addmathsprojectwork.blogspot.com

LABUAN ADDITIONAL MATHEMATICS PROJECT WORK 2015
SUGGESTED ANWSER BY www.addmathsprojectwork2015.blogspot.com
PART 1
.c
om
a) Sets of Son = {C,D}
Sets of Daughter = {A,B}
Sets of Grand-son = {G,H,J,K}
Sets of Grand-daughter = {E,F,L}
Sets of Great Grand-daughter = {M,P}
sp
Daughter A
Daughter B
Son C
Son D
bl
og




Zulkifli
ot
b) 1. Father of
ec
tw
or
k.
(i) Domain
= { Zulkefli }
Codomain = { Daughter A, Daughter B, Son C, Son D }
Objects
= Zulkefli
Images
= Daughter A, Daughter B, Son C, Son D
Range
= { Daughter A, Daughter B, Son C, Son D }
(ii) Type of Relation = One – to – many Relation
(iii) { (Daughter A, Zulkefli) , (Daughter B, Zulkefli) , (Son C, Zulkefli) , (Son D, Zulkefli) }
sp
r
at
h
Son C
Son D
oj
2. Son of
 Zulkefli
 Aminah
ad
d
m
(i) Domain
= { Son C, Son D }
Codomain = { Zulkefli, Aminah }
Objects
= Son C, Son D
Images
= Zulkifli, Aminah
Range
= { Zulkifli, Aminah}
(ii) Type of Relation = Many – to – many Relation
(iii) { (Son C, Zulkefli) , (Son C, Aninah), (Son D, Zulkefli) , (Son D, Aninah) }
3. Grand-daughter of
Grand-daughter E
Grand-daughter F
Grand-daughter L
 Zulkefli
 Aminah
og
sp
ot
.c
om
(i) Domain
= { Grand-daughter E, Grand-daughter F, Grand-daughter L }
Codomain = { Zulkefli, Aminah }
Objects
= Grand-daughter E, Grand-daughter F, Grand-daughter L
Images
= Zulkifli, Aminah
Range
= { Zulkifli, Aminah}
(ii) Type of Relation = Many – to – many Relation
(iii) { (Grand-daughter E, Zulkefli) , (Grand-daughter E, Aninah), (Grand-daughter F, Zulkefli) ,
(Grand-daughter F, Aninah), (Grand-daughter L, Zulkefli) , (Grand-daughter L, Aninah) }
k.
bl
c) A function is a relation in which NO two ordered pairs have the same first coordinate. So, from the
three arrow diagrams stated above, only the first relation (Relation 1 – Father of) arrow diagram is
considered a function. This is because, when observing the first and second arrow diagram :
tw
or
1- { (Daughter A, Zulkefli) , (Daughter B, Zulkefli) , (Son C, Zulkefli) , (Son D, Zulkefli) }
The first coordinates does not have any repetition.
ec
2- { (Son C, Zulkefli) , (Son C, Aninah), (Son D, Zulkefli) , (Son D, Aninah) }
The first coordinates have repetition for both Son C and Son D.
sp
r
oj
This proof that, there is only one relation (Relation 1) which is a function.
ad
d
m
at
h
PART 2 – DO IT ON YOUR OWN
PART 3
a) Function of f
f(x) = x + 3
Function of g
g(x) = x2
.c
om
b) Inverse function of f
f ( x)  x  3
sp
1
( x)  x  3
og
f
ot
Let f 1 ( x)  y
f ( y)  x
y 3 x
y x3
bl
Inverse function of g
g ( x)  x 2
k.
Let g 1 ( x)  y
or
g ( y)  x
tw
y2  x
g 1 ( x)  x
fg ( x)  f [ g ( x)]
at
h
fg ( x)  x 2  3
sp
r
c) Composite function of fg
oj
ec
y x
Composite function of gf
gf ( x)  g[ f ( x)]
m
gf ( x)  ( x  3) 2
ad
d
gf ( x)  x 2  6 x  9
Composite function of f2
Composite function of g2
ff ( x)  f [ f ( x)]
ff ( x)  ( x  3)  3
gf ( x)  g[ f ( x)]
ff ( x)  x  6
gf ( x)  x 4
gf ( x)  ( x 2 ) 2
d) Composite function of g-1f-1
g 1 f
1
( x)  g 1 [ f
1
g 1 f
1
( x)  x  3
( x)]
Inverse function / (fg)-1
( fg ) 1 ( x)  x 2  3
.c
om
Let ( fg ) 1 ( x)  y
fg ( y )  x
y2  3  x
ot
y x3
sp
( fg ) 1 ( x)  x  3
og
Yes g-1f-1(x) = (fg)-1(x)
e) Composite function of ff-1
ff
( x)  f [ f
1
( x)  ( x  3)  3
1
( x)  x
( x)]
bl
1
k.
ff
1
or
ff
tw
Composite function of gg-1
gg 1 ( x)  g[ g 1 ( x)]
gg 1 ( x)  x
sp
r
gg 1 ( x  1)  x  1
oj
ec
gg 1 ( x)  ( x ) 2
at
h
Therefore, ff-1 is not equal to gg-1
Deduce ff-1 (k2 + 2)
( x)  x
1
(k 2  2)  k 2  2
ad
d
ff
1
m
ff
FURTHER EXPLORATION
x 1
, x  1
x 1
x 1
1
g 2 : x  gg : x  x  1
x 1
1
x 1
g:x

.c
om
i)
x  1  1( x  1)
x 1
x
x 1
x  1  1( x  1)
ot
a)
oj
1
1

x
sp
r
g4 : x  g2g2 : x 
ec
tw
 x 1
 

 x 1 
k.
1
x 1
x 1
or
g3 : x  g2g : x  
bl
og
sp
  2  x  1 



 x  1  2 x 
1

x
at
h
x
x 1
x 1
ad
d
m
g5 : x  g4g : x 
x 1
1
6
5
x

1
g : x g g : x 
x 1
1
x 1

x  1  1( x  1)
x 1
x
x 1
x  1  1( x  1)
  2  x  1 



 x  1  2 x 
1

x
By finding all the functions of g2,g3,g4,g5, and g6 we can observe the trend of the function
Power of
2,6,10,14,18,22,26,30
Composite Function
1
x
 x  1


 x  1
x
x 1
x 1

3,7,11,15,19,23,27
g
4,8,12,16,20,24,28
5.9,13,17,21,25,29
ot
sp
1
or g 2 n : x  x
x
og
g 2n : x  
tw
or
x 1
 x  1
2 n 1
g 2 n 1 : x  
:x
 or g
x 1
 x  1
bl
ii)
1
x
k.
Thus, g 30 : x  
ec
b)
ax  b
cx  d
1
f ( x)  y
sp
r
m
at
h
ay  b
x
cy  d
ay  b  cyx  bx
oj
f :x
f ( y)  x
ay  cyx  bx  b
ad
d
y (a  cx )  bx  b
bx  b
a  cx
bx  b
a
f 1 ( x) 
,x
a  cx
c
y
.c
om
function
i) Inverse of f : x 
2x  1
x3
a
,
c
3x  1
2x
a 2
where 
c 1
3x  1
thus f 1 ( x) 
,x2
2x
tw
or
( x) 
ec
1
ad
d
m
at
h
sp
r
oj
f
k.
check
bl
based on the inverse function above, x ≠
og
sp
ot
.c
om
f 1 ( x)  y
f ( y)  x
2y 1
x
y3
2 y  1  xy  3 x
2 y  xy  3 x  1
y (2  x)  3 x !
3x  1
y
2x
3x  1
f 1 ( x) 
2x
ii) Inverse of f : x 
3x
1  4x
x
3  4x
a 3
where 
c 4
3x  1
3
thus f 1 ( x) 
,x
2x
4
tw
( x) 
ad
d
m
at
h
sp
r
oj
ec
1
or
check
f
bl
a
,
c
k.
based on the inverse function above, x ≠
og
sp
ot
.c
om
f 1 ( x)  y
f ( y)  x
3y
x
1 4y
3 y  x  4 xy
3 y  4 xy  x
y (3  4 x)  x !
x
y
3  4x
x
f 1 ( x) 
3  4x
iii) Inverse of f : x 
2x
5x  2
a
,
c
bl
based on the inverse function above, x ≠
2x
2  5x
a 2
where 
c 5
2x
2
thus f 1 ( x) 
,x
2  5x
5
tw
or
( x)  
sp
r
oj
ec
1
k.
check
f
m
at
h
REFLECTION
WRITE YOUR OWN REFLECTION
ad
d
og
sp
ot
.c
om
f 1 ( x)  y
f ( y)  x
2y
x
5y  2
2 y  5 xy  2 x
2 y  5 xy  2 x
y (2  5 x)  2 x!
2x
y
2  5x
2x
f 1 ( x)  
2  5x