Going beyond diagnosis-based case-mix systems: How adding pharmacy information to your decision support systems can improve the efficient delivery of health care. A study on the national Swedish drug register Karen Kinder Siemens, Ph.D., MBA Health Services R&D Center The Johns Hopkins University Presented at the Bättre beskrivning av vården bidrar till en effektivare sjukvård! May 14 2009 Luleå Sweden Copyright Notice This presentation is copyrighted by the Johns Hopkins University (© 2008), all rights reserved. You may distribute this presentation in its unaltered entirety within your organization in either printed or electronic form. It may not be distributed in other manner or incorporated into other presentations without permission of the author. Copyright 2005, Johns Hopkins University,02/07/2006 2 Goals for this Presentation • Convey the benefits of pharmacy-based risk predictions for applications in financial planning and care management • Introduce the Rx-PM model - part of the Johns Hopkins ACG System • Present to results from the project with data from the Swedish national drug register Copyright 2005, Johns Hopkins University,02/07/2006 3 Conceptual Basis Initial Motivation for an Rx-Based Case-Mix Model “I have loads of patients with drug codes, but no diagnostic information. How can I use the ACG system to identify the high risk patients?” Copyright 2005, Johns Hopkins University,02/07/2006 5 Conceptual basis for an Rx-Based Case-Mix Model • Pharmaceutical utilization is a proxy for an underlying morbidity. • The therapeutic goal of pharmacotherapy adds a new dimension to the Johns Hopkins ACG Case-Mix System. • Risk assessment accounts for the severity of the underlying morbidity, the therapeutic goal of medication use, and the duration of treatment. Copyright 2005, Johns Hopkins University,02/07/2006 6 Some of the Advantages of Rx-based Models • Some health care systems do not collect outpatient diagnostic data • There can be a long lag to obtain complete diagnostic data. • Most pharmacy data is easily accessible and is automated. • Prescriptions are linked to specific clinical course of action. • Pharmacy data may be more appropriate when chronic conditions are associated with clear pharma-cotherapies. • Diagnostic data from automated databases may be imprecise and may capture rule-outs. • Automated databases may not capture 4th or 5th digits. • Pharmacy-based risk model may capture health risk for persons with stable well-managed chronic disease. • Diagnosis-based risk models may miss some well managed but expensive patients. Copyright 2005, Johns Hopkins University,02/07/2006 7 Difficulties in Working with Rx Data • Drug use is NOT synonymous with presence of specific diseases – Multiple indications for same drug • Approved uses • Off-label uses – There are no definitive drug therapies for some conditions • Patterns of practice can directly influence risk scores • Complexities of working with numerous coding systems – Actual product dispensed may be different from drug code recorded Copyright 2005, Johns Hopkins University,02/07/2006 8 Capturing Dx alone misses some ENDOCRINE Frequency NONE 1156471 Percent Cum. Frequency Cum. Percent 80.43 1156471 80.43 Dx 34971 2.43 1191442 82.86 Rx 132735 9.23 1324177 92.09 BOTH 113754 7.91 1437931 100.00 Copyright 2005, Johns Hopkins University,02/07/2006 9 Introducing Rx-MGs ATC Introduction 11 http://www.whocc.no/atcddd/ • ATC: Anatomical Therapeutic Chemical Classification System. • Since 1982, the ATC system has been maintained by the WHO Collaborating Centre for Drug Statistics Methodology in Oslo, Norway. • The system provides a global standard for classifying medical substances and serves as a tool for drug utilization research. • Since 1996, WHO Headquarters recommend the ATC system for global drug utilization studies. Copyright 2005, Johns Hopkins University,02/07/2006 ATC Example 12 • WHO Anatomical Therapeutic Chemical classification system that groups drugs in 5 levels according to: – Organ or System on which they act – Properties: • Therapeutic • Pharmacological • Chemical – Example: A10BA02 Level 1st 2nd 3rd 4th 5th Description Anatomical main group Therapeutic subgroup Pharmacological Subgroup Chemical Subgroup Chemical Substance Copyright 2005, Johns Hopkins University,02/07/2006 Count 12 94 266 861 4,174 1st A A A A A 2nd 3rd 4th 5th 10 10 10 10 B B B A A 02 Description Alimentary tract and metabolism Drugs used in diabetes Blood glucose lowering drugs, excl. insulins. Biguanide Metformin 13 From NDCs/ATCs to MGs NDC 110,000 Generic - Route 2,700 ATC 4,100 Copyright 2005, Johns Hopkins University,02/07/2006 Rx-MG 60 Clinical Criteria for Rx-MG Assignment 1) Morbidity-type - symptom v disease 2) Duration of morbidity 3) 4) 5) - chronic v time-limited Stability of morbidity - stable v unstable Route of administration - oral, inhaled, topical, intramuscular, intravenous Therapeutic goal - curative, palliative, preventive Copyright 2005, Johns Hopkins University,02/07/2006 14 Example of Medication Classification HCTZ* Hypertension Common Morbidity Slow disease process Therapeutic Goal Chronic Stable Duration & Severity Cardiovascular/ Hypertension *HCTZ - hydrochlorothiazide Copyright 2005, Johns Hopkins University,02/07/2006 15 Chemical Structure: Thiazide Mechanism of Action: Diuretic Therapeutic Class: Antihypertensive Oral Route of Administration NDC Rx-MG Example: 16 Corticosteroids Active Ingredient Route of Administration Rx-MG Methylprednisoloneneomycin topical Skin / Acute and Recurrent Prednisolone compounding Allergy / Immunology / Immune Disorders Prednisolone injectable Musculoskeletal / Inflammatory Conditions Prednisolone oral Allergy / Immunology / Chronic Inflammatory Prednisolone ophthalmic Eye / Acute Minor: Palliative Prednisolone-sodium sulfacetamide ophthalmic Eye / Acute Minor: Curative Copyright 2005, Johns Hopkins University,02/07/2006 The Major Rx-MG Categories • • • • • • • • • • Allergy/Immunology Cardiovascular Ears, Nose, Throat Endocrine Eye Female Reproductive Gastrointestinal/Hepatic General Signs & Symptoms Genito-urinary Hematologic Copyright 2005, Johns Hopkins University,02/07/2006 Infections Malignancies Musculoskeletal Neurologic Psychosocial Respiratory Skin Toxic Effects/ Adverse Reactions • Others / non-specific medications • • • • • • • • 17 Patient Clinical Profile 18 Time Period: One Year (Slide 1 of 2) Patient #1 3 Rx-MGs Patient #2 4 Rx-MGs Patient #3 11 Rx MGs Genito-Urinary / Acute Minor: Palliative Cardiovascular / High Blood Pressure Allergy/Immunology / Acute Minor: Palliative Allergy/Immunology / Asthma Respiratory / Acute Minor: Palliative Cardiovascular / Hyperlipidemia Endocrine / Chronic Medical Skin / Acute and Recurrent Genito Urinary / Acute Minor: Palliative Gastrointestinal/Hepatic / Acute Minor: Palliative Infections / Acute Minor: Curative General Signs and Symptoms / Nausea and Vomiting General Signs and Symptoms / Pain Infections / Acute Minor: Curative Psychosocial / Anxiety Psychosocial / Depression Respiratory / Acute Minor: Palliative Respiratory / Chronic Medical Copyright 2005, Johns Hopkins University,02/07/2006 Patient Clinical Profile Time Period: One Year(Slide 2 of 2) Patient #1 3 Rx-MGs Patient #2 4 Rx-MGs Patient #3 11 Rx MGs $2,754 $4,151 $7,900 80% 90% 98% Age 59 57 39 Sex M M F Rx-ACG –Risk Score Predicted Cost Percentile Rank Data Source: PharMetrics, a unit of IMS, Watertown, MA Copyright 2005, Johns Hopkins University,02/07/2006 19 Applications Potential Applications for Rx-based case-mix models • Disease/Case Management – High risk case identification for case management – Chronic disease “tiering” for disease management – Quick case finding before ICD data are available • Profiling – Population and Provider – Rx practice patterns, overall and by disease group – Disease patterns within Rx-defined morbidity groups • Forecasting Rx and Total costs for large groups – NOT a tool for provider payment Copyright 2005, Johns Hopkins University,02/07/2006 21 Disease/Case Management • Excellent classification statistics – Total $: Area Under the ROC = 0.83 – Rx $: Area Under the ROC = 0.93 • Could begin assigning scores as soon as medication list is obtained • Case Finding – Rx information can be used to augment ICD information to identify certain types of patients • For example: Depression – ICD codes for depressive disorder (3% of population) – Depression Rx-MG: SSRIs and Tricyclics (13% of population) Copyright 2005, Johns Hopkins University,02/07/2006 22 Performance of models for case identification: outcome is top 1% most at risk individuals Area Under the Curve (1% Cut Point) Risk Model Total $ Rx $ Age / Gender .76 .69 Chronic Disease Score .81 .85 ACG-PM .86 .88 .83 .93 .86 .93 Rx-PM Rx-PM w/ ACG-PM Score Source: PharMetrics, a unit of IMS, Watertown, MA Validation Dataset, n=904,007, 2001-02; total costs truncated at $50K, and Rx costs truncated at $50K. Copyright 2005, Johns Hopkins University,02/07/2006 23 Using Rx-PM Risk Scores to Target 24 Disease Management Program Participants % Enrollees in Rx-MG Risk Category Condition Below 90% Diabetes Resource Use of Cohort Relative to Total Population 90-95% Above 95% Below 90% 90-95% Above 95% 40.5 38.0 10.7 1.34 4.90 7.44 Ischemic Heart Disease 38.4 43.1 13.5 1.26 4.99 7.22 Congestive Heart Failure 22.9 66.2 33.1 1.14 6.02 7.93 Copyright 2005, Johns Hopkins University,02/07/2006 How Well Does Rx Data Perform for High Risk Case Identification Percent True Positives by Source 25% 36% 39% 46% 29% 25% 1 Month Rx Prior Cost Both 12 Month Rx Prior Cost Both Calculations for a commercial health plan with 400,000 members Comparing Rx-PM to predict total medical expenditures to 12 months total prior cost Copyright 2005, Johns Hopkins University,02/07/2006 25 How Much Rx Data Do You Need? • If time is not an issue, waiting for a full year of claims is best • For new datastreams, Rx-PM is a viable alternative with less than a full year 1 Month Rx 3 Months Rx 6 Months Rx 12 Months Rx 12 Months Rx+Dx+ Prior Cost 12 Months Prior Cost No truncation 6.91 8.57 8.86 8.86 15.81 14.83 $50,000 truncation 14.55 16.87 17.26 17.38 23.79 19.04 R-squared calculations for a commercial health plan with 400,000 members Comparing data time limits in predicting total medical expenditures Copyright 2005, Johns Hopkins University,02/07/2006 26 Making the Most of Your Data, Combining Rx and Dx Data Risk Factors in The Johns Hopkins DxRx-PM (diagnosis + pharmacy) Complicated Pregnancy Marker Rx-Defined Morbidity Groups Age Gender DxRx-PM Risk Score Frailty Hospital Dominant Conditions Copyright 2005, Johns Hopkins University,02/07/2006 27 Overall Disease Burden Selected Medical Conditions Summary of Johns Hopkins Rxbased Case-Mix System 28 1) The ACG-Rx system, based on the unique Rx-MG categories, is an Rx-based risk adjustment tool (NDC, ATC, Read code) that can be used as a predictive model and to understand patterns of medication use. 2) Rx-MGs were developed using medical and pharmacological frameworks. 3) The statistical performance of the ACG-Rx model is excellent, and superior to prior costs and existing Rx-based models. Copyright 2005, Johns Hopkins University,02/07/2006 Benefits for Financial Planning • Risk adjustment useful for –More timely and efficient financial planning –Differentiating high, average and low-risk small groups –Identifying the underlying morbidity profile of group and thus what programs might benefit their population –Useful for explaining increasing/decreasing costs over time and how these are linked to underlying changes in the morbidity of the population Copyright 2005, Johns Hopkins University,02/07/2006 29 Summary of Johns Hopkins Rxbased Case-Mix System 30 1) The ACG-Rx system, based on the unique Rx-MG categories, is an Rx-based risk adjustment tool (NDC, ATC, Read code) that can be used as a predictive model and to understand patterns of medication use. 2) Rx-MGs were developed using medical and pharmacological frameworks. 3) The statistical performance of the ACG-Rx model is excellent, and superior to prior costs and existing Rx-based models. Copyright 2005, Johns Hopkins University,02/07/2006 31 Applying the Rx-system on the Swedish National Drug Register Copyright 2005, Johns Hopkins University,02/07/2006 Background • Development of patient´s choice model in Sweden ”Vårdval” • Need of instruments to measure morbidity • Focus on cost of pharmaceuticals • Pharmacy data is collected nationally but at this stage not diagnosis set in Primary Care • Need of describe performance in Primary Care Copyright 2005, Johns Hopkins University,02/07/2006 32 Scope • Apply the JHU Rx-model on the Swedish National Drug Register (period 2006-2008) • Analyse and compare results between different county councils • Analyse if the drug use in the population can be used as an approximation for the need of care and as a tool to adjust the capitation payment system in the county councils Copyright 2005, Johns Hopkins University,02/07/2006 33 Project participants • • • • • • • Mona Heurgren, SoS Lisbeth Serdén, SoS Örjan Ericsson, SoS Andreas Johansson, Ensolution AB Fredrik Berns, Ensolution AB Karen Kinder, JHU Patricio Muñiz, JHU Copyright 2005, Johns Hopkins University,02/07/2006 34 Grouping results • 6,2 Mill. unique patients, 29 Mill. combinations of patients and used ATC-codes for each year • Periods 2006, 2007, 2008 • Annually 24-25 Bill. SEK in total cost • The grouping went well in practice Copyright 2005, Johns Hopkins University,02/07/2006 35 36 Analysis model Step 1 Actual pharmacy cost and predicted pharmacy cost per county council What is the cost level? Step 2 Actual costs per inhabitant and predicted cost per inhabitant per county council/municipality How is the difference in consumption? Step 3 Proportion of risk patients per municipality Does specific outliers influence the results? Step 4 SMRs for Major Rx-MGs per county council Does specific groups and practices influence the results? Step 5 Comparisons of specific Rx-MGs per county council Detailed comparison on practices and costs Copyright 2005, Johns Hopkins University,02/07/2006 Actual pharmacy cost and predicted pharmacy cost per county council Step 1 Actual 2008 2008Pharmacy Cost Variation in Pharmacy Prediction Using predicted costs and County council Expense Unscaled PRI actual for 2008 5 303 647 178 Stockholm 5 139 988 335 1,03 847 118 520 Uppsala 864 249 195 0,98 705 655 420 Södermanland 703 511 857 1,00 1 027 450 358 Östergötland 1 139 305 741 0,90 898 536 388 Jönköping 895 076 767 1,00 504 075 321 Kronoberg 487 266 166 1,03 618 074 215 Kalmar 637 789 791 0,97 152 748 364 Gotland 150 180 671 1,02 393 225 987 Blekinge 398 831 013 0,99 3 538 233 088 Skåne 3 267 557 141 1,08 772 191 846 Halland 781 341 882 0,99 4 049 344 382 Västra Götaland 4 209 239 410 0,96 800 328 490 Värmland 749 962 928 1,07 701 933 901 Örebro 758 137 722 0,93 707 962 041 Västmanland 672 419 683 1,05 773 043 612 Dalarna 739 503 341 1,05 744 218 130 Gävleborg 745 912 033 1,00 696 730 564 Västernorrland 651 852 324 1,07 318 765 227 Jämtland 352 880 219 0,90 737 689 835 Västerbotten 692 121 750 1,07 756 503 275 Norrbotten 678 160 685 1,12 25 105 554 100 24 820 166 508 1,01 PRI = Prognostiserad Resurs Index Unscaled PRI, PRI i absoluta tal Copyright 2005, Johns Hopkins University,02/07/2006 37 Actual pharmacy cost and predicted pharmacy cost per county council Step 2 Actual costs per inhabitant and predicted cost per inhabitant per county council/municipality Step 3 Proportion of risk patients per municipality Step 4 SMRs for Major Rx-MGs per county council Step 5 Comparisons of specific Rx-MGs per county council Actual pharmacy cost per inhabitant per inhabitant and county council Step 1 Actual 2006 Actual 2007 Actual 2008 Pharmacy Pharmacy Pharmacy County council Expense Expense Expense Stockholm 2481 2594 2761 Uppsala 2397 2516 2627 Södermanland 2438 2569 2652 Östergötland 2266 2358 2443 Jönköping 2514 2614 2688 Kronoberg 2551 2666 2782 Kalmar 2469 2516 2609 Gotland 2411 2487 2642 Blekinge 2312 2449 2571 Skåne 2743 2823 2966 Halland 2431 2540 2648 Västra Götaland 2481 2536 2613 Värmland 2768 2842 2879 Örebro 2334 2400 2523 Västmanland 2551 2657 2815 Dalarna 2513 2646 2761 Gävleborg 2538 2616 2667 Västernorrland 2631 2753 2827 Jämtland 2509 2485 2470 Västerbotten 2670 2793 2828 Norrbotten 2806 2918 2954 Copyright 2005, Johns Hopkins University,02/07/2006 38 Actual pharmacy cost and predicted pharmacy cost per county council Step 2 Actual costs per inhabitant and predicted cost per inhabitant per county council/municipality Step 3 Proportion of risk patients per municipality Step 4 SMRs for Major Rx-MGs per county council Step 5 Comparisons of specific Rx-MGs per county council Comparison in predictive resource usage per county council Step 1 Rescaled Rescaled Rescaled Pharmacy PRI Pharmacy PRI Pharmacy PRI County council (2006) (2007) (2008) Stockholm 0,97 0,98 0,99 Uppsala 0,94 0,95 0,95 Södermanland 1,00 1,01 1,00 Östergötland 0,94 0,94 0,93 Jönköping 0,99 0,99 0,98 Kronoberg 1,05 1,05 1,05 Kalmar 0,99 0,99 0,98 Gotland 0,97 0,98 0,99 Blekinge 0,97 0,99 1,00 Skåne 1,05 1,04 1,04 Halland 0,99 0,99 0,98 Västra Götaland 1,00 1,00 0,99 Värmland 1,09 1,08 1,07 Örebro 0,99 0,98 0,99 Västmanland 1,01 1,01 1,02 Dalarna 1,02 1,03 1,02 Gävleborg 1,01 1,02 1,00 Västernorrland 1,02 1,03 1,02 Jämtland 1,00 0,98 0,96 Västerbotten 1,02 1,03 1,00 Norrbotten 1,05 1,06 1,04 PRI = Prognostiserad Resurs Index Rescaled PRI, PRI i relativa tal Copyright 2005, Johns Hopkins University,02/07/2006 39 Actual pharmacy cost and predicted pharmacy cost per county council Step 2 Actual costs per inhabitant and predicted cost per inhabitant per county council/municipality Step 3 Proportion of risk patients per municipality Step 4 SMRs for Major Rx-MGs per county council Step 5 Comparisons of specific Rx-MGs per county council Pharmacy cost per inhabitant as a comparison between the municipalities 2006 Copyright 2005, Johns Hopkins University,02/07/2006 2007 Actual pharmacy cost and predicted pharmacy cost per county council Step 1 Step 2 Actual costs per inhabitant and predicted cost per inhabitant per county council/municipality Step 3 Proportion of risk patients per municipality Step 4 SMRs for Major Rx-MGs per county council Step 5 Comparisons of specific Rx-MGs per county council 2008 40 Predicted change in pharmacy cost 2006-2008 as a comparison between the municipalities Step 1 Actual pharmacy cost and predicted pharmacy cost per county council Step 2 Actual costs per inhabitant and predicted cost per inhabitant per county council/municipality Step 3 Proportion of risk patients per municipality Step 4 SMRs for Major Rx-MGs per county council Step 5 Comparisons of specific Rx-MGs per county council 41 0,00 – 0,90 0,90 – 1,65 1,65 – 2,00 Verklig kostnad – kostnadsökning / minskning mellan 2007 och 2008 Copyright 2005, Johns Hopkins University,02/07/2006 Beräknad kostnad – baserad på predicerad kostnadsökning på 2007 års Unscaled PRI Difference between actual change in cost and calculated change in cost – 0,2 - 0,2 till +0,2 +0,2 Copyright 2005, Johns Hopkins University,02/07/2006 42 Step 1 Analysing risk patients Actual pharmacy cost and predicted pharmacy cost per county council Step 2 Actual costs per inhabitant and predicted cost per inhabitant per county council/municipality Step 3 Proportion of risk patients per municipality Step 4 SMRs for Major Rx-MGs per county council Step 5 Comparisons of specific Rx-MGs per county council 43 Comparsion of municipalities for % of patients with a Probability to Have High Pharmacy > 0,8 (Period 2008) 0,07 0,06 0,05 0,04 0,03 0,02 0,01 0 1 13 25 37 49 61 73 85 97 109 121 133 145 157 169 181 193 205 217 229 241 253 265 277 289 Probability > 0,8 = % av patienten som har en sannolikhet över 80% att vara riskpatienter för läkemedelskostnader under kommande period Copyright 2005, Johns Hopkins University,02/07/2006 Analysing risk patients on municipality level. Example from Kronoberg and Jönköping Step 1 ANEBY GNOSJÖ MULLSJÖ HABO GISLAVED VAGGERYD JÖNKÖPING NÄSSJÖ VÄRNAMO SÄVSJÖ VETLANDA EKSJÖ TRANÅS UPPVIDINGE LESSEBO TINGSRYD ALVESTA ÄLMHULT MARKARYD VÄXJÖ LJUNGBY HÖGSBY % with a Probability to Have % with a Probability to High Total Expense > 0,8 Have High Pharmacy > 0,8 (2008) (2008) 5,18% 4,60% 4,75% 4,04% 4,91% 4,47% 4,43% 3,89% 4,97% 4,69% 4,79% 4,20% 4,97% 4,78% 5,49% 5,50% 5,04% 4,70% 5,18% 4,75% 5,22% 4,88% 5,46% 5,26% 5,49% 5,38% 5,85% 5,83% 5,95% 6,16% 6,04% 5,96% 5,38% 5,34% 5,17% 4,90% 5,45% 5,28% 5,11% 5,04% 5,41% 5,09% 5,36% 4,75% Actual pharmacy cost and predicted pharmacy cost per county council Step 2 Actual costs per inhabitant and predicted cost per inhabitant per county council/municipality Step 3 Proportion of risk patients per municipality Step 4 SMRs for Major Rx-MGs per county council Step 5 Comparisons of specific Rx-MGs per county council Probability > 0,8 = % av patienten som har en sannolikhet över 80% att vara riskpatienter för läkemedelskostnader respektive totalkostnad under kommande period Copyright 2005, Johns Hopkins University,02/07/2006 44 Step 1 SMR by Major Rx-MG per county council 2008 Major Rx-MG ALL CAR EAR END EYE FRE GAS GSI GUR HEM INF MAL MUS NUR PSY RES SKN TOX ZZZ Age/Sex Expected/1000 Major Rx-MG Name Allergy/Immunology Cardiovascular Ears, Nose, Throat Endocrine Eye Female Reproductive Gastrointestinal/Hepatic General Signs and Symptoms Genito-Urinary Hematologic Infections Malignancies Musculoskeletal Neurologic Psychosocial Respiratory Skin Toxic Effects/Adverse Effects Other and Non-Specific Medications Actual pharmacy cost and predicted pharmacy cost per county council Step 2 Actual costs per inhabitant and predicted cost per inhabitant per county council/municipality Step 3 Proportion of risk patients per municipality Step 4 SMRs for Major Rx-MGs per county council Step 5 Comparisons of specific Rx-MGs per county council 45 19 Västmanland 20 Dalarna 21 Gävleborg 22 Västernorrland 23 Jämtland 24 Västerbotten 25 Norrbotten 132,18 133,56 133,62 133,69 133,38 130,98 133,03 220,84 234,94 233,43 235,31 233,92 213,09 227,93 5,67 5,78 5,78 5,79 5,75 5,57 5,77 116,87 122,58 122,25 122,95 121,43 112,56 119,84 74,82 77,18 76,79 77,24 77,31 73,40 74,98 70,38 66,21 67,49 66,64 68,30 75,13 67,00 127,89 133,63 133,01 133,64 133,61 124,66 129,86 216,12 222,77 222,49 222,96 222,66 212,03 219,41 32,90 35,17 34,93 35,26 35,12 32,01 34,54 3,65 3,70 3,70 3,68 3,72 3,62 3,69 266,66 267,56 267,74 268,35 267,92 265,30 266,09 13,56 14,33 14,25 14,34 14,30 13,19 13,96 10,42 11,18 11,07 11,16 11,21 10,10 10,72 39,77 41,16 41,06 41,13 41,17 38,95 40,35 148,21 154,02 153,50 153,87 154,01 144,73 150,02 159,62 161,16 161,11 161,76 160,94 157,36 160,05 108,45 110,16 110,08 110,33 110,23 107,76 109,17 0,05 0,05 0,05 0,05 0,05 0,04 0,05 157,86 164,08 163,12 163,84 164,19 154,53 158,87 SMR, Standard Morbidity Rate = Antal förväntade patienter per Major Rx-MG grupp per 1000 invånare Major Rx-MG grupp = Sjukdomsgrupper baserade på läkemedelskonsumtion Copyright 2005, Johns Hopkins University,02/07/2006 Step 1 SMR by Major Rx-MG per county council 2008 Major Rx-MG ALL CAR EAR END EYE FRE GAS GSI GUR HEM INF MAL MUS NUR PSY RES SKN TOX ZZZ Age/Sex Expected/1000 Major Rx-MG Name Allergy/Immunology Cardiovascular Ears, Nose, Throat Endocrine Eye Female Reproductive Gastrointestinal/Hepatic General Signs and Symptoms Genito-Urinary Hematologic Infections Malignancies Musculoskeletal Neurologic Psychosocial Respiratory Skin Toxic Effects/Adverse Effects Other and Non-Specific Medications Actual pharmacy cost and predicted pharmacy cost per county council Step 2 Actual costs per inhabitant and predicted cost per inhabitant per county council/municipality Step 3 Proportion of risk patients per municipality Step 4 SMRs for Major Rx-MGs per county council Step 5 Comparisons of specific Rx-MGs per county council 46 01 Stockholm 03 Uppsala 04 Södermanland 05 Östergötland 06 Jönköping 07 Kronoberg 128,61 129,29 132,62 130,87 131,02 131,69 184,31 193,95 225,06 212,25 216,12 221,09 5,36 5,44 5,71 5,56 5,58 5,62 101,27 104,78 118,73 112,41 113,78 115,43 69,17 70,19 75,46 73,75 74,95 75,42 81,33 79,92 68,41 73,12 70,83 71,04 113,95 117,19 129,40 124,75 126,32 128,33 200,20 203,46 217,73 211,90 212,71 215,69 26,79 28,84 33,62 31,53 32,09 33,24 3,64 3,63 3,67 3,62 3,61 3,64 264,55 264,42 267,32 265,46 266,25 266,64 11,56 12,12 13,76 13,10 13,34 13,65 8,52 9,07 10,61 10,07 10,31 10,61 36,63 37,27 40,11 38,97 39,24 39,79 134,83 137,50 149,55 145,11 146,27 148,37 155,85 155,94 160,73 157,80 159,11 159,27 104,07 105,33 108,92 107,44 107,80 108,59 0,04 0,04 0,05 0,04 0,04 0,05 142,71 146,36 159,47 154,85 157,37 158,81 SMR, Standard Morbidity Rate = Antal förväntade patienter per Major Rx-MG grupp per 1000 invånare Major Rx-MG grupp = Sjukdomsgrupper baserade på läkemedelskonsumtion Copyright 2005, Johns Hopkins University,02/07/2006 Step 1 SMR by Major Rx-MG per county council 2008 Major Rx-MG ALL CAR EAR END EYE FRE GAS GSI GUR HEM INF MAL MUS NUR PSY RES SKN TOX ZZZ Age/Sex Expected/1000 Major Rx-MG Name Allergy/Immunology Cardiovascular Ears, Nose, Throat Endocrine Eye Female Reproductive Gastrointestinal/Hepatic General Signs and Symptoms Genito-Urinary Hematologic Infections Malignancies Musculoskeletal Neurologic Psychosocial Respiratory Skin Toxic Effects/Adverse Effects Other and Non-Specific Medications Actual pharmacy cost and predicted pharmacy cost per county council Step 2 Actual costs per inhabitant and predicted cost per inhabitant per county council/municipality Step 3 Proportion of risk patients per municipality Step 4 SMRs for Major Rx-MGs per county council Step 5 Comparisons of specific Rx-MGs per county council 47 08 Kalmar 09 Gotland 10 Blekinge 12 Skåne 13 Halland 14 Västra Götaland 17 Värmland 18 Örebro 133,93 133,02 133,12 131,09 131,44 130,52 133,64 132,03 237,50 225,66 231,88 210,46 216,07 206,79 234,32 220,34 5,80 5,74 5,74 5,55 5,62 5,52 5,77 5,64 123,72 119,24 121,09 112,06 114,09 109,94 122,56 116,43 77,72 75,15 76,77 73,60 74,42 72,89 77,26 75,14 67,10 69,56 66,76 75,98 70,32 75,72 67,81 72,22 134,88 129,93 132,29 124,37 125,92 122,75 133,63 128,18 224,22 219,22 221,04 211,75 212,72 209,80 222,89 216,02 35,56 33,58 34,89 31,11 32,40 30,72 34,96 32,64 3,71 3,77 3,64 3,66 3,67 3,66 3,70 3,65 268,17 266,30 267,69 266,64 266,84 265,47 267,91 267,19 14,49 13,82 14,19 13,02 13,38 12,84 14,35 13,53 11,33 10,63 11,04 9,94 10,25 9,80 11,16 10,44 41,42 40,46 40,70 38,94 39,24 38,60 41,20 39,80 155,25 150,74 152,33 144,86 145,69 143,22 154,15 148,62 161,35 159,65 160,97 158,28 160,08 157,44 160,96 159,39 110,67 109,03 109,91 107,49 107,78 106,84 110,25 108,57 0,05 0,05 0,05 0,04 0,04 0,04 0,05 0,05 165,55 159,87 162,32 154,43 156,30 152,63 164,09 158,55 SMR, Standard Morbidity Rate = Antal förväntade patienter per Major Rx-MG grupp per 1000 invånare Major Rx-MG grupp = Sjukdomsgrupper baserade på läkemedelskonsumtion Copyright 2005, Johns Hopkins University,02/07/2006 Step 1 Comparsion between Rx-MGs Number of cases per 1000 inhabitants for two selected Rx-MG groups (2007) Norrbotten Västerbotten Jämtland Västernorrland Gävleborg Dalarna Västmanland Örebro Värmland Västra Götaland Halland Skåne Blekinge Gotland Kalmar Kronoberg Jönköping Östergötland Södermanland Uppsala Stockholm 0,0 50,0 100,0 150,0 Cardiovascular / High Blood Pressure Copyright 2005, Johns Hopkins University,02/07/2006 200,0 250,0 Endocrine / Diabetes With Insulin 300,0 Actual pharmacy cost and predicted pharmacy cost per county council Step 2 Actual costs per inhabitant and predicted cost per inhabitant per county council/municipality Step 3 Proportion of risk patients per municipality Step 4 SMRs for Major Rx-MGs per county council Step 5 Comparisons of specific Rx-MGs per county council 48 Conclusions 49 • The Rx-model works well for Swedish data • The model provides an large amount of data for analysis and usage in practice • The model provides functionality for also predicting change in total cost • Specific analysis for measuring costs for high risk patients • Measures generated from the system could i.e. be used in open comparisions (öppna jämförelser) • More analysis with diagnosis and cost data on county council level still needed to prove if Rx-MG can be a useful tool for resource allocation in a capitation model • The combined models (Rx-PM + Dx-PM) with diagnoses and pharmacy data is recommended to use • Pharmacy data alone has an higher explanatory value than age and gender but still low in comparsion with combined models Copyright 2005, Johns Hopkins University,02/07/2006 Opportunities for Learning and Interaction Regarding ACGs • Web Site: – www.acg.jhsph.edu – www.ensolution.se • Contact: Dr. Karen Kinder Siemens – Director, International ACG [email protected] Andreas Johansson, Ensolution AB [email protected], Mbl 0709-900030 • More information in the Ensolution stand Copyright 2005, Johns Hopkins University,02/07/2006 50
© Copyright 2025