OnePage

One Page Thermodynamics Alex Yanjun Hao At thermodynamic equilibrium 𝜐! πœ‡! = 0 Perfect gas !
πœ‡ = πœ‡ βˆ˜βˆ— + 𝑅𝑇𝑙𝑛(𝑃) πœ‡ is chemical potential for the pure gas (denoted by *), at unit pressure P=1 atm (denoted by °), (it’s written as πœ‡ ∘ in the textbook); πœ‡ βˆ˜βˆ— is a function of T, πœ‡ βˆ˜βˆ— = 𝑓(𝑇). Perfect gas mixture πœ‡! = πœ‡!βˆ˜βˆ— + 𝑅𝑇𝑙𝑛(𝑃! ) πœ‡!βˆ˜βˆ— pure i, unit P; f(T). Imperfect gas πœ‡ = πœ‡ βˆ˜βˆ— + 𝑅𝑇𝑙𝑛(𝑓) πœ‡ βˆ˜βˆ— pure, unit P; f(T); fugacity coefficient πœ’ = 𝑓/𝑝 β†’ 1 π‘Žπ‘  𝑝 β†’ 0 . Imperfect gas mixture πœ‡! = πœ‡!βˆ˜βˆ— + 𝑅𝑇𝑙𝑛(𝑓! ) πœ‡!βˆ˜βˆ— pure i, unit P; f(T); 𝑓! /𝑝! β†’ 1 π‘Žπ‘  𝑝 β†’ 0 Ideal solution (gas, liquid, solid) πœ‡! = πœ‡!βˆ— + 𝑅𝑇𝑙𝑛(𝑋! ) πœ‡!βˆ— pure i, arbitrary P; f(T,P). Non-­β€ideal solution (gas, liquid, solid) πœ‡! = πœ‡!βˆ— + 𝑅𝑇𝑙𝑛(π‘Ž! ) πœ‡!βˆ— pure i, arbitrary P; f(T,P); activity π‘Ž! = 𝛾! 𝑋! Aqueous solution (electrolyte) πœ‡! = πœ‡!☐ + 𝑅𝑇𝑙𝑛(π‘Ž! ) ☐
πœ‡! chemical potential of hypothetical ideal solution of unit molality, arbitrary P; f(T,P); activity π‘Ž! = 𝛾! π‘š! ; activity coefficient of j: log!! 𝛾! = βˆ’π›Όπ‘!! 𝐼 ; ionic strength 𝐼 =
βˆ˜βˆ—
!
βˆ’
π‘š! 𝑍!! (sum of all ions); equilibrium !
constant 𝐾!" = π‘Ž! !! . Explain: πœ‡! = πœ‡!βˆ˜βˆ— + 𝑅𝑇𝑙𝑛(𝑋! 𝑃) = πœ‡!βˆ˜βˆ— + 𝑅𝑇𝑙𝑛(𝑃) + 𝑅𝑇𝑙𝑛(𝑋! ) = πœ‡!βˆ— + 𝑅𝑇𝑙𝑛(𝑋! ) For standard state, πœ‡!βˆ— = πœ‡!βˆ˜βˆ— , pure i, unit P. For other state, πœ‡!βˆ— (𝑝) need to be converted to unit pressure value, πœ‡!βˆ˜βˆ— , via πœ‡ βˆ— = πœ‡ βˆ˜βˆ— + 𝑅𝑇𝑙𝑛(𝑃) for gas (or use f for imperfect gas); or πœ‡ βˆ— = πœ‡ βˆ˜βˆ— + 𝑉! (𝑃 βˆ’ 1) for liquid and solid, if V is assumed constant. If V is not constant, use compressibility 1 πœ•π‘‰
πœ… = βˆ’
𝑉 πœ•π‘ƒ ! !" !
(which gives 𝑉 = 𝑉! 𝑒 !!(!!!) in relation !"
= 𝑉) when deriving the P-­β€V relation. !" !
Now πœ‡ βˆ— = πœ‡ βˆ˜βˆ— βˆ’
𝑉! !!(!!!)
𝑒
βˆ’ 1 πœ…
All the πœ‡ βˆ˜βˆ— (pure, unit pressure) are functions of T, to get the chemical potential at reference temperature 𝑇! , use 𝑇
𝑇
°
°
°
βˆ†πΊ!"#
(𝑇) = βˆ†πΊ!"#
(𝑇! ) + βˆ†π»!"#
(𝑇! ) 1 βˆ’
𝑇!
𝑇!
°
where βˆ†π»!"#
(𝑇! ) is assumed to be constant in °
°
range [𝑇! , 𝑇]: βˆ†π»!"#
(𝑇! ) = βˆ†π»!"#
(𝑇) Derive: 𝐺
πœ•
𝑇 = βˆ’ 𝐻 πœ•π‘‡
𝑇!
!
!
𝐺
1
𝑑
= βˆ’π»
𝑑𝑇 𝑇
!!
!! 𝑇
𝐺(𝑇) 𝐺(𝑇! )
1 1
βˆ’
=𝐻
βˆ’
𝑇
𝑇!
𝑇 𝑇!
𝑇
𝑇
𝐺(𝑇) = 𝐺(𝑇! ) + 𝐻 1 βˆ’
𝑇!
𝑇!