SUN RGB-D: A RGB-D Scene Understanding Benchmark Suite Shuran Song Motivation Samuel P. Lichtenberg Example Scenes Jianxiong Xiao Data Capturing RGB-D (39.0) PLACESCNN + RBF kernel Acknowledgement This work is supported by gift funds from Intel. 3. Side 4. Front 3. Side 4. Front Kinect v2 3D annotaion dining room 2D segmentation 3750 Manhattan Box (0.99) Convex Hull (0.90) Geometric Context (0.27) Ground Truth Manhattan Box (0.811) Convex Hull (0.85) Geometric Context (0.57) Manhattan Box (0.72) Convex Hull (0.43) Room Layout Estimation bathroom 5000 RGB-D (23.0) Ground Truth Ground Truth bathtub Examples of 2D and 3D Annotation 17712 D (20.1) bed bookshelf box chair counter desk door dresser garbage bin lamp monitor night stand Geometric Context (0.61) pillow sink sofa table tv toilet Ground truth Kinect v1 3D annotaion office Asus Xtion 2D segmentation RGB (19.7) Semantic Segmentation (a) object distribution (b) scene distribution Kinect v2 SUN3D (ASUS Xtion) Intel RealSense NYUv2 (Kinect v1) 2500 bathroom(6.4%) others(8.0%) office (11.0%) 0 IoU: 77.0 Rr: 0.25 Rg: 0.25 Pg: 0.5 IoU 63.9 Rr: 0.333 Rg: 0.667 Pg:1 IoU: 53.1 Rr: 0.111 Rg : 0.111 Pg: 0.5 IoU:60 Rr: 0.50 Rg : 0.0.50 Pg: 0.5 IoU: 53.1 Rr: 0.333 Rg: 0.333 Pg: 0.125 IoU: 78.8 Rr: 1 Rg: 1 Pg: 0.5 IoU: 57.3 Rr :0.33 Rg: 0.667 Pg:0.125 IoU 50.7 Rr: 0.333 Rg: 0.333 Pg : 0.375 IoU: 54.6 Rr : 0.333 Rg : 0.333 Pg: 0.125 rest space(6.3%) classroom (9.3%) 1250 Total Scene Understanding IoU 72.9 Rr: 0.333 Rg: 0.667 Pg: 0.667 Sliding Shapes [NYU] Indoor Segmentation and Support Inference from RGBD Images. N. Silberman, P. Kohli, D. Hoiem and R. Fergus. In ECCV, 2012. [SUN3D] SUN3D: A database of big spaces reconstructed using SfM and object labels. J. Xiao, A. Owens, and A. Torralba. In ICCV, 2013. [B3DO] A category-level 3-d object dataset: Putting the kinect to work. A. Janoch, S. Karayev, Y. Jia, J. T. Barron, M. Fritz, K. Saenko, and T. Darrell. In ICCV Workshop, 2011. 2. Top furniture store (11.3%) Statistics of Semantic Annotation living room(6.0%) kitchen(5.6%) corridor(3.8%) lab(3.0%) conference room(2.6%) dining area(2.4%) dining room(2.3%) discussion area(2.0%) home office(1.9%) study space(1.9%) library(1.4%) lecture theatre(1.2%) computer room(1.0%) bedroom(12.6%) Effective free space Outside the room Inside some objects Beyond cutoff distance 3D RCNN References 1. Image kitchen SUN RGB-D color 9,+% :33.%;1<3=0% Intel Realsense raw depth )*%+,-.,/0123/% )*%+,-.,/0123/% '*%456,70% rest space Annotation Tool for 3D Object and 3D Room Layout Xtion Kinect v1 Kinect v2 0.5 4 4.5 7.1× 1.4× 2 11× 2.3× 2.7 9.8× 2.7× 2.7 2.5W USB 12.96W 115W 640× 480 640× 480 512× 424 640× 480 640× 480 1920× 1080 GIST + RBF kernel kitchen lab lecture theatre library living room Kinect v2 and Battery Capturing Setup RealSense weight (pound) 0.077 size (inch) 5.2× 0.25× 0.75 power 2.5W USB depth resolution 628× 468 color resolution 1920× 1080 refined depth :;<&=($ >446(?@64$ 2. Top ch a ta ir b de le pi sk llo w so fa be d ga ca bo rb bi x ag ne e t b so la in fa mp ch ai r m she on lf dr ito aw r fra er m sid s e e ink ta b pa le pe r tra ni sh tv gh c t s an ta n bo d bo d ok o o co k sh or m el p f dr ute es r cu ser rta to in ile ra t c ki k tc e b k he yb ag n oa ca rd bi n co ffe c et e pu t w f abl hi ri e te dg bo e di p ard ni rin ng t ta er b st le o bo ol t to tle w e cu l ha co ng p pla p m in ain nt pu g ti te cab ng r m in on et ito un mir r kn ror o la wn p st ee b top l c oa ab rd in e tra t ov y be en cl nch ot he bo s ki c w tc oo l ca hen ke rto to r n ol bo x ,#!$-./01$ !&"''(% #% bathroom bedroom classroom computer room conference room corridor dining area dining room discussion area furniture store 3D Object Detection and Pose Estimation 1. Image RGB-D Sensors raw points ,23&$ ,&4567$89'&$ !"#$%&'()$*+$ !"##$% !% RealSense Annotation bedroom SUN3D refined points B3DO We introduce SUN RGB-D, a Pascal-scale RGB-D scene understanding dataset, which has 2D and 3D annotation for both objects and rooms. :;<&=($A65&$ 83/,% -66B$>446(?@64$ 83/,% D (27.7) kitchen lab lecture theatre library living room Scene Classification conference room classroom LSUN 10,195,373 home office ImageNet 131,067 log10 Another problem of existing RGB-D datasets is that most of them are only labeled in 2D. NYU depth V2 RGB (38.1) rest space RGB datasets PASCAL VOC 11,530 bathroom bedroom classroom computer room conference room corridor dining area dining room discussion area furniture store home office SUNRGBD 10,335 NYU 1,449 Benchmark Tasks Example Objects RGB-D sensors have also enabled rapid progress for scene understanding. However, the small dataset size has become a major bottleneck. RGB-D Data & Code: http://rgbd.cs.princeton.edu # matched pairs with a correct category label Precision = # prediction boxes Recall Free Space IoU = # matched pairs with a correct category label # ground truth boxes Precision Recall for all objects
© Copyright 2024