Essential Emergy Systems Concepts

Environmental Accounting Workshop
Niamey, Niger (Nov, 2005) - Day 1
Essential Emergy Systems Concepts
Estimates of solar emergy equivalents of tidal
energy and deep earth heat and calculations of
primary geobiosphere products of rain, river
geopotential, atmospheric circulation, oceanic
heating, winds and storms, ocean currents, and earth
cycles.
Outline
• Global Flows of Emergy
– How the baseline transformity values were
derived
• Convergence of Emergy into Various Forms
– Global flows of Rainfall, Wind, Soil etc.
• Transformities of Things
– Raw materials, Agricultural Goods etc.
A Caution…
• Complex Material
– These ideas are complex, and presented here
simply to demonstrate the rigor behind the
computed values
– Only the main points will be made in this
presentation – we will leave time for more
detailed questions
Emergy of Global Processes
The solar emergy equivalents of tidal energy and deep earth heat are
estimated by assuming two inputs making the same product as equivalent.
Three main emergy inputs to the geobiosphere are the solar energy,
the tidal energy, and the deep earth heat.
An emergy equation was
written for the joint
contributions of these
inputs to crustal heat and
another for the joint
contributions to the
geopotential energy of
ocean water.
With the transformity of solar equal one, by definition, the two equations
are used to evaluate transformities of global tidal energy and global deep
heat contribution.
Emergy of Global Processes
CONCEPT:
Calculation of the transformities of earth’s deep heat and
tidal momentum using simultaneous equations and setting
two inputs making the same product as equivalent…
PRINCIPLE:
Emergy equations set the empower of inputs into an energy
transformation process equal to the empower of an output,
where each term contains a flow multiplied by its
emergy/unit.
(Energy A * Tr A) + (Energy B * Tr B) = (Energy C * Tr C)
Emergy of Heat in the Crust Emergy of Global Processes
Pictured below are the main processes contributing 13.21 E20 J/yr heat to the
earth's crust as given by Sclater et al. (1980).
By subtracting the estimate for radioactivity generation (1.98 E20 J/yr) and heat
flux up from the mantle (4.74 E20 J/yr), the remaining annual flow of 6.49 E20
joules per year can be attributed to the tidal and solar sources from above
These sources (sun and tide)
drive the atmosphere, ocean,
hydrological, and
sedimentary cycles and
contribute heat downward
by burying oxidized and
reduced substances together,
by friction, and by
compressing sedimentary
deposits
4.74
1.98
6.49
13.21
Emergy of Global Processes
Emergy of Heat in the Crust
Solar
emergy
+
Tidal
emergy
=
Emergy of heat generated
by surface processes
(39,300 E20 J/yr)(1 sej/J) + (0.52 E20 J/yr)*Trt = (6.49 E20) *Trh
(Equation 1)
Emergy of Global Processes
Emergy of Tidal Energy Inflow and Use…
Tidal energy is contributed to the geo-biosphere by the gravitational
forces of moon and sun that pull air, earth, and especially the ocean,
relative to the rotating planet, causing friction and heat dissipation.
In this figure, the emergy budget
equation for oceanic geopotential energy includes solar
emergy, tidal emergy, and the
contribution of the earth to the
global process.
The earth contributes with
6.72 E20 J/yr
(4.74 E20 J/yr deep heat and
1.98 E20 J/yr radioactive heat).
4.74
+1.98
6.72
2.14
0.52
+1.62
2.14
Emergy of Global Processes
Emergy of Tidal Energy Inflow and Use…
Solar
emergy
+ Tidal
emergy
+ Deep Earth = Oceanic geopotential
emergy
emergy
(39,3 E20)*1.0 + (0.52 E20)*Trt + (6.72 E20)*Trh = (2.14 E20)*Trt
(Equation 2)
0.52
+1.62
2.14
Emergy of Global Processes
Combining Equations
To obtain the unit emergy values (solar transformities), equation (1) was
subtracted from equation (2) to obtain:
(6.72 E20)*Trh = (2.14 E20) *Trt - (6.49 E20) Trh
From this, the a preliminary solar transformity for tide was found to be
Trt = 6.17 Trh
which was substituted in eq. 1 to obtain the solar transformity of crustal heat:
Trh = 11,981 sej/J
and the solar transformity of tide:
Trt = 6.17*11,945 = 73,923 sej/J
(39,300 E20)(1.0) + (0.52 E20)*Trt - (6.49 E20) *Trh =0
-(39,300 E20)(1.0) - (0.52 E20)*Trt - (6.72 E20)*Trh + (2.14 E20)*Trt =0
-6.49 E20*Trh - 6.72 E20 Trh +2.14 E20 *Trt = 0
Trt = 6.17*Trh
Emergy of Global Processes
Transformities of renewable inputs to the geobiosphere
are summarized below…(phew!)
Table 1. Emergy of Inputs to the Geobiosphere
____________________________________________________________
Note Inflow
Solar Transformity
Empower
sej/J
1024 sej/yr
____________________________________________________________
1 Solar energy absorbed
1
3.93
2
Crustal heat sources
1.20 x 104
8.06
3
Tidal energy absorbed
7.37 x 104
3.83
Total Global Empower
--
15.83
Empower Supporting the Geobiosphere
3.83
8.06
34.3
3.93
x E24 sej/yr.
Empower Supporting the Geobiosphere
Table 3. Annual Emergy Contributions to Global Processes
Including Use of Resource Reserves (after Brown and Ulgiati, 1999)
____________________________________________________________________
Note
Inputs & Units
Inflow
Emergy/Unit*
Empower
(J/yr)
(sej/unit)
E24 sej/yr
_________________________________________________________________________________________________________________________________________
1 Renewable inputs
--
--
15.8
Non renewable energies released by society:
2 Oil, J
1.38 E20
9.06 E4
12.5
3 Natural gas (oil eq.), J
7.89 E19
8.05 E4
6.4
4 Coal (oil eq.), J
1.09 E20
6.71 E4
7.3
5 Nuclear power, J
8.60 E18
3.35 E5
2.9
6 Wood, J
5.86 E19
1.84 E4
1.1
7 Soils, J
1.38 E19
1.24 E5
1.7
8 Phosphate, J
4.77 E16
1.29 E7
0.6
9 Limestone, J
7.33 E16
2.72 E6
0.2
10 Metal ores, g
9.93 E14
1.68 E9
1.7
__________________________________________________________________
Total non-renewable empower
34.3
Total global empower
50.1
Global Emergy Intensities
Table 2. Emergy of Products of the Global Energy System (Odum et. al 2000)
_______________________________________________________________________________________________________________________________________________________________
Note
Product
Units
Emergy* Production
E24 sej/yr units/yr
Emergy/Unit
sej/unit
______________________________________________________________________________________________________________________________________________________
1
2
3
4
5
6
7
8
9
Global latent heat,
Global wind circulation,
Global precipitation on land,
Global precipitation on land,
Average river flow,
Average river geopotential,
Average river chem. energy,
Average waves at the shore,
Average ocean current,
J
J
g
J
g
J
J
J
J
15.83
15.83
15.83
15.83
15.83
15.83
15.83
15.83
15.83
1.26 E24
6.45 E21
1.09 E20
5.19 E20
3.96 E19
3.4 E20
1.96 E20
3.1 E20
8.6 E17
12.6 sej/J
2.5 E3 sej/J
1.5 E5 sej/g
3.1 E4 sej/J
4.0 E5 sej/g
4.7 E4 sej/J
8.1 E4 sej/J
5.1 E4 sej/J
1.8 E7 sej/J
Emergy of Global Processes
Emergy of Products of the
Global Energy System
In the following table, emergy values for some main flows of the earth are
calculated by dividing the total solar emergy input (15.83 E24 sej/yr) by each
product's ordinary measure (number of joules, grams, dollars, individuals, etc.).
Emergy of Products of the Global Energy System
____________________________________________________________________________________________________________________________________________________________
Product and Units
Emergy* Production
E24 sej/yr units/yr
Emergy/Unit
sej/unit
____________________________________________________________________________________________________________________________________________________________
Global latent heat, J
Global wind circulation, J
Global precipitation on land, g
Global precipitation on land, J
Average river flow, g
Average river geopotential, J
Average river chem. energy, J15.83
Average waves at the shore, J
Average ocean current, J
15.83
1.26 E24
12.6 sej/J
15.83
6.45 E21
2.45 E3 sej/J
15.83
1.09 E20
1.45 E5 sej/g
15.83
5.19 E20
3.1 E4 sej/J
15.83
3.96 E19
4.0 E5 sej/g
15.83
3.4 E20
4.7 E4 sej/J
1.96 E20
8.1 E4 sej/J
15.83
3.1 E20
5.1 E4 sej/J
15.83
8.6 E17
1.84 E7 sej/J
Emergy of Atmospheric Circulation Emergy of Global Processes
Many small circulation cells of the atmosphere converge and transform their energy
into larger scale storms. These converge, concentrate, and transform into even larger
circulation units that last longer and impact more. And so on…
Energetics of Atmospheric Circulation Units
__________________________________________________________________________________________________________________________
Circulation Unit
Kinetic Energy Flow
J/yr
Transformity
sej/J
__________________________________________________________________________________________________________________________
Over ocean circulation
Latent heat into air
Kinetic energy used
Cumulus land circulation
Meso-systems
Temperate cyclones
Hurricanes
Hemisphere general circulation
Surface winds
Average circulation
Tropical jets
Polar jet
9.3 E23
2.33 E21
9.45 E21
1.73 E22
4.9 E21
6.1 E20
12
192
485
912
3230
6487
1.61 E22
6.4 E21
3.7 E21
1.61 E21
983
2473
4278
9832
Emergy of Rain with Altitude
Emergy of Global Processes
Precipitation varies with altitude, is affected by mountains, and depends on the
weather systems in complex ways.
To estimate global emergy per unit rainfall with altitude, the percent of global rainfall
at each altitude was assumed to be proportional to the percent of surface latent heat
flux reaching that altitude
Evaluation of Continental Rainfall with Altitude
______________________________________________________________
Note Level Emergy
Rain#
Emergy/Mass
Transformity
m
E24 sej/yr E20g/yr
E4 sej/g
E4 sej/J
______________________________________________________________
1
Surface 15.83
1.09
14.5
2.9
2
990
15.83
0.63
25.1
5.0
3
1950 15.83
0.53
29.9
6.0
4
3010 15.83
0.31
50.3
10.0
5
4200 15.83
0.12
131.0
26.1
6
5570 15.83
0.08
198.0
39.5
7
7180 15.83
0.05
315.0
63.1
Emergy of Ocean Circulation
Emergy of Global Processes
The circulation of the oceans is a major part of the geobiosphere. Like the
atmosphere, it forms a hierarchy of circulation units. Most of the energy is in
small scale circulation at the ocean surface. Less energy and higher
transformities are in mesoscale gyrals (medium scale eddies in coastal waters
and eddies from jets). Large scale general ocean circulation has highest
transformities, with less energy overall, especially as emergy is converged in jets
like the gulf stream.
Energetics of Ocean Circulation
_____________________________________________________________________________________________________________________________________________________
Circulation Unit
Annual Energy Transformity
J/yr
sej/unit
____________________________________________________________________________________________________________________________________
Surface eddies, J
Mesoscale gyrals, J
Sea Ice, g
Sea ice, J
Ocean circulation, J
Jet currents, J
3.0 x 1020
1.78 x 1019
3 x 1019
9.0 x 1019
8.5 x 1017
1.67 x 1017
5.3 x 104 sej/J
8.9 x 104 sej/J
5.3 x 105 sej/g
1.76 x 105 sej/J
1.87 x 107 sej/J
9.4 x 107 sej/J
Emergy of Main Features of the Land Emergy of Global Processes
After several billion years of development, the land of the geobiosphere has been
self organized into a hierarchy of components and cycles on many scales.
Circulation of the land is driven by the atmosphere, ocean, hydrological cycle,
and deep convection of the hot mantle below.
Emergy of Continental Parts of the Global Energy System
_________________________________________________________________________________________________________________________________________________________________
______________________________________
Component and Units
Emergy* Production
E24 sej/yr
Units/yr
Emergy/Unit
sej/unit
_________________________________________________________________________________________________________________________________________
Earth heat flux, J
Glaciers, mass, g
crystal heat, J
geopotential, J
available heat, J
Land area sustained, ha
Land, global cycle, g
Continental sediment, g
Volcanoes, g
Mountains, g
Cratons, g
15.83
15.83
15.83
15.83
15.83
15.83
15.83
15.83
15.83
15.83
15.83
2.74 E20
2.48 E18
8.3 E20
2.11 E19
1.38 E19
1.5 E10
9.36 E15
7.4 E15
3.05 E15
2.46 E15
0.81 E15
5.8 E4 sej/J
6.4 E6 sej/g
1.91 E4 sej/J
7.5 E5 sej/J
1.14 E6 sej/J
1.05 E15 sej/ha
1.69 E9 sej/g
2.13 E9 sej/g
3.8 E9 sej/g
6.43 E9 sej/g
19.5 E9 sej/g
Emergy of Global Processes
Emergy and the Spatial
Organization of the Land
The spatial organization of
earth processes results in large
differences in rates of earth
cycle, energy flux, and unit
emergy between the high
energy mountain centers and
the broad low plains in
between.
The larger scale features have
longer turnover times, mass
storages, and unit emergy
values.
Emergy of Global Processes
Emergy and the Spatial
Organization of the Land
Land area from the earth's hypsographic curve (area of land versus altitude) is
multiplied by the erosion rate from the previous Figure to obtain the areal
distribution of earth cycling. The mass flow at each level is related to the whole
earth emergy to obtain the emergy per mass with altitude. These unit emergy
values are appropriate for evaluating sediments generated in the earth cycle.
Annual Emergy Contributions to Elevated Lands*
___________________________________________________________________________________________________________________________________________________________
Altitude Area
km
1012 m2
Erosion Rate Mass Upflow
103 g/m2/yr
1015 g/yr
Emergy/mass
109 sej/g
___________________________________________________________________________________________________________________________________________________________
0
1
2
3
4
5
148.1
42.3
19.7
8.5
2.7
0.5
-0.15
0.29
0.44
0.60
0.76
9.36
6.34
5.71
3.74
1.62
0.38
1.7
2.5
2.8
4.2
9.8
41.6
Emergy of Global Processes
Emergy of Rocks
The self organizational processes of the earth circulation generate
many kinds of rock. Sediments become cemented, reefs are generated
by eco-systems, sedimentary rocks are metamorphosed, etc.
Emergy of Sediments and Rocks
___________________________________________________________________________________________________________________________________________________________
Component and Units
Emergy*
E24 sej/yr
Production
E15 g/yr
Emergy/Unit
E9 sej/g
______________________________________________________________________________________________________________________________________________________________
____________________________________________________________________________________________
Global land cycle, g
15.83
Continental sediment, g
15.83
Pelagic-abyssal sediment, g 15.83
Shale
15.83
Sandstone
15.83
Limestone
15.83
Evaporites
15.83
Oceanic basalt, g
15.83
9.36
0.4-9.4
9.7 E15
3.9 E15
1.87 E15
1.68 E15
0.094
63.4
1.69
1.7-42
1.63
4.1
8.5
9.5
169.0
0.25
Emergy Intensities
Table 3. Solar transformities of selected fuels and biofuels.
(values also include the emergy associated to labor and services)
Fuel
Transformity
(sej/J)
Reference
Coal
Natural Gas
Crude oil
Refined fuels (gasoline, diesel, etc)
6.70E+04
8.04E+04
9.05E+04
1.11E+05
Odum et al., 2000
Odum et al., 2000
Odum et al., 2000
Odum et al., 2000
Hydrogen from water electrolysis (°)
Hydrogen from steam reforming of natural gas
Hydrogen from water electrolysis (*)
1.39E+05
1.93E+05
4.04E+05
Brown and Ulgiati, 2004
Raugei et al, 2005
Brown and Ulgiati, 2004
Methanol from wood
Bioethanol from corn
Ethanol from sugarcane
Biodiesel
2.66E+05
1.89E+05
1.86E+05 - 3.15E+05
2.31E+05
Giampietro & Ulgiati, 2005
Giampietro & Ulgiati, 2005
Ulgiati, 1997
Giampietro & Ulgiati, 2005
Electricity from renewables (§)
Electricity from fuel cells
Electricity from thermal plants (#)
1.10E+05 - 1.12E+05
2.18E+05-2.68E+05
3.35E+05-3.54E+05
Brown and Ulgiati, 2004
Raugei et al, 2005
Brown and Ulgiati, 2004
Emergy Intensities
Table 5. Emergy intensities for some common products
(after Odum, 1996)
Item
Transformity
(Sej/J)
Corn stalks
6.6 E4
1
Rice, high energy
7.4 E4
Cotton
1.4 E5
2
Sugar (sugar cane)
1.5 E5
Corn
1.6 E5
Butter
2.2 E6
Ammonia fertilizer
3.1 E6
Mutton
5.7 E6
Silk
6.7 E6
Wool
7.4 E6
Phosphate fertilizer
1.7 E7
Shrimp (aquaculture)
2.2 E7
2
Steel
8.7 E7
1. After Brown and McKlanahan, (1996)
2. After Odum and Odum (1983)
Specific Emergy
(Sej/g)
1.4 E9
2.4 E9
7.8 E9
Emergy Flow Supporting the Geo-Biosphere
Table 1. Annual Emergy Contributions to Global Processes*
(after Odum et al. 2000)
___________________________________________________________________________________________________________________________________
Note Input
Units Inflow Emergy/Unit Empower
units/yr sej/unit
(E24 sej/yr)
___________________________________________________________________________________________________________________________________
1
2
3
4
Solar insolation,
Deep earth heat,
Tidal energy,
Total
J
J
J
3.93 E24
6.72 E20
0.52 E20
1.0
1.20 E4
7.39 E4
3.93
8.06
3.84
15.83
Emergy Flow Supporting the Geo-Biosphere
Table 3. Annual Emergy Contributions to Global Processes Including Use of Resource
Reserves (after Brown and Ulgiati, 1999)
________________________________________________________________________
Note Inputs & Units
Inflow
Emergy/Unit* Empower
(J/yr)
(sej/unit)
E24 sej/yr
________________________________________________________________________
1
Renewable inputs
--15.8
Non-renewable energies released by society:
2
Oil, J
1.38 E20
9.06 E4
12.5
3
Natural gas (oil eq.), J
7.89 E19
8.05 E4
6.4
4
Coal (oil eq.), J
1.09 E20
6.71 E4
7.3
5
Nuclear power, J
8.60 E18
3.35 E5
2.9
6
Wood, J
5.86 E19
1.84 E4
1.1
7
Soils, J
1.38 E19
1.24 E5
1.78
8
Phosphate, J
4.77 E16
1.29 E7
0.6
9
Limestone, J
7.33 E16
2.72 E6
0.2
10 Metal ores, g
9.93 E14
1.68 E9
1.7
Total non-renewable empower
34.3
Total global empower
50.1
Global Emergy Intensities
Table 2. Emergy of Products of the Global Energy System (after Odum et. al 2000)
_____________________________________________________________________
Note Product
Units Emergy* Production
Emergy/Unit
E24 sej/yr units/yr
sej/unit
_____________________________________________________________________
1 Global latent heat,
J
15.83
1.26 E24
12.6
sej/J
2 Global wind circulation,
J
15.83
6.45 E21
2.5 E3 sej/J
3 Global precipitation on land, g 15.83
1.09 E20
1.5 E5 sej/g
4 Global precipitation on land, J
15.83
5.19 E20
3.1 E4 sej/J
5 Average river flow,
g 15.83
3.96 E19
4.0 E5 sej/g
6 Average river geopotential, J
15.83
3.4 E20
4.7 E4 sej/J
7 Average river chem. energy, J
15.83
1.96 E20
8.1 E4 sej/J
8 Average waves at the shore, J
15.83
3.1 E20
5.1 E4 sej/J
9 Average ocean current,
J
15.83
8.6 E17
1.8 E7 sej/J
Regional Emergy Intensities
Table 3. Solar transformities of selected fuels and biofuels.
(values also include the emergy associated to labor and services)
Fuel
Transformity
(sej/J)
Reference
Coal
Natural Gas
Crude oil
Refined fuels (gasoline, diesel, etc)
6.70E+04
8.04E+04
9.05E+04
1.11E+05
Odum et al., 2000
Odum et al., 2000
Odum et al., 2000
Odum et al., 2000
Hydrogen from water electrolysis (°)
Hydrogen from steam reforming of natural gas
Hydrogen from water electrolysis (*)
1.39E+05
1.93E+05
4.04E+05
Brown and Ulgiati, 2004
Raugei et al, 2005
Brown and Ulgiati, 2004
Methanol from wood
Bioethanol from corn
Ethanol from sugarcane
Biodiesel
2.66E+05
1.89E+05
1.86E+05 - 3.15E+05
2.31E+05
Giampietro & Ulgiati, 2005
Giampietro & Ulgiati, 2005
Ulgiati, 1997
Giampietro & Ulgiati, 2005
Electricity from renewables (§)
Electricity from fuel cells
Electricity from thermal plants (#)
1.10E+05 - 1.12E+05
2.18E+05-2.68E+05
3.35E+05-3.54E+05
Brown and Ulgiati, 2004
Raugei et al, 2005
Brown and Ulgiati, 2004
Agricultural Emergy Intensities
Table 5. Emergy intensities for some common products
(after Odum, 1996)
Item
Transformity
(Sej/J)
Corn stalks
6.6 E4
1
Rice, high energy
7.4 E4
Cotton
1.4 E5
2
Sugar (sugar cane)
1.5 E5
Corn
1.6 E5
Butter
2.2 E6
Ammonia fertilizer
3.1 E6
Mutton
5.7 E6
Silk
6.7 E6
Wool
7.4 E6
Phosphate fertilizer
1.7 E7
Shrimp (aquaculture)
2.2 E7
2
Steel
8.7 E7
1. After Brown and McKlanahan, (1996)
2. After Odum and Odum (1983)
Specific Emergy
(Sej/g)
1.4 E9
2.4 E9
7.8 E9
What Now?
• We’ve estimated Nature’s work in primary
processes
– Rainfall, Wind, Tides/Waves, Soils, Rocks, etc.
• Now we can compile these values to study
secondary processes
– Agriculture, Forestry, Fisheries, etc.
• Knowing Nature’s work and studying
embodied work in secondary processes is
used for policy analysis
Environmental Accounting of
Sahelian Agroecosystems
• Identify systems
– Agroforestry, Rotating rangeland, Conventional
cropping
• Identify resource basis and yields
– Climate, soil, purchased goods/services, yields,
changes in internal stocks (e.g. SOM)
• Synthesize information into Env. Acct. tables
– Use previously computed transformities
– Assess sensitivity to transformities
– Determine if local values are needed
Next…
• Practical applications
– Emergy analysis of states and nations
– Environmental Impact Assessment
• Soil Erosion
• Water Supply
• Recycling