Monitoring organic pollutants within the WFD: Why and How

Monitoring organic pollutants
within the WFD:
Why and How
T. P. Knepper
Europa University of Applied Sciences Fresenius, Germany.
Outline:
•
Why do we need to monitor within the WFD ?
Strategy of monitoring
Results of monitoring
(WWTP-influent & -effluent; surface & ground water;
soil)
•
How to monitor
Sampling campaigns
Analysis
Quality Assurance
1
Strategy of monitoring (WFD):
Each compound
- and also metabolite –
which could possibly appear has to be
investigated.
….if an analytical method is available and the
analysis not too costly
Time shedule WFD:
Dec. 2000 In force
Dec. 2003 National law implementation
Dec. 2004 Characterisation and inventory
Dec. 2006 Programs for monitoring are ready for
application
Dec. 2009 Program for measures and plans for
management of river basin are finished
Dec. 2012 Program for measure is implemented
Dec. 2015 „good condition“ (ecological + chemical);
new plans for management of river basin
2
Priority Substances and Other
Pollutants
The Commission proposal (COM(2006)397 final)
setting environmental quality standards for
surface waters of 41 dangerous chemical
substances includes the 33 priority substances
and 8 other pollutants.
1) Priority Substances
33 substances or group of substances are on the list of
priority substances including selected existing
chemicals, plant protection products, biocides, metals
and other groups like Polyaromatic Hydrocarbons
(PAH) that are mainly incineration by-products and
Polybrominated Biphenylethers (PBDE) that are used
as flame retardants..
Chemical status - 33 priority compounds
Organic compounds (n = 16)
(2) Anthracene
(4) Benzene
(5) Brominated diphenylethers
(7) Chloroalkanes (C10 -C13)
(10) 1,2-Dichloroethane
(11) Dichloromethane
(12) DEHP
(15) Fluoranthene
(17) Hexachlorobutadiene
(22) Naphthalene
(24) Nonylphenols (4-para-N)
(25) Octylphenols (para-tert-O)
(26) Pentachlorobenzene
(28) PAK (Benzo-a-pyrene, Benzo-b-fluoranthene,
Benzo-g,h,i-perylene, Benzo-k-fluoranthene, Indeno1,2,3-cd-pyrene)
(31) Trichlorobenzenes (1,2,4-TB)
(32) Trichlormethane
Metals (n = 4)
(6) Cadmium
(20) Lead
(21) Mercury
(23) Nickel
Pesticides (n = 13)
(1) Alachlor
(3) Atrazine
(8) Chlorfenvinphos
(9) Chlorpyrifos
(13) Diuron
(14) Endosulfan
(16) Hexachlorobenzene
(18) HCH (Lindan)
(19) Isoproturon
(27) Pentachlorophenol
(29) Simazine
(30) TBT-cation
(33) Trifluralin
Identified as priority dangerous compounds
(n = 13)
3
European Water Framework Directive
(WFD)
Starting 2007 the EU-member states have to
conduct monitoring programs upon organic
pollutants and others.
Hesse, Germany carried out a prelimary
monitoring to find appropriate sampling points.
Pesticides:
Pesticides:
Monitoring of surface waters 2004/2005
(preliminary monitoring)
monitoring)
• 119 sampling locations
• 95 substances
• 6 measurements 2004 or 2005
therefrom
4 in April - June
2 in October -November
• Presetting of WFD
For I
For II, III and IV
Increased mean
values during
application time
¼ 12 samples/a
¼ 4 samples/a
4
European Water Framework Directive (WFD) –
Regulation for Pesticides in surface waters
I priority pesticides
quality specifications by EU (in preparation)
e.g. IPU, Diuron, Atrazine
II river basin targeted pesticides
quality specifications by Hesse/Working Group on
water issues (LAWA)
III further basin targeted pesticides
so far no regulation
IV river basin targeted pesticides
quality standard suggestion by LAWA,
e.g. Terbutryn
Pesticide monitoring in 2004/2005
pesticide
Isoproturon
Mecoprop (MCPP)
Dichlorprop (2,4-DP)
n-Chloridazon
Bentazone
MCPA
Metazachlor
Diuron
Metobromuron
Metamitron
Ethofumesate
Terbuthylazine
Metolachlor
Atrazine
Terbutryn
Epoxiconazole
2,4-D
Propiconazole
Metribuzin
Fluoxypyr
Tebuconazole
Fenpropimorph
Terbutylazine-desethyl
Dichlobenil
Haloxyfop
quality
standard
[µg/L]
0.3 / 1.0 *
0.1
0.1
0.1
0.1
0.1
0.4
0.2 / 1.8 *
0.5
0.2
0.6 / 2.9 *
0.03
0.1
90-perc.
[µg/L]
maximum
value
[µg/L]
0.47
0.12
0.11
0.1
0.14
0.16
< l.d.
0.21
< l.d.
0.2
0.12
0.04
< l.d.
< l.d.
0.09
0.04
< l.d.
0.07
< l.d.
0.04
0.05
< l.d.
< l.d.
< l.d.
< l.d.
15
11
10
9.7
9
7.7
4.6
4.5
4.4
4.3
3.9
2.5
1.6
1.4
1.3
1
0.91
0.8
0.75
0.55
0.51
0.49
0.47
0.46
0.46
approx. 700 samples
74 pesticides found,
therefrom
25 with max. values
l.d. = limit of detection
•annual average value /
maximum value
5
detection
limit
[µg/L]
quality
standard
[µg/L]
mean
[µg/L]
maximum
value
[µg/L]
Dichlorprop (2,4-DP)
0.03
0.1
0.23
0,70
MCPA
0.04
0.1
0.16
0.62
Bentazon
0.03
0.1
0.19
0.63
Dimethoat
0.05
0.1
0.04
0.14
n-Chloridazon
0.05
0.1
0.32
1.50
Metolachlor
0.03
0.2
0.25
1.40
Terbuthylazine
0.03
0.5
0.46
2.50
Diuron
0.04
0.2 / 1.8
0.12
0.20
0.56
sampling point
Gersprenz
Babenhs.-Harreshs.
Fanggraben
Biebesheim
pesticide
Isoproturon
0.03
0.3 / 1.0
0.24
Terbutryn
0.03
0.03
0.07
0.13
Dicamba
0.05
0.05
0.17
Ethofumesat
0.03
0.81
3.50
Haloxyfop
0.03
0.05
0.21
Iprodion
0.03
0.04
0.14
Metamitron
0.10
0.80
4.20
Metobromuron
0.10
0.11
0.40
Metribuzin
0.03
0.05
0.12
Tebuconazole
0.04
0.05
0.13
Terbutylazine-desethyl
0.03
0.10
0.47
Mecoprop (MCPP)
0.03
0.1
0.08
0.20
Diuron
0.04
0.2 / 1.8
0.60
1.70
Terbutryn
0.03
0.03
0.29
0.74
Exceedings of quality standards of pesticides at
sampling locations 2004/2005:
Pesticide with quality standard
compound
No. of QSexceedings
%
positive
results
Terbutryn
44
33
Isoproturon
29
53
MCPA
24
Bentazone
Pesticide without quality standard:
No. of sampling
locations with
mean > 0.1µg/L
%
positive
results
Metamitron
38
24
Ethofumesate
18
23
31
Propiconazole
6
30
23
35
Metobromuron
4
1
Mecoprop (MCPP)
19
38
Metribuzin
4
6
Dichlorprop (2,4-DP)
14
27
Epoxiconazole
2
12
Diuron
12
36
10
15
Fluroxypyr
n-Chloridazon
2
11
Metolachlor
3
4
Tebuconazole
2
24
2,4-D
2
5
Fenpropimorph
1
2
Metazachlor
2
8
Haloxyfop
1
2
Terbuthylazine
1
15
Atrazine
1
9
compound
6
Pesticides
2004/2005
average
concentration
Emsbach
Gersprenz
Pesticides
2004/2005
Average
concentration
Alle
all
PSM
pesticides
Ecotoxicological risk
only
pesticides
with
Nur PSM
quality
mit QN
standards
Very low
Low
Increased
High
Very high
Extremly
high
7
preliminary monitoring
WFD 2005-2006
WFD – Monitoring since
2007
Number of
sampling
locations
Number of
measurements/
sampling
location
Number of
sampling
locations
Number of
measurements/
sampling
location
Basic physical
parameter /
Phosphorous
204
>12
182
>12
Pesticides
2004-2005
119
6
96
8-17
Heavy metal, PAH,
PCB, organotin
compounds in
suspended matter
29
8
28
further 4
How do pesticides enter surface
waters?
http://www.agf.gov.bc.ca/pesticides/images/c/c_2_1.gif
8
Sources of organic pollutants in
municipal WWTP
Industry
in
di
re
ct
e
ac
rf
u
s
di
sc
ha
rg
e
WWTP
Agriculture
Traffic
Household
f
no
ru
f
ru
rd
ya
ff
no
WWTP
surface waters
Pollutants: Entry into the watercycle
household
water
works
agriculture
industry
wastewater
indirect discharge
groundwater
WWTP
bankfiltration
polluted rivers
9
Waste water treatment in agglomerations affected by
sensitive areas and organic loads (data January 2002)
Member State
Agglomeration
concerned
Complying
treatment Level
Non complying
treatment level
Load [p.e.]
%
%
Belgium
8 952 516
29
71
Denmark
6 698 384
96
4
Germany
124 876 488
P-Reduction 90%
N-Reduction 74%
-
609 400
40
60
Spain
5 740 260
25
75
France
16 728 379
36
64
Ireland
3 362 856
8
92
Italy
3 024 094
72
22
Luxembourg
804 500
14
86
Netherlands
15 906 991
P-Reduction 79%
N-Reduction 66%
-
Austria
1 851 885
100
0
Portugal
1 372 700
11
90
Finland
6 377 300
7
93
Sweden
7 672 670
73
27
United Kingdom
6 221 177
29
71
210 199 600
-
-
69 416 121
42
58
Greece
Total
MS not applying Article 5
Comparison of pesticide concentrations in waste and
surface waters
1,60
WW effluent, Hesse,
Hesse, 06.04.06.04.-17.05.2000
1,40
n=70, mean concentration
[µg/L]
1,20
1,00
0,80
0,60
0,40
Simazine
Atrazine
Tebuconazole
Terbuthylazine
2,4-D
Fluoxypyr
DEET
Ethofumesate
Diuron
Bentazone
MCPA
2,4-DP
MCPP
n-Chloridazon
0,10
Isoproturon
0,00
Metamitron
0,20
0,09
0,08
[µg/L]
0,07
Main, Germany, 01.01.01.01.-31.12.2000
0,06
n=35, mean concentration
0,05
0,04
0,03
0,02
Ref.: The Handbook of environmental chemistry, Volume 5 Series water pollution: The Rhine
Terbuthylazine
Bentazone
MCPA
2,4-DP
Diuron
Atrazine
Atrazinedesethyl
DEET
MCPP
0,00
Isoproturon
0,01
10
Balance of the stream Nidda to
bordering WWTPs
Compound
Waste water
treatment plant
pestcide load in kg
Nidda
pesticide load
in kg
Share of load of
pesticides from
WWTP to total
load in Nidda in %
Atrazine
1,9
3,4
57
MCPP
5,2
7,7
67
2,4-DP
4,4
6,9
63
Isoproturon
8,5
14,0
61
Diuron
6,6
10,4
64
Data gained 23/04/1994 to 24/05/1994
Numbers of waste water treatment plants
Average pesticide entry from 106 Hessian
waste water treatment plants
(April/May 1999)
35
30
25
20
15
10
5
0
<0,2
<0,4
<0,8
<1,6
<3,2
<6,4
<13
<26
<52
Pesticide concentration without Diuron in µg/L
11
How to monitor ?
Sampling campaign!
Monitoring
Drinking
water
Surface
water
Waste
water
12
10
130
10 - 100 µg/L
110
90
70
50
30
P1
EC
N
P2
EO
N
O
P1
EC
EO
P1
EO
N
P5
9
N
TA
O
P2
EC
ED
N
7
P2
EC
1 - 10 µg/L
8
SP
C
10
9
6
5
3
2
a
2
rb
am
P
0.1 - 1 µg/L
N
D
S
N A1
D 7
SA
D 16
IC
LO
TC 2
N PP
D
SA
N
D 15
SA
BA 27
Y
N AC
D
SA I
13
I
N BU
D 1
SA
2
D 6
EE
TC T
EP
BT
N
SA
D 2
CB
A
O
H
B
M T
TB
T
D
Ca
N
IB
U
BT
SA
O
IC
LO
P
I
1
1
TT
R
1
0.9
0.8
0.7
0.6
0.5
0.4
0.3
0.2
0.1
0
concentration (µg/L)
4
Sulfophenyl carboxylates
SO3H
800
concentration (µg/L)
BT
ri
concentration (µg/L)
concentration (µg/L)
P3-compounds in European wastewater
effluents:
effluents:
influent
700
CAS
600
MBR
SPC
HOOC
500
400
300
200
100
0
1
7/04
2
3
4
5
6
7
sample no.
8
9
10 11 12
3/05
13
0
H RT 10 h
SRT 322 d
SRT 363 d
SRT 376 d
170
31.03.2005
SRT 411 d
30.03.2005
39
119
157
264
M B R -e fflu e n t
16.03.2005
42
15.03.2005
776
31.03.2005
SRT 411 d
30.03.2005
16.03.2005
SRT 398 d
15.03.2005
02.03.2005
SRT 386 d
01.03.2005
17.02.2005
SRT 376 d
16.02.2005
02.02.2005
SRT 363 d
01.02.2005
12.01.2005
SRT 351 d
11.01.2005
29.12.2004
SRT 347 d
28.12.2004
2
6
6
6
8
29
24
22
41
38
27
26
18
15
12
10
17
19
19
90
930
6984
4671
2444
1975
2922
3352
2688
2167
3509
M B R - e f f lu e n t
SRT 398 d
157
40
215
211
02.03.2005
SRT 386 d
34
292
SPC
01.03.2005
17.02.2005
97
440
W W T P -in flu e n t
16.02.2005
54
245
01.12.2004
SRT 337 d
30.11.2004
10.11.2004
SRT 322 d
09.11.2004
20.10.2004
SRT 308 d
19.10.2004
1334
W W T P - in f lu e n t
02.02.2005
69
44
173
401
H R T 10 h
01.02.2005
12.01.2005
SRT 351 d
11.01.2005
91
300
SRT 347 d
204
433
900
29.12.2004
145
179
383
12
10
995
LAS
28.12.2004
01.12.2004
SRT 337 d
30.11.2004
74
178
25.08.2004
SRT 260 d
24.08.2004
4
100
10.11.2004
49
500
09.11.2004
20.10.2004
SRT 308 d
324
3
10000
19.10.2004
25.08.2004
87
21.07.2004
SRT 230 d
20.07.2004
10
SRT 260 d
100
51
19
400
24.08.2004
21.07.2004
200
145
800
18
1
SRT 230 d
-1
log c [µg⋅L ]
1000
20.07.2004
-1
c [µg⋅L ]
Aerobic degradation of LAS by bacteria
Schleheck, D., Knepper, T.P., Fischer, K., Cook, A.M.; Appl. Environ. Microbiol., 2004.
W W T P - e f f lu e n t
HRT 7 h
W W T P - e ff lu e n t
700
600
HRT 7 h
14
Nonylphenol-diethoxycarboxylate
COOH
O
200
influent
concentration (µg/L)
180
H19C 9
CAS
160
NP2EC
MBR
140
120
100
80
60
40
20
0
1
2
3
4
5
6
7
8
9 10 11 12 13 14 15
sample no.
P3-compounds in European surface waters
concentration (µg/L)
10
8
6
> 1 µg/L
4
2
0
SPC EDTA
0
0.06
0.04
0.02
0
N
N P
P
M 2E
U
SK C
XY
L
0.2
0.08
BT
1N
SA
O
H
G BT
AL
A
26 XO
N
D
S
TO A
N
AL
M I
M
TB
U
SK T
KE
T
0.4
concentration (µg/L)
0.6
0.01 - 0.1 µg/L
0.1
N
P2
E
N O
P1
13 EC
N
D
SA
0.8
BT
R
BT I
SA
B
N TS
P3 A
EO
17 _L
ND
16 SA
ND
15 SA
ND
S
N A
P1
EO
T
27 TR
ND I
SA
2N
SA
concentration (µg/L)
0.1 - 1 µg/L
1
15
Pesticides and metabolites in surface water
0,10
0,09
0,08
[µg/L]
0,07
0,06
0,05
(Main, Germany, 01.01.-31.12.2000)
0,04
n=35, mean concentration
0,03
0,02
0,01
Terbuthylazine
Bentazone
MCPA
2,4-DP
Diuron
Atrazine
Atrazinedesethyl
MCPP
Isoproturon
0.01 - 0.2 µg/L
DEET
0,00
Ref.: The Handbook of environmental chemistry, Volume 5 Series water pollution: The Rhine
0,20
n=617-644, mean concentration
0,18
0,16
(Portugal, April 1999 - May 2000)
[µg/L]
0,14
0,12
0,10
0,08
0,06
0,04
Dimethoate
Linuron
Metolachlor
Alachlor
MCPP
2,4-DP
2,4,5-T
Atrazine
Bentazone
2,4-D
Simazine
0,00
MCPA
0,02
Ref.: S. Lacorte et al., J. Environ. Monit., 2001, 3, 475-482
How is the concentration in the
water cycle correlated with the
elimination during wastewater
treatment??
16
Balance of data gained
for Hessian project*
project* to
fulfill requirements of
WFD
Water samples of
Emsbach stream
compared with water
samples of 4
Wastewater Treatment
Plants (red dots)
*„Auswahl der kosteneffizientesten Maßnahmenkombinationen
unter Berücksichtigung der Umweltziele und Ausnahmen nach
Art. 4 WRRL anhand ausgewählter Wasserkörper im hessischen
Teil des Bearbeitungsgebiets Mittelrhein“
Balance of entry of emerging contaminants into
the aquatic environment via WWTP:
100
WWTP: 1.83 kg
60
40
Stream: 1.77 kg
20
(result different for
degradable compounds)
5.-7.6.
7.-9.6.
1.-3.6.
Total of 4
WWTP effluents
3.-5.6.
30.5.-1.6.
26.-28.5.
28.-30.5.
22.-24.5.
24.-26.5.
18.-20.5.
20.-22.5.
14.-16.5.
16.-18.5.
10.-12.5.
12.-14.5.
6.-8.5.
8.-10.5.
2.-4.5.
4.-6.5.
26.-28.4
28.-30.4
30.4.-2.5.
22.-24.4
24.-26.4
16.-18.4
18.-20.4
20.-22.4
12.-14.4
14.-16.4
Stream
0
10.-12.4.
Load in g/2d
Total for 2 month
analysis (2006):
Diclofenac
80
date
17
5.-7.6.
1.-3.6.
28.-30.5.
24.-26.5.
20.-22.5.
16.-18.5.
5.-7.6.
1.-3.6.
28.-30.5.
24.-26.5.
20.-22.5.
16.-18.5.
12.-14.5.
8.-10.5.
4.-6.5.
30.4.-2.5.
26.-28.4
22.-24.4
18.-20.4
14.-16.4
10.-12.4.
Kläranlagen gesamt
5.-7.6.
1.-3.6.
28.-30.5.
24.-26.5.
20.-22.5.
16.-18.5.
12.-14.5.
8.-10.5.
4.-6.5.
30.4.-2.5.
MCPA
12.-14.5.
8.-10.5.
4.-6.5.
30.4.-2.5.
26.-28.4
22.-24.4
18.-20.4
22.-24.4
26.-28.4
300
14.-16.4
10.-12.4.
Load in g/2d
18.-20.4
14.-16.4
10.-12.4.
Load in g/2d
Load in g/2d
Ethofumesat
10,0
8,0
6,0
4,0
2,0
0,0
Kläranlagen gesamt
Kläranlagen gesamt
Emsbach
250
Date
200
WWTP Effluent
150
(Total of 4 WWTP effluents)
100
50
Stream: Emsbach
0
Emsbach
Date
Isoproturon
50
40
30
20
10
0
Total of 4
WWTP effluents
Stream Emsbach
Emsbach
Date
18
Can we estimate the
concentration of P3 in the
water cycle??
What is the Water Cycle Spreading Index (WCSI)?
Implemented by Reemtsma et. al.:
WCSI =
c ⋅c
effluent concentrat ion
= in out
normalized removal in WWTP c in − c out
Reemtsma, T., Weiss, S., Müller, J., Petrovic, M., Gonzalez, S., Barcelo, D., Ventura, F., Knepper, T.P.;
Environ. Sci. Technol., 2006.
19
WCSI:
SP
C
log c [µg⋅L-1]
Concentration in the effluents of 3 WWTPs in a 10 month study period:
SP
C
WCSI: SPCs
SPCs in contrast to other compounds:
20
Where do persistent polar
priority pesticides and
metabolites remain in the
environment?
EDTA
WWTP-Influent
200
MBR-Effluent
WWTP-Effluent
[µg/L]
150
100
50
19.10.04
SRT 308 d
20.10.04
04.05.04
SRT 164 d
05.05.04
23.03.04
SRT 128 d
24.03.04
0
21
Values of EDTA in ground water wells
7
March '93
July '93
Nov. '93
EDTA in µg/L
6
April '93
Aug. '93
March '94
5
4
3
2
1
0
RRWB
GWW1
GWW2
GWW3
GWW4
DW
Sampling Points
RRWB = River Rhine Water Basin; GWW1 = Groundwater Well (1 m);
GWWW2 (80 m); GWW3 (145 m); GWW4 (160 m); DW = Drinking Water
Occurrence of barbiturates in surface water
Mulde at Pouch and Elbe:
not detected !
....but permanently in
Dessau !!!
22
0,3
0,86
0,6
2,48
4,55
secobarbital
2005-11-13
2005-07-03
1,5
1,41
3
2005-07-02
0,98
0,88
0,51
0,27
0,40
0,22
0,30
0,19
0,39
0,28
0,30
0,29
0,31
0,12
0,10
0,09
0,10
0,28
2,08
5
2005-07-01
2005-05-07
2005-04-12
2005-04-11
2005-04-10
2005-04-09
2005-04-08
2005-03-28
2005-02 mix
2005-02-02
2004-09-30
2004-05-30
0,49
0,21
1
2004-04-30
2004-04-12
2004-04-02
5,4
5,3
conc. [µg/
Occurrence of barbiturates in the river mulde
pentobarbital
butalbital
phenobarbital
4
2
0
Occurrence of barbiturates in irrigated ground water (Berlin)
Groundwater, Berlin
WW infiltration 40 y ago:
Phenobarbital:
up to 1.3 µg/L
Others:
between 0.05 and 0.08 µg/L
23
Selected pesticides and metabolites
O
Cl
N
O
NH2
H N
N
CH3
HN
Desphenyl - chloridazon
H3C
N
NH
N
CH3
CH3
HN
N
H2N
NH2
N
N
N
N
N
Cl
NH
CH3
N
Cl
Cl
atrazine
NH2
N
Chloridazon
H3C
Cl
desethyldesethyl-atrazine
desisopropyldesisopropyl-atrazine
Fate of atrazine degradation after spiking into
bioreactorbioreactor-influent (c ~25 µg⋅L-1):
M B R -in flu e n t
M B R -e fflu e n t
1 ,4 0
1 ,2 0
1 ,0 0
c/c0
0 ,8 0
0 ,6 0
no biodegradation
0 ,4 0
0 ,2 0
0 ,0 0
0
2
4
6
8
10
12
14
16
18
20
22
24
T im e [d ]
24
Atrazine in surface water
250
500
IPU
In Germany
baned since 1991,
but still
detectable
Atrazine
MCP
Atrazine 200
400
150
Transport (kg)
Transport (kg)
300
200
Formation of
metabolites in
soil
100
50
100
0
0
1993
desethyl
2,4 - DP
1994
1995
1996
Year (01.04.
1997
1998
1999
2000
1989
1990
1991
1992
1993
Year
- 30.06.)
1994
1995
(01.04.
1996
1997
1998
1999
2000
- 30.06.)
-
Transport rates of atrazine, atrazine-desethyl in the Main river during the
period of 01.04.-30.06. over the years 1989 to 2000.
The problem:
problem:
- atrazine application in the watershed was stopped in 2000 (replaced
by acetochlor)
- groundwater of the Brévilles spring still exhibits contamination by
atrazine and desethylatrazine with concentrations of 0.19 ± 0.7 µg/L
and 0.59 ± 0.18 µg/L, respectively
Do soil/rocks
soil/rocks
act as
„storage tank“ ?
25
Sampling points
(depth drilling):
drilling):
♦
Bréville
sampling points
Results:
Results:
P10
n.d
<1
n.d. n.d. n.d.
3
P22
5
0-20cm
40-60cm
4
<LOD <LOD <LOD
n.d. n.d.
P23
2
40-60cm
1.3
22
60-80cm
1
P20
40-60cm
<1
5
0-20cm
2
23
20-40cm
P19
0-20cm
40-60cm
<LOD
n.d. n.d.
0-20cm
4
<1 n.d.
20-40cm
16
4
40-60cm
n.d.
1
20-40cm
n.d.
3
0-20cm
n.d.
40-60cm
P18
0-20cm
atrazine
desethylatrazine
n.d. n.d.
n.d.
20-40cm
n.d.
6
1
20-40cm
n.d.
2
0-20cm
n.d.
40-60cm
n.d. n.d. n.d.
20-40cm
n.d.
n.d. n.d. n.d.
0-20cm
n.d.
60-75cm
<1
n.d.
40-60cm
2
n.d. n.d.
20-40cm
Analyte (ng/g)
P15
n.d.
0-20cm
acetochlor
P13
n.d. n.d. <LOD n.d. n.d.
2
0-20cm
desisopropylatrazine
P12
n.d. n.d. n.d. <LOD <LOD n.d.
20-40cm
atrazine
desethylatrazine
P11
20-40cm
Analyte (ng/g)
<1
n.d.
No atrazine nor metabolites could be detected
in samples from below the root zone.
n.d. n.d. n.d.
<1
n.d.
n.d.
n.d.
n.d.
n.d.
n.d. n.d. n.d.
n.d.
n.d.
n.d.
n.d. n.d. n.d.
n.d. n.d.
n.d.
n.d.
n.d.
n.d.
n.d. n.d.
n.d
n.d.
4
n.d. n.d. n.d.
<LOD
4
n.d.
n.d.
<1
<1 n.d. n.d.
4
1
2
1
n.d.
n.d.
n.d. n.d.
n.d.
<1
n.d.
n.d.
n.d.
n.d.
n.d. n.d. n.d.
n.d.
n.d.
n.d.
n.d. n.d.
n.d.
n.d. n.d.
n.d.
n.d.
n.d.
n.d.
n.d.
n.d.
n.d. n.d. n.d.
n.d.
38
3
2
n.d. n.d.
n.d.
10
1
3
n.d.
0-20cm
<1
0-20cm
<1
n.d. n.d.
20-40cm
1
n.d.
0-20cm
4
<1
n.d. n.d. n.d.
0-20cm
40-60cm
P29
20-40cm
40-60cm
P28
n.d.
3
20-40cm
P27
20-40cm
acetochlor
P26
6
0-20cm
desisopropylatrazine
P25
19
n.d. n.d. n.d.
0-20cm
atrazine
desethylatrazine
P24
20-40cm
Analyte (ng/g)
3
60-80cm
n.d.
60-80cm
n.d.
40-60cm
acetochlor
n.d.
20-40cm
desisopropylatrazine
n.d. n.d. n.d.
<LOD <LOD n.d.
26
How to monitor ?
Analysis & QA
Analytical determination of micropollutants and their metabolites
Complex matrices
Low detection limits
Extraction
clean-up
Selective/sensitive
analytical methods
Separation
Time and labour
consuming procedures
Detection
electrospray ionisation mass
spectrometry (ESI-MS/MS)
Electron impact quadrupole and
ion trap MS/MS
ESI-Q-TOF-MS….QQQQQQQ
Identification of P3 and their metabolites (after MBR treatment)
Filtration, solid phase
extraction with various
materials, derivatisation
High pressure liquid
chromatograpy
gas chromatography
ion chromatography
and degradation products (after AOP treatment) via
mass spectra and library searches (GC/MS)
ESI very suitable for polar and ionic compounds
27
SPE enrichment statistics for neutral analytes
in wastewater , n=5
SPE enrichment statistics for acidic analytes
in wastewater , n=5
28
Interlaboratory Experiments
Interlaboratory Experiments
29
Conclusions
¾
The more pollutants are analysed the more can be
detected – main source for entry into the aquatic
environment are WWTP.
¾
Monitoring campaigns need to be well thought of and
organized – metabolites need to be included
¾
Organic pollutants are present in surface waters all over
Europe at comparable concentrations (for pesticides
during application time)
¾
The WCSI may be used as an indicator for the potential
of polar pollutants to be spread in the aquatic
environment.
Analytical methods need to be harmonized and thoroughly
checked in the matrix analyzed.
¾
Acknowledgement
EFF:
Jutta Müller
Manuela Peschka
Marco Bernhard
Jan Eubeler
Heike Weil
European Commission
(Projects P-THREE; EMCO; Aquaterra;
Innovamed
Damia Barcelo´, Mira Petrovic (CSIC)
Christophe Mouvet (BRGM)
Hessian Ministry for Environment
Peter Seel
30