WASTEWATER TREATMENT PLANT DESIGN HANDBOOK 2012

WASTEWATER
TREATMENT PLANT
DESIGN HANDBOOK
2012
Water Environment Federation
601 Wythe Street
Alexandria, VA 22314-1994 USA
Wastewater Treatment Plant Design Handbook
Copyright © 2012 by the Water Environment Federation. All Rights Reserved.
Permission to copy must be obtained from WEF.
Water Environment Research, WEF, and WEFTEC are registered trademarks of the
Water Environment Federation®.
ISBN 978-1-57278-271-6
IMPORTANT NOTICE
The material presented in this publication has been prepared in accordance with generally recognized engineering principles and practices and is for general information only. This information
should not be used without first securing competent advice with respect to its suitability for any
general or specific application.
The contents of this publication are not intended to be a standard of the Water Environment
Federation® (WEF) and are not intended for use as a reference in purchase specifications,
contracts, regulations, statutes, or any other legal document.
No reference made in this publication to any specific method, product, process, or service constitutes or implies an endorsement, recommendation, or warranty thereof by WEF.
WEF makes no representation or warranty of any kind, whether expressed or implied, concerning the accuracy, product, or process discussed in this publication and assumes no liability.
Anyone using this information assumes all liability arising from such use, including but not
limited to infringement of any patent or patents.
About WEF
Formed in 1928, the Water Environment Federation® (WEF®) is a not-for-profit
technical and educational organization with members from varied disciplines
who work towards WEF’s vision to preserve and enhance the global water
environment.
For information on membership, publications, and conferences, contact
Water Environment Federation
601 Wythe Street
Alexandria, VA 22314-1994 USA
(703) 684-2400
http://www.wef.org
Prepared by the Wastewater Treatment Plant Design Handbook Task Force of
the Water Environment Federation
Hannah T. Wilner, P.E., Chair
James S. Bays
Lucas Botero, P.E., BCEE
Peter Burrowes, P.Eng.
Mary Kay Camarillo, Ph.D., P.E.
Peter V. Cavagnaro, P.E., BCEE
Rhodes R. Copithorn, P.E., BCEE
Timur Deniz, Ph.D., P.E.
Leon S. Downing, Ph.D., P.E.
Sarah Hubbell
Thomas E. Jenkins, P.E.
Samuel S. Jeyanayagam, Ph.D.,
P.E., BCEE
Kenneth Knickerbocker, P.E., R.L.S.
Terry L. Krause, P.E., BCEE
Ting Lu, Ph.D.
Eric Lynne
Maritza A. Macias-Corral, Ph.D.
William C. McConnell, P.E.
Heather M. Phillips, P.E.
Christopher Pizarro
Joseph C. Reichenberger, P.E.,
BCEE
Nalin Sahni, E.I., LEED Green
Assoc.
Julian Sandino, P.E., Ph.D.
Paul J. Schuler, P.E.
Stephanie L. Spalding, P.E.
K.C. “Kumar” Upendrakumar,
P.E., BCEE
Thor Young, P.E., BCEE
Under the Direction of the Municipal Design Subcommittee of the Technical
Practice Committee
2012
Water Environment Federation
601 Wythe Street
Alexandria, VA 22314–1994 USA
http://www.wef.org
Manuals of Practice of the Water Environment Federation®
The WEF Technical Practice Committee (formerly the Committee on Sewage and
Industrial Wastes Practice of the Federation of Sewage and Industrial Wastes
Associations) was created by the Federation Board of Control on October 11,
1941. The primary function of the Committee is to originate and produce,
through appropriate subcommittees, special publications dealing with technical
aspects of the broad interests of the Federation. These publications are intended
to provide background information through a review of technical practices and
detailed procedures that research and experience have shown to be functional
and practical.
Water Environment Federation Technical Practice
Committee Control Group
Jeanette Brown, P.E., BCEE, D. WRE, Chair
Eric Rothstein, Vice-Chair, Publications
Stacy J. Passaro, P.E., BCEE, Vice-Chair, Distance Learning
R. Fernandez, Past Chair
J. Bannen
P. A. Bizier, P.E., BCEE
K. D. Conway, P.E.
R. Copithorn
S. V. Dailey, P.E.
E. M. Harold, P.E.
M. Hines
R. L. Horres
D. Morgan
C. A. Pomeroy, Ph.D., P.E.
R. Pope
A. T. Sandy
K. Schnaars
A. R. Shaw, P.E.
J. Swift
A. K. Umble, Ph.D., P.E., BCEE
Contents
List of Figures . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . xiii
List of Tables . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . xv
Preface . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . xix
Chapter 1
Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1
1.0
OVERVIEW . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1
2.0
REFERENCES . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2
Chapter 2
Raw Wastewater Characterization
and Hydraulics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3
1.0
INTRODUCTION . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3
2.0
RAW WASTEWATER CHARACTERIZATION . . . . . . . . . . . . . . . . . . . . . 4
2.1
Flow Projections . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4
2.2
Characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5
3.0
PLANT HYDRAULICS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8
4.0
REFERENCES . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10
Chapter 3
Preliminary Treatment . . . . . . . . . . . . . . . . . . . . . . . 13
1.0
INTRODUCTION . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13
2.0
SCREENING . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14
2.1
Screen Sizes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14
2.2
Types of Screens . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14
3.0
GRIT REMOVAL . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14
4.0
SEPTAGE ACCEPTANCE AND PRETREATMENT . . . . . . . . . . . . . . . . 16
5.0
EQUALIZATION . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18
6.0
REFERENCES . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18
Chapter 4
Primary Treatment . . . . . . . . . . . . . . . . . . . . . . . . . . 21
1.0
INTRODUCTION . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21
2.0
SEDIMENTATION . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23
vii
viii
Contents
3.0
HIGH-RATE CLARIFICATION . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23
4.0
FINE SCREENS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26
5.0
PRIMARY SLUDGE AND SCUM COLLECTION
AND REMOVAL . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28
6.0
REFERENCES . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30
Chapter 5
Biofilm Reactor Technology and Design . . . . . . . 31
1.0
INTRODUCTION . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31
2.0
MOVING BED BIOFILM REACTORS . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32
3.0
BIOLOGICALLY ACTIVE FILTERS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35
4.0
EXPANDED AND FLUIDIZED BED BIOFILM REACTORS . . . . . . . . . 37
5.0
ROTATING BIOLOGICAL CONTACTORS . . . . . . . . . . . . . . . . . . . . . . . 40
6.0
TRICKLING FILTERS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41
7.0
EMERGING BIOFILM REACTORS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43
8.0
REFERENCES . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46
Chapter 6
Suspended Growth Biological
Treatment . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47
1.0
INTRODUCTION . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47
2.0
PROCESS CONFIGURATIONS AND TYPES . . . . . . . . . . . . . . . . . . . . . . 48
3.0
PROCESS DESIGN FOR CARBON OXIDATION
AND NITRIFICATION . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50
4.0
3.1
Carbon Oxidation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50
3.2
Nitrification . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50
PROCESS DESIGN FOR NUTRIENT CONTROL . . . . . . . . . . . . . . . . . . 52
4.1
Enhanced Biological Phosphorus Removal Processes . . . . . . . . . 52
4.2
Nitrogen Removal Processes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57
4.3
Phosphorus and Nitrogen Removal Processes . . . . . . . . . . . . . . . 57
4.4
External Carbon Addition . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 58
5.0
ANAEROBIC TREATMENT OF WASTEWATER . . . . . . . . . . . . . . . . . . . 60
6.0
MEMBRANE BIOREACTORS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 62
7.0
OXYGEN-TRANSFER SYSTEMS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 63
8.0
SECONDARY CLARIFICATION . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 68
9.0
REFERENCES . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 71
10.0
SUGGESTED READINGS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 72
Contents
Chapter 7
Integrated Biological Treatment. . . . . . . . . . . . . . . 73
1.0
INTRODUCTION TO INTEGRATED BIOLOGICAL
TREATMENT . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 74
2.0
OVERVIEW OF INTEGRATED BIOLOGICAL
TREATMENT SYSTEMS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 75
2.1
Trickling Filter Solids Contact . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 75
2.2
Roughing Filter Activated Sludge . . . . . . . . . . . . . . . . . . . . . . . . . . 77
2.3
Activated Biofilter . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 77
2.4
Biofilter Activated Sludge . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 77
2.5
Trickling Filter Activated Sludge . . . . . . . . . . . . . . . . . . . . . . . . . . . 77
2.6
Integrated Fixed-Film Activated Sludge . . . . . . . . . . . . . . . . . . . . 78
3.0
DESIGN OF CONVENTIONAL INTEGRATED
BIOLOGICAL TREATMENT SYSTEMS . . . . . . . . . . . . . . . . . . . . . . . . . . 78
4.0
DESIGN OF INTEGRATED FIXED-FILM ACTIVATED
SLUDGE SYSTEMS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 78
5.0
4.1
Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 78
4.2
Parameters Influencing Organics Removal in the Biofilm
of Integrated Fixed-Film Activated Sludge Systems . . . . . . . . . . 80
4.3
Parameters Influencing Removals in the Mixed
Liquor Suspended Solids . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 80
4.4
Empirical Design Methods . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 80
4.5
Process Kinetics Design Method (Biofilm Rate Model) . . . . . . . . 81
4.5.1
Define Range of Flux Rates . . . . . . . . . . . . . . . . . . . . . . . . . . . 81
4.5.2
Quantify Removal . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 81
4.5.3
Select Flux Rates Based on Location along
Aerobic Zone . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 82
4.5.4
Additional Analysis To Finalize a Design . . . . . . . . . . . . . . . . 82
REFERENCES . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 82
Chapter 8
Physical and Chemical Processes for
Advanced Wastewater Treatment. . . . . . . . . . . . . . 83
1.0
INTRODUCTION . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 83
2.0
SECONDARY EFFLUENT FILTRATION . . . . . . . . . . . . . . . . . . . . . . . . . 84
2.1
Depth Filtration . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 84
2.2
Compressible Medium Filtration . . . . . . . . . . . . . . . . . . . . . . . . . . 85
2.3
Disc Filtration . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 86
ix
x
Contents
3.0
ACTIVATED CARBON ADSORPTION . . . . . . . . . . . . . . . . . . . . . . . . . . . 87
4.0
CHEMICAL TREATMENT . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 88
4.1
Phosphorus Precipitation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 88
4.2
pH Adjustment . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 90
4.3
Rapid Mixing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 90
4.4
Chemical Feed Systems . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 91
5.0
MEMBRANE PROCESSES . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 93
6.0
AIR STRIPPING FOR AMMONIA REMOVAL . . . . . . . . . . . . . . . . . . . . . 95
7.0
AMMONIA REMOVAL BY BREAKPOINT
CHLORINATION . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 95
8.0
EFFLUENT REOXYGENATION . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 95
9.0
REFERENCES . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 97
Chapter 9
Sidestream Treatment. . . . . . . . . . . . . . . . . . . . . . . . 99
1.0
INTRODUCTION . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 99
2.0
SIDESTREAM NITROGEN AND PHOSPHORUS
REMOVAL . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 102
3.0
REFERENCES . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 105
4.0
SUGGESTED READINGS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 105
Chapter 10
Natural Systems . . . . . . . . . . . . . . . . . . . . . . . . . . . 107
1.0
INTRODUCTION . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 107
2.0
SOIL ABSORPTION SYSTEMS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 108
3.0
POND SYSTEMS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 108
4.0
LAND TREATMENT SYSTEMS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 108
5.0
FLOATING AQUATIC PLANT SYSTEMS . . . . . . . . . . . . . . . . . . . . . . . 109
6.0
CONSTRUCTED WETLANDS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 111
7.0
REFERENCES . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 111
Chapter 11
Disinfection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 113
1.0
INTRODUCTION . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 113
2.0
CHLORINATION . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 115
3.0
DECHLORINATION . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 119
4.0
ULTRAVIOLET DISINFECTION . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 119
5.0
OZONE DISINFECTION . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 122
Contents
6.0
OTHER DISINFECTION METHODS . . . . . . . . . . . . . . . . . . . . . . . . . . . . 123
7.0
REFERENCES . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 123
Chapter 12
Solids Management, Storage,
and Transport . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 125
1.0
INTRODUCTION . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 125
2.0
SOLIDS MANAGEMENT . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 126
3.0
4.0
5.0
2.1
Regulations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 126
2.2
Solids Quantities . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 128
2.3
Solids Characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 128
2.4
Pretreatment Options . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 128
SOLIDS STORAGE . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 128
3.1
Liquid Residuals and Biosolids . . . . . . . . . . . . . . . . . . . . . . . . . . . 128
3.2
Dewatered Cake . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 129
3.3
Dried Solids . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 129
SOLIDS TRANSPORT . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 130
4.1
Liquid Residuals and Biosolids . . . . . . . . . . . . . . . . . . . . . . . . . . . 130
4.2
Dewatered Cake and Dried Solids . . . . . . . . . . . . . . . . . . . . . . . . 130
REFERENCES . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 131
Chapter 13
Chemical Conditioning . . . . . . . . . . . . . . . . . . . . . 133
1.0
INTRODUCTION . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 133
2.0
INORGANIC CHEMICALS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 134
3.0
ORGANIC POLYMERS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 134
4.0
REFERENCES . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 137
Chapter 14
Solids Thickening. . . . . . . . . . . . . . . . . . . . . . . . . . 139
1.0
INTRODUCTION . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 139
2.0
GRAVITY THICKENER . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 140
3.0
DISSOLVED AIR FLOTATION THICKENER . . . . . . . . . . . . . . . . . . . . . 140
4.0
CENTRIFUGE . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 142
5.0
GRAVITY BELT THICKENER . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 142
6.0
ROTARY DRUM THICKENER . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 145
7.0
COMPARISON OF THICKENING METHODS . . . . . . . . . . . . . . . . . . . 146
8.0
REFERENCES . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 147
xi
xii
Contents
Chapter 15
1.0
Dewatering . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 149
INTRODUCTION . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 149
1.1
Objectives of Dewatering . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 149
1.2
Key Process Performance Parameters . . . . . . . . . . . . . . . . . . . . . 150
2.0
CENTRIFUGES . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 150
3.0
BELT PRESSES . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 151
4.0
RECESSED-PLATE FILTER PRESSES . . . . . . . . . . . . . . . . . . . . . . . . . . . . 153
5.0
DRYING BEDS AND LAGOONS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 155
6.0
ROTARY PRESSES . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 155
7.0
SCREW PRESSES . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 161
8.0
REFERENCES . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 161
Chapter 16
Stabilization . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 163
1.0
INTRODUCTION . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 163
2.0
ANAEROBIC DIGESTION . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 163
3.0
AEROBIC DIGESTION . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 169
4.0
COMPOSTING . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 172
5.0
ALKALINE STABILIZATION . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 176
6.0
REFERENCES . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 176
Chapter 17
Thermal Processing . . . . . . . . . . . . . . . . . . . . . . . . 179
1.0
INTRODUCTION . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 179
2.0
DESIGN CONSIDERATIONS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 183
3.0
REFERENCES . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 183
Chapter 18
Odor Control and Air Emissions . . . . . . . . . . . . . 185
1.0
INTRODUCTION . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 185
2.0
DESIGN CONSIDERATIONS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 188
3.0
REFERENCES . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 188
List of Figures
2.1
Typical hydraulic profile for influent pumping and
primary treatment . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9
2.2
Typical hydraulic profile for an activated sludge plant . . . . . . . . . . . . . . . 9
2.3
Typical hydraulic profile for a trickling filter plant . . . . . . . . . . . . . . . . . 10
3.1
Types of grit removal chambers—(a) horizontal flow,
(b) aerated, and (c) vortex . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17
3.2
Two equalization schemes—(a) in-line equalization and
(b) side-line equalization . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19
4.1
Types of clarifiers—(a) rectangular with chain and flight-type
collector, (b) circular, (c) stacked, and (d) plate and tube . . . . . . . . . . . . 25
6.1
Nomenclature for activated sludge flow sheet (volatile
and nonvolatile represent organic and inorganic solids,
respectively) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50
6.2
Typical concentration patterns observed in a generic
EBPR system . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55
6.3
Schematic illustrations of several types of anaerobic
reactor configurations—(a) upflow sludge blanket, (b) biofilm
fluidized bed, (c) expanded granular sludge bed, (d) anaerobic
baffled reactor, (e) internal circulation, and (f) anaerobic
hybrid reactor . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 61
7.1
Combined process operations—(a) activated biofilter,
(b) trickling filter–solids contact and roughing filter–activated
sludge, (c) biofilter–activated sludge, and (d) trickling
filter–activated sludge . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 76
8.1
Typical phosphorus reduction with alum . . . . . . . . . . . . . . . . . . . . . . . . . 88
8.2
Membrane size comparison with wastewater constituents . . . . . . . . . . 93
9.1
Conceptual mass balance and sidestream sources for a
typical wastewater treatment plant . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 100
11.1
Percentage of hypochlorous acid with respect to pH
and temperature . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 118
15.1
Belt filter press schematic . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 152
xiii
List of Tables
2.1
Daily quantity of waste discharged by individuals on a
dry-weight basis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6
2.2
Typical composition of untreated domestic wastewater . . . . . . . . . . . . . . 7
2.3
Pump classification and applications in the wastewater industry . . . . . 11
3.1
Types of screens . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15
3.2
Headloss equations for screens . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16
3.3
Types of grit chambers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16
3.4
Typical domestic septage characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . 18
4.1
Primary sludge characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22
4.2
Types of sedimentation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24
4.3
Design considerations for sedimentation systems . . . . . . . . . . . . . . . . . . 27
4.4
High-rate clarification methods . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28
4.5
Sludge and scum collection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29
4.6
Sludge characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30
5.1
Design criteria for denitrifying fluidized bed biofilm reactors . . . . . . . . 40
5.2
Design criteria for rotating biological contactors . . . . . . . . . . . . . . . . . . . 41
5.3
Typical operating criteria for various trickling filters . . . . . . . . . . . . . . . 43
6.1
Operational characteristics of activated sludge processes . . . . . . . . . . . . 49
6.2
Design equations for carbon oxidation . . . . . . . . . . . . . . . . . . . . . . . . . . . 51
6.3
Design equations for nitrification . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53
6.4
Design parameters for activated sludge processes . . . . . . . . . . . . . . . . . . 54
6.5
Advantages and limitations of EBPR processes . . . . . . . . . . . . . . . . . . . . 56
6.6
Typical design parameters for commonly used biological
phosphorus removal processes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 56
6.7
Suspended growth processes for nitrogen removal . . . . . . . . . . . . . . . . . 58
6.8
Combined phosphorus and nitrogen removal processes . . . . . . . . . . . . 59
6.9
Advantages and disadvantages of anaerobic treatment . . . . . . . . . . . . . 60
6.10
Recommended hydraulic detention times for UASB
reactors treating domestic wastewater . . . . . . . . . . . . . . . . . . . . . . . . . . . . 62
xv
xvi
List of Tables
6.11
Summary of the main hydraulic criteria for the design of
UASB reactors treating domestic wastewater . . . . . . . . . . . . . . . . . . . . . . 62
6.12
Other design criteria for UASB reactors treating
domestic wastewater . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 63
6.13
Advantages and disadvantages of MBR systems compared
to conventional activated sludge systems . . . . . . . . . . . . . . . . . . . . . . . . . 64
6.14
Typical design and operational data for MBR systems . . . . . . . . . . . . . . 65
6.15
Typical municipal MBR effluent quality . . . . . . . . . . . . . . . . . . . . . . . . . . 65
6.16
Characteristics of aeration equipment . . . . . . . . . . . . . . . . . . . . . . . . . . . . 66
6.17
Air supply and aeration system design criteria . . . . . . . . . . . . . . . . . . . . 68
6.18
Factors that affect clarifier performance . . . . . . . . . . . . . . . . . . . . . . . . . . . 69
6.19
Design considerations for secondary clarifiers . . . . . . . . . . . . . . . . . . . . . 70
7.1
General design criteria for IBT processes . . . . . . . . . . . . . . . . . . . . . . . . . . 79
7.2
Biofilm specific surface area for various types of media . . . . . . . . . . . . . 80
8.1
Typical filtration rates for various depth filtration technologies . . . . . . 85
8.2
Design velocities and flow volumes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 86
8.3
Typical carbon dosages for various column wastewater
influents . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 87
8.4
Types of chemical feeders . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 92
8.5
Comparison of membrane processes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 94
8.6
Summary of pretreatment alternatives for reverse osmosis
membrane process . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 96
9.1
Checklist for mainstream treatment of sidestreams . . . . . . . . . . . . . . . . 101
9.2
Sludge processing sidestream characteristics . . . . . . . . . . . . . . . . . . . . . 102
9.3
Sidestream treatment processes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 103
10.1
Soil absorption systems . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 108
10.2
Types of pond systems . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 109
10.3
Types of land treatment systems . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 110
11.1
Comparison of important properties for common disinfectants . . . . . 114
11.2
Equations used to express the rate of kill of microorganisms
under different conditions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 116
11.3
Chlorine dosages for proper disinfection of wastewater effluents . . . . . 117
11.4
Typical operational characteristics for UV lamps . . . . . . . . . . . . . . . . . . 120
11.5
Ozone dosages for proper disinfection of wastewater
effluents based on a 15-minute contact time . . . . . . . . . . . . . . . . . . . . . . 123
12.1
Pathogen treatment processes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 127
List of Tables
12.2
Sludge pump applications by principle . . . . . . . . . . . . . . . . . . . . . . . . . . 131
13.1
Typical dosages of ferric chloride and lime for dewatering
wastewater solids . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 135
13.2.
Typical polymer dosages for thickening and dewatering . . . . . . . . . . . 136
14.1
Typical gravity thickener underflow characteristics . . . . . . . . . . . . . . . 141
14.2
Typical solids loadings for DAF thickeners . . . . . . . . . . . . . . . . . . . . . . . 142
14.3
Reported operational results for horizontal solid-bowl
centrifuges . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 143
14.4
Typical gravity belt thickener performance . . . . . . . . . . . . . . . . . . . . . . . 144
14.5
Typical rotary drum thickener performance . . . . . . . . . . . . . . . . . . . . . . 145
14.6
Advantages and disadvantages of thickening methods . . . . . . . . . . . . 146
15.1
Typical dewatering performance data for solid-bowl
centrifuges for various types of sludge and biosolids . . . . . . . . . . . . . . 151
15.2
Typical performance data for a belt filter press . . . . . . . . . . . . . . . . . . . . 153
15.3
Typical filter press dewatering performance for fixed
volume press . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 154
15.4
Design criteria for sand drying beds using anaerobically
digested sludge without chemical conditioning . . . . . . . . . . . . . . . . . . . 156
15.5
Rotary press dewatering performance . . . . . . . . . . . . . . . . . . . . . . . . . . . 157
15.6
Installation operational performance . . . . . . . . . . . . . . . . . . . . . . . . . . . . 157
15.7
Screw press operational results summary . . . . . . . . . . . . . . . . . . . . . . . . 158
16.1
Comparison of stabilization processes . . . . . . . . . . . . . . . . . . . . . . . . . . . 164
16.2
Typical design and operating parameters for anaerobic
digestion of wastewater solids in high-rate digesters . . . . . . . . . . . . . . 167
16.3
Components of the anaerobic digester system . . . . . . . . . . . . . . . . . . . . 169
16.4
Typical design and operating parameters for aerobic
digestion of wastewater solids . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 170
16.5
Class B biosolids criteria that a conventional mesophilic
aerobic digestion system typically is designed to meet . . . . . . . . . . . . . 172
16.6
Key advantages and disadvantages of composting systems . . . . . . . . 173
16.7
Materials balance for 1 dry ton of biosolids in aerated
static-pile composting . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 174
16.8
Typical advanced alkaline stabilization design criteria . . . . . . . . . . . . . 175
17.1
Thermal processing technologies . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 181
17.2
Design considerations for thermal processing . . . . . . . . . . . . . . . . . . . . 183
18.1
Odor and air emissions control technologies . . . . . . . . . . . . . . . . . . . . . 186
xvii
Preface
This handbook is intended to complement several recognized wastewater treatment design references. It facilitates access to those design guides by providing
concise information from them and enabling the reader to quickly locate additional information by following direct references. This handbook is organized
similarly to the Design of Municipal Wastewater Treatment Plants (Water Environment Federation Manual of Practice No. 8; 5th Edition; 2009) publication so
that cross references may be more easily found.
This reference is written for students and design professionals familiar with
wastewater treatment concepts, the design process, plant operations, and the
regulatory basis of water pollution control. It is not intended to be a primer for
either the inexperienced or the generalist but still a tool for them as well, allowing them to quickly identify where they can find more information for unfamiliar subjects. As such, the authors of this handbook are industry professionals
who have used their experience as both students and design professionals to
identify the most critical information to present in tables and figures. It is highly
recommended that the reader does not rely solely on information, such as design criteria, identified by this handbook as it is not inclusive. A thorough understanding of the principles behind these summary chapters is necessary for
the correct application and use of all information contained in this handbook.
This publication was produced under the direction of Hannah T. Wilner, P.E.,
Chair.
The principal authors of this publication are as follows:
Chapter 1
Chapter 2
Chapter 3
Chapter 4
Chapter 5
Chapter 6
Chapter 7
Chapter 8
Chapter 9
Chapter 10
Hannah T. Wilner, P.E.
Hannah T. Wilner, P.E.
Hannah T. Wilner, P.E.
Hannah T. Wilner, P.E.
Sarah Hubbell
Stephanie L. Spalding, P.E.
Sarah Hubbell
Eric Lynne
Stephanie L. Spalding, P.E.
Hannah T. Wilner, P.E.
xix
xx
Preface
Chapter 11
Chapter 12
Chapter 13
Chapter 14
Chapter 15
Chapter 16
Chapter 17
Chapter 18
Eric Lynne
Sarah Hubbell
Hannah T. Wilner, P.E.
Eric Lynne
Eric Lynne
Stephanie L. Spalding, P.E.
Hannah T. Wilner, P.E.
Hannah T. Wilner, P.E.
Authors’ and reviewers’ efforts were supported by the following organizations:
Black & Veatch Corporation, Kansas City, Missouri
CDM Smith, Cambridge, Massachusetts
CH2M HILL, Chicago, Illinois; Cincinnati and Columbus, Ohio; Englewood,
Colorado; Overland Park, Kansas; Tampa, Florida; and Kitchener, Ontario,
Canada
Donohue and Associates, Sheboygan, Wisconsin
Entex Technologies Inc., Chapel Hill, North Carolina
GE Power & Water, Portland, Oregon
GHD, Bowie, Maryland
Hatch Mott MacDonald, Millburn, New Jersey
JenTech Inc., Milwaukee, Wisconsin
Johnson Controls, Inc., Milwaukee, Wisconsin
Loyola Marymount University, Los Angeles, California
Malcolm Pirnie, the Water Division of ARCADIS, Newport News, Virginia
Metropolitan Sewer District of Greater Cincinnati, Cincinnati, Ohio
Molzen Corbin, Albuquerque, New Mexico
University of the Pacific, Stockton, California
Veolia Water North America, Indianapolis, Indiana
Wood, Patel & Assoc., Phoenix, Arizona