n t i a lc i r . c u l a t i o n A . t h i u h e rR c 1 , n o k 1 s n u m b e r s ,h o w e v e r ,r a d i a l n r o t i o n b e g i n sa n d s t a g n a n tp o c k e t sa r e f o r n r e c l i n t h c i r o t t o m c o r n e r o f t h e v e s s e (l f o r d o w , n r v a r dp r . r n r p i nogr t h e i m p el J e r ) . o f t e n b a f f l e s a r e u s e d r v i t h t h e s e i m p e l l e r s t o s u p i ) r e s sl l i e v o r t i c e s ( t o r e d u c ef h e t a n g e n t i a l m o t i o n ) a n d t o p r o m o t e t h e a x i a l a n d r a d i a l n ; o t i o n . I n t h e c a s eo f p a d d l e s a n d a n c h o r s t h e p r i m a r y m o t i o n i s t a n g e n t i a l . T h c r a d i a l a n d a x i a l r , ' r o t i o nd e v e l o p sa t h i g h e r r o t . a t i o n ; r is p e e c l sT. J r e R e 1 ' n o l d sn u r n b e r sa t v " h i c h a p p r e c i a b l er a d i a l a n d a x i a l n r o t i o n d ev e i o p s a r e r n u c h h i g h e r f o r a n c h o r s t h a n t h o s c f o r p a d d l e s a n c l t u r b r n e s ;t h e close clearance betrveen the impeller ;rnd the vesscl is apparently r e s p o n s i b l ef o r t h i s . T h e s e c o n d a r ym o t i o n i n t h e c a s eo f a n c h o r s( i n t l r c vcrtical plane, i.e., in the plane perpendicular to the irnpellerplaire) is s h o r v ni n F i g . 5 ( B e c k n e r a n d s m i t h , 1 9 6 6 ) . A s t h e R e i ' n o r d s u u m b e r i s /)2\t^ \ i n c r e a s e d( " - : : ! > l 0 ) a \ o r r e x i s d c v e l o p e db e l r i ' d t h e b l . r d e .r \ r h i g h c r \r' I R e y n o l d sn u m b e r sa t w i n v o r t e x i s f o r m c d ( ' l ' 1 l e , I 0 ( , ) . 1 ' l r ed e c . e a sier r \p I the clearance causes these vortices to be formed at lorver Reynolds numbers. A detailed investigation of these vortices and also of the l.ertical secondarymotion has been performed by peters and Smith 0969). I n t h e c a s e o f h e i i c a l i m p e l l e r s ( r i b b o n , s c r e w s ,o r c o r n L . i n e dr i b b o n screw) the axial florv is the primary flolv. The situation is thus srmrlar to that in the case of propeller or pitched blade turbine rrlixer-s;although the flow patterns are somewhat more complex. Nagata et al. (1957)first d e s c r i b e dt h e p r i m a r y c i r c u l a t i o n i n a r i b b o n a g i t a t e dv e s s e l F . ig. 6 shows a typicaI patt€rn for a ribbon purlping upwarcl. Thc liquitl near rhc i n - r p e l l efrl o w s u p w a r d s i r v h i l s ts i r n u l t a n e o u s t ryo t a t i n g ) , i n w a r d s a l o n q t h e lree surf'ace,and clolvnwardsnear the shaft and railiallr, outrvardsnear the 224 V. I'. Chavanand R. A. Mashelkar SecondarY* circulation m- ffirr Rc.-5ff li(''2 (b) !-ig 5. Secondarycirculationin an ancbor agitatedtank: (a) overall circulation,(b) flow near the blade (after Becknerand Smith' t966) ( 1 9 7 0 )m e n t i o n t h a t t h e d i a m e t e ro f t h e c o r e o f base. Os'hima and Yuge the liquid coming downlvards was about 1.5 tintes greater than the shaft diamcter;this factor must obviously be depending on geonletry. At higher Re1'nolds nunrbers (R" > 20) secondaly tloq's rvere noted by' these authors. For r i b b o n sp u m p i n g u p w a r d si t l v a so b s e r v e d ( B o u r n ea n d B u t l e r , 1 9 6 9 )t h a t t h e l i q u i d from the bottom travels back to the bottom through a short path without g o i n g t o t h e s u r f a c e .F o r r i b b o n p u m p i n g dorvnwar<Jsthe primary flow is exactly opposite and a secondary florv exists at the surface. When 1he screw impeliers are used along with a draught tube a primary circulation occurs inside the draught tube (like the one near the ribbon impeller). The fluid flows downrvards in the draught tube with a simultaneous tangentialmotion (for a screw pumping Fig. 6 PrimarYcirculation in a downwards) and travels uprvards in the nbbon agitated vessel annular space more or less parallel to ( N a g a t ae t a l . , 1 9 5 7 ) Fluids 225 Mixing of Viscous Newtonianand Non^Newtonian velocitiesand goesback to the -secondarv the vesselwall with very small angular flows have been made as ;";e. No ou"iuutions on ;;;r;;; exist ior a considerablerange of yet. The primary flow wus found to - 2.90)'The flows will somewhatdepend Reynolds numbers 1up to n" the draught tube' The screw ih" gap betweJnthe impellei and ;;; to the propellers'A.s.inthecase without the draughttube behavessimilar fashion' This helps in an of propellers'screwsare used in "eccentric the increasing primary flow' a"tipitig ine ,ecoodarymotion and in numbers)a vortexis formedon the At high speeds1or at higherFroude very much upon the geometry'For liquid surface.Its o""u""i"t depends (Uhl and Gray' 1966)' For a ribbon turbines it occurs at Re- 300 downwardsit occursmuch earlier pumpingupwardsor a screwpumping (r't-0.01). Baffiesare generallyused than that fbr an uo"loii*p"it", of turbine and propeller this will to damp these vorttes' tn the case betweenthe impeller and the liquid obviouslydependupon the distance surface. 3.3FlorvPatternsandYelocityDistributioninNon.NewtonianF.|uir|s T h e r h e o l o g i c a l c o m p l e x i t i e s a s s o c i a t e d w i t h t h e ldistribution' iquidbeingagitated patternsand velocity can very significantlyinflutnc" the flow will' of course'govern the net The nature of the rneotogitutcomplexity The limitation of spacedoes-notenable influenceon the hy<1rod1'namics' of rheoiogy;hou'ever'suchinformation us to give u."oun, ofihe science "n textbooks(Middleman' 1968; may be readily found in many standard 1974)' Sketland,1967;Astaritaand Marrucci' is most easy,to .understand viscosity dependent of shear The influence (shear pseudoplastic For instan"",ont would expectthat for and analyse. impeller near of the fluid in the thinning)fluids,tftt "ff"ttttt viscosity nlovesaway progr:essively.u.t:n" increase and ,.gi"" ,'troulAbe rather low iesult in ti19f. velocitiesand from the impeller'This wilt ton"qutn'ly t"gioo' whichwill die awayrapidly velocitygradientsin the nearimpgller studies(e,g.,Metznerand frorn the impeiler.The early fhotogrJpnrc singularlyimportant.resultu'hich Taylor, 1960)did tonn'- ttris' fne able to obtain on the basisof their lvletznerand Taylor (1960) lvere was that the averageshearrate in the velocitydistributionmeasurement RpM. we shallseelater(sec'3.5)that vesseiwas linearlypr"p"rii"rr"i to power importantrole in the predictionof this resultplaysan'extremely fluids' It should be emphasizedthat requirement,,n non-Newtonian M e t z n e r a n o r a y t o r o u , , , u . o n e a r s o l i d i f i c a t i oincreased n o [ a d i l arapidly t a n t f l uwith idinthe core size of region of the i*p-fl-'' fhe .this as the ratio of -io efiectbecameparticularly important rotationalspeed;the The angular increased. diu*"t". was the tank diameter ,n" agitator madeon (1969) Smith of Petersand velocitydistriuution,o.urul-"nts by observed trends agreementrvith the anchor agitators are also in Metzneranoraytorinthattheyobservedconsiderablyflattervelocity 226 V, V. Chavanand R. A. Mashelkar profllesfor a shearthinning fluid in comparisonto a Newtonian fluid. Fluid elasticitycan very significantlyinfluencethe flow patiernsaround agitators. In fact, a fundamental approach to the understanding of velocitydistributionaroundagitatorsmay be to studythe rotational ffows aroundsimplebodiessuchas spheresand discs(Kelkaret al., 1972). The advantage here is that at least the shapecomplexities of the agitators (which precludethe possibilityof any theoreticalstudy)are avoidedancl the velocitydistributioncan be viewedfrom a theoreticalanele. If one considersa third order viscoelasticfluid which "portrays the characteristics of a finite shear thinning viscosityand elasiicity(mani_ festingitself in the form of finite normal stressdifferencein viscometric flows)then for a sphereof radius R rotating at an angular velocity f), oneobtainsthe streamfunctionI as (waltersand savins, lg6s; ^ (oRz - i l + z t n .i ,' .),l1l (/ ,t- R \ t ^s,i-n, 02 n ,' -c o ,s' ( 3 . 1 ) * ( r , o'' ) : *, i l ) n ' \ e , / - - ' t ,1' ; ;) The projcctions of srreanrrines on a pranecontainingthe axisof rotation havebeenshotvnin Fis. 7. F i g ' 7 s c c o n d a r vf r t ' * ' a r . u n d a s n h e r er o t a t i n gi n a v i s c o e l a i t i cr i q u i r l : (a) Nor:r'rarf.rces donrinating, (b) Centrifugal forcesdorninaring, (c) irirtrntaland centrifugalforcts comparable It is eviclent that different flow situations rviil arise f,or differe't varues o f t h e p a r a r n e t er p R z l u 2 ( r v h i c h i s a r a t i o o f i n e r t i a l s t r e s s e st o n o r n r a l stresses for a third-orderfluid).This uumber praysan important part in deterrnining the florvfielclaroundspheres, uno i, iik"ty to ituy an equa'y rmportantpart in describing the flow fierd around u!ituto.r, and corsequentlyin determining the circulationand mixingtimes. wirile analysingthe flow field around.a spheie in detair, threecases arisedepending on the valueof the purur.t"i eR2pr. When ppzlszl-1, the normal stresses determinethe diiection of the secondaryflows in the entire spacearoundthe sphere.In sucha case,the fluid moves in highry segregated fashionand jn fact, at pointsr : 6azlRand 0, : sin_rt/di), q'ill the fluid movein closedcircresaround the axis of rotatio' rvithout gettingmixednith the bulk of the fluid (Fig. 7a). When p.R2/a: ) 3, the Mixing of VlscousNewtonian and Non-Newtonian Fluids 227 centrifugalforcesdominatethe entireflow field (Fig. 7b), andelasticitywill haveno significanteffectin modifyingthe flow pattern. For a fluid with L < pR2lez< 3, there will be a sphereof radius R inside which closed loopsand consequently, highly segregated zones,tvill be observed.Outsidethe sphereof radiusR therervill be a centrifugalzone(Fig, 7c). In fact, sucha flow reversalhas also beenobservedby Watersand King (1971)in the caseof a discrotatingin viscoelastic fluids. Giesekus (1963) studied the changesin flow patternsdue to the interactionof elasticity and inertia in the caseof commercialagitatorsand found qualitatively similar flow patterns. Feldkamp (1962) gives an account of extensive photographicwork to illustratethesephenomena.Kelkar (1972)obtained detailedthree-dimensional velocitydistributionsin viscoelasticfluidsby using the pa{ticle techniqueand confirmedthe results of the earlier workers. Ide and White (19'74)undertookan extensiveinvestigationof the influenceof rheologicalpropertieson flow patterns,especially with a view to investigateits implicationsin bulk polymerisingstyreneto polystyrene. They used spheres,discs and turbines as agitators. The observedflow patternswerein goodagreement rvith the earlierworkers.They alsouseda screw-propeller agitator.In Newtonianfluids, the actionof the screwpropeller is to push the fluid verticallyjn the tank. In the caseof viscoelastic fluids,they found that normal stresseffectsreinforcedthe scrervpropulsion mechanism. Theseresultsshouldbe contrasted with the differentbehaviour of the screwin the draft tube systemdiscussed later. The studyof Ide and White (1974)is particulariyinterestingsincethey observedflow patterns during bulk polymerizationof st1'rene.They foundthat at low conversions, lhe florv patternsaround the sphereand otheragitatorsinvolveda primary axisymmetric flow and secondary flow of a fluid beingdrawn in at the poles axially and expelledat consisting the equator.As the conversionjncreased,the secondaryflolv lleld around a spheredividedinto two regions,one adjacentto the sphereconsisting of closedcirculatingmotions and secondat larger distancesfrom the sphere.Similar flow patternsrvereobservedwith other agitators. The implicationsof suchchangesin the secondaryflolv patternson the pelformanceof a mixing vesselshouldbe clearly appreciated, The photographicstudy of Kelkar et al. (1972)is particularJyimportantin this connection.Their velocitydistributionmeasurements in viscoelastic fluids shorvedquite clearly that although the secondaryflorv patternscan be changedquite significantly,the primary flow remainspracticallyunaffected. Sincethe major contributionto the shear stressesin the vicinity of the rotating body comesfrom the variation of the primary florvvelocity with radial distance,the power consumptionappearsto be component relatively unaffectedby the modifrcationsbrought in due to elasticity. However,the secondaryflow patternsrvill have a significantefrecton distribution,molecular-weight residence-time distribution (in the caseof polymerizationreactors),mixing times, circulation times and related 228 V. V. Chavan and R. A. Mashelkar in the someof thesewill be discussed kinematicallycontrolledprocesses; sectionslater on. appropriate ' 'Veiy little experimentalwork has been publishedon the influenceo[ elasticiiyon flow patternswith other agitators.Petersand Smith (1969) haveprovidedsomeexperimentaldata on the influenceof elasticityon flow patternsaround anchor agitators.The most significantdifferences fluids appeared *ere iound in front of the agitaior blade.The viscoelastic point' stagnation a greaterdegreeof disturbancearoundthe to experience indeterminate and there was sameevidenceof buildingup of a rather boundary layer in front of the blade. Furthermore,viscoelasticliquids enhancedverticalcirculation' produceda consiclerably on the velocity distribution in vessels elasticity fluid of influence The studied.chavan, stirredwith helicalagitatorshas not been extensively wherein observations qualitative some provided however, et al. {1975a), geometrlsome for least at and elastic liquids highly for they showedthat the angularflorv increasedrvhereasthe axial florvrvas cal configurations, of damped considerably.The detailed velocity distribution.studies dataobtaintypical son:e shows 8 Carreauet al. (1976)supportthis. Fig. CMC solution (which showednegligible ed by theseworkers.Foi a 2o//o elasficity),the strong axial upflow and downflow can be clearly seen' q N 0"00 a c05 (J qJ :r "(0 -)< (u LO tf) s .a LT C.J tr -\ 02 04 0.6 08 s raditts,2r t Cimens.,;on/e-s F'ig.8 Axial velocity distribution in a ribbon agitatedvessel (CarreauP. J. et al.,1976) Fluids 229 Mixing of ViscoasNewtonian and Non-Newtonian eiastic)'the axial flow whereasfor a \o/oPAAsolution(whichwas strongly for responsible can be seento be significantlydamped' The mechanisms the that is suspected sucha phenomenonare not quite clear,however,it of rapidlychanging fields in kinematic liquids p.""ri^', behaviorof elastic in Mlre detailedstudiesare obviouslyneeded delormationis responsible. this area. g,4DischargeRates,CirculationCapacitiesandCirculationTimes an important integral hydrodynamic From the velocitymeasurements, q.,un.i.ycanbeeasilyobtained.Itislheoveralldischargerateorthe passesof a fluid element uu..ug. time elapsedb.t*."n the successive summaryof the tf,.ou!n the impeiler. Gray (1966)givesa comprehensive calculationsfor the inu.rtlgutionsof turbinesand propellers,where the measurement' overaliradial and axial flow are done from the velocity 3.4.1 Mle.suneueNrTECIINIQUES Adirectmeasurementondischargeflowispossibleinthecaseof flow is predomioantly screwsand propellerswith draft tube where the to circulateback to axia1.In this mithod, insteadof allowing the liquid cvlinderby the draughttubeit was made to overflowinto a measuring extendingthetubeabovetheliquidlevel,Theliquidisfedintothetube means.A correctestimateof the axial throughputcan by some-external is leve]ledwith the onty t]" obtainedif the liquid insidethe draught tube Sometimes rirnof the vessel,i'e', no ixtra gravitationalheadis imposed' (1972)has this method has been used without proper care' Chavan rates thus rneastlred Jir.urr"d the probableerrors. Often the discharge is incorrect obviously This alone. impeller to the to b" due are consider.dsincethepresenceofthedraughttubeanditspositioninginthevessel rate' the valuesof the discharge very nruchinfluence completeone loop can to element fluid Th, ou.rug" time takenby the a small pulse of an by ejecting or particle be measuredby following a electrolyteanrjnreasuringtt'"conductivityoftheliquidleavingthe to calcup..ipn..V of the inrpetler,The circulaliontime' 0"' can be used late the liquid PumPingrate,q, as q:% Y (3.2\ dimensionless rvhere z is the volume of the liquid in the tank. The and defined number circulation a numberwhich is normallyusedis called in termsof the inrpellerdiameteras e,:#, (3.3) discharge-flow A few comments neerl to be made about the relevance of measurement. 230 V. V. Chavan and R. A. Mashelkar The discharge-floiv measurements from velocity profiles are quite accurate, but those using the experimental average-circulation time can be questionable.It is obvious that a small parlicle follows a route depen' d i n g u p o n i t s i n i t i a l p o s i t i o n . U n d e r s t e a d y - s t a t ec o n d i t i o n s o n e l o o p should correspond to one circulation. Thus the circulation-time rneasure' m e n t s s h o l r l dv e r y r n u c h d e p e n du p o n t h e i n i t i a l p o s i t i o n o f t h e p a r t i c l e o r t h e t r a c e r , I n a n a g i t a t e d v e s s e l ,h o w e v e r , t h e r e m a y b e s o m e r a n d o m m o t i o n ( C h a v a n , 1 9 7 2 ) . T h u s , b e c a u s eo f t h e r a n d o m n a t u r e o f t h e i n i t i a l p o s i t i o n o f t h e p a r t i c l c b e f o r e e a c h c i r c u l a t i o n , t h e d i s c h a r g er a t e given by equation3.1 is a statistical estimation of the overalI discharge r a t e . I n t h i s p r o c e d u r eo f r n e a s u r e m e not f c i r c u l a t i o n t i m e o n e c a n a l s o o b t a i n a s t a t i s t i c a ld i s t r i b u t i o n o f t h e c i r c u l a t i o n t i m e s , w h i c h a g a i n i s a n e s t i m a t i o no f t h e v e l o c i t y d i s t r i b u t i o n i n t h e p l a n e p e r p e n d i c u l a rt o t h e f l o w . O ' s h i m a a n d Y u g e ( 1 9 7 0 )a n d I v o n u e a n d S a t o ( 1 9 6 7 )h a v e o b t a i n e d such informationon variousimoellers. 3.4.2 Exprnurrexrat Oesrnr',q,rroNs G r a y ( 1 9 6 6 )h a s s u m m a r i z e dt h e i n f o r m a t i o n o n c i r c u l a t i o n t i m e s a n d d i s c h a r g er a t e s f o r t u r b i n e a n d p r o p e l l e r a g i t a t o r s . T h i s i n f o r m a t i o n , h o r v e v e r p, e l t a i n s t o R e > 1 0 5 ,i . e . , f o r t u r b u l e n t c o n d i t i o n s w h e r e C ; i s i n d e p e n d e no t f Re. Gi-ey has compared the circulation numbers on the b a s i so f e q u a l p o w e r c o n s u n r p t i o n .A s a n e x a m p i e , o n e c a n n o t e t h a t a r o t a t i n g d i s c r e q u i r e d a b o u t 3 0 0 t i m e s m o r e e n e r g yt o g i v e t h e s a m e d i s charge rate as an eight-bladed turbine. The circulation numbers for p r o p e l l e r sw e r e t y p i c a l l y i n t h e r e g i o n o f 0 . 4 t o 0 , 6 , w h e r e a s f o r t u r b i n e s they rverein the region of 0.6 to 2. Since we are mainly concerned with the mixing of high viscositl.liquids, such information is probably not t o t a l l y r e l e v a n tt o u s . T h e l i t e r a t u r e o n c i r c u l a t i o n c a p a c i t i e s( a n d t i m e s ) f o r h i g h v i s c o s i t y l i q u i d a g i t a t i o n r v i t h h e l i c a l i m p e l l e r s h a s b e e n w e l l s u m n r a r i z e db y C h a v a n ( 1 9 7 2 ) . T h e c i r c u l a t i o n n u m b e r v a r i e s b e t v v e e n0 . 4 t o l f o r r i b b o n s a n d b e t w e e n 0 . 0 I t o 0 . 5 f o r s c r e l v si n a d r a f t t u b e . T h e s e a r e i n d e p e n d e n to f R e y n o l d s n u m b e r ( f o r R e < 1 0 o r R e < 5 0 ) b u t a r e strongly influenced by the geometrical configuration. Studies with a l a r g e n u m b er o f p u r e l y 'v i s c o u sl i q u i d s r e v e a l e dt h a t c i r c u l a t i o n n u n r b e r s were not at alI influenced by shear-thinning characteristics.The o b s e r v a t i o n sl v i t h s t r o n g l y e l a s t i c l i q u i d s , h o w e v e r , s h o w e d t h a t t h e circulation was damped as a result of elasticity and the circulation numbers were lowered quite significantly. Chavan and Ulbrecht (1974) have provided a correlation which adequately described the data for p u r e l y v i s c o u s f l u i d s ; w h e r e a s C h a v a n e t a l . ( 1 9 7 5 a )h a v e d e s c r i b e da methodto correlatethe data on elastic liquids fcrr a given geometrical c o n f i g u r a t i o n .T l i e p i r p e r b y C h a v a n e t a l . ( 1 9 7 5 b ) i s a l s o o f i n t e r e s t . C i r c u l a t i o n t i r n e sf o r o t h er a g i t a t o r s o p e r a t i u g u r d e r l a m i n a r c o n d i t i o i t s i n v i s c o e l a s t i cl i q u i d s h a v e n o t b e e nm e a s u r e d a s y e t . T h e p e c u l i a r f l o w Mixlng of ViscousNewtonian and Non-Newtonian Fluids 231 reversalsand the two-zonevelocitydistributionregionsaf ising out of the of elasticityshouldstronglyinfluencethe circulationtimes. The presence enhancedvertical circulation in elastic liquids reported by Petersand smith (1969) for anchor agitated vesselsand by Feldkamp (1962)for propellerswould imply that the circulation numbersmay increaseon as in the caseof helical agitaaccountof elasticityrather than decrease tors. Detailedstudiesexploringtheseaspectswould be highly desirable. Specificcomments need to be made concerning the influence of circulationtimes and circulation time distribution in polymerization reactors.An interestingstudy in this contextis mentionedby Olson and Stout (1967)with specificreferenceto condensationpolymerizationof bifunctlonalpolymers.The study is with a specificreferenceto a turbine impellerwtriChproducescirculationloopsof the polymer; the viscosities of ihe polymermass are so high that material in the circulation loops The water of condensationis removedby diffusive remainssegregateci. transportto the surfaceof the polymerizingmass' The contributionof the diffusiveprocessto the rate of reactionis approxinatedby assun.ling that the water concentfationis proportionalto the circulationtime of the The effectof mixingupon the productmolecularfluid elements, segregated *.ig[t distribution has been found and it has been showt] that the assumedmixing pattern significantli'alters it' Indeed' if the circulation the polymermay be expected time is low at the end of polymerization, to have poor uniformity. This exampleclearly illustratesthe role of systems. circulationloopsin batchpolymerization 3.5 PorverConsumPtion The spaceavailablehere is too limited to cover the enormouspower data whichhavebeenpubiishedoverthe years;nor is it the consumption review.Thepublishedreviews(Uhl and Gray, 1966;Wohl, of this purpose and Beli, 1967)give a good appraisalof such infornation. iV68; f"nny of the power consulnption can makea reliableestin1ate one At present, arrangements geometrical of number for a and for variousimpellerdesigns availableon also is of great deal information for Nervtonianliquids.A here a present We rvill multiphase systems. liquidsand non-Newtonian ready-made giving a thau rather viewpointof the analysisof the data, designmethod. TEcHNIQUES MEesunnuENT The methodsof measuringpower input to a stirred vesselhave been by Holland and chapman (1966).Thesemethodsfall into four discussed groups. 1. Measuringthe power suppliedto an electricmotor by measuring current, voltage and polver factor and correctingthe copper and iron lossesand gearbox {riction losses. 2. The reactiontorque on a motot stator is nteasuredby suspending 3.5,I 232 V. V. Chavan and R. A. Mashelkar suspension and the forcerequiredto hold the entiremotor on a torsionless it stationaryis measured. 3. The mixing vesselis nrountedon a frictionlessturntable and the forcerequiredto hold the tablestationaryis measured, 4. The torquein the mixer shaft is obtainedby measuringthe twist overan intentionallyweakpart of the shaft. Method (l) is not preferredfor researchwork as it is difhcult to get precisevaluesof the power unlessthe lossesare correctly estimated.It seemsthat methods(3) and (4) are generallyused for simplicity and accuracy. 3.5.2 D,cre AI'IeLvsts Sincepowerconsurnptionwas first measuredfor rotating impellersin usingdimesional the late lgth century,thedatahaveoftenbeencorrelated analysis.It may be expectedto be a functionof the follorvingvariables: (l) Geometricalvartables: Impeller diameter(d), tank diameter(l), liquid depth(n) (ti) Material properties: Density (p), viscosity{pr) (iii) Processt'ariables; Rotationalspeedof the impeller (l/), gravita(g) tional acceleration can simplybe writtenas, The relationship (3.4) P :f(d, D,lt, p, p, N, g) gives analysis Dirnensionai dN2\", P (3's) ^,,ld2NP\",1 i ,ts,,,t3p:- / l?/- r v h e r eK i s a c o n s t a n tf o r p a r t i c u l a r s e t o f g e o m e t r i c a vl a r i a b l e sa n d c o u l d be obtainedas *: t,(-3)"(4\"' '\a | \t) (r.6) The dimensionlessgroups (Pldsll3e), (d2NplD and (d!'lzlg) are known as power number (Po), Reynolds number (Re) and Froude number (Fr), respectively. T h e a b o v ea n a l y s i si s v a l i d o n l y u n d e r t h e f o l l o w i n g c o n d i t i o n s : ( a )e i t h e r a single liquid or two miscible liquids having similar properties are present in the vessel, (b) the temperature changes due to energy dissipation are so small that variation in fluid properties becauseof the temperature changesis negligible, (c) the florv behavior of the liquid can b e c h a r a c t e r i z e db y a s i n g l ep a r a m e t e r ,i . e . , v i s c o s i t y .T h u s t h e l i q u i d i s Newtonian. The values of E, e1 and e2 have been determined by a number of different workers for several different geometrical variables. e1 aSSUIIles v a l u e si n t h e r a n g e o f - 1 t o 0 d e p e n d i n gu p o n t h e o p e r a t i n g r a t l g e o f R e y n o l d sn u m b e r s . l t h a s b e e n f o u n d t o h a v e a v a l u e o f - I b e l o w a certain critical value of Reynolds number. This critical Reyrrolds number Mixing of ViscousNewtonian and Non'Newtonian Fluids 233 varies between l0 to 100 and it seemsto be influencedby the geometryof the system. At very high Reynolds numbers (Re > l0a) power number * I is becomesindependent of Reynolds number. The region where e1 is c o m m o n l y u n i e r s t o o d a s l a m i n a r r e g i o n . I t m a y b e p r o p e r t o d e s i g n a t ei t as creeping flow region as the majority of the non-viscometricflow situations give rise to such relationships only when the inertia terms in the Naviei-Stokes equations are dropped. The effect of Froude number on the power consumption would be apparent only when somepower is consumed in producing significant waves on the surfaceof the liqgid or in sustaining u uort*" in liquid around the impeller shaft. It is found that for unbafred vesselsthese effects are negligible below Reynolds nnmber of 300. This limit is exceededfor Re > 103when the baffie system is adequateorlvhen the impeller is suitably off-centred. Nagata and Yokoyama (1955) state that the effect of Froude number is so negligible as to be indeterminate except by a very accurate dynamometer. When such effectsare present, a praciical method of analysis is available (LJhl and Gnay, 1966 and Skeliand,1967). F o r s t a n d a r d d e s i g n sK a n d e 1 i n e q u a t i o n 3 . 5 c a n b e e a s i l y o b t a i n e d . H o l v e v e r ,t o o b t a i n a g e n e r a l i z e dc o r r e l a t i o n ,a s e r i e so f e x p e r i m e n t s w i t h wide variation in geometrical variables will be required. Often, the g e o m e t r i c a lc o r r e l a t i o n sa r e o b t a i n e d w i t h o n e o r t r v o v a r i a b l e sa n d e v e n when these variables are not independently varied, their dependenceon other variables is negLected.This is incorrect mathematically as well as p h y s i c a l l y .T h e m o s t i m p o r t a n t v a r i a b l e s ,h o l v e v e r ,c a n b e o b t a i n e d l v i t h p r o p e r p h y s i c a l r e a s o n i n go r b y c o n d u c t i n gs p e c i a le x p e r i m e n t s ' For inelastic non-Newtonian fluids, dinensional analysiscan be perf o r m e d o n l i n e s s i m i l a r t o t h o s e f o r N e r v t o n i a nf l u i d s . T h e r e s u l t sw i l l depend upon the specificmodel chosen.Thus, for instance, \\'e obtain for a polver-law model and fol an Ellis model or: ,r(q#,r) ( 3 . 7) ,,: o,(#,{#,") (3.8) H e r e ( d 2 N 2 - ' p l K ) a n d ( d 2 N p l p d a r e t h e c o r r e s p o n d i n gR e y n o l d sn u m b e r s ' The dimensionlessnumber (l/po/'o) was introduced by Kelkar et a1.(1972) and called a viscositynumber. Obviously, wirh the aid of dimensional a n a l y s i s a l o n e o n e c a n n o t g e t q u a n t i t a t i v ei n f o r r n a t i o na b o u t t h e i n v o l v e m e n t o f t h e d i m e n s i o n l e s ps a r a m e t e r so f t h e r h e o l o g i c a lm o d e l . The first attempt to incorpcrate the paranleters which describe the deviation of any inelastic fluid from the Newtonian characteristicsinvolve t h e u s e o f r e s u l t so b t a i n e di n a p i p e f l o r v .T h i s a n a l o g yw a s f i r s t s u g g e s t e d b y M e t z n e r a n d O t t o ( 1 9 5 7 ) .I t h a s b e e ns h o w n b y S k e l l a n d( 1 9 6 7 )t h a t s u c h a R e y n o l d s n u m b e r d o e s n o t g i v e a L r n i q u ep o \ \ ' e rc u r v e f o r a w i i i e r a n g e o f f l o w b e h a v i o u r i n d e x . M i t s u i s h i a n d H i r a i ( 1 9 6 9 )s t a t e t h a t t h i s i s n o t 234 V. V. Chavan and R, A. Mashelkar a failure of the analogybut of the power-lawapproximation.Theysuggest an alternativemethod involving the use of Ellis and Sutterby models. Chavan(1972)has conclusivelyshownthat evenwith such models,pipeflow analogydoesnot offer a uniquecurve,evenin the laminar region. In order to obtain a powercorrelationin termsof the rheologicalparameters,the knowledgeof shearrates(at leastin the immediatevicinity In an extremelysignificantcontribution, of the impeller)is necessary. Metznerand Otto (1957)showedthat the averageshearrate in the vessel can be assumedto be directly proportional to the rotational speedat leastin the laminar region(seeMagnusson(1952)for relatedwork). This to obtain the shearrate can be obtainedas follows.First, it is necessary plot of Po-Re for Newtonian fluids for the systemunder consideration. Then the power number is calculatedfrom the power data for the nonReynolds Newtonianliquids.For this power number the corresponding numbercouldbe obtainedfrom the Newtonianplot. The averagevjscosity givenby the Reynoldsnumber would givethe correspondingshearrate (iu") from the viscometricdata. A relationshipsuchas iu": : j ll (3.9) k"N has beenobtainedby variousworkersfor variousimpellersand the values liquids by of k" havebeen reported.For the agitationof pseudoplastic paddles l0 turbines,propellers k" assumesa value betiveen and t3. and For dilatantliquidsMetzneret al. (1961)obtaineda linearrelation(up to z : 1 . 5 ) .T h e v a l i d i t yo f t h e l i n e a rr e l a t i o n s h iipn e q u a t i o n3 . 1 w a s ' s u b by Metznerand Taylor (1960)(seesec.3.1). From established sequently the availablejnlormationit appearsthat one can accepta linear relationship undercreepingflow conditions.Holever, thereis someuncertainty about the extensionof this methodfor higher Reynoldsnumberand also about whetherft" can have a universalvalue even in the lorv Reynolds et al., l96l) showthat numberrange.The resultson turbine (M.etzner, Reynoldsnumber*, : {#, the generalized (wlrerep, : F"(i",\ obtain- data)can givea uniqu"lu.r, up to Re : 160(iaminar ed from viscometric regionendsat Re : 191within f 20 percent.However,this is notobserved in everycaseand Skelland(1967)commentsthat suchextensionis not justified on accountof insufficientevidence.The constantof proportionality,ft,, canotherwisebe a constantfor a particularpseudoplastic similar system.In other words,k, should be liquid and geometrically generallya functionof geometryand rheology.The problemscan best be overcomeby consideringa power-lawrelationship.In creeping-flow(or laminar)regionone can obtaina relationship Po: r(k"),-,(t$-:t)-' (3.l 0) From experimentaldata on power consumptionon Nervtonianand (asdescribed inelasticliquidsand from the florvcurve,k, can be measured (y.") will be known to give K and earlier).Also, the rangeof shear-rales Mixing of ViscousNewtoniatt and Non-Newtonian Fluids 235 n, calderbank and Moo-Young (1959)and Beckner and smith (1966) have obtained/c"in this way and relatedit to the geometryand rheology. After knowing the operating rotational speedsand the values of ko from literaturean approximateestimateof the shearratescan be obtain' ed. When k" is dependenton n, a trial and error proceduremay be needed to estimatekr. Horvever,a rough estimationcould be possiblefrom the Thus, for exanple,for helical previousinformationin similarsituations. rotationalspeedsrangefrom if then to 100; from l0 impellersk" varies rates of shear Of I to 1000sec-tmay be range then a O.i to l0 sec-l appropriate. Noi" that equation3.9 doesnot give an averag€shear-ratein the entire thus obtainedcan only characvesselin all the regimes.The shear-rates terizethe flow near the impellerand that too only in the laminar region. at the tip of tbe impellerare Even in the laminar region,the shear-rates as much as seventimeshigherthan thosegivenby equation3.9.At higher Reynoldsnumbers,the maximum shear-ratesin the vorticesbehindthe bladehavebeenfound to be of an order of magnitudehigher(Van't Riet and Smith,1973). The power consumptiondata for Binghamplasticfluidscanbe correlat(seeNagataet al., ed by usingsimpledimensionalanalysisconsiderations 1970). The influenceof fluid elasticity on power consumptionis negligible under creepingflorv conditions(Kelkar et al., 1972;Chavan, 1972and Riegerand Novak, Ig74). At higher Reynoldsnumbers,however,i1 the secondaryflowsand one obtainsa appearsthat elasticitysuppresses in comparisonto a purelyviscousliquid porver consumption reductionin (Kale et al., 1973). 3.6 Mixing Times criterion,basicallydesignedto Mixing time is a purely experimental gives an idea about of agitators.It essentially comparethe performance A homogenization. of required degree a carry out to required time the the for comparing good basis can a time form mixing measured properly towardsthe completionof mixing. contributionof the hydrodynamics TecHNlQurs 3.5.1 MEnsuntnaaNr Primarily,a smalIquantityof liquid differingfrom the bulk in either concentrationof a traceror temperatureand otherwisehaving the same physicalpropertiesis mixed rvith the bulk liquid in the vessel'The changesin the tracer concentration(or temperaturein the thermal involving methods)can be measuredas a functionof time. Techniques (Schlieren indices refractive absorption spectrometry, conductivity,atomic nlethod)or light intensity(dye additionor decolorizationusing fast ale flequently thiosulphate) or iodilte-sodiurn suchas acid-base reactions (Coyle observed be can visually used.The c,olorizationor decolorization 236 V. V. Chavanant{ R. A. Mashelkqr et al., 1970).[n visual methods, there can be subjectiveerrors and hence these should be avoided. The instrumental methods provide point values of dillerent quantities. The selectionof a point in the vesselfor measurements and spotting the end-point are two major difficulties. Complete mixing on molecular level in the entire vessel is diltcult to achieve and diffficuit to measure. The merits and demerits of various techniques of measurementhave been discusseclby Ford et al. (1972). 3.6.2 D.qre ANelvsts The change in the selectedintensive property (concentration, temperat u r e , r a d i o a c t i v i t y ) a s a f u n c t i o n o f t i n t e i s m e a s u r e dd u r i n g m i x i n g t i m e experimentation. Ifl mixing time is so defined that the value of the m e a s u r e dq u a n t i t y i s , s a y , v ii t h i n l 0 t o 2 5 p e r c e n t o f t h e f i n a l l y e x p e c t e d a v e r a g ev a l u e , t h e n a r a t i o n a l i n t e r p r e t a t i o no f t h e d a t a c a n b e o b t a i n e d (Hoogendoorn and Den Hartog 1967, Chavan 1972). The phenomena such as molecular dtffusion or conduction will obviously influence the mixing time. Horvever, it seemsthat the first 75 to 90 per cent change is mainly controlled by hydrodynamics (such as convectionor shear or t e n s i l ed e f o r m a t i o n o r t u r b u l e n c e ) .T h e o v e r a l l c h a n g e sd u e t o d i f f u s i o n r v i l l b e r e l a t i v e l ys l o w i n t h i s p e r i o d . I t w i l l a s s u m ea n i m p o r t a n t r o l e a s t h e t r a c e r i s d i s p e r s e dm o r e a n d m o r e i n t h e b u l k . [ n t h e f i n a l s t a g e so f t h e p r o c e s si t w i l l b e t h e m a j o r c o n t r i b u t i n g f a c t o r . E x t e n s i v ei n f o r m a t i o no n m i x i n g t i m e s h a s b e e nr e p o r t e db y G r a y ( 1 9 6 6 ) ' a n d H o a n d K w o n g ( 1 9 7 3 ) ;t h e l a t t e r a u t h o r s h a v e g i v e n a p a r t i c u l a r l y u s e f u ls u m m a r yo f t h e p u b l i s h e dw o r k o n m i x i n g t i m e s f o r b o t h N e w ' t o n i a n a n d v i s c o i n e l a s t i cn o n - N e w t o n i a u f l u i d s . C h a v a n ( 1 9 7 2 )h a s d e s c r i b e dt h e e f f e c to f n o n - N e l v t o n i a nb e h a v i o r o n m i x i n g t i m e s i n v e s s e l sa g i t a t e dr v i t h helical impellers,His findings could briefly be summarizedas follows. T h e n - r r x i n gt i m e s a r e i n v e r s e l y p r o p o r t i o n a l t o t h e r o t a t i o n a l s p e e d f o r v e r y l o u ' a n d v e r y h i g h R e y n o l d sn u m b e r s . I n b e t w e e n ,t h e y v a r y w i t h a n e g a t i v e p o w e r o f R e y n o l d s n u m b e r ; t h e e x p o n e n t si n g e n e r a l b e i n g b e t l v e e n- 0 . 3 a n d - 2 . T h e l i r n i t i n g R e y n o l d sn u m b e r , f o r w h i c h l { d , , ,i s c o n s t a n t ,i s m u c h h i g h e r f o r t h e a x i a l f l o w i m p e l l e r s t h a n f o r t h e o t h e r i m p e l l e r s .I n t h i s r e g i o n , t h e s h e a r t h i n n i n g p r o p e r t i e s d o n o t i n f l u e n c e t h e d i m e n s i o n l e sm s i x i n g t i m e ( n o t e t h e s i m i l a r c o n c l u s i o n so n c i r c u l a t i o n t i n e s d e s c r i b e di n s e c .3 . 4 ) . only recently certain papers have appearedwhich examine the influence . h a v a ne t a l . ( 1 9 7 5 a , o f f l u i d e l a s t i c i t yo n m i x i n g t i m e s i n a g i t a t e dv e s s e l sC 1 9 7 5 b )f o u n d e x p e r i m e n t a l l yt h a t m i x i n g t i m e s i n c r e a s e ds i g n i f i c a n t l y a s a r e s u l t o i f l u i d e l a s t i c i r yw h e n h e l i c a la g i t a t o r sw e r e u s e d .U l b r e c h t ( 1 9 7 4 ) h a s n i c e l y s u m m a r i z e dt h i s w o r k . I n d e e d , t h e o b s e r v a t i o n sm a d e i n t h e f o r e g o i n gc o n c e r n i n gt h e d a m p i n g o f a x i a l c i r c u l a t i o n a s a r e s u l t o f f l u i d e l a s fi c i t y d o s u g g e s ta n i n c r e a s ei n m i x i n g t i m e s , a n d t h e e x p e r i m e n t a l l i n d i n g s o f C a r r e a u ( 1 9 7 6 )a l s o b e a r t h i s o u t . O n t h e o t h e r h a n d , a n e n h a u c e dr r e r l i c a lc i r c u l a t i o n a s a r e s u l t o f f l u i d e l a s t i c i t y i n t h e c a s e o f Mixing of Viscous Newtonian antl Non-Newtonian Fluids 237 mixing anchoragitatedvessels(smith, 1970)gives considerablyshortef No reported. been have timesi soiretimesreductionsby a factor of four be thus can generalconclusionsregarding the effect of fluid elasticity carefully be to have i.u*n and the detailld hydrodynamic changes examinedin eachcase, The recentstudyby Yap et al. (t97s) is particularlyilluminatingsofar fluids are concerned.with special as problemsof scale-upfor viscoelastic to ribbon ugitutort they showedthat for geometricallysimilar reference volume in rnixersthe criterionto be observedis that the power per unit the mixersbe equal for equal degreesof homogeneityof the mix. This observationis basedon the inverserelation betweenthe power number and the Reynoldsnumber anrl the fact that the number of impeller is constant.Theseconditions revolutionsfor a givendegreeof homogeneity nonviscous(pseudoplastic) purely as are satisfiedfor Newtonianas well viscoelastic highly for differences Newtonianfluids,but thereare significant in liquids. As a matter of fact it is found that the nixing efficiency of case in thc that than liquidsis almost2 to 5 times less viscoelastic liquids equivalentNewtonianfluids.Furthermore,in highly viscoclastic -^-} d r.1Y 91" /?(Dia.)D) \&t/ Fig. 9 Comparisonof mixer performance(Hoogendoornand Den Hartog' 1967) l Turbine + Baffles 1a Turbine 2 3 Inclined Blade Paddles 3 3 Inclined Blade Paddles* Draught Tube 3a I Inclined Blade Paddle + Draught Tube 4 Screw 5 Screw+ Draught Tube 6 Ribbon 7 Propeller A I Draught Tube 8 PropetlerB + Draught Tube 8c ProPeller B 9 Anchor 238 Y. V. Chavan and R. A. Mashelkar mixing emcietcy does not appear to be very sensitive to the geometry. Further work is decidedly warranted in this area, since most polymer melts handled in practice show significant viscoelasticphenomena, The information on mixing and power consumption can be suitably combined to provide a rational basis for comparison of performance of different agitators. A typical comparison has been shown in Fig. 9 where, a t a p a r t i c u l a r m i x i n g t i m e , t h e p o w e r r e q u i r e d t o a c h i e v et h e d e s i r e d No such comparison has been degreeof mixing increaseswith (0!,,Ply.D3). compiled for mixing of non-Newtonian fluids, and it will be clearly desirable to do this. It should be emphasizedthat we have consideredthe mixing of only a single fluid. When blending of two fluids with widely different rheological properties is considered,the situation becomesmuch more complex. Only a start on studying this important problem has been now made (see,e.g., Ford and Ulbrecht, 1975). 4. Continuous Mixing In the foregoing, we have described some aspects of mixing related to a d e s c r i p t i o n ' o fg r o s s p a r a m e t e r ss u c h a s t h e p o w e r c o n s u m p t i o n ,m i x i n g time, circulationtime, etc. Such information is useful from the point of v i e w o f e s t i m a t i n g t h e s u i t a b i l i t y o f a g i v e n m i x e r c o n f i g u r a t i o nf o r a g i v e n p u r p o s e .I n d e e d , t h i s i n f o r m a t i o n n r a y b e e n t i r e l y a d e q u a t e w h e n non-reactive processesare to be carried out (such as blending of two m i s c i b l en o n - r e a c t i n gf l u i d s ) . H o w e v e r , w h e n o n e c o n s i d e r st h e u s e o f a mixing device for thc purpose of contacting two or more chemically r e a c t i n gc o m p o u n d s ,t h e s i t u a t i o n b c c o m e sm u c h m o r e c o m p l e x . I n d e e d , t h e n : i x i n g d e v i c en o w h a s t h c j o b o f p r o v i d i n g o p t i m u m t i m e - c o n r p o s i t i o n , t i m e - t e m p e r a t u r ea n d t i m e - s h e a re n v i r o n m e r . r tS. u c ha n e n v i r o n m e n t t h e n d e p e n d su p o n t h e f l u i d r n e c h a n i c si n t h e d e v i c e ,a n d r v eh a v ee m p h a s i z e di n s e c . 3 . 3 a s t o h o w c o n p l i c a t e d t h i s p r o b l e m o f u n d e r s t a n d i n gt h e d e t a i l e d f l u i d m e c h a n i c si s . I { o r v e v e r , o v e r t h e y e a r s , v a r i o u s m e t h o d s have been devised to account for the modification of reactor behav.iour c a u s e db y t h e m i x i n g a n d c o n t a c t i n g p a t t e r n s . W e s h a l l b r i e f l y r e v i e r v t h e s en o r v . I t s h o u l d b e e m p h a s i z e dt h a t t h e b a s i c a s p e c t sr e l a t e d t o t h e field of nou-ideal flow have been well surnmarizedin somc cxcellent r e v i e w ss u c h a s L e v e n s p i e la n d B i s c h o f f( 1 9 6 3 ) , B i s c h o f f ( 1 9 6 6 ) , N e u m a n ( 1 9 7 4 )a n d i n t h e r e c e n t l y r e v i s e d t e x t b o o k o f L e v e n s p i e l( 1 9 7 2 ) . C o n s e quently, the fundamental deflnitions will not be reviervedin depth. What will be considered, however, are the special problem areas concerned w i t h t h e h i g h t y v i s c o u sl i q u i d s . 4.1 ResidenceTime Distribution The developmeno t f t h e c o n c e p to f r e s i d e n c et i r n e d i s t r i b r : t i o n a t l e a s t in tlie modern chenricalengineeringera dates back to Danckrverts'classic lvlixing of Yiscous Newtonian and Non-Nawtonian Fluids 239 paper (Danckwerts, 1953); although earlier papers could be found out' ibi concept of residencetime distribution avoids the need to know the exact flow pattern in the vessel,but seeks to know only the information regarding how long the moleculesstayed in the vessel,or in other words the residencetime distribution (RTD) of the fluid. A stimulus-response technique can be obviously used to obtain information on RTD. T h e t w o i d e a l c a s e so f p l u g f l o w a n d p e r f e c t m i x i n g a r e o b v i o u s b u t for jntermediate cases, several age distribution functions have to be d e f i n e d i n o r d e r t o d e s c r i b eq u a n t i t a t i v e l y t h e a g e d i s t r i b u t i o n o f t h e 'C fluid. The definitions of the well-known E, F and curves follow simply and a standard textbook (such as Levenspiel, 1972) should be referred t o u n d e r s t a n dt h e p h y s i c a l m e a n i n g o f t h e s e . I n t h e f o l l o w i n g w e s h a l l discussbriefly the methods by rvhich such information can be obtained, the methods of interpretation and the manner in which this information should be used. 4. l.l MresuReltBNr N{ErHoDS I t i s u n d e r s t a n d a b l et h a t i n p l u g f l o w c o n d i t i o n s R T D w i l l c o n s i s to [ a delta function, since all the nolecules pass through with the same residence time. If mixing takes place, then there is a spread in RTD. In case s o m em a t e r i a l s t a y s f o r l o n g ( d e a d s p a c e )o r p a s s e st h r o u g h v e r y q u i c k l y ( b y p a s s i n g ) ,w e h a v e a g r e a t e r s p r e a d .T h u s , i f w e i n j e c t a t t h e i n l e t o f t h e m i x i n g d e v i c e a n d o b s e r v et h e t r a c e r b e h a v i o u r a t t h e o u t l e t , w e g e t i n f o r m a t i o no n m a c r o m i x i n gw h i c h r e l a t e st o t h e d u r a t i o n o f t h e s t a y o I v a r i o u s f r a c t i o n s i n t h e v e s s e l ,b u t n o t t o w h a t t h e y d i d i n t h e v e s s e l . The latter part of the information is called micromixing and rvill be dealt rvith in the next section. B a s i c a l l y ,a s t e p c h a n g ei n c o n c e n t r a t i o n a t t h e i n l e t i s w h a t i s u s e d b u t o t h e r s i g n a l ss u c h a s a s i n e w a v e ( K r a m e r s a n d A l b e r d a , 1 9 5 3 ) a n d evenrandom noise (Angus and Lapidus, 1963) may be used. It is also p o s s i b l et o u s e u n s t e a d yb e h a v i o u r r e a c t i n gs y s t e m s( L e l t i , 1 9 6 5 )o r s t e a d y state measurementsat different flow rates or temperatures(Hoare, 196l). H o r v e v e r ,a n i n e r t t r a c e r h a s o b v i o u s a d v a n t a g e so v e r a r e a c t i n g t r a c e r . A n o v e l m e t h o d i s t h e o n e d e v e l o p e db y G o l d i s h e t a l . ( 1 9 6 5 )w h o u s e d a s p e c i a l t r a c e r ( c o m p l e t e l ys o l u b l e i n t h e t e s t f l u i d ) , l v h i c h i s c o l o u r i e s s until activated by a flash photolysis. This means that a flash of light producesa pulse oI colored material without actually having to physically inject a tracer into the sYStem. We have discussedthe problems of choosing a suitable tracer for the m i x i n g t i m e m e a s u r e m e n t sj n s e c . 3 . 6 . T h e p r o b l e m s o f t h e c h o i c e o f tracer in the study of RTD when handling non-Newtonian ftuids are quite similar. In a certain range, at least, the rheological properties can be very sensitive to electrolyte concentration, pH, temperature, etc' Consequentlya , g r e a t c a r e u s u a l l y n e e d st o b e e x e r c i s e di n t h e c h o i c e o f appropriate tracot. 240 V. V. Chavanand R. A' Mashelkar of the tracer (without disturThe points concerning the rapid injection measufement at the outlet bing the normai flow frtiern) anO a correct are described by Bischoff this are imporrant. some ploilr.r, concerning . (' 1 9 6 3 )a n d W h i t e ( 1 9 6 2 ) . the tracer tun.tl! l n i f i c a n t l y measuring and of injecting technique Th; experiments. The influence the interpritatio"n of the residence-time ( 1 9 7 1 )a r e p ^ a r t i c u l a r l y l n d T u r n e r ( 1 9 7 0 )a n d T u r n e r p a p e r sb y L e v e n s p i e a m e t h ods of injection' two ifiu*inuiing in tiis regard. They considered the flow through to proportion the first in which the iracer is added in in which the tracer is each point in the injection pl-ane.and.sicond plahe' They also considered two added uniformly acros, the injection reading is taken , ne in which the mixing-cup m e t h o d so f m e a s u r e m e n t o over the cross-sectional and second in rvhich the average concentration planeofthemeasurementismeasured'Thedatainterpretationwill that has been upon the corlbination ol injection-measurement l"f.na used. 4 . 1, 2 lxtsRpRlrnttoN oF Respoxsn oncelheRTDcurveisobtained,agrossdeviationfromtheidealized easy to detect' However' consideplug no* or completely mixed models is r a b l e i n | o r m a t i o n c a t r b e e x t r a c t e d f r o m t h e R T D c u r v e . T h e d e(1972)' tailsof given by Levenspiel unofyring the RTD curves have been H i n r r u e l b l a u a n d B i s c h o f f ( 1 9 6 8 ) a n d o t h e r s . N a o r a n d S h i n n a r ( b1y9' 6 3 ) d e t e r m i n i n g d e a d s p a c ea n d h a v e p r o v i d e d f a i r l y s e n s i t i v em e a n so f pu,,inglromthellTDcurr.e.BischoffandMcCracken(1966)lial'econsi. i' relation to actual problems' l.oO ir. utility of thesc dillerent methods in predicting the performThis information should idcally be helpful i It I I I t I I I anceofachenricalreactor'Whethertl-risispossibleorngt,vern ynuch c o n s i d e r e di s l i n e a r o r o n b e i n g s . v s t e m t h e w h e t h e r u p o n A.p.na, p r o c e s s e si t - f o i l o w s t h a t m e r e linear. By additivity property of linear to depict the behaviour be'adequate stinrulus responseinioilnution should ofavesselaSal.eector,aslongasthereactionrateislinearinconcent r a t i o n , H o t v e v e r , l b r n o n . l i n e a r s y s t e m s , w e r e a l l l . n e e d p o i n t - t o -isp o i n t the exact history of each molecule information becausea knowledge of aspectwill be dealt rvith in n e c e s s a r y( m i c r o m i x i n g i n f o r m a t i o n ) ' T h i s a later section' of the tracer data involvesthe A further point in the interpretatton der,elopmentofflownrodels.Thisrrsuallyinvolvesthedefuritionofaflow modelcontainingcertainparan]etersandthencorrelatingtheseparameters intermsoftheSyStemvariables'Hope|ully,thesecorrelationscanthen s i t u a t i o n s( w i t h o u t a c t u a l l y h a v i n g b e u s e dt o p r e d i c t t h e b e h a v i o ro f n e w thetracerdataonthenewsituation)'Thisishelpiulindesignpractice. I t i s i m p o r t a n t t o n o t e h e r e t h a t t h e p a r a r r r e t e r s s h o u l d h a v e s o m ei np ha y s i c a l parameter As pointed out by Bischoff (1966)' a volunte **"i"g. flowmodelnrayhaveavaluelargerthanthatoftheactualph-vsical Mixing of Viscous Ne.wtonianand Non-NewtonianFtuicls 241 vorumeof the reactor,and althoughthis may not cause a seriousprobrem in mere curve fitting, it racksthe desirableflature of being uut" to a"ripher the actualoperationof the reactorbeingstudied. A numberof models(someof the important ones are reviewedin the ensuingdiscussion) may be formuratedon the basisof the tracerinformation. Basically,this consistsof breakingup a rargemodel into smailer regions(rvhichmay or may not be on the basis oi the feel for the fluid mechanicsin the system),each of which may be represented by a dispersionmodel, by-passing,dead space,etc, The puru*.t.r, introduced representflowsto, sizesof and extentof mixing in, variousregionsand do a good job in termsof curvefitting. However, the same tracer informationcan' at times,give rise to severardifferent flow modersor paralneters'It thus appea-rsthat, wheneverpossibre, it is importantto base the modelon physicarreasoning,so rhai the parameters are physica'y rueaningful. we shallnorvconsiderin so'redetairthe experimentar and tircoretical work which has appearedin the past on the aspects of RTD in u"rf viscoussystems,especially,the non-Newtonjan,yri.ntr. 4.1.3 RTD r^-Cro-srr> CoNpurrs The simplestcaseto considcris a straightcircurartube in rvhicha f id florvsunderlaminarconditions.with in;easing useof tuburarporyrneri_ zationreactors,the study of RTD under'suchconditions assumes importThe parabolicprofirerbr a Nervtonianflurd causcsa wicrespreadin the residence tinresand tfu E curveis easilyobtainedas n:fir, l(o<* (4.r) - 0, elser.vhere G.Z) The sa're problemcan be treateclfor a non-Nswtonian fluid as weU.If an ostwaald-de-waele power-rawfluid descriptionis used, tlien thc corresponding agedistributionfunctionsmay be easirye,r,aruatccr. szabo and Naunran(1969)and cintron-corderoet al. (196g)have examined this problem.Novosadand urbrecht( t966)nraticuseof theseagedistributions to predictthe conversionin elementaryreactionscarried out in tubular reactors. In recent paper' osborne (1975) has deveropedpurely .a convective modelsfor tubularreactors.He pointi out that polym.riraiion reactors are often fairly short-rvith farrly rapid reactiontui have a pronounced velocity profile. He deveroperd mathematicalexpressions so that any of the four commonly used tracer techniqucscan be used to obtain an empiricalprofileindex.He hasarsogivena 'retrrod to calcurate the distributionof productsresurtingfrom a sequence of first orderreactions. Edrvards and Saletan(r967)in a simirarway carcurated the effectof nonuniformveJocity distributionon RTD by usinga quarticprofileequation 242 V. V. Chavanand R, A" Ivtashelkar w i t h a n u n t r i l r o w np a r a m e t e r w h i c h r ep r e s en t e d t h e r a t i o o f t h e c e n t r e l i n e to the mean velocity. I t s h o u l c l b e e m p h a s i z e dt h a t p o i y m e r i z a t i o n f l o w r e a c t o r s c o n b i n e l a m i n a r f l o r v w i ( h l o w d i f f u s i v i t i e s .T h e h i g h e r v i s c o s i t y o f t h e m o r e c o m p l e t e l yp o l y m e r i z e dm a t e r i a l n e a r t h e w a l l s e r v e st o s h a r p e nt h e v e l o ' c i t y p r o f l l e p r e d i c t e d f o r a N c w t o n i a n f l u i d . C e n t r e - l i n e v e l o c i t i e sa s m u c h a s e i g h t t i m e s t h e a v e r a g ev e l c c i t i e s h a v e b e e n o b s e r v e d( E d w a r d s a n d S a l e t a n, 1 9 6 7 ) . I n d c e d ,B r a s i e ( 1 9 6 8 )f i n d s t h a t t h e e x p e r i m e n t a lR T D m e a s u r e l n e n t sa p p e a r t o c o r r e s p o n d m o r e t o t h e e l o n g a t e dv e l o c i t y p r o f i l e s ( c o r r e s p o n d i n gt o d i l a t a n c y ) t h a n t o t h e f l a t t e n e d p r o l i l e s ( c o r r e s p o n e l i n gt o p s e u d o p l a s t i c i t yi n h e r e n t1 o t h e p o l y n r e r i cs o l u t i o n ) .T h e s t r o n g coupling of the heat effectsr',,ilhreactiou in such reactots makes it rather u n l i k e l y t h a t t h e s i m p l i f i e d a n a l y s i s n r e n t i o n e da b o v e w i l l b e a p p l i c a b l e t o p o l y m e r i z a t i o r lr e a c t o r s .H o w e v e r , t h e r e a r e o t h e r s i t u a l i o n sw h e r e t h e a n a l y s i s m a y b e a p p l i c a b l e . T h i s c o n c e r n st h e t h e r i n a l p a s t e u r i z a t i o no f l i q u i d f o o d s , r v h i c h i s u s u a ! l y c a r r i e d o u t i n t u b u l a r c o n d r - r i t sT. h e d e a t h r a t e o I m i c r o - o r g a n i s m is. sd i r ec t l y p r o p o r t i c n a l t o t h e i r p o p u l a l i o n C e n s i t l ' h c n c et h e s 1 ' s t e r nt e s e m l - - l eas f i r s t - o r d e r r e a c t i o n . T h e l a r g e l i t e r a t u r e i n t h e a r e a o f f o o d t e c h n o l c , g y( s e e, e . g , , C h a r m , l 9 7 l ) s h o u l d b e r e f e r r e dt o t o u n d e r s t a n dl h e i r n p l i c a t i o n so f t h i s . Certain modif,cations of the slraight tube configuration can dramatic a l l y a l t e r t h e h y d r o d y n a m i c s a n d c o n s e q u e n t l y t h e r e s i d e n c et i m e distribution. As an example, consider the coiling of a straight tube. A c e n t r i f u g a l l yd r i v e n s e c o n d a r yf l o w i s s e t u p r v h i c h i s s u p c r i u . r p o s eodn t h e p r i m a r y a x i a l f l o r v . T h i s h a s t h e e l T e c to f r , a r r o r v i n gd o w n t h e R T D c o n s i d e r a b l y .A s p e c l so f ' t h i s h i l ' r , rtlr e e ns t u d i e c lt h c o r -tei c a i l y b y R u t h v c n ( 1 9 7 1 )a n d ex p er i n r e n t a l l yb y T r i v e d i a n d V a s u d ev a ( 1 9 7 , \ )f o r N e r v t o n i a n f l u i d s . T h e n o n - N e l v t o n i a n f l u i d l l o w i n c o i l e d t r r b e si s b e i n g e x t e n s i v e l l r s t u d i e do n l y r e c e r r t l y( s e et l t e r v o r k o f M a s h e l k a r a n d D e v a r a j a n ,1 9 7 5 ) a n i l c o n s e c l u e n t lnvo R T D s t u d i e sh a v e b e e np e r f o r n r e ral s I ' e t . f - - o i l e ct lL r b c a s a r e a c t o r c o n t i g u r a t i o n ,o f c o u r s e ,h a s a u a d c l j t i o n a la r i v : i n t a g et h a t t h e s t r o n g s e c o n c l a r ym o t i o n p r o d u c e s h i g h e r t r c i L t i r a r i s f c r c o e f l i c i e n t s . F u r t h e r r n o r e ,i t n - r a yp r e v e n t t h e b u i l d u p o f h i g i r v i s c o s i t y m a t e r i a l during polymerization at the rvalis aird consequently n;rrrorv down tlte m o l e c u i a r w e i g h t d i s t r i b u t i o n . C o i l e d t u l . ; ea s a r e a c t o r s h o w s a g r e a t p r o m i s e a n d h e n c e t h e a s p e c t so f R T D s h o u l d b c c e r t a i n l y l o o k e d i n t o . S i m i l a r c o m m e n t s h o l d f o r n o n - c i r c u l a r t u b e s a s r a , e l l ,a l t h o u g h t h e s t r e n g t ho t ' t h e s e c o n d a r yc i r c u l a t i o n i s m u c h s n t a l l e r i n t i r i s c a s e .N o n Newtonian viscoelastic materials have the peculiarity thal rectilinear motion (as in the case of Newtonian fluids) is not possible and a fourc e l l e ds ec o n d a r y c i r c u l a t i o ns e t si n ( s e eG r e e n a n d R i v l i n , 1 9 5 6 ) .T h i s r v i l l also narrow down RTD. 4.1.4 RTD rN Acrrareo Vr.sslls T h e m u l t i - p a r a m e t er m o d e l s d e v e l o p e dt o d e s c i i l : eR T D i n c o n t i n t t o r - i s Miring of l'iscous Net+tonit'n and Non-Newtcnian FLtids 243 stirred tank reactors envision sucl non-idealities as by-passing, stagnant zones,piston flow, etc. The review by Olson and Stout (1967) shows that R T D i n a w e l l - s t i r r e d r e a c t o rc o r r e s p o n d st o t h e e x p o n e n l i a l d i s t r i b u t i o n of a completely mixed reactor lvhen the circulation rate is much greater than about five times the throughput. Such a condition may be easily a c h i e v e di n l o w v i s c o s i t ys ) ' s t e m sb, u t i n h i g h v i s c o s i t y s y s t e m s( s u c h a s p o l y m e r i z a t i o n a n d f e r n r e n t a t i o nr e a c t o r ) , t h e y a r e f a r m o r e d i f f i c u l t t o achieve. T h e h i g h v i s c o s i t ys y s t e m so f o u r i n t e r e s tw i l l i n v a r i a b l y o p e r a t eu n d e r l a m i n a r c o n d i t i o n s .T h e i n f o r m a t i o n o n c i r c u l a t i o n r a t e ( s e es e c . 3 . 4 ) a n d a r i x i n g t i n r e ( s e es e c .3 . 6 ) s h o u l d b e h e l p f u l i n d e s i g n i n g t o a c h i e v eg o o d m i x i n g . F o r e x a m p l e ,i n a c o n t i n u o u ss y s t e m ,i f v , , ek e e p t h e r a i x i n g t i m e r a t h e r s m a l l i n c o m p a r i s o nt o t h e m e a n r e s ; d e n c ct i m e , t h e n R T D f a i r l y close lo perfect mixing may be achieved. The studies on RTD in c o n t i n u c u sa g i t a t e d v e s s e l sa s s u m eg r e a t i m p o r t a n c e .A l t h o u g h e n o u g hi s k n o w n i n t h e a r ea o f l o r v - v i s c o s i t yl i q u i C s ,l i t t i e i n f o r m a t i o n i s a v a i l a b l e f o r h i g h v i s c o s i t yl i q u i d s . Z a l o u d i k ( 1 9 6 9 )p r o v i d e d R T D d a t a f o r a g i t a t e d v e s s e l sj n w h i c h f l a t u s e dt o a g i t a t ec o r n - s y r u p s o l u t i o n s i n t h e l a m i n a r bladed turbines "vere and early transition regicn. Significant deviations from the conrpletely nixed system were detecled and a ttvo-parameter model r',,asdevelopedto d e s c r i b eR T D . S t o k e sa n d N a u m a n ( 1 9 7 1 )a n a l y s e dt h e d a t a o f I l l a n k s a n d S t o k e s( 1 9 7 0 ) ,r v h i c hw e r eo b t a i n e dr v i t h p o l y s t y r e n es o l u t i o n so f v i s c o s i t i e s i n t h e r a n g e o f . { t o 2 0 0 p o i s e .D u a l f i a t - b l a d e dt u r b i n e sa n d a c o r n b i n a t i o n o l p i t c h e d - e n d f i a t - b l a d e dt u r b i n e s w e r e u s e d . S t o k e s a n d N a u m a n m a d e u s e o f a s i n g l e p a r a n r e t c r t a n k s - j n ' s r -irc s r r r o c i c l .R e c e n t l y l i 4 o o Y o u n g a r r d C h a n ( 1 9 7 1 )h a v e p r o v i d c d R T D d a t a o n b o t h N e w t o n i a n a l d n o n - N e w t o n i a n p o r v e r - l a t v1 1 u i d sa g i t a t e d t i y ' l l a t - l r l a d c d t u r t i n e s . T h e m o d e l u s e d[ " i 1 ' N { o o - Y o u nagn d C h a n h a c ]a c o m b i n a t i o no f c o n r p l e l e l y n r i x e c lr e g i o n sw i l h a d c a c l - s p a caen i i a p l u g l i o w r e g i o n . T h c y c o r r c l a l e r l tirc model parameters in tertns of the Reynolds nunrber, a pseudoplasticity index and the product of the agitator speed and the ntan r e s i d e n c et i m e . T h e r a n g e o f t h e p a r a m c t e r s c o n s i d e r e db 1 ' I \ ' l o o - Y o u n g and Chan includes values typical ol industrial polymerizationreactors. H o l v e v e r ,a n c h o r , h e l i c a l s c r e wa n d r i b b o n a n d p i t c h e d t u r b i n e a g i t a t o r s are more commonly usedfor polymerization and it would be important t o o b t a i n i n f o r m a t i o n o n t { T D i n s u c h s y s t e m s .F u r t h e r i l o r s r , t h e m o d e l l i q u i d s t e s t e d b y M o o - Y o u n g a n d C l t a n w e r e p u r e l y v i s c o t t s .\ Y h e n a v i s c o e l a s t i cl i q u i d i s a g i t a t e d , t h c i n t e r a c t i o n o f i n e r t i a a r , d e l a s t i c i l ym a y p r o d u c e v e r y p e c u l i a r f l o w p a t t e r n s( s e es e c .3 . 3 ) a c d t h i s m a y s i g n i f i c a n t l y i n f l u e n c e t h e r e s i d e n c et i m e d i s t r i b u t i o n . It is only in recentycars tliat the importanceof mixing considerations i r r p o l y m e r i z . a t i a nr e a c t o r si s b e i n g r e c o g n i z e d l.n s h a r p c o n t r a s t t o m i x i n g s t u d i e si n s i m u l a t e df l u i d s , t h e r e i s a n i n c r e a s i n gt l e n d t o r v a r d se x a m t n i r t g the role of mixing in actual polymerization leactors. The vlorl: of Cc'le ( 1 9 7 6 ) i s p a r t i c u l a r l y ' r ' a l u a b l ei n t h i s r e g a r d . C o l e s t u d i e d t h e n o n - i d e a l 244 V. V. Chawn and R. A. Mashelkor m i x i n g p a t t e r n s i n c o n t i n u o u s s t i r r e d t a n k p o l y m e r i z a t i o n r e a c t o r sa n d characterized these in terms of a mixing model, Anionic solution polymerization of butadiene was then undertaken to study the influence of mixing. correlations were then developed betrveen the operating p a r a m e t e r s ,m i x i n g m o d e l p a r a m e t e r sa n d m o l e c u l a r w e i g h t d i s t r i b u t i o n parameters. I t i s c o n c e i v a b l et h a t s i m i l a r e f f o r t s c o u l d b e u n d e r t a k e n f o r t h e c o r r e l a t i o no f o t h e r p o l y m e r c h a r a c t e r r ' s t i c ss,u c h a s c o p o l y m e r s e q u e n c e d i s t r i b u t i o n , e t c . I t i s c l e a r t h a t s u c h s t u d i e s w o u l d b e o f i m m e n s eh e l p t o e n g i n e e r sd u e t o t h e f o l l o w i n g r e a s o n s : l . c h a n g e s i n p r o d u c t c h a r a c t e r i s t i c sd u e t o s c a l e - u pe f f e c t s a s n e l y products move from laboratory scale to production scale could be a n t i c i p a t e d a n d c o r r e c t e d f o r . T h i s s p e e d su p t h e s c a l e - u p s e q u e n c eb y el i m i n a t i n g t r i a l a n d e r r o r c x p e r i m e n t a t i o ni n I a r g e e q u i p m e n t .T h i s w i l l t r e c o n t ep a r t i c u l a r l y i t n p o r t a n t a s t h e n e e c lf o r p r o d u c t sr v i t h m o r e d e t a i l e d s p e c i f i c a t i o n sf o r m o r e d e n i a n d i n ga p p l i c a t i o n sw i l ! i n c r e a s e . 2 . o p e r a t i n g c o n d i r i o n si n l a b o r a t o r y a n d p i l o t p l a n t e q u i p m e n tc o u l d b e s el e c t e dj u d i c i o u s l y s o t h a t t h e p l a n t s c a l em i . r i n g c o n c l i t i o n sc o u l d b e duplicated. 3. The need for design changesin production equipment may be shown early so that the nature of the changesneededcould be inferred. ' 4 . M o r e i n t e l l i g e n t d e s i g no f f u t u r e e q u i p m e n t a t a n y s c a l e c o u l d be made, provided tcst results from the existing equipment are considered r e l a t i v e t o t h e p r o d u c t p r o p e r t i e sd e s i r e d . 4.2 il{icronrixing As remarked earlier, for non-liuear reactions the residence tiure d i s t r i b u t i o nb y i t s c l f d o c sn o t d e f i n et h e s t a t e o f n i i x i n g s i n c e i t n r e r e l y d e f i n e sw h a t i s t e r r n e da s r n a c r o m i x i n ga n d n o t n r i c r o n r i x i n g A . conrpletely s e g r e g a l e ds v s t e r r r e p r e s e n t so n e l i m i t o f m i c r o m i x i n g , t h a t i s , w h e r e there is no rnixing at all. There is, of course, all upper limit o' i n i c r o m i x i n g ,w h i c h c o r r e s p o n d st o t h e m a x i m u n r a m o u n t o f m o l e c u l a r l e v e l m i x i n g p o s s i b l ea n d Z w i e t e r i n g ( 1 9 5 9 )h a s t e r m e d t h i s a s t h e s r a t eo f m a x i m u m m i x e d n e s s .I n t h e c o m p l e t e l y s e g r e g a r e dr e a c t o r t h e ' r i x i n g between fluid elements u,hich have spent different times in the reactor o c c u r si n t h e e x i t s t r e a m ,w l i e r e a si n t h e m a x i m u u r m i x e d n c s sc a s em i x i n s o c c u r si m m e d i a t e l y, v i z . a t t h e e n t r a n c e I f c o n s i d e r a t i o n sa r e r e s t r i c t e do n l y t o t h e c o n v e r s i o no f t h e r e a c t a n t s (and not to the detailsof the product yield) then the maximum mixedness gives the lorvest possible conversion of reactants firr reaction orders great€f than one and highest conversion for reaction c-,rdersless than one. c o m p l e t e s e g r e g a t i o ng i v e s t h e h i g h e s t p o s s i b l e c o n v e r s i o n f o r o r t l e r s greater than one and the lorvest conversion for orders less than one. ,l'he c o n ' e r s i o n f o r a 6 1 s 1 - o r d erre a p t i o ni s e n t i r e l y d e t e r r n i n e db 1 , R T D an<l Mixing of ViscousNewtonian and Non-Newtonian Fluicls 245 i t i s i n d e p e n d e n to f t h e l e v e l o f m i c r o m i x i n g . N o v a d a n d T h y n ( 1 9 6 6 ) have given useful charts to depict these effects. It is clear that we have to be able to describe the intermediate state of segregation(or micromixing) by the use of certain models. Some efforts have been niade in this direction. Curl (1963), for instance, has proposed a coalescencemodel wherein he considers a model of dispersed phase d r o p l e t sf l o w i n g t h r o u g h a n i d e a l s t i r r e d t a n k . I f t h e r e a c t i o n o c c u r s i n the droplets and they do not coalesce, then this phase will act as a macrofield. On the other hand, if they do coalesceand dispersethen they a p p r o a c h t h e m i c r o f l u i d b e h a v i o u r . S p i e l m a na n d L e v e n s p i e l( 1 9 6 5 ) h a v e shown how the conversion can be obtained from such a model by using a Monte-Carlo procedure. Ng and Rippin (1965) have proposed the idea of a two environnent model, wherein a reactor r,vitharbitrary RTD is viewed as consisting of c l u m p s o f u n m i x e d f l u i d ( e n t e r i n ge n v i r o n m e n t )a n d a l r e a d y m i x e d f l u i d ( l e a v i n ge n v i r o n m e n t ) .I n t h e u s u a l f o r m u l a t i o n o f t h e t w o e n v i r o n m e n t m o d e l , t h e d i v i s i o n b e t w e e n t h e s e g r e g a t e da n d m a x i m u m n r i x e d n e s si s based on the age of the fluid elenent. Typically, a fluid elters the reactor in the segregatedenvironment and leaves in the maximum nixedness e n v i r o n m e n t .C h e n a n d F a n ( 1 9 7 1 ) h a v e , h o l v e v e r , p r o p o s e d a r e v e r s e d t w o e n v i r o n m e n t m o d e l a s b e i n g m o r e r e p r e s e n t a t i v eo l t h e p o l y m e r r e a c t o r s .I t i s a s s u m e d t h a t t h e r e a c t a n t s a r e i n i t i a l l y w e l l m i x e d , b u t b e c o m es e g r e g a t e da s t h e v i s c o s i t i e si n c r e a s ed u r i n g p o l y m e r i z a t i o n . 5. Concluding Remarks The present review has been confined to the mixing of viscous fluitls. A c o l s i d e r a b l e r e s e a r c he f f o r t i s c u r r e n t l y u n d e r r v a y a l l o v e r t h e q o r l d a n d n e n ' a v e n l l e sf o r r e s e a r c ha r e c e r t a i n l y e m e r g i n g .A l t h o u g h t h e p r e s e n t s ost of the important areas,certain flelds have not r e v i e r ve n c o m p a s s em . ome of the important areas, for example, b e e n a d e q u a t e l l ' c r ' : n v e r t e dS are as follows: l. Demand of unilorm polymermelt quaiity in lerms of both compos i t i o n a n d t e m p e r a t u r eh a s g i v e n r i s e t o t h e a p p l i c a t i o n o f m o t i o n l e s s m i x e r s . I n f o r m a t i o n o n t h e s em i x e r s i s g r o w i n g ( s e e ,e . g ' , S c h o t t e t a l . , 1 9 7 5 , C h e n a n d M a c D o n a l d , 1 9 7 3 ) .A p p l i c a t i o n s o f t h e s e m i x e r s i n o t h e r a r e a s , e . g . , g a s d i s p e r s i o nj n v i s c o u s l i q u i d s 1 s e e , e . g . , S m i t h , 1 9 7 8 )i s a l s o b e i r g c o n s i d e r e d .T h i s i s a n e v o l v i n g a r e a of researchand considerablebasic and applied research inputs wili be necessrry to take these mixers to a commercially viable stage. 2 . C u r i o u s a n o m a l i e sr e s u l t i n p o l y m e r - a d d i t i v es y s t e m s ' I t h a s b e e n shown (White and Lee, 1974)that during Poiseuille florv the lorver v i s c o s i t yf l u i d o f t h e t w o f l u i d s w i l l m i g r a t e t o t h e r e g i o n o f l i i g h e s t s h e a r ( e . g . m o u l d r e l e a s ea g e n t s ) .C o n v e r s e l y ,s o l i d p a r t i u i e s i l a 246 Y. V. Chavanand R. A. Mashelkar poiymer-particle system rvill nrigrate to the region of lowest shear cluring Poiseuille llow accounting for resin ricir surfaces in filled 'demixing' s y s t e n l s( K u b a t a n d S z a l a n c z i ,1 9 7 4 ) .T h e s ep r o b l e m so f a r e q u i t e i m p o r t a n t a n d a r e r e c e i v i n gw i d e a t t e n t i o n o f t h e r e s e a r c h er s . 3 . P e c u l i a rm i x i n g p r o b l e m s a r i s e d u r i n g t h e t v r o p h a s e c o n t a c t o f a g a s a n d a n o n - N e w t o n i a nl i q u i c l a n d t h e s u b s e q q e nht e a t a n d m a s s t r a n s p o i t p r o c e s s e s( s e e , 0 . 3 . , M a s h e l k a r , 1 9 7 6 , A s t a r i t a a n d M a s h e l k a r , 1 9 7 7 ) .T h i s a r e a i s a l s o i n a s t a g eo f i n f a n c y ' I n t h e p r e s e i t tr e v i e w w e h a v e a t t e m p t e dt o a n a l y s e s o m e a s p e c t so f a topic rvhich not too long ago rvas being treated entirely as an art and is n o w r a p i d l y a c h i e v i n ga s o u n d s c i e n t i f i cb a s i s .T h e i n t r o d u c t i o n o I w e l l d e f i n e d s t a t i s t i c a l l n e a n s f o r e s t i m a t i n g t h : g o o d n e s so f m i x i n g , t h e l i n k i n g w i t h t h E l a i n i n a r a n d d i s t r i b u t i v e m i x i n g , i n c r e a s e de r n p l r a s i so t l a t t e m p t s t o a n a l y s e a s u b s t r u c i u r er a t h a r t h a n o b s e r v a t i o n o f a g r o s s p h e n o r n e n o na n d l u r t h e r m o r e t h s l i n k u p o f s u c h s u b s t r u c t i t r e t o t h e h y d r o d y n a m i c sh a v e a i d e d c o n s i d e r a b l yi n e v o l v i n gs u c h a s c i e n t i f i cb a s i s . T h e b l a c k b o x v i e r v p o i n ti s v a n i s h i n ga n d t h i s i s a w e l c o m es i g n . I n t h e a r e a sj u s t c o v e r e d w e h a v e p r o v i d e d a n a l y s i s a s r v e l l a s c o n s t r u c t i v e s u g g e s t i o n fso r f u t u r e r e s e a r c hi n e a c h i n d i v i d u a l c a s e . I t s h o u l d b e e n p h a s i z e dt h a t o u r a t t e m p t h a s b e e n t o b e r e p r e s e n t a t i v er a t h e r t h a n e n c y c l o p a e d i cs o t h a t a r a t i o n a l a n a l y - s i os f t h e p r e s e n td a y k n o w l e d g eo f t i r e s u b j e c tc o u l d b e m a d e . I t i s h o p e d t h a t t i r e r e v i e v r r v i i l b e u s e f u l f o i r e s e a r c h e ras n c l d e s i g n e r sa l i k e - L I S TO F S Y M B O L S .'i ol, Q2 ,l ari /7 io ci c^ C, Co, C, a L; s D 0 E €v €2 Fr o n i I K ;;' A'J\t ll[J Ml TI' n N y'y'r Exponentsin equntion //" P 3.6 Number irra samPle5izcFowerconsumed Interfaciai area I n i t i a l i n t e r f a c i a la r e a Concentration at any Po Porvernuntber [ ,.-t; l P6 ProbabilitY distribtttion function I m p e i l e r d i s c h a r g er a t e Radius of the sPhere Coelficientof correlation Radii of the ittner and outer cylinder R e y n o l d su u m b e r Radial distance Striation thickness I n i t i a i s t r i a t i o nt h i c k n e s s A v e r a g es t r i a t i o n t h i c k nes$ E s t i m a t e ds t a n d a r dd e vi - point q Mean concentration of R ccelficient Expected R(t) vanance Concentrations at two Rt, Rt p o i n t s d i s t a n c er a p a r t Re Circulation numbel r Impelier diarneter t's Tank dianteter /"{o Diffusivity distiibutiort ,""'g Exit-lge function Exponents in equation S / D \ \a'rYP / Sz Froude number Gravitational accelera- S' tion t F { e i g h to f t h e l i q u i d L Number rI l s e g r e g a t i o n o f , lntensitv I'' ConsistencYindex e q u a t i o n s C o i t s t a r t t si n V 3 . 5a n d 3 . 6 x t , r - 2 ,x3 3 ' 9 C o n s t a n ti n e q u a t i o n X Net amount of shearing r, Xr, X3 strain received Lacey'sindex x lndex PseudoplasticitY R e v o l u t i o n so f t h e s t i r r e r r..c per second No. of revalutions(see equatioil I ' 17) ation E s t i m a t e dv a r i a n c e Linear scaleof segregation Time Y e l o c i t i i r t . r ' ,t' i i r e c t i u t t Yelocit; in 6 directiun V o l u m e s c a l eo f s e g r e g a tion Bu[k voluntc Co-ordilrates R e l a t i v e c h a n g e si n d i s tance in xt, xz, x3 direction N u m b e r o f P a r t i c l e si n a sample N u m b e r o f P a r t i c l e so f c o n l p o n e n tu n d e r c o n s i deration 248 Y. Y. Chavqn and R. A. l'fashelkar GREEK LETTERS c, c o Sc 1 , cos c!2, cos rf,3 o"r,uz p i Tuu 0 0' 0,, 0" p Parameter in the Ellis Fa po fluid model Direction cosines Pr, Pz lvlaterial parameters for a third order fluid Angle defined in equa' tion Ll6 Shear rate Average shear rate Residence time (dimensioniess) Angular coordinate N{ixing time Circulation time Yiscosity p o2 "3 of r0 ,b A Apparent viscosity Parameter in the Ellis fluid model Viscosities of comPo' nents (l) and (2) Density population Expected variance Expected variance bet' ween two comPletelY segregatedcomponents Expected variance of a binomial distribution Parameter in the Ellis fluid model Stream function Angular velocitY R E F E R E N C ES Angus, R. M. and L, Lapidus, AIC4E "r', 9' (1963),810' Astarita, G. and G, Marrucci, Principlesof Non-NewtonianFluid Mechanics,McGraw Hill, Berkshire(1974). Astarita, G. and R' A, Mashelkar, Chem.Errg.(Lond')' (1977)' 100' Beckner,J. L. and J' M. Smith, Trans.Inst, Chem.Engrs',44,(L966),224' Bergen,J. T., in Processitrgof Therntoplasricr,Bernhardt, E. C' (Ed.), Reinhold, N.Y. (19s9). g,tt. Sci', 15, (1975)'684. Bigg, D., Pols'p1. In'J- Eng' Chem.Fundls.,13' (1974),66' Middleman, S. Bigg, D. and Ertg',11,(1963)'129' J, Chenr. Bischoff.K. B. Can, (1966)'I3. Chettt.,58' Bischoff,K. ts.,Ind' Etrg. Ind. Etry-Chent.,58'(1966)'18' McCracken, Bischoff,K. B. and E. A. presentedat the 67th National AIChE Meetpapef Blanks,R. F. and R. L. Stokes, i n g , A t l a n t a .( I 9 7 0 ) . Blaskinski,H., B. Kochanski,and E. Rzyski, Irtt.Chent.Eng. ProcessInd., lO'(1970), I'16. Bourne,J.R., Chetn.Ens.,l80' (1966),202. Bourne,J. R. and H. Butler, Trans.Ittst. Chen. Engrs.,47' (1969)'lil' st. Louis, (1968)' Brasie,w. c., paper presentedat the 6lrd National AlchE lr,Ieeting, Buslik, D., PowderTechnologv,T' (1973)'l1l. calderbank, P. H. anctM. B. Nloo-Young,Trnirs.Inst. Chent.Engrs.,37,(1959)'26. Carreau,P. J., L Pattersonand C. Y. Yap,Cun. J. Chem.Eng',54, (1975)'135' of Fotd Engineering,The Avi Publishing, connecticut (1971). charm, 5., Ftrndamentals Thesis, University of Salford (1972). V., Ph.D. V. Chavan, J. Chavan,V. V. and Ulbrecbt, Ind. Eng. Chem'(Proc. Des. Develop'>'12,(1973r'472' Chavan.V. V., M. Arumugam and J. Ulbrecht, AIChE J ,21, (1975a),613' -' Chavan,V. V., D. E. Ford and IvI. Arumugam, Can.,J' Chetn.Eng ,53, (1975b)'628' Chen,S. J., J. Soc.Cosnret.Chent',24,(1973),639. , h e m . . U n g , 8 5( ,1 9 7 3 ) 1' 0 5 . C h e n .S . J . a n d A . R . I \ { a c D o n a l dC Chen. M. S. K. and L. T. Fan, Curt.J. Chem.Ens.,49, (1971)'704. cintron-cordero, R., R. A. Mostello, and J. A. Biesenberget,can. J. Chent.Ens., 46, ( 1 9 6 8 ) 4, 3 4 . Cole, W. M., AICLE Synp. Set ,72 (160),(1976),51. Coyle,C. K., H. E. Hiscbland, B. J.Michel and J. Y. Oldshue,AlChEJ., 16' 11970), 903. C u r l , R . L . , A I C \ E J , 9 , ( 1 9 6 3 )i,7 5 ' Danckwerts,P. Y-, Researc}(London). 6, (l9il), 355. 250 Y. V. Chavanand R. A. Mashelkar Danckwerts,P. Y., Chem.Eng. Sci.,2, (1953),l. Danckwefts,P. Y., Appl.,Scf.Res.3 (A),(1g52),27g. I Earle, R. L.,Trans. lnst. Chent.Engrs.,37,(1959),297. Edwards,W. M. and D. J. Saletan,Ind. Eng. Chem.,59,(1967),37. Feldkamp,K,, Thesis,TechnischeHochschuleBraunschweig,(1962). Ford, D. E., R. A. Mashelkar and J. Ulbrecht,Proc. Tech.Int., f 7, (1972),803. Ford, D, E. and J. Ulbrecht,AICUE J.,21, (1975),1230. Giesekus,tL, Rheol,Actq,3, (1961),59. G o fd i s h ,L . H . , J , A . K o u t s k y a n d R . J . A d l e r , C h e m .E n g . 9 c i . , 2 0 ,( i 9 6 5 ) ,1 0 1 1 . Gray, J, B.,itt Mixing: Thzoryand Praclite, Vol. 1, Acad., N.Y. (1966). Green,A. E. and R. S. Rivlin, Quart. A1.tpl.Math.,14, t1956),299. Hald, A., Statistical Theor.yfor EtryineeringApplications, V/iley, N.Y. (1952). H a l l , K . R . a n d J . C . G c d f r e y ,A I C h E . t C h ES y m p .S e r .N o . 1 0 ,( L o a d o n : I n s t n .C h e m . Engrs.)(1955). Himmelblau,I). M. and K. B. Bischoll,ProcessAnalysisand Sinulation: Delenninistic Systerns, Wiley, N.Y. (1958). Ho, F. C. and A. Kwong, Chant.Ettg.,8$,(1973'1,95. Hoare, M. R., Ind. Etig. Chein.,53,(1961),197. Holland, F. A. and F. S. Chapnran, Ltquid l{i-ting cmd Processing itt Siirrel Tanks, R e i n h o l c lN, . Y . ( 1 9 6 6 ) . lloogendoorn,C. J. and A, P. Den IIartog, Chein.Eug. ici.,22, (1967t,1689. Ide, Y. and J. L. White, J. Appl. Pol;tn. Sci.,l*, (19741,299'1. Kogolcu,5, i1967), 121. Ivonue, I. arrd K. Sato, Krr.ga./i.'r James,D. F'.and J. Acostrt,J. Flrril ll{et:h.,42,(,1970),269. , d J . U l l r r e c h t ,C h e n . E n g . T e c l t . , 4 6 , ( 1 9 7 1 ) , 6 9 K a l e ,D . D . , R . A . N { a s h e l k a r n Kelkar, J. V., Ph.D. Thesis,University of Saiford,(1972). Kelkar, J. V., R. A. Nlashtlkar and J. Ulbrecltt, Tittns. Irtst.Chetn.Etrgrs.,50,(.1972), -1qJ. Kelkrr, J. V., R. A. Mesh:lkar, and J. Ulbrccltt, J. Appl. Pol.t'tn.Sci.,17,(1973),3059. l ( r a m e r s ,F I . a n d G . A l b e r d a ,C h : n t .E u g .S c i . ,2 , ( 1 9 5 1 ) 1 , 71. Kristensen,tI. G., .4rch,P/tunr. Chein.Sci.,l, (1973),I02. Iiubat, J. and A. Szalanczi,Folyn Elg. ,Sci.,ld, (1974),873. L a c e y ,P . N { . C . , - f . A p p l . C l r e n t . , ' 1 , ( 1 9 5 1 ) , 2 5 7 . Lelti, U., Ind, Rtg. Chent.Fun:l.,4,(1965),360. Levenspiel,O., ChernicalReacti:tttEngineering, Wiley, N.Y. (1972). Levenspiel,O. and K. B. Bischoli',Adv. Chen. Ens.,1, (1963),95. Levenspiel,O. and J. C. R. Turner, Clrcnt.Eng.9ci.,25, (1970),1605. M a g n u s s o nK, . , l v a , 2 3 , ( 1 9 5 2 )8, 6 , Nlashelkar,R. A., Cltem.Inil. Develop.,10, (1976),17. Mashelkar,R. A. and G. V. Devarajtn,Trans.Inst. Chen. Engrs.,54,(1976),100. MaKelvey,J. M., PolJ,ntt Processtng, Wiley, N.Y. ( 1962). I V l e t z n eA r ,. B . a n d C , A s t a r i t a ,A I C | E , f . , I 3 , ( 1 9 6 7 ) , 5 5 0 . M e t z n e r ,A . B . a n d I l . E . O r t o , A I C | E 1 . , 3 , ( 1 9 5 7 ) , 3 " lVletzner, A. B. and J. S. Taylor, AlChg "/.,6, (1960),109. l v l e t z n e fA, , 8 . , R . H . F e e h s [, { . L R o m o s ,R . B . O u r a n J J . P . I t i t h i l l . A t C i t E i . , 1 , (1e61),3. ' 251 Mixing of ViscousNewtonian and Non'Newtonian Fluids (1954)'604' Michaels,A. S. and V. Puzinankas,Chent.Eng' Prog',50, (1968)' N'Y' Middleman, S. The FIow of High Polyn'rers'Wiley, Milsuishi, N. and N. J' Hirai, J. Chent.Engg' Jap',2,(1969),117' (Bernhardt'E' C'' (Ed')' Reinhold' N'Y'' of Thermoplastics' Mohr, W. l). ia Processing ( Iese). Mohr,W.D.,R.I-.SaxtonandC'H.Jepson,Ind.Eng'Chem.'49,(1957)'i855. Moo-Young,M.BandK.W.Chan,Can'J'Chent'Ertg''49'(1971)'187' Jap.,5' (1972),l' Murakami, Y., K' Fujimoto and S. Votarri,.I' Chem'Engg' Press'(1975)' Nagata, 5., Mi'ting'. Principlesantl Applications,I{alsted Gotoh' !' Chem' Eng' Jtrp''3' Nagata,S., M. Nishikarva,H, Tade, H' llirabayashi and (t970),237. Kogaku'21' \1957)'278' Nagata, S., T. Yanagimotoand T' Yokoyama, Kagaku Univ'' 14' (1955)'253' Nagata,S. and T. Yokoyama,Men' Fac' Ettgg',Kyoto Naor, P. and R. Shinnar,lncl-Eng'Cltznt'Fund ,2,(IS6l\'278' Macromol' Chent.,C 10, (1974)'7-;. Newman, E' 8,, ./' Macrono]. Sci.-.Reys. 31' (i966)' 3710' Cotttrnun'' Novad, Z. andJ. Thyn, Collect'C:ech' Cltent' (196q' 405' Novosad,Z' artdJ. Ulbrecht, Chen' Etts' Sci''21' Symp' on Chem' Reaction European 3rd Pr'oc' Rippin, T D. W. Ng, D. Y. C' and (1964)' Engg., An.rsterdam Olson,J.H.andL.E.Stout,inMi.vittg:Theorl,atttlPraclice,Vol.2,V.W.Uhland J. I3. Grav (Eds.),AcademicPress,N'Y'' (1967)' (1970)'115' O'Slrima,E' and K. Yuge' Kagnku!{ogaku,39' ( 1 9 7 5 ) , 159' . ng. Sci',30' O s b o r n e ,F . T ' , C h e n t E 59' (1967)'10' C!rcn'' Eng' Iid' J' Belt, K. and R' W. Penney, Etg" 40' (1967)'T360' Peters,D. C. and J. M. Smith, Trurts Inst'Clent' 17' (1969)'268' Peters.D. C. and J. NI. Smith, Cun J' Chenr'Eng'' 52' (1974)'285' Rieger,F. and V. Novak, Trans' Ittst'Chetn'Eng'' 1 1 1 '{ } 2 '( 1 9 7 1 ) ' 2 1 ' S e r ' N o ' S v m p P r o g r ' E n g . R u d d . N { .J . , C h e m ' I 113' (1971)' Sci',26, Eng' Rutlrven,D. M., Cltetn' Eng. Ptcg.,TI (l), (1975)'54' schott, N. R., B. weinstein,and D. La Ilombard, Ciurn. (1969)'126' Seyer,F. A. and ;\' B. Metzner' '4IChE J',15, (1973), l09l' 28, Shearer,C. 1., Chent.Eng. Sci , -f. Al|rely,Jr., SPE Trans.,3,(1963)']92. Shrenk,w' J., K. J. Cleerman,anc MotlernPlostics'45' (1969)'159' Shrenk,W. J., D. S' Chisholm,:LndT' Alfrey' Skelland,A.H.P.,Non-NewtoniailFlorealJl{eatTt,t;rsfer'wiley,N'Y'(1967)' 6 ' ( 1 9 5 1 ) 1' 1 3 ' S p e n c e rR, ' S . a n d R . M W i t e v ,J ' C o t l o i dS c i ' ' (1965)'247' Spielman,L' and O' Levenspiel,Chen' Eng' Sci''20' Smith, J' M., Chem.Errg.(Lond ), (1970)'45' Smith, J. M., Chem-Erg' (Lond'), (1978)'827' Stokes,R.L.andE.B.Nauman,Can'I'Chent'Ettgg''49'(1971)'187" (1969)'575' Szabo,T. T. and E. B' Nauman, AIC|E "l'',f5' 30' (1975)'317' Trivedi, R. N. and K. Vasudeva'Chen' Eng' Sci'' 549' (1971)' Sci',26, Eng' Turner, J. C. R , Chen' tmd Ptac!ice' Academic Press'I{'Y'' Uhl, V. W. and l. B- Gra-v(Eds'), Mixrrr6r':Thecry (1966). Ulbrecht, 1., Chem.Eng.,286' (i971), 347' 252 T. V. Chavan and R. A. Mashelkar Ultmrn, J" S. and M. M. D:nn, Trans, Soc.Rheol,,14,(1970),307. Valfentin,F. H. H., Chent.Ettg.,(1967),99. Walters,K. and J. G. Savins,Trans.Soc. Rheol.,9,(1965),407. Waters, N. D. and M. J. King, Q. L Mech. Appl. Maths., Zl, (1971),331. White, E. T., Imp. Coll. Chem.Eng. Soc. J., 14, (1962),j2. White, J. L. and B. L. Lee, Trans. Sbc.Rheol., tB, (1974), 467. Wohl, M. H., Chettt.Ens.75, (1968),113. Yap, C. Y., I. Patterson,and P. J. Carreau,unpublishedwork, (1978). Zafoudik, P., Br. Chem.Eng., Ll, (1969),6i7. Zwielerirg, T. N., Chen. Eng. Sci.,1f , (1959),1. t
© Copyright 2025