Das PSI ist eine Forschungsanstalt des ETH Bereichs und entstand 1988 aus dem Zusammenschluss von EIR und SIN. Kurt BallmerBallmer-Hofer, Paul Scherrer Institut, Biomolekulare Wissenschaften, Molekulare Zellbiologie 52325232-Villigen [email protected] www.psi.ch Das PSI betreibt Grossanlagen wie die SLS und die SINQ für die Forschung, insbesondere für die Materialforschung. Das PSI betreibt Protonentherapieanlagen (OPTIS, PROSCAN) für Tumorpatienten und eine Abteilung für die Herstellung von Radiopharmazeutika für Diagnostik und Therapie. PAUL SCHERRER INSTITUT Proton Therapy Program The spot scanning technique for proton pencil beams – physicists know how to deal with „their“ medium and how to introduce new technologies into medical application A thin proton beam (pencil beam) is directed onto a target within the human body. The penetration is defined by the energy of the beam and the densities of the various tissues which slow down the particles. The beam, and thus the spots, are magnetically deflected, i.e. are scanned, according to the shape of the target volume in the body. The dose of each single spot and of the entrance region (plateau) are added up to the prescribed dose for the whole volume. The use of several beam angles results in excellent, 3-D conformation of the high dose to the target volume. Gudrun Goitein 1 PAUL SCHERRER INSTITUT Proton Therapy Program The Spot Scanning Gantry at PSI Gudrun Goitein Die Rolle der Vaskularisierung beim Wachstum von Tumoren; Tumorwachstum benötigt eine Versorgung mit Blut Judah Folkman: Tumor angiogenesis, therapeutic implications (1971) 2 Anti-Angiogenese; ein Konzept zur Eindämmung des Tumorwachstums, seine Versprechungen und Erfolge Tumorzellen überleben bevorzugt entlang bestehender Blutgefässe. Tumorzellen überleben bevorzugt entlang bestehender Blutgefässe A. Frühe Tumoren wachsen entlang bestehender Gefässe; B. Die existierenden Gefässe bilden sich zurück; C. Regression des Tumors oder Angiogenese. Tumorzellen in rot KB1 3 Slide 6 KB1 J. Holash et al. Science 284:1994 (1999) Kurt Ballmer-Hofer; 01.11.2004 Der angiogene Schalter bestimmt, ob Blutgefässe überleben, neu gebildet werden oder absterben Zelluläre Faktoren, die die Angiogeneses regulieren Pro-angiogene Faktoren Anti-angiogene Faktoren VEGF, Vascular endothelial growth factor bFGF, basic fibroblast growth factor PlGF, Placenta growth factor PDGF, Platelet-derived growth factor TGFα, Östrogene, EPO EGF, IGF 1, IL-3, IL-8 Angiopoietins 1,2 Angiogenin HIV-1 Tat protein, RGD-peptide Tumor Necrosis Factor α (TNFα) ... Thrombospondin (ECM-Protein) Endostatin (collagen XVIII fragment) Angiostatin (plasminogen kringle-domain) Antibodies against VEGF/VEGFR or Integrins Soluble VEGFR, ‚VEGF trap‘ (sFlt, Ig domain) Inhibitors of VEGFR kinase, e.g. SU5416 Interferonα TNFα PEX, a noncatalytic fragment of MMP-2 Kininostatin, a kinin fragment Bradykinin ... Tissue specific factors EG-VEGF, endocrine gland derived VEGF ... Tissue specific factors Pigment epithelium derived factor, PEDF ... 4 KBH2 Tumoren wachsen besser in Anwesenheit von Angiogenese auslösenden Zellen Ziele für anti-angiogene Therapie 5 Slide 9 KBH2 Engraftment of MOLT-3 cells is fostered by coadministration of Kaposi’s sarcoma cells. (A) Macroscopic appearance of the tumors formed by MOLT-3 cells in NOD SCID mice. (Left) Picture obtained 8 weeks after the bilateral s.c. injection of 5 106 MOLT-3 cells. Although these cells failed to produce a visible mass in living mice, small tumors were found at autopsy in 11 of 50 sites injected with MOLT-3 cells (22%); tumor volumes ranged between 180 and 310mm3. (Right) Picture obtained 8 weeks after bilateral s.c. injection of 5 million MOLT-3 cells plus 5 million irradiated KS-IMM cells; tumors were found in 56 of 56 injection sites (100%), and their volumes ranged between 1,240 and 1,780mm3. (B) Flow-cytometric analysis of in vitro-cultured MOLT-3 and KS-IMM cells (in vitro) or single-cell suspensions obtained through mechanical dissociation of the tumors (ex vivo). Cells were incubated with a phycoerythrin-labeled anti-human CD5 mAb and analyzed on an EPICS-Elite cytofluorimeter. The percentage of positive cells is indicated. (C) Expression of angiogenic factors and cytokines in MOLT-3 and KS-IMM cells. PCR products were evaluated by electrophoresis on 1.5% agarose gels with ethidium bromide staining. (D) Tumor growth curves of s.c. xenotransplants in NOD SCID mice. MOLT-3 cells were injected either alone or with other cell types. The tumor volume was plotted as a function of time (weeks after transplantation). Groups (F) and (■) received MOLT-3 cells inoculated with equal numbers of irradiated KS-IMM cells or irradiated MOLT-3 cells, respectively; group (E) received MOLT-3 cells into one flank and irradiated KS-IMM cells into the contralateral flank. In a group of mice (ƒ), irradiated KS-IMM cells were injected 21 days after MOLT-3 cell injection. The tumor volumes of the experimental group (F) evaluated after 9 weeks differed significantly compared with the (ƒ) experimental group. Indraccolo et al. PNAS 103 4216 (2006) K. Ballmer-Hofer; 18.06.2007 Immunoliposomen für Tumortargeting Rezeptor spezifische scFv Antikörper, kovalent gebunden Lipophile, membrangebundene Toxine (5-FdU-NOAC, NOACETC, Epothilones) Hydrophile, eingekapselte Toxine (Mitoxantron, Peptide, Proteine, antisense Oligos, DNA, siRNA). R. Schwendener Phagendisplay-Technik für die Herstellung von scFv Antikörpern Phagenreinigung Positive Bakterien isolieren und aufziehen Infektion von Bakterien mit Phagen Gebundene Phagen eluieren Phagenbibliothek zu Antigen zugeben Ungebundene Phagen entfernen 6 Tumor Targeting mit Immunoliposomen 1. Derivatisiertes Protein 2. Koppeln an Liposomen O + 3. Bindung an Zellen O N CH C 2 O O O C N CH2 O 4. Akkumulation im Tumor und therapeutische Effekte 12.5 Controls untreated 1600 empty liposomes scFv liposomes % injected dose / g tumor PEG-liposomes 1400 scFv-PEG-liposomes Tumor growth (%) 10.0 7.5 5.0 2.5 0.0 Inhibition des Tumorwachstums 50-60%. scFv-dimers 5FdU-NOAC liposomes 1200 scFv-5FdU-NOAC-liposomes 1000 800 600 400 200 5 60 120 360 1440 Time (min) 0 0 1 2 3 4 5 6 7 8 Days Treatments (i.v.) C. Marty, R. Schwendener, D. Neri Behandlung von F9 Teratocarcinomatumoren mit anti-ED-B scFv Liposomen 5-FdU-NOAC-Lipos scFv-5-FdU-NOAC-Lipos Control liposomes Untreated scFv dimers scFv-Lipos Treatment schedule: 5x every 24 h, tumors collected on day 8. 7 Die Rolle von Tumor assoziierten Makrophagen (TAMs) bei der Tumorprogression und der Metastasenbildung TAMs werden in der Umgebung des Tumors konditioniert: - um Angiogenese zu ermöglichen - die extracelluläre Matrix abzubauen - Tumorzellmotilität zu erhöhen - sie präsentieren aber Antigen sehr schlecht Tumorwachstum und Metastasierung Pollard, Nat. Rev. Cancer 4, 2004 Hohe TAM Frequenz korreliert mit schlechter Prognose Inhibition der Angiogenese auf der Hühner Chorioallantois mit VEGF spezifischen scFv Antikörpern PBS VEGF164 2.5 mm S. Zeisberger VEGF164 + scFv-A1 2.5 mm 0.1 mm 2.5 mm VEGF164 + scFv-H9 2.5 mm 0.1 mm 8 Macrophage viability (%) Bisphosphonate wie Chlodronat töten spezifisch Makrophagen ab 100 75 IC 50 = 2.8 mM = 1 mg/ml 50 PBS Empty liposomes 25 Clodrolip 0 w/o 0.001 0.01 0.1 1 10 Clodrolip (mg/ml) C ell density [% ] 125 MΦs HUVECs F9 A673 100 75 * 50 * 25 0 w/o Empty liposomes Free clodronate Clodrolip Incubation (1 mg/ml, 6h, 37°C, 5% CO2) S. Zeisberger, C. Marty, R. Schwendener Depletion von Immunzellen in der Milz Macrophages ER-TR 9 F4/80 Dendritic cells CD68 FDC CD11b CD11c B-cells T-cells B220 CD3 Clodrolip Free clodronate PBS MOMA1 9 Depletion von CD11c+ Tumor assoziierten dendritischen Zellen (TADC) scFv-A1 scFv-H9 CL CL/scFv-H9 day 22 CD11c day 16 PBS TAM Depletion mit Chlodronat und VEGF Antikörpern Reduction of F 4/80 positive TAMs scFv-A1 scFv-H9 Clodrolip CL/scFv-H9 Day 22 Day 16 PBS TAMs, day 22 (%) 125 100 75 50 25 S. Zeisberger, R. Schwendener *** 0 PBS (ScFv')2-A1 (ScFv')2-SZH9 Clodrolip *** Clodrolip + (scFv')2-SZH9 Treatment 10 Zerstörung der Tumorvaskulatur mit Chlodronat und VEGF Antikörpern scFv-A1 scFv-H9 Clodrolip CL/scF-H9 Vessel density, day 22 (%) Day 22 Day 16 PBS S. Zeisberger, R. Schwendener 100 75 * 50 25 *** *** 0 PBS (ScFv')2-A1 (ScFv')2-SZH9 Clodronate Clodronate + (scFv')2-SZH9 Treatment Anti-angiogene Kombinationstumortherapie im Mausmodell 700 Humane A673 Rhabdomyosarcomatumoren in CD1 Nacktmäusen ScFvSZ H9 + CL 300 200 100 0 (C) 1 2 3 4 (C+S) 5 (S) 6 (S) 7 (S) 8 (C+S) 9 (S) 10 (S) 11 (S) 12 (C+S) 13 14 15 16 17 18 19 20 21 22 0 Days after A673-tumor injection and treatment scheme 0.6 0.4 0.2 0.0 ScFvSZH9 + CL CL 400 0.8 CL ScFvSZ H9 Controls Tumor growth (%) ScFv A1 500 ScFvSZH9 PBS Tumor volume, day 16, x 1000 (mm3) 1.0 600 S. Zeisberger, C. Marty, R. Schwendener 11 Korrelation der TAM Depletion mit der Gefässdichte Kontrolle 800 F4/80+ macrophages Makrophagendichte 700 MOMA1+ macrophages 600 500 r = 0.755, P < 0.0001 400 300 200 100 0 r = 0.735, P < 0.0001 0 100 200 300 400 Vessel density (CD31) Behandelt Zusammenfassung ¾ Die Herstellung rekombinanter Proteine, wie z.B. Antikörper, ermöglicht die Einführung neuer Therapien bei der Tumorbekämpfung. Als Ziele für die Behandlung mit rekombinanten Molekülen eignen sich: • tumorspezifische Oberflächenrezeptoren • Moleküle, die auf dem Tumorstroma oder der Tumorvaskulatur exprimiert werden • lösliche Wachstumsfaktoren, die direkt das Tumorwachstum begünstigen • lösliche Wachstumsfaktoren, die bei der Rekrutierung von Zellen, die das Tumorwachstum begünstigen, eine Rolle spielen (z.B. Zellen des Immunsystems). ¾ Anti-angiogene Therapie kann komplementär zu klassischen Behandlungen eingesetzt werden, wird als Einzeltherapie aber kaum langfristig wirksam sein (Resistenz durch Wechsel der angiogenen Faktoren). ¾ Liposomen sind ideale ‘Delivery Vehicles’ für zielgerichtete Therapien gegen Tumorzellen, müssen aber durch Modifikation der Oberfläche den Bedingungen im Organismus und im Zielgewebe angepasst werden. ¾ Bisphosphonate können als zusätzliche Therapeutika die Wirksamkeit anti-angiogener Therapien drastisch erhöhen. Sie richten sich vor allem gegen TAMs. 12 Aber, so einfach ist die Geschichte nun doch nicht KBH4 Regression der Vaskulatur nach anti-angiogener Behandlung T Kamba and DM McDonald British Journal of Cancer (2007) 96, 1788 – 1795 Mechanisms of adverse effects of anti-VEGF therapy for cancer 13 Slide 26 KBH4 Regression of capillaries in vasculature of normal adult mice after inhibition of VEGF signalling. (A–D) Confocal microscopic images showing capillaries in pancreatic islets (A and B) and villi of small intestine (C and D) under baseline conditions and after VEGF inhibition. After Ad-sVEGFR-1 for 14 days, endothelial cells of some capillaries have regressed, leaving pericytes (red, NG2, arrowheads) at sites of regression (Kamba et al, 2006). (E) Comparison of VEGFR-2 and VEGFR-3 immunofluorescence in pancreatic islet capillaries after VEGF inhibition. Stronger endothelial cell VEGFR-2 immunoreactivity under baseline conditions (upper left) than after Ad-sVEGFR-1 for 14 days (upper right). Stronger endothelial cell VEGFR-3 immunoreactivity under baseline conditions (lower left) than after Ad-sVEGFR-1 for 14 days (lower right). (F) Bar graphs showing fluorescence intensities of VEGFR-2 and VEGFR-3 immunoreactivities under baseline conditions and after Ad-sVEGFR-1 for 14 days (Kamba et al, 2006). *Po0.05, significantly different from corresponding control. wPo0.05, significantly different from islets. (G–I) Fluorescence micrographs of thyroid capillaries stained for CD31 immunoreactivity show dense vascularity under baseline conditions (G), loss of half of the capillaries after AG-013736 for 7 days (H), and complete regrowth of vasculature during 14 days after end of treatment (I) (Kamba et al, 2006). Scale bar in I: 25 mm in (A–D); 40 mm in (E) and (F); 160 mm in (G–I). Kurt Ballmer-Hofer; 14.08.2008 Rückgang der Fenestrierung inKBH3 den Nierenglomeruli Einige Nebenwirkungen von anti-VEGF Therapien ¾ Bluthochdruck (Verlust von NO signaling) ¾ Proteinuria (Verlust der Fenestrierung der EZ und von Podocyten, Verlust der Filtrierbarriere) ¾ Reduktion der Wundheilung (bei Operationen) ¾ Gastrointestinale Komplikationen (Darmperforationen, Defekte in den Kryptzellen) ¾ Blutungen, Thrombosen (NO, PG Reduktion, Epo Ueberproduktion) ¾ Störungen der Blut-Hirnschranke ¾ Herzinsuffizienzen ¾ Endokrine Probleme 14 Slide 27 KBH3 Reduction in endothelial fenestrations (arrowheads) after inhibition of VEGF signalling. (A and B) Transmission electron microscopic images of islet capillaries showing thin endothelium and abundant fenestrations with diaphragms under baseline conditions compared to thick endothelium, few fenestrations, and abundant caveolae after AG-013736 for 21 days (Kamba et al, 2006). (C and D) Transmission EM images of renal glomerular capillaries comparing thin endothelium and abundant fenestrations under baseline conditions with thick endothelium and few fenestrations after Ad-sVEGFR-1 for 14 days (Kamba et al, 2006). (E and F) Scanning electron microscopic images of luminal surface of glomerular capillaries showing abundant endothelial fenestrations under baseline conditions and few fenestrations after Ad-sVEGFR-1 for 14 days (Kamba et al, 2006). (G) Bar graph showing significantly higher concentration of TSH in serum as a measure of altered thyroid function after AG-013736 for 21 days. (H) Bar graph showing increasing amount of proteinuria, indicated by proportion of mice with Albustix values of þ þ or greater (X100 mg albumin/dl of urine), with increasing dose of AG-013736 for 7 days. (I) Diagram of hypothetical shuttling of diaphragms between endothelial fenestrations and caveolae, with VEGF inhibition driving the process to the right and VEGF signalling driving it to the left (Kamba et al, 2006). Scale bars: 0.3 mm in (A) and (B); 1 mm in (C) and (D); 0.5 mm in (E) and (F). Kurt Ballmer-Hofer; 14.08.2008 Zitate des Experten (McDonald et al.) ¾ ¾ ¾ ¾ … a more complete understanding of the basic biology of tumor vessels will be necessary to fully appreciate the consequences of vessel leakiness in cancer. New research tools such as intravital measurements of tumor blood flow and vessel leakiness, in vivo phage display, magnetic resonance imaging, and use of selective angiogenesis inhibitors will contribute to this understanding (2002). In … tumors, pericytes did not degenerate to the same extent as endothelial cells, and those on surviving tumor vessels acquired a more normal phenotype. Vascular basement membrane persisted after endothelial cells degenerated, providing a ghost-like record of pretreatment vessel number and location and a potential scaffold for vessel regrowth. The potent antivascular action observed is evidence that VEGF signaling inhibitors do more than stop angiogenesis. Early loss of endothelial fenestrations in RIP-Tag2 tumors is a clue that vessel phenotype may be predictive of exceptional sensitivity to these inhibitors (2004). VEGF inhibitor … effects are typically downstream consequences of suppression of cellular signalling pathways important in the regulation and maintenance of the microvasculature. Downregulation of these pathways in normal organs can lead to vascular disturbances and even regression of blood vessels, which could be intensified by concurrent pathological conditions. These changes are generally manageable and pose less risk than the tumours being treated, but they highlight the properties shared by tumour vessels and the vasculature of normal organs (2007). The MR imaging-assayed acute change in vascular leakiness after a single dose of bevacizumab was an early, measurable predictive biomarker of tumor angiogenesis treatment response (2008). Tumor targeting Reto Schwendener (IMCR UNIZH) Steffen Zeisberger Conni Marty Anne Fjällman http://mcb.web.psi.ch [email protected] Funding Swiss National Science Foundation, Novartis Foundation, Sassella Stiftung, Oncosuisse, Paul Scherrer Institut Collaborators at Structural Biology and SLS at PSI Rolf Jaussi, Andrea Prota, Jack Missimer, Dirk Kostrewa, Michel Steinmetz, Fritz Winkler, Clemens Schulze-Briese, Armin Wagner, Franz Pfeiffer, Oliver Bunk Outside collaborators Giorgios Skiniotis & Tom Walz, Harvard Medical School; Jeannette Wood, Novartis Pharma; Jody Haigh, VIB Gent; Functional Genomics Center University of ZH, Lena Claesson-Welsh, Uppsala University 15 KBH3 Notch Signalübertragung antagonisiert VEGF und stimuliert das Tumorwachstum KBH1 Metabolic control of cancer cell growth 16 Slide 31 KBH3 VEGF and Dll4 regulate tumor angiogenesis. VEGF activates the VEGFR-2 signaling pathway to stimulate tumor angiogenesis. Dll4 binding to Notch negatively regulates sprouting and branching during tumor angiogenesis resulting in a functional vascular network. Anti-VEGF treatment inhibits angiogenesis and suppresses tumor growth. In contrast, Dll4 blockade stimulates nonproductive tumor vascularization, resulting in inhibition of tumor growth. http://www.nature.com/naturebiotechnology Hicklin D.J. Nature biotech 25 2007 K. Ballmer-Hofer; 22.06.2007 Slide 32 KBH1 The metabolism of glucose and its regulation by oncogenic signals. (A) Glycolysis breaks down glucose in the cytoplasm to generate pyruvate. In the absence of oxygen, pyruvate is reduced to lactate. In the presence of oxygen, pyruvate is oxidized by PDH to acetyl-CoA, which enters the mitochondria and the TCA cycle. Oxidative phosphorylation generates ATP as an energy source and also produces ROS. ROS can cause mitochondrial damage and apoptosis, both by stimulating the release of apoptotic factors and through activation of Kv1.5 channels. Glycolytic metabolism can be promoted by oncogenic changes. For instance, the tumor suppressor p53 inhibits glycolysis through TIGAR induction and stimulates oxidative phosphorylation through SCO2 induction. In cancer cells with mutated p53, ROS-induced apoptosis is thus decreased. The oncogene DJ-1 also blocks ROS-induced apoptosis and may increase glycolysis by inhibiting PTEN and thereby activating PI-3′ kinase and PKB. Hypoxia can induce glycolysis in cancer cells through HIF-1α stabilization and activation, and thereby the up-regulation of glycolytic enzymes. Furthermore, hypoxia suppresses oxidative phosphorylation through the transcriptional activation of the gene encoding PDK. By inhibiting PDK, DCA may shift cancer cell metabolism back toward oxidative phosphorylation. Some cancer cells may use nonglucose energy sources such as amino acids, fatty acids, or nucleic acids. How p53 and hypoxia influence the metabolism of these energy sources is unknown. (B) Wild-type p53 and DCA shift cancer cells toward oxidative phosphorylation and apoptosis. Oncogenic changes and hypoxia shift cancer cells toward glycolytic metabolism and survival. Pan and Mak, STKE 381 e14 2007 K. Ballmer-Hofer; 27.06.2008 Metabolic control of cancer cell growth 17
© Copyright 2024