unit 6 lesson 1 notes.notebook Warm Up April 16, 2015 I. Introduction to Exponentials Check the seating chart at the front. The general form of an exponential function is ___________________________. 1. ___x_______ is the _________exponent_________________________ 2. ____a_____ is the _____initial amount (start) ‐ y‐intercept_____ Get your unit 6 assignment sheet and lesson 1 note packet. 3. ____b______ is the __base (growth/decay)_________________ Apr 153:01 PM Exponential functions can represent exponential _____growth_______________ or exponential ___decay_________________. Apr 153:02 PM Examples: Classify each as exponential growth or decay then identify the y‐intercept as well as the growth or decay factor. growth, (0, 4) 1. 1. Exponential _____growth_________ occurs when __________b > 1__________ 2. Exponential _______decay______ occurs when ______0 < b < 1_________ decay, (0, 24) 2. 3. growth, (0, 1) 4. growth b>1 (b =3) decay, 0 < b < 1 decay, (0, 100) 5. growth, (0, 12) Apr 153:04 PM Apr 153:04 PM II. Parent Graph for Exponential Functions Exponential Growth: Exponential Decay: GRAPH x ‐3 ‐2 ‐1 0 yintercept: (0, a) yintercept: (0, a) 1 2 xintercept: none xintercept: none 3 y 0.125 0.25 0.5 1 2 4 8 yint (0, 1) xint : none domain: all reals domain: all reals d: all reals range: y > 0 range: y > 0 r: y > 0 asymptote: y = 0 asymptote: y = 0 asymptote: y = 0 Apr 153:05 PM Apr 153:06 PM 1 unit 6 lesson 1 notes.notebook April 16, 2015 GRAPH asymptote x Exponential functions have ONE _______________________________. Asymptotes are lines that the function cannot touch or cross. They are like walls that the function gets closer and closer to, but never reaches. Exponential functions only have _________________________ asymptotes. We write the equation of a horizontal asymptote as ___________________. y 8 4 2 1 0.5 0.25 0.125 ‐3 ‐2 ‐1 0 1 2 3 1 y = # Answer the following questions about the parent graph none exists write none. , if y=0 , is ________________________ all reals y > 0 is __________________________________________ c) Range for (0, a) d) y‐intercept(s) is _____________________________________________ none e) x‐intercept(s) is _____________________________________________ a) Horizontal asymptote for b) Domain for yint (0, 1) xint : none is _________________________________________ d: all reals r: y > 0 asymptote: y = 0 Apr 153:07 PM Apr 153:09 PM II. Graph Form Signiicance of h Signiicance of a x‐h: ____ move right h units________________________________________________________________________ a is negative: ________________________________________________________________________________ ________________________ reflects the xaxis move left h units________________________________________________________________________ x+h: ______ Signiicance of k – 0<a<1: ________________________________________________________________________________ ______________________________ vertical shrink vertical stretch moves up k units_________________________________________________________________________________ +k: _________ moves down k units_____________________________________________________________________________ ‐k: _________ a>1: ________________________________________________________________________________ __________________________________ Apr 153:09 PM Apr 153:10 PM 1. a) Explain the transformation of the parent graph reflected xaxis y = 0 _____________________________________________________________________ a) Horizontal Asymptote _________________ all reals y < 0 b) Domain ______________________ c)Range_________________________ (0, 1) none d) x‐intercept(s) ________________ e) y‐intercept(s) ________________ up 5 y = 5 all reals y > 5 none (0, 6) Apr 153:10 PM Apr 153:12 PM 2 unit 6 lesson 1 notes.notebook April 16, 2015 Apr 153:13 PM Apr 161:36 PM Apr 1612:16 PM Apr 161:37 PM 3
© Copyright 2024