Underdetermination in Quantum Physics - or: how to conceive unconceived alternatives? Markus Aspelmeyer Faculty of Physics, University of Vienna 3 roads towards unconceived alternatives • Find experimental data that falsifies the theory • Find hints that the theory is not complete • Accept it (= find a new conceptual basis to go beyond the existing theory) „There is nothing new to be discovered in physics today […]“ „…only two little clouds […] on the blue sky of physics […]“ 1900 Lord Kelvin (1824-1907) Two unresolved questions Why the quantum ? single-photon source „C “ K C I L Why the classical ? Schrödinger‘s cat IS alive… Objective randomness: „Why the quantum?“ detector 1 beamsplitter detector 2 Quantum theory does not provide a cause for the individual result Objective randomness “The Weakness of the Theory lies ... in the Fact, that Time and Direction of the Elementary Process are left to „Chance“.” A. Einstein, 1917 Z. Physik Beyond Probabilities? Quantum theory: probabilistic predictions for individual events Can one go beyond this? Verschränkung / Entanglement • non-separable quantum states • state describes only joint correlations • no information on individual subsystems Erwin Schrödinger Naturwissenschaften 23, 807 (1935) Verschränkung / Entanglement EPR EPR(1935) (1935) „it „itisispossible possibletotoassign assigntwo twodifferent differentwave wavefunctions functionstotothe thesame samereality“ reality“ Schrödinger Schrödinger(1935) (1935) „Verschränkung „Verschränkungder derVoraussagen“ Voraussagen“(entanglement (entanglementofofpredictions) predictions) „Verschränkung „Verschränkungunseres unseresWissens Wissensum umdie diebeiden beidenKörper“ Körper“(entanglement (entanglementofofour our knowledge) knowledge) Psi-Funktionen sich • non-separable quantum states (tangled Psi-Funktionenhaben haben sich„verheddert“ „verheddert“ (tangledup) up) „Verquickung“ der Erwartungskataloge (mixing „Verquickung“ deronly Erwartungskataloge (mixingofofexpectation-catalogue) expectation-catalogue) • state describes joint correlations • „„Verschränkung“ Verschränkung“ Entanglement no information onEntanglement individual subsystems Erwin Schrödinger Naturwissenschaften 23, 807 (1935) Beyond Probabilities? Einstein, Podolsky, Rosen, Phys. Rev. 47, 777 (1935): Measurements on entangled systems provide „elements of physical reality“ that are not contained in the quantum mechanical description (=incompleteness) Some (out of many) replies: Bohr, Phys. Rev. 48, 696 (1935) Peres, quant-ph 0310010 (2003) Bell‘s Theorem / GHZ Theorem J. S. Bell, Physics 1, 1 (1964) Greenberger, Horne, Zeilinger (1989) A) Predictions of quantum theory are correct B) Realism: The outcome of any measurement depends on properties carried by the system prior to and independent of the measurement C) Locality: The outcome of any meaurement is independent of actions in space-like separated regions. Bell’s Bell’stheorem: theorem:granted grantedA), A),either eitherB) B)or orC) C)or orboth bothfail fail experimentally testable using entangled particles Alice -1 1 1 2 1 Entangled Source Bob 2 -1 1 Bell‘s Theorem Alice -1 1 2 „Entangled“ Source 1 Bob 1 2 -1 1 A1=±1, A2 = ±1 B1= ± 1, B2 = ± 1 Correlation function: E21=p(A2B1=1)–p(A2B1=-1) Local Realism: E11+E12+E21-E22 ≤ 2 Quantum Mechanics: Bell 1964, CHSH 1969, Bell 1971, CH 1974, GHZ 1989 2 2 Laser BBO Alice Bob Bell Experiments PRL 28, 938 (1972) Approx. 0.1 events per second (1 nm bandwidth) Bell Experiments PRL 28, 938 (1972) Other Otherrelevant relevantexperiments: experiments: Clauser ClauserPRL PRL36, 36,1223 1223(1976) (1976) Fry Fry&&Thompson ThompsonPRL PRL37, 37,465 465(1976) (1976) Aspect Aspectet etal., al., PRL PRL47, 47,460(1981) 460(1981) Aspect Aspectet etal., al.,PRL PRL49, 49,1804 1804(1984) (1984) Perrie Perrieet etal., al., PRL PRL54, 54,1790 1790(1985) (1985) Weihs Weihset etal, al,PRL PRL81, 81,5039 5039(1998) (1998) Rowe Roweet etal., al.,Nature Nature409, 409,791 791(2001) (2001) … … Approx. 0.1 events per second (1 nm bandwidth) Entanglement & Bell test over 144 km, Scheidl, Zeilinger et al. (2008) Greenberger-Horne-Zeilinger (GHZ) Theorem Elements of reality to x,y operations: Xi, Yi = ± 1 Correlations: Y1Y2X3=-1, Y1X2Y3=-1, X1Y2Y3=-1 Local realism: Quantum physics: X1X2X3 = -1 X1X2X3 = +1 Alice (1) -1 Entangled source 1 2 1 Bob (2) 1 2 1 1 2 A1=±1 XA A2 = ±1 YA -1 Claire (3) 1 -1 C1=±1 XC C2 = ±1 YC B1= ± 1 XB, B2 = ± 1 YB Greenberger, Horne, Zeilinger, in: Bell's Theorem, Quantum Theory, and Conceptions of the Universe (1989) GHZ experiments A consistent set of elements of reality is IMPOSSIBLE for GHZ states Pan, Bouwmeester, Zeilinger, Nature 403, 515 (2000) What is left? Local Localrealistic realistictheories theoriesare areinconsistent inconsistent with withpredictions predictionsof ofquantum quantumtheory theory with withexperimental experimentalobservation observation Which assumption is wrong? Locality? (non-local realistic theories) Realism? (local non-realistic theories) Locality and realism? (non-local non-realistic theories) Beyond Bell: Leggett‘s incompatibility theorem Alice -1 1 2 „Entangled“ Source 1 A1=±1, A2 = ±1 Bob 1 2 -1 1 „geisterhafte Fernwirkung“ B1= ± 1, B2 = ± 1 (A) (A)Measurement Measurementoutcomes outcomesare aredetermined determinedby bypre-existing pre-existing properties propertiesof ofparticles particlesindependent independentof ofthe themeasurement measurement(realism). (realism). (B) (B)Physical Physicalstates statesare arestatistical statisticalmixtures mixturesof ofsubensembles subensembleswith with definite definitepolarisation polarisation (C) (C)polarisation polarisationisisdefined definedsuch suchthat thatexpectation expectationvalues valuestaken takenfor for each eachsubensemble subensembleobey obeyMalus’ Malus’Law. Law. A.J. Leggett, Found Phys. 33, 1469 (2003) Gröblacher, Paterek, Kaltenbaek, Brukner, Zukowski, Aspelmeyer, Zeilinger (2007) Beyond Bell: Leggett‘s incompatibility theorem A. J. Leggett, Found. Phys.33, 1469 (2003) Wu & Shaknow (1950), Kocher & Commins (1967) CHSH (1969), Freedman & Clauser (1972) Leggett (2003), Gröblacher et al. (2007) Bell’s theorem: local realistic theories are at variance with observable quantum phenomena Leggett’s theorem: a broad class of non-local realistic theories (crypto-nonlocal) are at variance with observable quantum phenomena Gröblacher, Paterek, Kaltenbaek, Brukner, Zukowski, Aspelmeyer, Zeilinger, Nature 446, 871 (2007) Beyond Bell: Leggett‘s incompatibility theorem A. J. Leggett, Found. Phys.33, 1469 (2003) Wu & Shaknow (1950), Kocher & Commins (1967) CHSH (1969), Freedman & Clauser (1972) Leggett (2003), Gröblacher et al. (2007) Bell’s theorem: local realistic theories are at variance with observable quantum phenomena Leggett’s theorem: a broad class of non-local realistic theories (crypto-nonlocal) are at variance with observable quantum phenomena Gröblacher, Paterek, Kaltenbaek, Brukner, Zukowski, Aspelmeyer, Zeilinger, Nature 446, 871 (2007) Why the classical? The challenge(s) of macroscopic systems Schrödinger‘s Cat: The Measurement Problem E. Schrödinger, Naturwissenschaften 23, 52 ff. (1935) single-photon source Schrödinger’s Cat = Entanglement involving macroscopically distinct states should be possible for arbitrarily large systems A mechanical cat? Schrödinger‘s mirrors x ~ F / k What is „the classical“? Does it exist BY PRINCIPLE (=beyond quantum theory) or for all practical purposes (FAPP)? “new physics” (Penrose, GRWP, Karolyhazy, Diosi, ...)? y” t i s s ce e n l ’s ca i n g e o g l “ ha n e p (Co en cut, gold ty, ...)? xi e l p com “st dec anda rd ohe (qu rence dar antum ” wi n ism )? (c) Oppenheim Schrödinger‘s Cat: The Dilemma Why is it problematic? Against intuition I: For certain „states“ in nature we tend to believe that they are dichotomic and mutually exclusive (they either „ARE“ or „ARE NOT“) Against intuition II: The „reincarnation beamsplitter“ or the „arrow of time“ argument… i.e. for some states in nature we tend to believe that they are „irreversible“ (e.g. ‚click in a detector‘or death‘) Ad II: The arrow of time problem How to observe the (macroscopic) superposition state? measurement in „correct“ basis = re-coherence at a beamsplitter „alive“ p=1 BS BS „dead“ BS BS alive / p = 1 The resurrection beamsplitter !!?? Bell II? An incompatbility theorem for Macro-Realism Macrorealism = The conjecture that at some level of physics quantum superpositions of macroscopically distinct states do not exist An incompatibility theorem? A) Quantum Theory is correct For all macrorealsitic theories Violated by QM B) A macroscopic object with several possible macroscopically distinct states is, at any time, always in one of these states (macrorealism) C) It is possible to determine in which state the system is without in any way disturbing the system or its dynamics (non-invasive measurability) Leggett-Garg: Provided A) is correct, either B) or C) have to be wrong experimentally testable bound for correlations Collapse by nonlinearity? Nonlinear extensions of the Schrödinger equation could generate a „collapse“ (BBM 1976) Experimental test via diffraction of neutrons (GKZ 1981) falsification of BBM Bialynicki-Birula, Mycielski, Ann. Phys. 100, 62 (1976) Shimony, PRA 20, 394 (1979) Gähler, Klein, Zeilinger, PRA 23, 1611 (1981) Also: nonlinearities are •inconsistent with 2nd law (Peres) and •can allow for signaling (Weinberg, Gisin) Collapse by gravity? Karolhyhazy (1960s) Diosi (1980s) Penrose (1980s)… Marshall, Simon, Penrose, Bouwmeester, PRL 91, 130401 (2003) also: A.D. Armour, M.P. Blencowe, and K. Schwab, PRL 88, 148301 (2002.) R. Penrose, in: Quantum [Un]Speakables, Springer 2001 number of particles in experiment Current Experiments 100000 E. Schrödinger, August 1952 10000 1000 C60 Arndt et al. 100 TPP Hackermüller et al 10 1 1950 1960 1970 1980 Year 1990 2000 2010 Message of the quantum: Another unconceived alternative… What are the foundational principles of the existing theory? What does it tell us about nature? What exists? Registered events What are the fundamental buiding blocks of the world? Information on probabilities about possible measurement outcomes Why quantum theory? Because it is a necessary framework for a theory „about observation“ “Lieber Schrödinger! Du bist faktisch der einzige Mensch, mit dem ich mich wirklich gern auseinandersetze. [...] Dabei sind wir in der Auffassung des zu erwartenden Weges schärfste Gegensätze. [...]” Albert Einstein to Erwin Schrödinger, 8.8.1935 Einstein‘s gun powder & Schrödinger‘s cat “Das System sei eine Substanz in einem chemisch labilen Gleichgewicht, etwa ein Haufen Schiesspulver, der sich durch innere Kräfte entzünden kann [...] . Im Anfang charakterisiert die -Funktion einen hinreichend genau definierten Zustand. Deine Gleichung sorgt aber dafür, dass dies nach Verlauf eines Jahres gar nicht mehr der Fall ist. Die -Funktion beschreibt dann vielmehr eine Art Gemisch von noch nicht und von bereits explodiertem System. Durch keine Interpretationskunst kann diese Funktion zu einer adäquaten Beschreibung eines wirklichen Sachverhaltes gemacht werden; in Wahrheit gibt es eben zwischen explodiert und nicht-explodiert kein Zwischending Albert Einstein to Erwin Schrödinger, 8.8.1935 [...]”
© Copyright 2024