1. An exothermic reaction causes the surroundings to A. warm up. B

CHAPTER 6
1.
An exothermic reaction causes the surroundings to
A. warm up.
B. become acidic.
C. expand.
D. decrease its temperature.
E. release CO2 .
Answer: A
2.
Copper metal has a specific heat of 0.385 J/g·°C. Calculate the amount of heat
required to raise the temperature of 22.8 g of Cu from 20.0°C to 875°C.
A.
B.
C.
D.
E.
3.
1.97  105 J
1.0  102 J
329 J
7.51 kJ
10.5 kJ
Answer: D
Calculate the amount of heat necessary to raise the temperature of 12.0 g of
water from 15.4°C to 93.0°C. The specific heat of water = 4.18 J/g·°C.
A. 0.027 J
B. 324 J
C. 389 J
D. 931 J
E. 3,890 J
Answer: E
4.
How much heat is required to raise the temperature of 1,500 g of water from 25°C
to 52°C? The specific heat of water is 4.184 J/g·°C.
A. 1,500 kJ
B. 169 kJ
C. 6.27 kJ
D. 40.5 J
E. 40.5 kJ
Answer: B
5.
How many degrees of temperature rise will occur when a 25.0 g block of aluminum
absorbs 10.0 kJ of heat? The specific heat of Al is 0.900 J/g·°C.
A. 0.44°C
B. 22.5°C
C. 225°C
D. 360°C
E. 444°C
Answer: E
6.
If 325 g of water at 4.2°C absorbs 12.28 kJ, what is the final temperature of
the water? The specific heat of water is 4.184 J/g·°C.
A. 4.21°C
B. 4.8°C
C. 9.0°C
D. 13.2°C
E. 2,938°C
Answer: D
7.
A piece of copper with a mass of 218 g has a heat capacity of 83.9 J/°C. What is
the specific heat of copper?
A. 0.385 J/g·°C
E. 24.5 J/g·°C
B. 1.83  104 J/g·°C
C. 2.60 J/g·°C
D. 1.32 J/g·°C
Answer: A
8.
When 0.7521 g of benzoic acid was burned in a calorimeter containing 1,000. g of
water, a temperature rise of 3.60°C was observed. What is the heat capacity of the bomb
calorimeter, excluding the water? The heat of combustion of benzoic acid is 26.42 kJ/g.
A.
B.
C.
D.
E.
15.87 kJ/°C
4.18 kJ/°C
5.52 kJ/°C
1.34 kJ/°C
752.1 kJ/°C
Answer: D
9.
Glycine, C2H5O2N, is important for biological energy. The combustion reaction of
glycine is given by the equation
4C2H5O2N(s) + 9O2(g)  8CO2(g) + 10H2O(l) + 2N2(g)
H°rxn = 3857 kJ.
Given that H°f[CO2(g)] = 393.5 kJ/mol and H°f[H2O(l)] = 285.8 kJ/mol, calculate
the enthalpy of formation of glycine.
A. 537.2 kJ/mol
E. 964 kJ/mol
B. 268.2 kJ/mol
C. 2,149 kJ/mol
D. 3,178 kJ/mol
Answer: A
10.
Given 2Al(s) + (3/2)O2(g)  Al2O3(s), H°f = 1,670 kJ/mol for Al2O3 (s).
Determine H for the reaction 2Al2O3(s)  4Al(s) + 3O2(g).
A. 3,340 kJ/mol
E. 835 kJ/mol
Answer: A
B. 1,670 kJ/mol
C. 3,340 kJ/mol
/D. 1,670 kJ/mol
11.
Calculate the standard enthalpy of formation of liquid methanol, CH3OH(l), using the
following information:
C(graph) + O2  CO2(g) H° = 393.5 kJ/mol
H2(g) + (1/2)O2  H2O(l) H° = 285.8 kJ/mol
CH3OH(l) + (3/2)O2(g)  CO2(g) + 2H2O(l) H° = 726.4 kJ/mol
A. 1,691.5 kJ/mol
E. 47.1 kJ/mol
B. 238.7 kJ/mol
C. 1691.5 kJ/mol
D. 47.1 kJ/mol
Answer: B
12.
Calculate the standard enthalpy change for the reaction
2C8H18(l) + 17O2(g)  16CO(g) + 18H2O(l).
Given:
2C8H18(l) + 25O2(g)  16CO2(g) + 18H2O(l) H° = 11,020 kJ/mol
2CO(g) + O2(g)  2CO2(g)
H° = 566.0 kJ/mol
A. 10,450 kJ/mol
E. 10.450 kJ/mol
B. 6,492 kJ/mol
C. 15,550 kJ/mol
D. –6,492 kJ/mol
Answer: D
13.
Calculate the standard enthalpy change for the reaction
2C8H18(l) + 21O2(g)  8CO(g) + 8CO2(g) + 18H2O(l).
Given:
2C8H18(l) + 25O2(g)  16CO2(g) + 18H2O(l)
2CO(g) + O2(g)  2CO2(g)
A. 1.0454  104 kJ/mol
D. 6,492 kJ/mol
14.
H° = 11,020 kJ/mol
H° = 566.0 kJ/mol
B. 8,756 kJ/mol
E. 1.0454  104 kJ/mol
C. 1.1586  104 kJ/mol
Answer: B
Given the thermochemical equation 2SO2 + O2  2SO3, H°rxn = 198 kJ/mol,
what is the standard enthalpy change for the decomposition of one mole of SO3?
A. 198 kJ/mol
Answer: C
B. 99 kJ/mol
C. 99 kJ/mol
D. 396 kJ/mol
E. 198 kJ/mol
15.
Given H2(g) + (1/2)O2(g)  H2O(l), H° = 286 kJ/mol, determine the standard enthalpy
change for the reaction 2H2O(l)  2H2(g) + O2(g).
16.
A. H° = 286 kJ/mol
B. H° = +286 kJ/mol
C. H° = 572 kJ/mol
D. H° = +572 kJ/mol
E. H° = 143 kJ/mol
Answer: D
Pentaborane B5H9(s) burns vigorously in O2 to give B2O3(s) and H2O(l). Calculate H°rxn
for the combustion of 1 mol of B5H9.
H°f[B2O3(s)] = 1,273.5 kJ/mol
H°f[B5H9(s)] = 73.2 kJ/mol
H°f[H2O(l)] = 285.8 kJ/mol
A. 1,2735 kJ/mol
D. 9,086 kJ/mol
B. 4,543 kJ/mol
E. 8,448 kJ/mol
C. 18,170 kJ/mol
Answer: B
17.
Given the thermochemical equation 2SO2(g) + O2(g)  2SO3(g), H°rxn= 198 kJ/mol,
how much heat is evolved when 600. g of SO2 is burned?
A. 5.46  102 kJ
18.
C. 1.85  103 kJ
E. 3.71  103 kJ
D. 59,400 kJ
Answer: B
Determine the heat given off to the surroundings when 9.0 g of aluminum reacts
according to the equation 2Al + Fe2O3  Al2O3 + 2Fe, H°rxn= 849 kJ/mol.
A. 7.6  103 kJ
E. 2.5  103 kJ
19.
B. 928 kJ
B. 2.8  102 kJ
C. 1.4  102 kJ
D. 5.6  102 kJ
Answer: C
Find the heat absorbed from the surroundings when 15 g of O2 reacts according to the
equation O + O2  O3, H°rxn= 103 kJ/mol.
A. 4.6  103 kJ
B. 48 kJ
C. 96 kJ
D. 32 kJ
E. 110 kJ
Answer: B
20.
Ethanol (C2H5OH) burns according to the equation
C2H5OH(l) + 3O2(g)  2CO2(g) + 3H2O(l), H°rxn = 1367 kJ/mol.
How much heat is released when 35.0 g of ethanol is burned?
A. 1,797 kJ
E. 1,040 kJ
B. 1,367 kJ
C. 9.61  104 kJ
D. 4.78  104 kJ
21.
.
Answer: E
Methanol (CH3OH) burns according to the equation
2CH3OH(l) + 3O2(g)  2CO2(g) + 4H2O(l), H°rxn = 1454 kJ/mol.
How much heat, in kilojoules, is given off when 75.0 g of methanol is burned?
A. 727 kJ
B. 3.22  103 kJ
3
E. 3.41  10 kJ
C. 1.45  103 kJ
D. 1.70  103 kJ
Answer: D
22.
Calculate the amount of work done, in joules, when 2.5 mole of H2O vaporizes at
1.0 atm and 25°C. Assume the volume of liquid H2O is negligible compared to that of
vapor. [1 L·atm = 101.3 J]
A. 6,190 kJ
B. 6.19 kJ
C. 61.1 J
D. 5.66 kJ
E. 518 J
Answer: B
23.
Calculate the amount of work done against an atmospheric pressure of 1.00 atm
when 500.0 g of zinc dissolves in excess acid at 30.0°C.
Zn(s) + 2H+(aq)  Zn2+(aq) + H2(g)
A. w = +22.4 kJ
E. w = 19.3 kJ
24.
B. w = +24.9 kJ
C. w = 0
D. w = 2.52 kJ
Answer: E
A gas is allowed to expand, at constant temperature, from a volume of 1.0 L to 10.1 L
against an external pressure of 0.50 atm. If the gas absorbs 250 J of heat from the
surroundings, what are the values of q, w, and E?
q
A. 250 J
B. 250 J
C. 250 J
D. 250 J
E. 250 J
w
460 J
460 J
460 J
460 J
4.55 J
E
210 J
710 J
710 J
210 J
245 J
Answer: A
25.
At 25°C, the following heats of reaction are known:
2ClF(g) + O2(g)  Cl2O(g) + F2O
H°rxn = 167.4 kJ/mol
2ClF3(g) + 2O2(g)  Cl2O(g) + 3F2O(g)
2F2(g) + O2(g)  2F2O(g)
H°rxn = 341.4 kJ/mol
H°rxn = 43.4 kJ/mol
At the same temperature, use Hess’s law to calculate H°rxn for the reaction:
ClF(g) + F2(g)  ClF3(g)
A. 217.5 kJ/mol
D. 108.7 kJ/mol
B. 130.2 kJ/mol
E. 465.4 kJ/mol
C. 217.5 kJ/mol
Answer: D
(26) Find the ΔH for the reaction below, given the following reactions and subsequent
ΔH values:
PCl5(g) → PCl3(g) + Cl2(g)
P4(s) + 6Cl2(g) → 4PCl3(g) ΔH = -2439 kJ
4PCl5(g) → P4(s) + 10Cl 2(g) ΔH = 3438 kJ
answer = 249.8 kJ
(27) Find the ΔH for the reaction below, given the following reactions and subsequent ΔH
values:
2CO2(g) + H2O(g) → C 2H2(g) + 5/2O2(g)
C2H2(g) + 2H2(g) → C2H6(g) ΔH =-94.5 kJ
H2O(g) → H2(g) + 1/2O2 (g) ΔH =71.2 kJ
C2H6(g) + 7/2O2(g) → 2CO2(g) + 3H2O(g) ΔH =-283 kJ
answer = 235 kJ
(28) Find the ΔH for the reaction below, given the following reactions and subsequent ΔH
values:
N2H4(l) + H2(g) → 2NH3(g)
N2H4(l) + CH4O(l) → CH2O(g) + N2(g) + 3H2 (g) ΔH = -37 kJ
N2(g) + 3H2(g) → 2NH 3(g) ΔH = -46 kJ
CH4O(l) → CH2O(g) + H 2(g) ΔH = -65 kJ
answer = -18 kJ
(29) Find the ΔH for the reaction below, given the following reactions and subsequent ΔH
values:
H2SO4(l) → SO3(g) + H2O(g)
H2S(g) + 2O2(g) → H2SO4(l) ΔH = -235.5 kJ
H2S(g) + 2O2(g) → SO 3(g) + H2O(l) ΔH = -207 kJ
H2O(l) → H2O(g) ΔH = 44 kJ
answer = 72 kJ
(30) Find the ΔH for the reaction below, given the following reactions and subsequent ΔH
values:
2C2H4O(l) + 2H2O(l) → 2C2H6O(l) + O2(g)
C2H6O(l) + 3O2(g) → 2CO2(g) + 3H2O(l) ΔH = -685.5 kJ
C2H4O(l) + 5/2O2(g) → 2CO2(g) + 2H2O(l) ΔH = -583.5 kJ
answer = 204.0 kJ
(31) Find the ΔH for the reaction below, given the following reactions and subsequent ΔH
values:
N2(g) + 2O2(g) → 2NO 2(g)
N2(g) + 3H2(g) → 2NH3(g) ΔH = -115 kJ
2NH3(g) + 4H2O(l) → 2NO2(g) + 7H2(g) ΔH = -142.5 kJ
H2O(l) → H2(g) + 1/2O 2(g) ΔH = -43.7 kJ
answer = -83 kJ
(32) Find the ΔH for the reaction below, given the following reactions and subsequent ΔH
values:
CO2(g) → C(s) + O2(g)
H2O(l) → H2(g) + 1/2O2(g) ΔH = 643 kJ
C2H6(g) → 2C(s) + 3H 2(g) ΔH = 190.6 kJ
2CO2(g) + 3H2O(l) → C 2H6(g) + 7/2O2(g) ΔH = 3511.1 kJ
answer = 886 kJ
(33) Find the ΔH for the reaction below, given the following reactions and subsequent ΔH
values:
N2H4(l) + CH4O(l) → CH2O(g) + N2(g) + 3H2 (g)
2NH3(g) → N2H4(l) + H2(g) ΔH = 22.5 kJ
2NH3(g) → N2(g) + 3H 2(g) ΔH = 57.5 kJ
CH2O(g) + H2(g) → CH 4O(l) ΔH = 81.2 kJ
answer = -46.2 kJ
(34) Find the ΔH for the reaction below, given the following reactions and subsequent ΔH
values:
1/2H2(g) + 1/2Cl2(g) → HCl(g)
COCl2(g) + H2O(l) → CH2Cl2(l) + O2(g) ΔH = 47.5 kJ
2HCl(g) + 1/2O2(g) → H 2 O(l) + Cl2(g) ΔH = 105 kJ
CH2Cl2(l) + H2(g) + 3/2O 2(g) → COCl2(g) + 2H 2O(l) ΔH = -402.5 kJ
answer = -230 kJ
(35) Find the ΔH for the reaction below, given the following reactions and subsequent
ΔH values:
C2H2(g) + 5/2O2(g) → 2CO2(g) + H2O(g)
C2H6(g) → C2H 2(g) + 2H2(g) ΔH = 283.5 kJ
H2(g) + 1/2O2(g) → H2O(g) ΔH = -213.7 kJ
2CO2(g) + 3H2O(g) → C2H6(g) + 7/2O2(g) ΔH = 849 kJ
answer = -705 kJ
(36) Find the ΔH for the reaction below, given the following reactions and subsequent
ΔH values:
HCl(g) + NaNO2(s) → HNO2(l) + NaCl(s)
2NaCl(s) + H2O(l) → 2HCl(g) + Na2O(s) ΔH = 507 kJ
NO(g) + NO2(g) + Na2O(s) → 2NaNO2(s) ΔH = -427 kJ
NO(g) + NO2(g) → N2O(g) + O2(g) ΔH = -43 kJ
2HNO2(l) → N2O(g) + O2(g) + H 2O(l) ΔH = 34 kJ
Answer = -78 kJ
(37) Find the ΔH for the reaction below, given the following reactions and subsequent
ΔH values:
Zn(s) + 1/8S8(s) + 2O2(g) → ZnSO4(s)
Zn(s) + 1/8S8(s) → ZnS(s) ΔH = -183.92 kJ
2ZnS(s) + 3O2(g) → 2ZnO(s) + 2SO2(g) ΔH = -927.54 kJ
2SO2(g) + O2(g) → 2SO3(g) ΔH = -196.04 kJ
ZnO(s) + SO3(g) → ZnSO4 (s) ΔH = -230.32 kJ
Answer = -976.03 kJ
Chapter 7
1.
What is the wavelength of radiation that has a frequency of 6.912  1014 s1?
A. 1.447  1015 nm
D. 2.074  1023 nm
2.
B. 7.00  102 nm
E. 3.00  108 m
C. 7.00  105 m
Answer: D
Calculate the frequency of visible light having a wavelength of 486 nm.
A. 2.06  1014 /s
D. 1.20  1015 /s
4.
C. 2.304  106 nm
Answer: B
What is the wavelength of radiation that has a frequency of 2.10  1014 s 1?
A. 6.30  1022 m
D. 1.43  106 m
3.
B. 4.337  102 nm
E. 4.337  107 nm
B. 2.06  106 /s
E. 4.86  107 /s
C. 6.17  1014 /s
Answer: C
Calculate the frequency of visible light having a wavelength of 686 nm.
A.
B.
C.
D.
4.37  1014 /s
4.37  105 /s
6.17  1014 /s
2.29  1015 /s
E. 2.29  106 /s
5.
Answer: A
What is the energy in joules of one photon of microwave radiation with a
wavelength 0.122 m?
A. 2.70  10–43 J
D. 4.07  1010 J
B. 5.43  1033 J
E. 2.46  109 J
C. 1.63  1024 J
Answer: C
6.
What is the energy in joules of a mole of photons associated with visible light of
wavelength 486 nm?
A. 6.46  1016 J
D. 12.4 kJ
B. 6.46  1025 J
E. 246 kJ
C. 2.46  104 J
Answer: E
7.
What is the energy in joules of a mole of photons associated with red light of
wavelength 7.00  102 nm?
A. 256 kJ
D. 12.4 kJ
B. 1.71  105 J
E. 2.12  1042 J
C. 4.72  1043 J
Answer: B
8.
What is the binding energy (in J/mol or kJ/mol) of an electron in a metal whose
threshold frequency for photoelectrons is 2.50  1014 /s?
A. 99.7 kJ/mol
D. 7.22  1017 kJ/mol
B. 1.66  1019 J/mol
E. 1.20  106 J/mol
C. 2.75  1043 J/mol
Answer: A
10.
Calculate the energy, in joules, required to excite a hydrogen atom by causing an
electronic transition from the n = 1 to the n = 4 principal energy level. Recall that the
energy levels of the H atom are given by
En = 2.18  10–18 J(1/n2)
A. 2.07  1029 J
D. 3.27  1017 J
B. 2.19  105 J
E. 2.25  1018 J
C. 2.04  1018 J
Answer: C
Calculate the wavelength, in nanometers, of the light emitted by a hydrogen atom
when its electron falls from the n = 7 to the n = 4 principal energy level. Recall that the
energy levels of the H atom are given by
11.
En = 2.18  1018 J(1/n2)
A. 4.45  1020 nm
D. 1.38  1014 nm
B. 2.16  106 nm
E. 2.16  103 nm
C. 9.18  1020 nm
Answer: E
12.
Calculate the frequency of the light emitted by a hydrogen atom during a transition of its
electron from the n = 6 to the n = 3 principal energy level. Recall that for hydrogen
En = -2.18  10–18 J(1/n2).
A. 1.64  1015 /s
B. 9.13  1013 /s
C. 3.65  1014 /s
D. 1.82  1019 /s
E. 2.74  1014/s
Answer: E
13.
Calculate the frequency of the light emitted by a hydrogen atom during a transition of its
electron from the n = 4 to the n = 1 principal energy level. Recall that for hydrogen
En = 2.18  10 18 J(1/n2)
A. 3.08  1015 /s
D. 1.35  1051 /s
B. 1.03  108 /s
E. 8.22  1014 /s
C. 2.06  1014 /s
Answer: A
14.
Calculate the wavelength of the light emitted by a hydrogen atom during a transition of
its electron from the n = 4 to the n = 1 principal energy level. Recall that for hydrogen
En = 2.18  1018 J(1/n2)
A. 97.2 nm
15.
B. 82.6 nm
C. 365 nm
D. 0.612 nm
Answer: A
Which one of the following sets of quantum numbers is not possible?
A.
B.
C.
D.
E.
n
4
3
3
2
2
l
3
0
0
1
0
ml
2
1
0
1
0
ms
+1/2
1/2
+1/2
1/2
+1/2
E. 6.8  1018 nm
Answer: B
16.
Which one of the following sets of quantum numbers is not possible?
A.
B.
C.
D.
E.
n
4
3
3
4
2
l
3
2
0
1
0
ml
2
3
0
1
0
ms
+1/2
1/2
+1/2
1/2
+1/2
Answer: B
17.
What is the maximum number of electrons in a atom that can have the following set of
quantum numbers?
n = 4 l = 3 ml = 2 ms = +1/2
A. 0
B. 1
C. 2
D. 6
E. 10
Answer: B
18.
A possible set of quantum numbers for the last electron added to complete an atom
of gallium Ga in its ground state is
A.
B.
C.
D.
E.
n
4
3
4
3
4
l
0
1
1
1
2
ml
0
0
0
1
1
ms
1/2
1/2
+1/2
+1/2
+1/2
Answer: C
19.
A possible set of quantum numbers for the last electron added to complete an atom
of germanium in its ground state is
A.
B.
C.
D.
E.
n
4
3
4
3
4
l
0
0
1
1
2
Answer: C
ml
0
+1
1
+1
+2
ms
+1/2
1/2
+1/2
1/2
1/2
20.
Electrons in an orbital with l = 3 are in a/an
A. d orbital.
21.
B. f orbital.
C. g orbital.
D. p orbital.
E. s orbital.
Answer: B
The number of orbitals in a d subshell is
A. 1
B. 2
C. 3
D. 5
E. 7
Answer: D
22.
The maximum number of electrons that can occupy an energy level described by
the principal quantum number, n, is
A. n
B. n + 1
C. 2n
D. 2n2
E. n2
Answer: D
23.
How many orbitals are allowed in a subshell if the angular momentum quantum
number for electrons in that subshell is 3?
A. 1
B. 3
C. 5
D. 7
E. 9
Answer: D
24.
"No two electrons in an atom can have the same four quantum numbers" is a
statement of
A.
B.
C.
D.
E.
25.
the Pauli exclusion principle.
Bohr's equation.
Hund's rule.
de Broglie's relation.
Dalton's atomic theory.
Answer: A
The orbital diagram for a ground-state nitrogen atom is
1s
A. 
2s


2p


B. 

 
___
C. 




D. 

 

Answer: A
26.
The orbital diagram for a ground-state oxygen atom is
1s
A. 
2s

2p
 

B. 

 

C. 

 

D. 

 

E. 

   
Answer: D
27.
28.
The orbital diagram for a ground state carbon atom is
1s
A. 
2s

2p

B. 




C. 




D. 





Answer: D
How many unpaired electrons does a ground-state atom of sulfur have?
A. 0
B. 1
C. 2
D. 3
E. 4
Answer: C
29.
Which element has the following ground-state electron configuration?
1s22s22p63s2
A. Na
B. Mg
C. Al
D. Si
E. Ne
Answer: B
30.
Which element has the following ground-state electron configuration?
[Kr]5s24d105p3
A. Sn
B. Sb
C. Pb
D. Bi
E. Te
Answer: B
31.
Which element has the following ground-state electron configuration?
[Kr]5s24d105p2
A. Sn
B. Sb
C. Pb
D. Ge
E. Te
Answer: A
32.
The electron configuration of a ground-state Co atom is
A.
B.
C.
D.
E.
[Ar]4s23d7
1s22s22p63s23d9
[Ne]3s23d7
[Ar]4s13d5
[Ar]4s24d7
Answer: A
33.
The electron configuration of a ground-state vanadium atom is
A. [Ar]4s24d3
B. [Ar]4s24p3
C. [Ar]4s23d3
D. [Ar]3d5
Answer: C
34.
The electron configuration of a ground-state copper atom is
A.
B.
C.
D.
E.
[Ar]4s24d4
[Ar]4s24p63d3
[Ar]4s23d9
[Ar]3d9
[Ar]4s13d10
Answer: E
35.
The ground-state electron configuration for an atom of indium is
A.
B.
C.
D.
E.
[Kr]5s24p64d5
[Ar]4s23d104p1
[Ar]4s24p63d5
[Kr]5s25p64d5
[Kr]5s24d105p1
Answer: E
36. Which of the following is the ground-state electron configuration of a calcium atom?
A.
B.
C.
D.
E.
[Ne]3s2
[Ne]3s23p6
[Ar]4s13d1
[Ar]4s2
[Ar]3d2
Answer: D
37. How many electrons are there in the 2nd principal energy level (n = 2) of a phosphorus
atom?
A. 3
B. 5
C. 6
D. 8
E. 10
Answer: D
38.
How many electrons are there in the 3rd principal energy level (n = 3) of a phosphorus
atom?
A. 3
39.
C. 6
D. 8
E. 10
Answer: B
A ground-state atom of manganese has ___ unpaired electrons and is _____.
A.
B.
C.
D.
E.
40.
B. 5.
0, diamagnetic
2, diamagnetic
3, paramagnetic
5, paramagnetic
7, paramagnetic
Answer: D
A ground-state atom of vanadium has ___ unpaired electrons and is _____.
A. 0, diamagnetic
B. 2, diamagnetic
C. 3, paramagnetic
D. 5, paramagnetic
E. 4, diamagnetic
41.
Answer: C
A ground-state atom of iron has ___ unpaired electrons and is _____.
A.
B.
C.
D.
E.
42.
0, diamagnetic
6, diamagnetic
3, paramagnetic
5, paramagnetic
4, paramagnetic
Answer: E
Transition metal elements have atoms or ions with partially filled
A. s subshells.
B. p subshells.
C. d subshells.
D. f subshells.
E. g subshells.
Answer: C
43.
Which choice lists two elements with ground-state electron configurations that are wellknown exceptions to the Aufbau principle?
A. Cu and C
44.
B. Cr and Cu
C. Cs and Cl
D. Rb and Co
E. Fe and Co
Answer: B
A ground-state chromium atom has how many unpaired electrons?
A. 1
B. 2
C. 4
D. 5
E. 6
Answer: E
45. Which of the following is the electron configuration of an excited state of an oxygen atom?
A. 1s22s22p4
B. 1s22s22p5
C. 1s22s22p33s1
D. 1s22s22p6
E. 1s22s22p3
Answer: C
46.
Which of the following is the electron configuration of an excited state of an iron atom?
A. [Ar]4s23d7
B. [Ar]4s23d6
C. [Ar]4s23d8
D. [Ar]4s13d7
E. [Ar]4s13d5
Answer: D
47.
Which of the following is the electron configuration of an excited state of a copper atom?
A. [Ar]4s23d9
B. [Ar]4s13d10
C. [Ar]4s13d8
D. [Ar]4s23d8
E. [Ar]4s03d10
Answer: A
48.
The ground-state electron configuration of Cr, Mo, and Ag are exceptions to the Aufbau
principle. Which of the following is the electron configuration for Mo?
A.
B.
C.
D.
E.
49.
[Kr]5s14d5
[Kr]5s24d4
[Xe]6s25d4
[Ar]4s24d4
[Kr]5s24d6
Answer: A
Write the ground state electron configuration for the selenium atom.
Answer: [Ar] 4s23d104p4
50.
Draw the orbital diagram for a selenium atom in its ground state.
Answer: [Ar] 
4s
51.
    
3d
  
4p
Write the ground state electron configuration for the phosphorus atom.
Answer: [Ne] 3s23p3
52.
Draw the orbital diagram for the phosphorus atom in its ground state.
Answer: [Ne] 
3s
52.
  
3p
Calculate the energy of a photon of light with a wavelength of 360 nm.
Answer: 5.5  10 19 J
53.
54.
If one electron is added to the outer shell of chlorine, to which element would the
configuration be similar?
Answer: Argon
What is the outermost electron configuration of (a) O (b) S (c) Se (d) Te?
Answer: (a) 2s22p4 (b) 3s23p4 (c) 4s23d104p4 (d) 5s24d105p4
55.
What is the outermost electron configuration of (a) Be (b) Mg (c) Ca (d) Sr?
Answer: (a) 2s2
(b) 3s2
(c) 4s2
(d) 5s2