References AW K. 1. Astrom and B. Wittenmark, Adaptive Control, Second Ed., Addison-Wesley, Reading, MA (1995). BDGPS G. 1. Balas, 1.C. Doyle, K. Glover, A. Packard, and R. Smith, u-Analysis and Synthesis Toolbox, The Math Works, Inc., Natick, MA (1991). Be E. T. Bell, Men ofMathematics, Simon and Schuster, New York (1937). BF A. E. Bryson and M. Frazier, "Smoothing for Linear and Nonlinear Dynamic Systems," Proc. Optimum System Synthesis Confi, U.S. Air Force Technical Report ASD-TDR63-119 (1%3). BH A. E. Bryson and W. E. Hall Jr., "Modal Methods in Optimal Control Synthesis," pp. 55-80, in Control and Dynamic Systems, Vol. 16 (Ed. C. T. Leondes), Academic Press (1980). BHo A. E. Bryson and Y. C. Ho, Applied Optimal Control, Blaisdell (1969). Bi G. 1. Bierman, Factorization Methods for Discrete Sequential Estimation, Academic Press, New York (1977). BJ A. E. Bryson and D. E. Johansen, "Linear Filtering for Time-Varying Systems Using Measurements ContainingColored Noise," IEEE TAC, AC-10, 4-10 (1965). " BK A. E. Bryson and W. Kortum, "Estimation of the Local Attitude of Orbiting Spacecraft," Automatica, 7, 163-180 (1971). BLP G. 1. Balas, R. Lind, and A. Packard, "Optimally Scaled Hoo Full Information Control Synthesis with Real Uncertainty," Jour. Guidance, Control, and Dynamics, 19,854-862 (1996). . BM A. E. Bryson and R. A. Mills, "Linear-Quadratic-Gaussian Controllers with Specified Robustness," Jour. Guidance, Control, and Dynamics, 21,11-18 (1998). Br1 A. E. Bryson, "New Concepts in Control Theory," Jour. Guidance, Control, and Dynamics, 8, 417-425 (1985). Br2 A. E. Bryson, Control ofSpacecraft and Aircraft. Princeton Univ. Press, Princeton (1994). Br3 A. E. Bryson, Dynamic Optimization, Addison Wesley Longman, Menlo Park, CA (1998). Bw 1. A. Breakwell, "Optimal Feedback Slewing of Flexible Spacecraft," Jour. Guidance and Control, 4, 472-479 (1981). Ca A. Carrier, "Modeling and Shape Control of a Segmented Mirror Telescope," Stanford Univ. Ph.D. Thesis, Dept. of Aero.lAstro. (1990). CB A. B. Cox and A. E. Bryson, "Identification by a Combined Smoothing Nonlinear Programming Algorithm," Automatica, lE, 689-694 (1980). 354 References Ch P. Y. Chu, "Control of Aircraft Under Severe Wind Shear Conditions," Stanford Univ. Ph.D. Thesis, Dept. of Aero./Astro. (19Rfl) Co A. B. Cox, "A Combined Smoothing-Identification Algorithm," Stanford Univ. Ph.D. Thesis, Dept. of Aero./Astro. (1979). DGKF 1. C. Doyle, K. Glover. P. P. Khargonekar, and B. A. Francis, "State Space Solutions to Standard H2 and Hoc Problems," IEEE Trans. Auto. Control, AC-34, 831-847 (1989). Do 1. C. Doyle, "Analysis of Feedback Systems with Structured Uncertainty," IEEE Proc., 129D,242-250 (1984). DS 1. C. Doyle and G. Stein, "Multivariable Feedback Design; Concepts for a Classical! Modern Synthesis," IEEE Trans. Auto. Control, AC-26, 1 (1981). ECB L. E. El Ghaoui, A. Carrier, and A. E. Bryson, "Linear Quadratic Minimax Controllers," Jour. Guidance, Control, and Dynamics, 15,953-961 (1992). EG L. E. El Ghaoui, "Robustness of Linear Systems to Parameter Variations," Stanford Univ. Ph.D. Thesis, Dept. of Aero./Astro. (1990). EIG L. E. El Ghaoui and A. E. Bryson, "Worst Parameter Changes for Stabilized Conservative Systems," Proc. AIAA Guidance, Navigation. and Control Con]; New Orleans (1991). Fe W. Feller, An Introduction to Probability Theory and Its Applications, Second Ed., Wiley, New York, 1957. FP D. C. Fraser and 1. E. Potter, "The Optimum Linear Smoother as a Combination of Two Optimum Linear Filters," IEEE Trans. Auto. Control, AC-14, 387-390 (1969). FPs M. Fischer and M. L. Psiaki, "Robustified Control Design by an Approximate MinMax Technique," AIAA Guidance, Navigation, and Control Conf., Monterey, CA (1993). FPW G. F. Franklin, J. D. Powell, and M. L. Workman, Digital Control of Dynamic Systems, Third Ed., Addison-Wesley. Reading, MA (1998). Fr 1. G. F. Francis, "The (JR Transformation, Parts I and II," Comput. Jour., 4, 265-271 (1961); 5, 332-345 (1962~. Ga Ban Y. Gazit, Personal Communication, 1995. GA M. S. Grewal and A. P. Andrews, Kalman Filtering: Theory and Practice, Prentice-Hall (1993). OF T. F. Gunckel and G. F. Franklin, "A General Solution for Linear Sampled Data Control Systems," Trans. ASME, 85D, 197 (1963). GH N. K. Gupta and W. H. Hall, "Input Design for Identification of Aircraft Stability and Control Derivatives," NASA CR-2493 (1975). GLLT A. Grace, A. 1. Laub, 1. N. Little, and C. M. Thompson, Control System Toolbox, The Mathworks Inc., Natick, MA (1992). Gr A. Grace, MATLAB Optimization Toolbox, The MathWorks, Inc., Natick, MA (1992). Ha W. E. Hall Jr., "Optimal Control and Filter Synthesis by Eigenvector Decomposition," Stanford Univ. Ph.D. Thesis, Dept. of Aero./Astro., Report No. 436 (1971). HB W. E. Holley and A. E. Bryson, "Wind Modelling and Lateral Control for Automatic Landing," Jour. Spacecraft and Aircraft, 14,65-72 (1977). HBB Y. C. Ho, A. E. Bryson, and S. Baron, "Differential Games and Optimal Pursuit-Evasion Strategies," IEEE Trans. Auto. Control, 10,385-389 (1965). He L. 1. Henrickson, "Sequentially Correlated Measurement Noise with Application to Inertial Navigation," Jour. Spacecraft & Rockets, 5 (1968). HJ R. K. Heffley and W. F. Jewell, "Aircraft Handling Qualities Data," Systems Technology Inc. Technical Report 1004-1, Hawthorne CA (1972). HJLV R. K. Heffley, W. F. Jewell, 1. M. Lehman, and R. A. Van Winkle, "A Compilation and Analysis of Helicopter Handling Qualities Data," NASA Contractor Report 3144 (1979). Id M. Idan, "An Identification Algorithm Based on Smoothing," Stanford Univ. Ph.D. Thesis, Dept. of Aero./Astro. (1990). Is R. Isaacs, Differential Games, Wiley, New York (1965). 355 356 References Ja D. H. Jacobson, "Optimal Stochastic Linear Systems with Exponential Performance Criteria and Their Relation to Deterministic Differential Games," Trans. IEEE, AC-18, 124-131 (1973). JB M. K. Juge and A. E. Bryson, "Linear-Quadratic Worst-Case Control," Jour. Guidance, Control, and Dynamics, 21, 761-766 (1998). Ka1 R. E. Kalman, "Contributions to the Theory of Optimal Control," Bal. Soc. Math. Mexicana, p. 102 (1960). Ka2 R. E. Kalman, "A New Approach to Linear Filtering and Prediction Problems," Trans. ASME, 83D, 95 (1962). Ka3 R. E. Kalman, "The Calculus of Variations and Optimal Control Theory;' Chapter 16 in Mathematical Optimization Techniques, R. Bellman (Ed.), Univ. of California Press, Berkeley (1963). KB R. E. Kalman and R. Bucy, "New Results in Linear Filtering and Prediction," Trans. ASME, 83D, 95 (1961). KE R. E. Kalman and T. Englar, "The Automatic Synthesis Program," NASA Contractor Report CR-475 (1966). Km P. G. Kaminski, "Square-Root Filtering and Smoothing for Discrete Processes;' Stanford Univ. Ph.D. Thesis, Dept. Aero./Astro. (1971). KS H. Kwakernaak and R. Sivan, Linear Optimal Control Systems, Wiley-Interscience, New York (1972). KSH T. Kailath, A. H. Sayed, and B. Hassibi, Linear Estimation, Prentice-Hall, Upper Saddle River, NJ (2000). LCB U. L. Ly,R. H. Cannon, and A. E. Bryson, "Design of Low-Order Compensators Using Parameter Optimization," Automatica, 21, 315-318 (1985). Lj L. Ljung, System Identification - Theory for the User, Second Ed., Prentice-Hall, Englewood Cliffs, NJ (1999). Ly U. L. Ly,"A Design Algorithm for Robust Low-Order Controllers," Stanford Univ. Ph.D. Thesis, Dept. of Aero.lAstro., Report 536 (1982). MAG D. McRuer, I. Ashkenas, and D. Graham, Aircraft Dynamics and Automatic Control, Section 5-10. Princeton Univ. Press (1973). Mal R. E. Maine and K. W. Iliff, "User's Manual for MMLE3, a Code for Parameter Estimation;' NASA Tech. Paper 1690(1981). McR S. R. McReynolds, "The Successive Sweep Method and Dynamic Programming;' Jour. Math. Anal. & Appl., 19,565 (1967). . Me 1. S. Meditch, "A Survey of Data Smoothing for Linear and Nonlinear Dynamic Systems;' Automatica, 9, 151-162 (1973). MF A. G. 1. Macfarlane, "An Eigenvector Solution of the Linear Optimal Control Problem," Jour: Elect. & Control, 14,643-654 (1963). . Mil G. W. Milne, "Identification of a Dynamic Model of a Helicopter from Flight Tests," Stanford Univ. Ph.D. Thesis, Dept. of Elec. Engr. (1986). Mi2 G. W. Milne, "User's Guide for State-Space Identification Tool for Use with MATLAB;' The Mathworks Inc., Sherborn. MA (1988). Mis D. Mishne, "On-Line Parameter Estimation Using a High Sensitivity Estimator;' Stanford Univ. Ph.D. Thesis, Dept. Aero.lAstro. (1978). MI R. A. Mills, "Parameter-Robust Controller and Estimator Design Using Minimax Methods." Stanford Univ. Ph.D. Thesis, Dept. Aero.lAstro. (1992). MR A. B. Markov and L. D. Reid, "Conflict of Interest Modeling in Aircraft Response Study;' Jour. Aircraft, 19 (1982). MS C. Moler and G. W. Stewart, "An Algorithm for the Generalized Matrix Eigenvalue Problem." SIAM J. Numer. Anal., 10,2, pp. 241-256. Pe I. R. Petersen, "Disturbance Attenuation and H-Infinity Optimizatiun: A Design Method Based on the Algebraic Riccati Equation," Trans. IEEE, AC-32, 427-429 (1987). References Pet H. Petroski, To Engineer is Human - the Role of Failure in Successful Design, Vintage Books Edition, Random House, New York (1992). Pp A. Papoulis, Probability, Random Variables, and Stochastic Processes, Second Ed., McGraw-Hili (1984). Po 1. E. Potter, "Matrix Quadratic Solutions." SIAM 1. Appl. Math., 14,496-501 (1966). Pu C. R. Purvis, "Design and Test of a Simplified Control System for a Transport Helicopter," Stanford Univ. Ph.D. Thesis, Dept. Aero.lAstro. (1992). Re D. B. Reid, "Optimal Inputs for System Identification," Stanford Univ Ph.D. Thesis, Dept. Aero.lAstro. (1972). RS I. Rhee and 1. L. Speyer, "A Game Theoretic Controller and Its Relationship to Hoc and Linear-Exponential-Gaussian Synthesis," IEEE Trans. Auto. Control, AC-16(1991). RTS H. E. Rauch, F. Tung, and C. T. Striebel, "Maximum Likelihood Estimates of Linear Dynamic Systems," AlAA Journal, 3,1445-1450 (1965). RZAFB C. F. Runge, F. E. Zajac, 1. H. 1. Allum, D. W. Fisher, and A. E. BrysonlTheory, "Estimating Joint Torques from Kinesiological Data Using Optimal Linear System. IEEE Trans. on Biomedical Engineering, 42:12,1158-1164 (1995). Sc E. Schmitz, "Experiments on the End-Point Position Control of a Very Flexible One-Link Manipulator," Ph.D. Thesis Stanford Univ., 1995. SDJ 1. L. Speyer, 1. Deyst, and D. H. Jacobson, "Optimization of Stochastic Linear Systems with Additive Measurement and Process Noise Using Exponential Performance Criteria," Trans. IEEE, AC-19, 358-366 (1974). Si H. A. Simon, "Dynamic Programming under Uncertainty with a Quadratic Cnterion Function," Econometrica, 24, 74-81 (1950). SI Special Issue of Jour. Guidance, Control, and Dynamics, 15 (1992). TB T. L. Trankle and A. E. Bryson, "Control Logic to Track Outputs of a Command Generator," Jour. Guidance. Control and Dynamics, 1, 130-135 (1978). Te G. L. Teper, 'Aircraft Stability and Control Data," Systems Technology Inc. Tech. Report 176-1, Hawthorne, CA (1969). Ti M. B.Tischler, "Frequency-Response Identification of XV-IS Tilt-Rotor Dynamics," NASA Tech. Memo. 89428 (1927). TY S. Timoshenko and D. H. Young, Advanced Dynamics, McGraw-Hill, New York (1948). Va D. R. Vaughan, "A Nonrecursive Algebraic Solution for the Discrete Riccati Equation," IEEE Trans. Auto. Control, 15,5 (1970). VL C. F. Van Loan, "Computing Integrals Involving the Matrix Exponential," IEEE Trans. Auto. Control, AC-23, 3 (1978). Wa N. Wax(Ed.), Collected Papers on Noiseand Stochastic Processes,Dover, NewYork (1954). Whl P. Whittle, "Risk-Sensitive Linear-Quadratic-Gaussian Control," Adv. Appl. Prob., 13, 764-777 (1981). Wh2 P. Whittle, Risk-Sensitive Optimal Control, Wiley, Chichester (1990). Wi N. Wiener, The Interpolation and Smoothing of Stationary Time Series, MIT Press, Cambridge, MA (1949). WMP 1. H. Wilkinson, R. S. Martin, and G. Peters, "The QR Algorithm for Real Hessenberg Matrices," Numer. Math., 14,219-231 (1970). Za G. Zames, "Feedback and Optimal Sensitivity: Model Reference Transformations, Multiplicative Seminorms and Approximate Inverses," IEEE Trans. Auto. Control, AC-26, 301-320 (1981). ZF G. Zames and B. A. Francis, "Feedback Minimax Sensitivity and Optimal Robustness," IEEE Trans. Auto. Control, 28, 585-601 (1983). 357 Index Aircraft Altitude/velocity change, 113 Boeing 747, 346 Coordinated turn. ll3. 209 Glide-slope hold, 243, 328 Landing, 100, 115 Landing in gusty wind, 139, 140 Landing in worst wind, 263 Lateral Motions, 344, 346, 347 Longitudinal Motions, 343, 345 Navion,344 STOL, 115,347 Ashkenas, Irving, 176 Balas, Gary 1, 309 Bayes' Rule, 9 Bernard, Douglas, 132 Bias error, 67, 68 Best Case Controller, 286 Bicycle, robot, 100, 336 Brownian motion, 39,43 Bucy,Richard, 43 Car, lateral motions of, 110, 333 Carrier, Alain, 288 Cart with pendulum, 39, 73, 106,338 Cart with a double pendulum, 107,338 Cart with inverted pendulum, 108, 134,339 Cart w. db!. inverted pendulum, 109, 339 Certainty-equivalence principle, 125 Characteristic Equation Reciprocal Root, 168, 181 Symmetric Root, 176, 182 Chu, Peter Y., 288 . Colored measurement noise, 308 Conjugate point, 261, 277 Compensator, 226, 256 Notch. 296 Controllability (see Disturbability) Control Prediction, 125 Current, 125 Controllers Best Case (LOB), 286 Discrete LO w. SFB (TI), 184 Discrete LO w. SFB (TV), 98 Discrete LOG (TI). 224 Discrete LOG (TV), 123 Discrete LOG w. CMN (TI), 324 Discrete LOG w. CMN (TV), 316 Discrete LOW w. SFB (TI), 284 Discrete LOW w. SFB (TV), 259 Discrete LOW w. ESFB (TI), 285 Discrete LOW w. ESFB (TV), 268 Continuous LO w. SFB (TI), 201 Continuous LO w. SFB (TV), 118 Continuous LOG (TI), 240 Continuous LOG (TV), 143 Continuous LOG w. CMN (TI), 325 Continuous LOG w. CMN (TV), 319 Continuous LOW w. SFB (TI), 284 Continuous LOW w. SFB (TV), 271 Continuous LOW w. ESFB (TI), 285 Continuous LOW w. ESFB (TV), 279 Robust (continuous TI), 291 Worst Case (LOW), 258 Correlation, 23, 33 Coupling numerator (see also Transmission Zero), 176,210 Crane, overhead (see Cart with Pendulum) 359 Index 360 Density Function, 1, 2 Boltzmann, 7 Chi-Squared, 7 Conditional, 4 Gaussian, 1, 2, 3, 7 Joint, 20 Marginal,4 Rayleigh,7 Transition, 20 Uniform, 1, 2, 3, 28 Deyst, John, 258 Diaz, Sun Hur, Preface Differential Games Continuous, 258, 271 Discrete, 259 Disturb. -Attenuation (see Model-Following) Disturbability . Continuous, 61 Discrete, 48 Problem w. undisturbable mode, 72 Doyle, John C, 259, 290 Eigenvalues, generalized, 186, 209 Eigenvector decomposition Discrete, 172, 186 Continuous, 177, 181,203 Einstein, Albert, 43 EI Ghaoui, Laurent, 288, 290, 292, 309 Englar, T., 178 Estimator (see also Filters) A ttitude for SIC, 72 Divergence, 63, 180, 182 Dynamic, 43 Dynamic smoothing, 83 Static linear, 8 Static nonlinear, 13 VVo~tcase,264,276 Euler-Lagrange equations, 167,174,186, 190,202 Filters Backward discrete covariance, 74 Backward discrete information, 76 Backward continuous covariance, 77 Backward continuous information, 79 Fwd. discrete covariance (Kalman). 44 Fwd. contin. cov. (Kalman-Bucy), 57 Forward continuous information, 63 Measurement differencing, 310, 322 Measurement differenciation, 312 TIme-invariant, discrete, 167 TIme-invariant, cominuous, 175 VVith discrete CMN, 308--310,321 VVith continuous CMN, 312. 325 Worst case, discrete, 264 Worst case, continuous, 276 Fisher, M., 292, 306 Followers Continuous, 118 Discrete. 98 Francis. 1. G. E, 178 Franklin, Gene E, 125 Fraser, Donald C, 95, 258 Frazier, Malcolm. 93 Gauss. Carl Friedrich. 43 Gaussian vectors. 3 Gauss-Markov Processes (GMPs) Discrete, 22 Continuous, 30 Converting continuous to discrete, 33 Simulation of Discrete GMp, 25 Simulation of Continuous GMP. 35 Grace, Andrew, 292, 306 Graham, Dunstan, 176 Gunckel, T. E, 125 Gupta. Narendra. 178 Gyrocompassing, orbital, 72, 349 Hall, vv. Earl, Jr., 178 Helicopter Hughes OH6A, 347 Landing, 116, 141 Position change. 139.219,221. 237, 239, 252, 254,261,269,274 Position hold, 283-286 Takc-of~116.141.173.192.195.197,215,217. 236,250,251 Testrun,56,165,179 Transport (CH47), 192 Hermelin, Solo, 288 H-Infinity (see Worst Case Control & Estimation) Ho, Yu-Chi, Preface, 258 Holley, VVilliam E., 179 Identification, 158 Innovations process. 145 . Integral error feedback, 199,220 Intercept, lateral Continuous, 147, 156. 320, 332 Discrete. 102, 129, 153,262,317,332 Inverse Control, 98 Isaacs. Rufus. 258 Jacobson, David H .. 258 Juge, Matthew K., 288 Kalman. Rudolph E .. 43, 178 Lyapunov equation, 22, 25,.31 Ly, Uy-Loi, 290, 292 361 Index Markov, A. 8., 25R Markov random sequences, 20 Matrix Correlation, 20 Covariance. 2 Information, 63 Inversion Lemma, 10 Lower-Triangular, 6 Upper-Triangular, 6 McReynolds, Stephen R., 260 McRuer, Duane, 176 Mills, Raymond A., 288, 290 Minimax (see Worst Case) Model-Following Continuous LQG, 249 . Continuous SFB. 218 Discrete LQG, 236 Discrete SFB, I'll Montgomery, Paul M., Preface Navigation problems Coastal,15 Inertial, 40, ss, 69, 73, 343 Interplanetary, 16 Noise (see also Random) Colored, 308 Process Noise in Measurernents, 67 White, 31 Wiener, 68 Nyquist Plot, 304 Observability Continuous, 61 Discrete, 48 Orbital Gyrocompassing, 72 Parameter Identification, 158 Parameter Margin, 290 Performance, mean-square, 125, 146,225,240 Performance Index Continuous Quadratic. 118 Conversion Contino to Disc., 188 Discrete Quadratic, 98 With Cross-product Terms, 190,212 Petersen, I. R., 259 Planetary gear rolling on sun gear, 117,341 Potter, James E., 117,258 Psiaki, Mark L., 292,306 Random Processes, 20, 29 Scalars, 1 Sequences, 20, 21 Vectors, 1 Walk, 23, 26, 27, 29 Reid, Lloyd D., 258 Regulator, [21, 183 Rendezvous, lateral, 102, 122, 132, 332 Reservoir Volume vs. Time, 28 Rhee,I.,259 Riccati equation Continuous. 58, 178, 202 Discrete, 45, 173, 187 Robot Bicycle, 109,336 Flexible arm, 110, 135,207,340 Stick-person, 109,342 Unicycle, 110, 337 Root Locus Reciprocal, 168, 184 Symmetric, 176, 204 Root Mean Square (RMS), 1 Saddle Point (see Conjugate point) Schoonwinkel, Arnold, 337 Sensitivity functions, 160 Setpoint Fdfwd. (see Step Commands) Smoothers Batch, 84. 152 Continuous. '12-'15.155 Discrete, 84-92, 155 Spacecraft Pitch Stabilization, 111,349,350 RolllYaw Stabilization, 111, 349, 351, 352 Stn. Keeping/Acquisition, 112,352,353 With Flexible Appendages, 112, 353 With Solar Sail. 112, 353 Speyer, Jason L., 258, 259 Standard Deviation, 1 Step Commands/Disturbances Continuous LQG, 251 Continuous SFB, 218 Discrete LQG, 237 Discrete SFB, 196 Sweep Method (see Riccati Equation) Survey Loop, closing of a, 17 Routes, 29 Taylor, Geoffrey I., 43 Terminal Control (TC), 104-110, 121, 122, 131-142, 150 Three-spring, two-mass plant, 165 Transmission zero, 207 Triple integrator plant, 105 Triple inverted pendulum, 109, 342 Truck Lateral motions of, 110,333 With a trailer, 111,334 With two trailers, 111,335 Two-mass/spring plant, 40,134,.165,194,198,199, 216,220,222,263,293,342 362 Index Two-Point Boundary-Value Problem Continuous, 92 Discrete, 85 Unicycle, robot, 110,337 Vaughan, D. R., 186 Van Loan, C. E, 188 Vibration suppression, 194, 198, 199,216,220,222, 236,238,239,250,253,254 Walker, Robert A., 178 Whittle, P., 258 Wiener, Norbert, 43, 67, 68 Wilkinson,1. H., 178 Worst Case Controller, 258 Filter, 264, 276 Zames, George, 258 Zeros Matching, 195, 216 Right Half Plane, 206 Transmission, 207 Zero Order Hold (ZOH),98123
© Copyright 2025