What is a topological insulator? Ming-Che Chang Dept of Physics, NTNU

What is a topological insulator?
Ming-Che Chang
Dept of Physics, NTNU
A mini course on topology
extrinsic curvature K vs intrinsic (Gaussian) curvature G
G>0
K≠0
G≠0
G=0
K≠0
G=0
G<0
• Gauss-Bonnet theorem for 2-dim closed surface
∫
M
Euler characteristic
g=0
da G = 2πχ
χ = 2(1 − g )
g=1
g=2
• Gauss-Bonnet theorem in higher dimensions
• Gauss-Bonnet theorem for fiber bundles (陳省身, 1940’s)
Physical space × Inner space
(spin, gauge field…)
Quantum Hall effect (von Klitzing, PRL 1980)
classical
quantum
= 25.81202 k-ohms
Increasing B
B=0
LLs
• Each LL contributes one e2/h
to Hall conductance
• Thouless 1982
Hall conductance = topological number
energy
EF
σH
⎡ 1
2
(n) ⎤
Ω
d
k
⎢
z ⎥
∫
⎣ 2π BZ
⎦
Robust against perturbation
(n)
Density of states
e2
=
h
Edge state in quantum Hall system
(Classical picture)
skipping orbit
(Chiral edge state)
Robust against disorder
(no back-scattering)
(Semiclassical picture)
Bulk-edge correspondence
number of edge modes = Hall conductance
Different types of insulator
• Band insulator
(due to lattice)
• Mott insulator
(e-e interaction)
• Anderson insulator
(disorder)
Insulators with nontrivial topology
• Quantum Hall insulator
(cyclotron-energy gap)
• Topological insulator
(Spin-Orbit gap)
TR symmetry is broken
TR symmetry is NOT broken
Time reversal symmetry, a review
Time reversal operator
• Kramer’s degeneracy (for a system with j=half integer)
Θψ k ↑ = ψ − k ↓
ε k↑ = ε −k↓
↑
↑
• Bloch state
ε
k
Edge state: QH vs TI (2D case)
Real space
Robust
chiral edge state
Robust
helical edge state
backscattering by
non-magnetic
impurity forbidden
Energy spectrum
(for one edge)
TRIM: Time Reversal Invariant Momenta
(Fu and Kane, PRB 2007)
BZ
surface BZ
Γ01
Γ00
Γ11
Γ10
Λb
Λa
TRIM:
r
r
1 r
Γ n1n2 = n1b1 + n2b2
2
(
)
ε Γ↑ = ε −Γ↓ = ε Γ↓
Energy band is guaranteed to be 2-fold degenerate at TRIM.
Surface state: usual insulator vs TI
usual insulator
TI
Dirac point
(for 3D TI)
(for one
surface)
TRIM
• even pairs of surface states (fragile)
• odd pairs of surface states (robust)
• even number of Dirac pts filled
• odd number of Dirac pts filled
Topological number ν=0
Topological number ν=1
Candidates of topological insulator
• Graphene (Kane and Mele, PRLs 2005)
2D
SO coupling only
10-3 meV
• HgTe/CdTe QW (Bernevig, Hughes, and Zhang, Science 2006)
• Bi bilayer (Murakami, PRL 2006)
•…
• Bi1-xSbx, α-Sn ... (Fu, Kane, Mele, PRL, PRB 2007)
• Bi2Te3 (0.165 eV), Bi2Se3 (0.3 eV) … (Zhang, Nature Phys 2009)
3D
• The half Heusler compounds (LuPtBi, YPtBi …)
(Nature Material, July 2010)
•…
ARPES of Bi2Se3
DFT prediction:
Helical Dirac cone
Fermi energy is not located at Dirac pt.
~ Rashba model
Dirac points in graphene
E
Dirac
cone
r
r
Ω(k ) = πδ (k ) → γ C = π
B
E (k ) = hν F k
…
Cyclotron
orbits
k
⎛
⎝
1
2
π k 2 = 2π ⎜ n + −
γ C ⎞ eB
2π ⎟⎠ h
⇒ En =vF 2eBhn
Similar shift exists in TI
expecting half integer QHE
Difference of the Dirac points: Graphene vs TI
1. Even Dirac points vs odd Dirac points
2. Graphene’s are locked at Fermi energy, TI’s are not
3. TI’s: spin locked with momentum (helical Dirac point)
4. Graphene’s can be opened by substrate, TI’s is robust
5. …
Note: Nielsen-Ninomiya’s theo requires
(massless) lattice Dirac fermons to appear in pairs
A major obstacle to
lattice QCD.
“Topological transport” regime
half integer QHE gives
Induced magnetization
1 e2
I=
E
2 h
m e2
M= =
E
A 2h
Quantized magneto-electric coupling
Effective Lagrangian term
LME
Θ 1 r r
e2 1 r r
“axion” coupling
=
E⋅B =α
E⋅B
2
2h c
4π c
e2
α = ; Θ =π
hc
For a system with TRS, Θ can only be
0 (usual insulator) or π (TI)
Maxwell eqs with axion coupling
Θ r⎞
⎛r
∇ ⋅ ⎜ E + α B ⎟ = 4πρ
π ⎠
⎝
Θ r ⎞ 4π r ∂ ⎛ r
Θ r⎞
⎛r
J+
∇×⎜ B −α E ⎟ =
⎜ E +α B⎟
π ⎠ c
c∂t ⎝
π ⎠
⎝
r
∇⋅B = 0
r
∂ r
B
∇× E = −
c∂t
Effective charge and effective current
r
∇ ⋅ E = 4π ( ρ + ρΘ )
r
α
ρΘ = − 2 ∇ ⋅ ( ΘB )
4π
r
r 4π r r
1 ∂E
∇× B =
J + JΘ +
c
c ∂t
r
r
r
cα
α ∂
ΘB
J Θ = 2 ∇ × ΘE + 2
4π
4π ∂t
(
( )
( )
r
r
cα
JΘ = −
δ ( z ) zˆ × E
4π
α
ρΘ =
δ ( z ) Bz
4π
E
B
Θ=π
)
Θ=π
→ half–integer
QHE
A point charge induces an image monopole
(Qi, Hughes, and Zhang, Science 2009)
A point charge
Circulating
current
An image charge and
an image monopole
Optical signatures of TI (Chang and Yang, PRB 2009)
axion effect on
• Snell’s law
• Fresnel formulas
• Brewster angle
• Goos-Hänchen effect
•…
⎛ E ''⊥ ⎞
⎛ E⊥ ⎞
=
R
⎜
⎟
⎜ ⎟
''
E
⎝ // ⎠
⎝ E// ⎠
k
B’’
γ
B
θ
E
n Θ
y
n’ Θ’
B’
E’
E’’
θ’
⎛ E '⊥ ⎞
⎛ E⊥ ⎞
T
=
⎜
⎟
⎜ ⎟
⎝ E '// ⎠
⎝ E// ⎠
x
z
R is symmetric
→ two orthogonal eigenmodes
Rotation of eigenmodes
2α neiδ
tan ( 2γ ) = 2
n − n '2 − α 2
k
B
γ
E
α ≡α
Θ '− Θ
π
n 2 − n '2 − α 2
e ≡ 2
n − n '2 − α 2
iδ
γ→π/4 if
n 2 = n '2 + α 2
One eigenmode allows Brewster angle,
n ' 1 − ( n '/ n ) 2
tan θ B =
n 1 − ( n '/ n) 2
(Reflected/refracted beam no longer
perpendicular to each other)
γ
Effective refraction indices
1⎡
( n + n ') 2 + α 2 + eiδ ( n − n ') 2 + α 2 ⎤
⎦
2⎣
1
n ' = ⎡ ( n + n ') 2 + α 2 − eiδ ( n − n ') 2 + α 2 ⎤
⎦
2⎣
n=
Use Brewster angle + eigenmode direction
to determine γaccurately
For (n,n’)=(10,9), γ~0.1 degree
Alternative optical probes:
Rotation of polarization from reflected wave (Kerr effect)
and transmitted wave (Faraday effect) for a TI thin film
• W.K. Tse and A.H. MacDonald, PRL July 2010
• J. Maciejko, X.L. Qi, H.D. Drew, and S.C. Zhang, PRL, Oct 2010
Giant Kerr effect
Universal Faraday effect
Independent of material details!
An insulator with topological number ν=1
manifests itself in many ways:
• odd pair of robust, helical surface states
• odd number of helical Dirac points
• half integer QHE from the surface states
• quantized magneto-electric coupling
• novel optical effects from axion coupling
•…
Thank you!