DAMA実験における中性子 バックグラウンドの季節変動2 名古屋大学 久野光慧 / 森下美沙希 2015/5/17 1 内容 • muonとneutrinoはDAMAの示すシグナルとな るような十分なneutronをつくるか • DAMAに注目した点 • neutronとdark ma0erの区別 2 neutrino properties such as nonzero mass and mixing, because of the wide range of density and the great distance from the Sun to the Earth. The solar neutrinos are produced by some of the fusion reactions in the pp ch CNO cycle. The combined effect of these reactions is written as neutron 破砕 4p → 4 He + 2e+ + 2νe . • detecterの周りのシールドと してPbがよく使われる • muon、neutrinoがPbに衝突 することでneutronをつくる • neutrinoのエネルギー Eν > 7 MeVで208Pbからneutron がでる • Figure 14.2: The 8B太陽neutrinoのエネル solar model [103]. solar neutrino spectrum predicted by the BS05(OP) stand The neutrino fluxes are given in units of cm−2 s−1 MeV−1 continuous spectra and cm−2 s−1 for line spectra. The numbers associated with neutrino sources show theoretical errors of the fluxes. This figure is taken from late John Bahcall’s web site, http://www.sns.ias.edu/~jnb/. ギーは7 MeVより大きい値 をもつ 8 5B ! 2 42He + e+ + ⌫e ν ν > 7 MeV Positrons annihilate with electrons. Therefore, when considering the solar therma generation, a relevant expression is 3 − 4 4p + 2e → He + 2νe + 26.73 MeV − Eν , Pb n neutron event rate neutronの比率をR R⇠ nV 8B太陽neutrinoのfluxと208Pbをターゲットとしたcross secBonより R⌫ ⇠ 10 35 Rµ ⇠ 10 34 Φν 〜 106 cm-‐2 s-‐1 σν 〜 10−41 cm2 nV neutrons/sec Φμ 〜 10-‐8 cm-‐2 s-‐1 σμ 〜 10−26 cm2 muonについて nV neutrons/sec これより、neutron比の関係は R⌫ ⇠ 0.1 Rµ Φ:flux σ:cross secBon n:ターゲットの数密度 V:体積 4 DAMAとの対応 • Pbについて、数密度n 〜 1029 m-‐3、ターゲットの体積V 〜 1000 m3 とする – Rν 〜 100 neutrons/days – Rν + Rμ 〜 1000 neutrons/days – 〜 1 m3 of lead is present in the DAMA/LIBRA shield ????? • これはDAMAの検出比と似ている – – – – • 250 kg NaI(Tl), recoil energy 2-‐6 keV 3.5 × 106 events/keV, Exposure 1.33 ton × yr 〜2.6 x 103 event/keV/kg/yr 〜1700 event/keV/day 〜7000 event/day ????? (0.0112 ± 0.0012) cpd/kg/keV 〜 2.5 cpd/keV 〜 10 cpd ????? muonによるneutronの(n,p)反応のみを考えたときのmean free pathはλ = 2.6 m – このときの有効体積はVeff 〜 450 m3 程度と見積もられる • これはDAMAのシグナルを説明するために必要な体積Vに近い • neutron生成の全ての過程を考えている訳ではない – V 〜 1000 m3 をより小さく補正できるかもしれない ⇒muon+neutrino modelでDAMAのシグナルを説明できるかも 5 DAMAに注目した点 ization based on the measureLUKA simulation. .64Eµ0.02 − 0.74Eµ−0.12, (10) ed neutron multiplicity, Mmc is ultiplicity in FLUKA and Eµ is V. After correcting the neutron KA simulation, good agreement ta and the simulation as can be Neutron Yield (n/µ g cm-2) • シールドの構造 nction• of しきい値 muon energy between Pb Au Fe 10-3 Cd NaCl Na C CnH2n+2 10 2 10 Atomic Weight of a Medium 6 Aglietta FIG. 12: Simulation of the muon-induced neutron product 2 of 11 Eur. Mineral Oil (30cm) &ofMuon hardware threshold eachdet. PMT is at KIMS DAMA while a software energy threshold of 2 Lead (15cm) lent (hereafter keV) is used [1, 20]. E X-rays/γ Polyethylene sources are (5cm) regularly carried ning conditionCopper down(10cm) to few keV [1]; coincidences due to internal X-rays f CsI(Tl) ppt levels in the crystals) provide (wh crystal over long periods) a calibration poin the software energy threshold (for det DAQ system records both single-hit e of the detectors fires) and multiple-hi than one detector fires) up to the MeV timization is performed for the lowest Cu/Pb/Cd-‐foils/polyethylene/paraffin/… The 25 the procedures and details are discus 1 Schematic view of the DAMA/LIBRA apparatus. y radiopure NaI(Tl) crystal scintillators (5-rows by 5-columns and references therein. • neutronを遮断するためにPolyethyleneがよくきく x), housed in the sealed copper box continuously maintained The data of the former DAMA/ WPAS2014, Hyun Su Lee, Ewha igh Purity Nitrogen atmosphere, within low-radioactive passive × yr) and, later, those of the first d are visible. Mostly outside the installation, the DAMA/LIBRA • DAMAのシールドの構造をみると、neutronを多くつくるPbの外側に DAMA/LIBRA (0.87 ton × yr) hav ratus is also almost fully surrounded by about 1 m concrete made Polyethyleneのシールドがある e Gran Sasso rock. The copper guides of the calibration system tive model independent evidence for lso shown. For details see Ref. [1] particles in the galactic halo with hig • DAMAの構造ではPbからでるneutronを遮断できない可能性がある the basis of the exploited DM annual 7 [2, 3, 7, 22]. , very effective and, in addition, it allows to test a large Fig. 9. Monte Carlo geometry model for a 250 kg liqu 50 cm of hydrocarbon scintillator (40 g/cm2 ) and 30 c figure also shows a GEANT4 event in which a 280 GeV (n1 , n2 ) in the lead shielding which are captured in the • muonが引き起こすneutronの スペクトルは低いエネルギー で現れることが知られている • muonとneutrinoが引き起こす neutronは10-‐100 keVの運動 エネルギーをもつ • neutronがNaを散乱した時の recoil energyは2-‐6 keV relative neutron flux, n/µ/MeV しきい値 1 10 10 10 10 10 10 10 10 • DAMAはdark ma0erによる recoil energyを2-‐6 keVで見て いる 10 rock→cavern -1 air→lead -2 lead→veto -3 -4 -5 -6 -7 veto→air - GEANT4 -8 veto→air - FLUKA (Paper 3) -9 10 -1 1 10 10 2 10 3 10 4 neutron energy, MeV Fig. 10. Energy spectra of muon-induced neutron flux The thick line represents the flux at the rock face for an ⇒neutronとdark ma0erのシグナルを区別できない 8 neutr ‘GEANT4 - F+R’ in Fig. 8). The spectrum of veto obtained with FLUKA (Paper 3) is also shown. 区別の方法 • 2-‐4 keVのphaseのずれ • 場所依存 9 phaseのずれで区別 13) 73:2648 on amplitude π ) and phase ting, with the − t0 ), the ate of the RA–phase1, he former he results are th ignal in the tion Page 5 of 11 A (cpd/kg/keV) T= 2π ω (yr) t0 (days) C.L. 134 ± 7 8.1σ DAMA/LIBRA–phase1 2–4 keV 2–5 keV 2–6 keV (0.0178 ± 0.0022) (0.0127 ± 0.0016) 2–5 keV 2–6 keV (0.996 ± 0.002) 137 ± 8 7.9σ (0.0097 ± 0.0013) (0.998 ± 0.002) 144 ± 8 7.5σ (0.0190 ± 0.0020) (0.996 ± 0.002) 134 ± 6 9.5σ (0.998 ± 0.002) 144 ± 7 9.3σ DAMA/NaI & DAMA/LIBRA–phase1 2–4 keV (0.996 ± 0.002) (0.0140 ± 0.0015) (0.0112 ± 0.0012) (0.996 ± 0.002) 140 ± 6 9.3σ • ここまではrecoil energyが2-‐6 keVの場合を考えてきた accounted by the statistical spread expected from the used • • sampling time. Moreover, fitting the time behaviour of R90 including a term with phase and period as for DM particles, 2-‐4 keVのエネルギーを使ったDAMAの見せたbest-‐fit phaseは〜10daysだ a modulation amplitude compatible with zero has also been found for all the annual cycles (see Table 5). This also exけ前にずれる cludes the presence of any background modulation in the whole energy spectrum at a level much lower than the effect found the lowest energy region for the single-hit events. In このずれをmuon+neutrino minodelで説明できるれば信憑性があがる fact, otherwise—considering the R90 mean values—a modulation amplitude of order of tens cpd/kg would be present 10 ⇒neutronとdark ma0erの区別できるかも for each annual cycle, that is ≃100σ far away from the mea- WIPP 場所で区別 Soudan -7 −7 −2 −1 (4.0 ± 1.1)×10 s fit and P1 = 0.86 ± 0.05 km. muon flux andcm our global function. The horizontal lines Boulby Homestake WIPP -2 Flat-overburdan sites Soudan 10-7 Kamioka -9 10 Gran Sasso Sudbury 2Boulby 3 indicateare the root-mean-square deviation amongst the residStopping-muons also a source of background. For example, uals µ− capture on a nucleus produces neutrons based upon the experimental uncertainties in the meaand radioactive isotopes. The total stopping-muon rate surements. has contributions from cosmic-ray muons coming to WIPP the end of their range, secondary muons generated locally through interactions of the primary muons (due to Soudan B. Stopping Muon Intensity virtual-photo interactions with nuclei), and local muon Kamioka -8 10 production by real photons (π0 -decay in electromagnetic showers). It is customary to quote results in terms of the Boulbyto through-going Stopping-muons are also amuons. source of background. For ratio, R, of stopping muons Gran Sasso A − example,is provided µ capture on aetnucleus detailed calculation by Cassiday al. [13]. produces neutrons The total ratio, R(h), of stopping-muons to through10-9 and radioactive isotopes. The total stopping-muon rate going muons direction) atfrom different depths can muons coming to has(vertical contributions cosmic-ray be parameterized as [19] -2 Total Muon Flux (cm s-1) 10-8 Neutron Flux (cm s-1) -2 Total Muon Flux (cm s-1) in Table In intensities order toare circumvent the misuse of vertical P1 the−h and I. these used hereafter. 0 /P1 FIG. 4: The relative deviation between data on total )e , φ = P ( n 0 muon intensity in comparing sites with flat overburden muon flux and-0.15 our global fit function. The horizontal lines Kamioka h 0 the residindicate the root-mean-square deviation amongst to those under mountains, we define the equivalent depth 2 3 4 mea- 5 6 uals based upon the experimental uncertainties in the Flat-overburdan sites relative to a flat overburden by the experimental meaEquivalent Vertical Depth (km.w.e.) surements. where h0 is the equivalent vertical depth (in km.w surements of the total muon Kamioka intensity. This definition 10 Gran Sasso relativeFIG. to a4:flat overburden. The fit parameters are P and these intensities are used hereafter. The Muon relative deviation between data on the total B. Stopping Intensity Frejus Frejus 4 5 6 Equivalent Vertical Depth (km.w.e.) Homestake 10-8 FIG. 3: The total muon flux measured for the various underground sites summarized in Table I as a function of the equivalent vertical depth relative to a flat overburden. The smooth curve is our global fit function to those data taken from sites with flat overburden (equation (4)). -9 10 the end of their range, secondary muons generated lo∆Eeh/ξ cally R(h) through of the primary muons (due to ≈ γµ interactions , (7) h/ξ − 1)ϵ TABLE I:2 Summary 3of the total 4muon flux measured at6 the 5 (e -10 µ virtual-photo interactions with nuclei), and local muon 10 Equivalentvertical Verticaldepth Depthrelative (km.w.e.) underground sites and the equivalent (πkm.w.e., where γµ =production 3.77 for Eµ ≥ by 1000real GeVphotons [20], ξ = 2.5 0 -decay in electromagnetic to a flat overburden. Sudbury ∆E ≈ αh, α = 0.268 GeV/km.w.e. [21] for E ≥ 1000 showers). It is customary to µquote results in terms of the Site Total flux Depth FIG. 3: The total muon flux measured for the various unGeV [20], ratio, h is theR, depth of an underground cm−2 sec−1 km.w.e. of stopping muonslaboratory, to through-going muons. A −7Table I as a function of the derground sites summarized in and ϵ = 618 GeV [20]. For large depths, as can be seen WIPP (4.77±0.09) × 10 [6] 1.585±0.011 µ-11 10 −7 calculation is provided by Cassiday et al. [13]. Fig. 5, detailed this ratio is less than 0.5% and is hereafter Soudan 10 [15] to a flat1.95±0.15 equivalent vertical(2.0±0.2) depth ×relative overburden. in The 2 3 4 5 6 −7 † (1.58±0.21) 10 function [8] neglected The for thetotal underground considered in this ratio, sites R(h), of stopping-muons to (km.w.e.) throughsmooth Kamioka curve is our global×fit to2.05±0.15 those data taken Depth −8 Boulby (4.09±0.15) × 10 [9] 2.805±0.015 study. going muons (vertical direction) at different depths can from sites with flat overburden (equation (4)). Gran Sasso (2.58±0.3) × 10−8 [this work] 3.1±0.2† −8 † be parameterized as [19] (2.78±0.2) × 10 [16] 3.05±0.2 Sudbury FIG. 14: The total muon-induced neutron flux deduce • muonのfluxは実験場所の深さで異なる the various underground sites displayed. Uncertaintie each point reflect those added in quadrature from uncer • 深いほど、neutronのfluxが少ない ties in knowledge of the absolute muon fluxes and neu production rates based upon our simulations constraine perimental cavern. Thehenergy spectrum isof discussed in the available experimental data. GeV [20], is the depth an underground laboratory, (3.22±0.2) × 10−8 [17] 2.96±0.2† C. Muon Energy Spectrum and Angular −9 Distribution Fr´ejus (5.47±0.1) × 10 [14] 4.15±0.2† ∆Eeh/ξ −9 † R(h) ≈ γµ h/ξ , (7) (4.83 ±0.5) × 10 [this work] 4.2±0.2 TABLE Homestake I: Summary of the total muon flux measured at the (e − 1)ϵ µ (4.4±0.1 × 10−9 )[this work] 4.3±0.2 In addition to the total muon intensity arriving at a underground sites(3.77±0.41) and the ×equivalent depth relative Sudbury 10−10 [12] vertical 6.011±0.1 given underground site, we require knowledge of the dif† where = 3.77 for Eµ ≥in1000 GeV to a flat overburden. Equivalent vertical depth with a flat overburden ferential energy andγµ angular distributions order to gen-[20], ξ = 2.5 km.w.e., 11 determined by the measured total muon flux. ∆E ≈ αh, activity α = 0.268 ≥ 1000 erate the muon-induced withinGeV/km.w.e. a particular ex- [21] for Eµ Site Total flux Depth −2 −1 場所で区別 rio m ne co ha ne of fo th A in FIG. 4: Approximate peak day ofmthe neutrino+muon signal • 実験場所の違いでneutrino+muon odelのphaseがずれる at four di↵erent labs. Deeper labs have a lower muon flux [38] and so a phase closer to that of the solar neutrinos. ⇒neutronとdark ma0erを区別できるかも our estimates imply R⌫ /Rµ ⇠ 0.1 which is encourag- 12 is th Summary • muonとneutrinoはdetectorの周りのPbで neutronをつくる • muon+neutrino modelはDAMAのシグナルと よくあう • このmodelのDAMAのシグナルの区別の方法 として、phaseのずれと場所依存を考える 13
© Copyright 2024