In Exercises 1-4,find the inclination O(in radians and ,f i degrees) of the line with the given characteristics. f. 1. Passes through the points (- 1, 2) and (2, 5) 21. Vertices: (-3, 0), (7, 0); loci: (0, 0), (4, 0) 2, Passes through the points (3, 4) and (-2, 7) 3. Equation: y = 2x + 4 22. Vertices: (2, 0), (2, 4); foci: (2, 1), (2, 3) ' 23. Vertices: (0, 1), (4, 1); endpoints of the minor axis: 4. Equation: 6x - 7y - 5 = 0 7 In Exercises 21-24, find the standard form of the equation of the ellipse with the given characteristics. Then graph the ellipse. (2, 0), (2, 2) In Exercises 5-8, find the angle 0 (in radians and degrees) ;: between the lines. 5. 4x+y- ;! 1 2 6. -5x+ 3y=3 -5x + y = -1 24. Vertices: (-4,-1), (-4, 11); endpoints of the minor axis: (-6, s), (-2, s) 25. Architecture A semielliptical archway is to be formed over the entrance to an estate. The arch is to be set on pil- -2x + 3y = 1 lars that are 10 feet apart and is to have a height (atop the pillars) of 4 feetl Where should the foci be placed in order to sketch the arch? 3- ;I 2- 26. Wading Pool You are building a wading pool that is in -.b.............ÿ_ X ,/3 I 3 -1 I ÿ-x 1 2 -1 the shape of an ellipse. Your plans give an equation for the elliptical shape of the pool measured in feet as x2 y2 32---7 + 1-g = 1. iÿ'ÿ 7, Zv-7y=8 8. 0.02x + 0.07y = 0.18 iiÿi 0,4x+Y =0 0.09x - 0.04y = 0,17 ?;= Find the longest distance across the pool, the shortest distance, and the distance between the foci. !i.ÿ: In Exercises 9 and 10, find the distance between the point In Exercises 27-30, find the center, vertices, foal, and ::' and the line. eccentricity of the ellipse. iÿ:: Point Line :ÿ 9. (1, 2) x-y-3=O 27. (x + 2)2 (y - 1)2 + =1 81 100 ! lO, (0, 4) x+2y-2=O 28. ('ÿ - s)-----2 + (Y + 3)ÿ _ 1 K- 1 J, In Exercises 11 and 12, state what type of conic is formed by the intersection of the plane and the double-napped cone. 11. 12. 36 29. 16x2 + 9y2 - 321: + 72y + 16 = 0 30. 4x2 + 25y2 + 16x -- 150y + 141 = 0 ln Exercises 31-34, find the standard form of the equation of the hyperbola with the given characteristics. 31. Vertices: (0,+1); foci: (0,+3) 32. Vertices: (2, 2), (-2, 2); loci: (4, 2), (-4, 2) 33. Foci: (0, 0), (8, 0); asymptotes: y = +2(x - 4) 21ÿ In Exercises 13-16, find the standard form of the equation 34. Foci: (3, +2); asymptotes: y =-+2(x- 3) :: 0f the parabola with the given characteristics. Then graph i' the parabola. In Exercises 35-38, find the center, vertices, foci, and the :ÿi 13, Veÿte:c (0, 0) equations of the asymptotes of the hyperbola, and sketch its graph using the asymptotes as an aid. 14. Vertex: (2, 0) :i:: Focus: (4, O) Focus: (0, 0) ". 18. Vertex: (0, 2) 16. Vertex: (2, 2) :7 i. Directrix: x = - 3 Directrix: y = 0 3S. (X -- 3)2 (y .qt_ 5)2 16 36. (y- 1)ÿ x2= 1 4 19. Architecture A parabolic archway is 12 meters high at the vertex. At a height of 10 meters, the width of the archway is 8 meters (see figure). How wide is the archway at ground level? Y 4 37. 9x2 - 1@= - 18x - 32y - 151 = 0 38. --4X2 "ÿ 259 -- 8X + 150y + 121 = 0 In Exercises 41-44, classify the graph of the equation as a circle, a parabola, an ellipse, or a hyperbola. 41, 5x2 -2yz + 10x - 4y + 17 = 0 ÿ . ÿ ":', 42. -4y2 + + 3y + 7 '-- 0 +++ \ +,v+ 9 44. 4X2 + 4y2 -- 4X + 8y -- 11 = 0 .=j,Q. tÿ 2.Gÿ j / ÿ%/' L] / :t / x i ........ s =" /, i 0 7 i / <.,,,ÿ,, .,., _,. 0-ÿ- -j. l/ rÿ \ .... ÿ,i ÿ ./ /'l .,.ÿ / ;t' < ,,7' ] <<t .... <-, .... ...m ,., [., C'J --<& ÿ 7 <L..o. ? " <-ÿ, • / 1. ._ _ tj- €i <7 5' .Ii, ',,/ x'.ÿ T © 7< 2! ' ;% \.1"--ÿ __ÿ__ _ÿ ,;ÿ ,\ $ I\ .,/% , , .... / (j / ,<ÿi,ÿ \.' ÿ:' ¢--ÿ ; / ÿ-Lÿ?..ÿ =.e .II J t ! 11. Hyperbola / 21. Vertices: (-3, 0), (7, 0) ÿ a = 5 (h, k) = (2, O) -i 13. veÿteÿ: (o, o) = (h; ÿ)ÿ Foci: (0, 0), (4, O) ÿ c = 2 --d Focus: (4, 0) ÿ p = 4 b2 = a2 - c2 = 25 - 4 21 ' (Y - k)2 = 4p¢ '-- h) (x - h)___ÿ2 + (y - k)___ÿ2 = 1' a2 (Y - 0)2 = 4(4)¢ - 0) y b2 10' 8' 6- y2 1 (x-2)2 ÿ---= y2 = 16x 25 21 "l I I l -8 -6-4 ( -8, -10- 23. Vemces: (0, 1), (4, 1) ÿ a = 2, (h, k) = (2, 1) Endpoints of minor taxis: (2,0), (2, 2) ÿ b = 1 ' 'ÿif':i (x - h)2 (y - k)2 a2 15.Directrix:Vertex: (0,x2)= =_3(h,ÿl:) P " 3" -- + b2 =1 4 '3 (x-2)2.+ (y- 1)2= 1 (y - k)2 = 4p(x - h) 2' 4 :,ÿ---- (Y - 2)2 -=- 12z -2 -1 .-1- 'S y 7 6. 5- 4 ' -4-3-2-1 -2 -3 4 5' 25. 2a=lO ÿ a=5 -"+"+ÿ x 2345 b'=4 \ c2=a2-b2=25- 16='9 ÿ c= 19. Parabola 3 -3. /!; 1 -+-+-+++ 2 -2 / 3, 2- 1 The foci occur 3 feet from the center of the arch on a line connecting the tops of the pillars. Opens downward i. Vertex: (0, 12) ix - h)2 = 4p(y - 10 27. (x + 2)ÿ ÿ (y - 1)___.__ÿ = 1 .ÿ = 4p(y - 12) Solution points: (-+4, 10) 16 = @(10 - 12) 81 i 100 a = l O, b = 9, c = ./-1-9 Center: (-=2,1). 16 = -Sp -2=p xa = -8(y =- 12) To find the x-intercepts, let y = 0. Vertices: (-2, il) and (-2, -9) i ooi: (-2,1 _ ./g Eccentricity: e =. 10 x2 = 96 I x = -+ ÿ9"6 = +4v46 At the base, the archway is 2(4-v"6) = aÿ'-6 meters wide. 1 LJi 16x2 + 9y2 - 32x + 7.2y + 16 = 0 9, 16(x=-2x+ 1).+ 9(3*2+ By+ 16) =-16+ 16 + 144 37. 16(x - 1)2 + 9(y + 4)2 = 144 9.'c2 - 1@2 - 18x - 323; - 151 = 0 9(xz-Zx:+ 1)- 16(y2+2y+ 1) = 151 +9- 16 (x- 1)2+ (y+4)2 1 9 16 9(x - i)2 - 16O, + l)2 = 144 (.ÿ - l)2 _ (y + 1)ÿ = 1 a=4, b=3, c=v/-7 16 9 ' Cenÿer: (1,-4) a=4, b=3, c=5 Vertices: (1, 0) and (1, - 8) Center: (1, - 1) Foci: (1,-4 + ./7) Vertices:. (5, -1) and (-3, -.1) ./7 Eccentricity: e = 4 Foci: '(6, -1) ancl (-4, -1) 3 Asymptotes: y =-1 _+ ÿ(x- 1) 31. Vertices: (0, +1) ÿ a = 1, (h, k) = (0, 0) ' .3 7 3- 1 y'= Tx - 7 or y = -'ÿx - -ÿ . Foci: (0,+3) ÿ c = 3 b2=c2-a2=9- 1 =8 ':" (3, - k)2 (x - h)2 aa -1 b2 -6 6 8 33. Foci: (0, 0), (8, 0) ÿ c = 4, (h, k) = (4, 0) 'Asymptoies: y= +2(x - 4) ÿ -b:= 2, b = 2a a b2=ca-a2'==> 4a2= 16-a2 ==> 16 b2 = 64 a2 = T' 5 39. Foci: (_+100, 0) ÿ c = 100 (x_._ÿ, h)2 (y - k)2 a2 b2 (X -- 4)2 y2 16/5 64/5 Center: (0,'0) =1 4 ÿ =0.0005 ÿ d-2-dr =93 =2a ÿ a=465 186,000 186,000 +. \ --1 b2 = c2 - a2 = 1002 - 46.52 = 7837.75 5(x -- 4)2 5y2 16 x2 64 y2 2162.25 7837.75 • 83 \, • 3s. (x - 3)2 (y + 5)2 -1 16 / 602' --- 1) y2 7 7.75ÿ1ÿ.25 ÿ5211.5736 y 4 .. y ÿ 72 miles a = 4, b = 2, c = v/ÿ = 2./5 I -2 Center: (3,-5) Qÿ ,'y Vertices: (7, -5) and (-1,-5) Fool: (3 ± 1 Asymptotes: y = -5 _+ ÿ(x - 3) 1 13 1 7 y=-ÿx-T Or y=-ÿ:v-ÿ jj./ - 1
© Copyright 2024