How to compute the confidence intervals for Mean Time to Failure (MTTF) By Eduardo Santiago The following section describes the theory needed to construct confidence intervals for MTTF in Minitab. This section can be skipped as the math is explained with two examples in sections 2 and 3. 1 Theory To construct a confidence interval for the Mean Time to Failure (MTTF) of a process, Minitab uses the Delta Method to estimate the standard error of the MTTF. If the estimate for MTTF is a function of µ and σ, e.g. g1 = f (µ) + f (σ), then for a location-scale distribution a confidence interval can be constructed as: gˆ1 ± zα/2 · SEgˆ1 . (1) where gˆ1 = f (ˆ µ) + f (ˆ σ ). To calculate the standard error for the MTTF we use the Delta Method: s 2 2 ∂g1 (µ, σ) ∂g1 (µ, σ) ∂g1 (µ, σ) ∂g1 (µ, σ) V ar(ˆ µ) + 2 Cov(ˆ µ, σ ˆ) + V ar(ˆ σ) SEgˆ1 = ∂µ ∂µ ∂σ ∂σ (2) The three estimates corresponding to V ar(ˆ µ), Cov(ˆ µ, σ ˆ ) and V ar(ˆ σ ) can be obtained from the Variance-Covariance matrix which can be stored from the dialog box. Minitab stores these elements in a matrix as shown below: " # V ar(ˆ µ) Cov(ˆ µ, σ ˆ) M= (3) Cov(ˆ µ, σ ˆ) V ar(ˆ σ) For a log-location-scale distribution – which includes the Weibull and Lognormal distributions – Minitab approximates a 1 − α confidence interval by exponentiating the confidence interval summarized in Equation 1, as: P r egˆ1 −zα/2 ·SEgˆ1 ≤ MTTF ≤ egˆ1 +zα/2 ·SEgˆ1 = 1 − α (4) In general, follow the steps indicated next to construct an approximate confidence interval for the MTTF. 1. Estimate the function gˆ1 (µ, σ) from the parameter estimates in the Session window. 2. Estimate the Standard Error of gˆ1 (µ, σ) using the Delta Method stated in Equation 2. 3. The confidence interval for gˆ1 (µ, σ) can be estimated from Equation 1. 4. After constructing the confidence interval in Equation 1, for log-location-scale distributions we can estimate an approximate confidence interval for h(g1 (µ, σ)) by applying the same transformation to the entire confidence interval in Equation 1, as illustrated in Equation 4. 1 2 MTTF for Lognormal data The mean of a Lognormal distribution can be defined in terms of its location (µ) and scale (σ) parameters. If X represents a random variable that follows a Lognormal distribution then, its expected value is represented as: E(X) = eµ+σ 2 /2 . Therefore, it is straightforward to find an estimate of the mean, using the respective estimates of µ ˆ and σ ˆ . This implies that: 2 b E(X) = eµˆ+ˆσ /2 . To construct the confidence interval for the MTTF see the next steps: 1. Estimate the function gˆ1 (µ, σ). For Lognormal data this estimate is gˆ1 (µ, σ) = µ ˆ+σ ˆ 2 /2. 2. Estimate the Standard Error of gˆ1 (µ, σ). Using the Delta Method, the standard error can be calculated using the equation below: q 2 2 µ) + 2(1)(σ)Cov(ˆ µ, σ ˆ ) + (σ) V ar(ˆ σ) (5) SEgˆ1 = (1) V ar(ˆ 3. A 95% confidence interval for gˆ1 (µ, σ) can be estimated from: gb1 (µ, σ) − 1.96 · SEgˆ1 ≤ g1 (µ, σ) ≤ gb1 (µ, σ) + 1.96 · SEgˆ1 . (6) 4. After constructing the confidence interval in Equation 6, exponentiate both sides of the interval to get the final approximated confidence interval. 2.1 Example To illustrate this procedure, consider the data worksheet Reliable.mtw. In particular consider the variable Temp80 and fit a Lognormal distribution to the data. The information about the estimates needed to construct the confidence interval for the MTTF is provided in the Session window. Parameter Estimates Parameter Location Scale Estimate 4.03430 0.413458 Standard Error 0.0599960 0.0414962 95.0% Normal CI Lower Upper 3.91671 4.15189 0.339626 0.503340 Characteristics of Distribution Mean(MTTF) Standard Deviation Median Estimate 61.5452 26.5736 56.5033 Standard Error 3.82954 3.70119 3.38997 95.0% Normal CI Lower Upper 54.4791 69.5279 20.2253 34.9145 50.2348 63.5539 Now for this example to replicate the output for MTTF follow the steps below: 2 1. Estimate gˆ1 (µ, σ) as shown below: gˆ1 (µ, σ) = µ ˆ+σ ˆ 2 /2 = 4.03430 + 0.4134582 /2 = 4.1198. 2. Estimate the standard error of gˆ1 (µ, σ). s 2 2 ∂g1 (µ, σ) ∂g1 (µ, σ) ∂g1 (µ, σ) ∂g1 (µ, σ) SEgˆ1 = V ar(ˆ µ) + 2 Cov(ˆ µ, σ ˆ) + V ar(ˆ σ) ∂µ ∂µ ∂σ ∂σ p = (1)2 (0.0036) + 2(1)(0.413458)(−0.0000268) + (0.413458)2 (0.001722) = 0.0622232. The three estimates corresponding to V ar(ˆ µ), Cov(ˆ µ, σ ˆ ) and V ar(ˆ σ ) can be obtained from the Variance-Covariance matrix which can be stored from the dialog box. For this particular example: " # V ar(ˆ µ) Cov(ˆ µ, σ ˆ) M= Cov(ˆ µ, σ ˆ) V ar(ˆ σ) Last, the partial derivatives can be obtained directly as ∂[µ+σ 2 /2] ∂µ = 1 and ∂[µ+σ 2 /2] ∂σ = σ. 3. Estimate an initial 95% confidence interval: σ ˆ2 − 1.96 · SEg1 ≤ 2 4.1198 − 1.96(0.06222) ≤ µ ˆ+ 3.998 ≤ σ ˆ2 + 1.96 · SEg1 2 g1 (µ, σ) ≤ 4.1198 + 1.96(0.06222) g1 (µ, σ) ≤ µ ˆ+ g1 (µ, σ) ≤ 4.242 4. Then after constructing the confidence interval above, transform this interval appropriately. σ ˆ2 σ ˆ2 ˆ+ ˆ+ − 1.96 · SEg1 ≤ exp{g1 (µ, σ)} ≤ exp µ + 1.96 · SEg1 exp µ 2 2 3 e3.998 ≤ MTTF ≤ e4.242 54.479 ≤ MTTF ≤ 69.528 MTTF for Weibull data The mean of a Weibull random variable is defined by its shape (β) and scale (α) parameters. The Mean Time To Failure (MTTF), or expected value, for a Weibull process is: 1 MTTF = α · Γ 1 + , (7) β where Γ(r) is the gamma function evaluated at r. To use the Delta Method, we use the reparameterization of a Weibull to a Smallest Extreme Value and use µ = log(α), σ = 1/β. Thus, the MTTF = eµ Γ(1 + σ). So we construct a confidence interval for log(MTTF) = µ + log[Γ(1 + σ)]. r 2 ∂g1 \ V ar(MTTF), Since g1 = log(MTTF), the standard error is constructed as SEg1 = ∂MTTF which yields an estimate of: s SEg1 = 1 MTTF 2 \ = V ar(MTTF) SEMTTF . MTTF (8) So, an approximate 1 − α confidence interval for the MTTF of a Weibull process is: elog(MTTF)±zα/2 ·SEg1 . 3 (9) 3.1 Example To illustrate this procedure, consider the same dataset presented previously. This time consider the variable Temp80 and fit a Weibull distribution to the data. The information about the estimates needed to construct the confidence interval for the MTTF is provided in the Session window. Parameter Estimates Parameter Shape Scale Estimate 10.8694 989.827 Standard Error 0.849608 9.60135 95.0% Normal CI Lower Upper 9.32547 12.6689 971.186 1008.83 Characteristics of Distribution Mean(MTTF) Standard Deviation Median Estimate 944.913 105.063 957.007 Standard Error 10.5037 7.18749 10.3784 95.0% Normal CI Lower Upper 924.549 965.726 91.8792 120.138 936.880 977.566 Now for this example, the steps below replicate the MTTF output: 1. Estimate gˆ1 (µ, σ) = 989.827 · Γ(1 + 1/10.894) = 944.913. 2. Estimate the standard error of gˆ1 (µ, σ). SEgˆ1 = 10.5037 SEMTTF = = 0.011116. MTTF 944.913 3. Estimate an initial 95% confidence interval: log MTTF − 1.96 · SEg1 ≤ 6.82931 ≤ g1 (µ, σ) ≤ log MTTF + 1.96 · SEg1 g1 (µ, σ) ≤ 6.87288 4. Then after constructing the confidence interval above, transform this interval appropriately. exp {log MTTF − 1.96 · SEg1 } ≤ exp{g1 (µ, σ)} 4 ≤ exp {log MTTF − 1.96 · SEg1 } ≤ MTTF ≤ e6.87288 944.913 ≤ MTTF ≤ 965.726 e 6.82931 References [1] Meeker and Escobar, Statistical Methods for Reliability Data(1998) page 189 4
© Copyright 2024