Environmental Accounting Workshop Niamey, Niger (Nov, 2005) - Day 1 Essential Emergy Systems Concepts Estimates of solar emergy equivalents of tidal energy and deep earth heat and calculations of primary geobiosphere products of rain, river geopotential, atmospheric circulation, oceanic heating, winds and storms, ocean currents, and earth cycles. Outline • Global Flows of Emergy – How the baseline transformity values were derived • Convergence of Emergy into Various Forms – Global flows of Rainfall, Wind, Soil etc. • Transformities of Things – Raw materials, Agricultural Goods etc. A Caution… • Complex Material – These ideas are complex, and presented here simply to demonstrate the rigor behind the computed values – Only the main points will be made in this presentation – we will leave time for more detailed questions Emergy of Global Processes The solar emergy equivalents of tidal energy and deep earth heat are estimated by assuming two inputs making the same product as equivalent. Three main emergy inputs to the geobiosphere are the solar energy, the tidal energy, and the deep earth heat. An emergy equation was written for the joint contributions of these inputs to crustal heat and another for the joint contributions to the geopotential energy of ocean water. With the transformity of solar equal one, by definition, the two equations are used to evaluate transformities of global tidal energy and global deep heat contribution. Emergy of Global Processes CONCEPT: Calculation of the transformities of earth’s deep heat and tidal momentum using simultaneous equations and setting two inputs making the same product as equivalent… PRINCIPLE: Emergy equations set the empower of inputs into an energy transformation process equal to the empower of an output, where each term contains a flow multiplied by its emergy/unit. (Energy A * Tr A) + (Energy B * Tr B) = (Energy C * Tr C) Emergy of Heat in the Crust Emergy of Global Processes Pictured below are the main processes contributing 13.21 E20 J/yr heat to the earth's crust as given by Sclater et al. (1980). By subtracting the estimate for radioactivity generation (1.98 E20 J/yr) and heat flux up from the mantle (4.74 E20 J/yr), the remaining annual flow of 6.49 E20 joules per year can be attributed to the tidal and solar sources from above These sources (sun and tide) drive the atmosphere, ocean, hydrological, and sedimentary cycles and contribute heat downward by burying oxidized and reduced substances together, by friction, and by compressing sedimentary deposits 4.74 1.98 6.49 13.21 Emergy of Global Processes Emergy of Heat in the Crust Solar emergy + Tidal emergy = Emergy of heat generated by surface processes (39,300 E20 J/yr)(1 sej/J) + (0.52 E20 J/yr)*Trt = (6.49 E20) *Trh (Equation 1) Emergy of Global Processes Emergy of Tidal Energy Inflow and Use… Tidal energy is contributed to the geo-biosphere by the gravitational forces of moon and sun that pull air, earth, and especially the ocean, relative to the rotating planet, causing friction and heat dissipation. In this figure, the emergy budget equation for oceanic geopotential energy includes solar emergy, tidal emergy, and the contribution of the earth to the global process. The earth contributes with 6.72 E20 J/yr (4.74 E20 J/yr deep heat and 1.98 E20 J/yr radioactive heat). 4.74 +1.98 6.72 2.14 0.52 +1.62 2.14 Emergy of Global Processes Emergy of Tidal Energy Inflow and Use… Solar emergy + Tidal emergy + Deep Earth = Oceanic geopotential emergy emergy (39,3 E20)*1.0 + (0.52 E20)*Trt + (6.72 E20)*Trh = (2.14 E20)*Trt (Equation 2) 0.52 +1.62 2.14 Emergy of Global Processes Combining Equations To obtain the unit emergy values (solar transformities), equation (1) was subtracted from equation (2) to obtain: (6.72 E20)*Trh = (2.14 E20) *Trt - (6.49 E20) Trh From this, the a preliminary solar transformity for tide was found to be Trt = 6.17 Trh which was substituted in eq. 1 to obtain the solar transformity of crustal heat: Trh = 11,981 sej/J and the solar transformity of tide: Trt = 6.17*11,945 = 73,923 sej/J (39,300 E20)(1.0) + (0.52 E20)*Trt - (6.49 E20) *Trh =0 -(39,300 E20)(1.0) - (0.52 E20)*Trt - (6.72 E20)*Trh + (2.14 E20)*Trt =0 -6.49 E20*Trh - 6.72 E20 Trh +2.14 E20 *Trt = 0 Trt = 6.17*Trh Emergy of Global Processes Transformities of renewable inputs to the geobiosphere are summarized below…(phew!) Table 1. Emergy of Inputs to the Geobiosphere ____________________________________________________________ Note Inflow Solar Transformity Empower sej/J 1024 sej/yr ____________________________________________________________ 1 Solar energy absorbed 1 3.93 2 Crustal heat sources 1.20 x 104 8.06 3 Tidal energy absorbed 7.37 x 104 3.83 Total Global Empower -- 15.83 Empower Supporting the Geobiosphere 3.83 8.06 34.3 3.93 x E24 sej/yr. Empower Supporting the Geobiosphere Table 3. Annual Emergy Contributions to Global Processes Including Use of Resource Reserves (after Brown and Ulgiati, 1999) ____________________________________________________________________ Note Inputs & Units Inflow Emergy/Unit* Empower (J/yr) (sej/unit) E24 sej/yr _________________________________________________________________________________________________________________________________________ 1 Renewable inputs -- -- 15.8 Non renewable energies released by society: 2 Oil, J 1.38 E20 9.06 E4 12.5 3 Natural gas (oil eq.), J 7.89 E19 8.05 E4 6.4 4 Coal (oil eq.), J 1.09 E20 6.71 E4 7.3 5 Nuclear power, J 8.60 E18 3.35 E5 2.9 6 Wood, J 5.86 E19 1.84 E4 1.1 7 Soils, J 1.38 E19 1.24 E5 1.7 8 Phosphate, J 4.77 E16 1.29 E7 0.6 9 Limestone, J 7.33 E16 2.72 E6 0.2 10 Metal ores, g 9.93 E14 1.68 E9 1.7 __________________________________________________________________ Total non-renewable empower 34.3 Total global empower 50.1 Global Emergy Intensities Table 2. Emergy of Products of the Global Energy System (Odum et. al 2000) _______________________________________________________________________________________________________________________________________________________________ Note Product Units Emergy* Production E24 sej/yr units/yr Emergy/Unit sej/unit ______________________________________________________________________________________________________________________________________________________ 1 2 3 4 5 6 7 8 9 Global latent heat, Global wind circulation, Global precipitation on land, Global precipitation on land, Average river flow, Average river geopotential, Average river chem. energy, Average waves at the shore, Average ocean current, J J g J g J J J J 15.83 15.83 15.83 15.83 15.83 15.83 15.83 15.83 15.83 1.26 E24 6.45 E21 1.09 E20 5.19 E20 3.96 E19 3.4 E20 1.96 E20 3.1 E20 8.6 E17 12.6 sej/J 2.5 E3 sej/J 1.5 E5 sej/g 3.1 E4 sej/J 4.0 E5 sej/g 4.7 E4 sej/J 8.1 E4 sej/J 5.1 E4 sej/J 1.8 E7 sej/J Emergy of Global Processes Emergy of Products of the Global Energy System In the following table, emergy values for some main flows of the earth are calculated by dividing the total solar emergy input (15.83 E24 sej/yr) by each product's ordinary measure (number of joules, grams, dollars, individuals, etc.). Emergy of Products of the Global Energy System ____________________________________________________________________________________________________________________________________________________________ Product and Units Emergy* Production E24 sej/yr units/yr Emergy/Unit sej/unit ____________________________________________________________________________________________________________________________________________________________ Global latent heat, J Global wind circulation, J Global precipitation on land, g Global precipitation on land, J Average river flow, g Average river geopotential, J Average river chem. energy, J15.83 Average waves at the shore, J Average ocean current, J 15.83 1.26 E24 12.6 sej/J 15.83 6.45 E21 2.45 E3 sej/J 15.83 1.09 E20 1.45 E5 sej/g 15.83 5.19 E20 3.1 E4 sej/J 15.83 3.96 E19 4.0 E5 sej/g 15.83 3.4 E20 4.7 E4 sej/J 1.96 E20 8.1 E4 sej/J 15.83 3.1 E20 5.1 E4 sej/J 15.83 8.6 E17 1.84 E7 sej/J Emergy of Atmospheric Circulation Emergy of Global Processes Many small circulation cells of the atmosphere converge and transform their energy into larger scale storms. These converge, concentrate, and transform into even larger circulation units that last longer and impact more. And so on… Energetics of Atmospheric Circulation Units __________________________________________________________________________________________________________________________ Circulation Unit Kinetic Energy Flow J/yr Transformity sej/J __________________________________________________________________________________________________________________________ Over ocean circulation Latent heat into air Kinetic energy used Cumulus land circulation Meso-systems Temperate cyclones Hurricanes Hemisphere general circulation Surface winds Average circulation Tropical jets Polar jet 9.3 E23 2.33 E21 9.45 E21 1.73 E22 4.9 E21 6.1 E20 12 192 485 912 3230 6487 1.61 E22 6.4 E21 3.7 E21 1.61 E21 983 2473 4278 9832 Emergy of Rain with Altitude Emergy of Global Processes Precipitation varies with altitude, is affected by mountains, and depends on the weather systems in complex ways. To estimate global emergy per unit rainfall with altitude, the percent of global rainfall at each altitude was assumed to be proportional to the percent of surface latent heat flux reaching that altitude Evaluation of Continental Rainfall with Altitude ______________________________________________________________ Note Level Emergy Rain# Emergy/Mass Transformity m E24 sej/yr E20g/yr E4 sej/g E4 sej/J ______________________________________________________________ 1 Surface 15.83 1.09 14.5 2.9 2 990 15.83 0.63 25.1 5.0 3 1950 15.83 0.53 29.9 6.0 4 3010 15.83 0.31 50.3 10.0 5 4200 15.83 0.12 131.0 26.1 6 5570 15.83 0.08 198.0 39.5 7 7180 15.83 0.05 315.0 63.1 Emergy of Ocean Circulation Emergy of Global Processes The circulation of the oceans is a major part of the geobiosphere. Like the atmosphere, it forms a hierarchy of circulation units. Most of the energy is in small scale circulation at the ocean surface. Less energy and higher transformities are in mesoscale gyrals (medium scale eddies in coastal waters and eddies from jets). Large scale general ocean circulation has highest transformities, with less energy overall, especially as emergy is converged in jets like the gulf stream. Energetics of Ocean Circulation _____________________________________________________________________________________________________________________________________________________ Circulation Unit Annual Energy Transformity J/yr sej/unit ____________________________________________________________________________________________________________________________________ Surface eddies, J Mesoscale gyrals, J Sea Ice, g Sea ice, J Ocean circulation, J Jet currents, J 3.0 x 1020 1.78 x 1019 3 x 1019 9.0 x 1019 8.5 x 1017 1.67 x 1017 5.3 x 104 sej/J 8.9 x 104 sej/J 5.3 x 105 sej/g 1.76 x 105 sej/J 1.87 x 107 sej/J 9.4 x 107 sej/J Emergy of Main Features of the Land Emergy of Global Processes After several billion years of development, the land of the geobiosphere has been self organized into a hierarchy of components and cycles on many scales. Circulation of the land is driven by the atmosphere, ocean, hydrological cycle, and deep convection of the hot mantle below. Emergy of Continental Parts of the Global Energy System _________________________________________________________________________________________________________________________________________________________________ ______________________________________ Component and Units Emergy* Production E24 sej/yr Units/yr Emergy/Unit sej/unit _________________________________________________________________________________________________________________________________________ Earth heat flux, J Glaciers, mass, g crystal heat, J geopotential, J available heat, J Land area sustained, ha Land, global cycle, g Continental sediment, g Volcanoes, g Mountains, g Cratons, g 15.83 15.83 15.83 15.83 15.83 15.83 15.83 15.83 15.83 15.83 15.83 2.74 E20 2.48 E18 8.3 E20 2.11 E19 1.38 E19 1.5 E10 9.36 E15 7.4 E15 3.05 E15 2.46 E15 0.81 E15 5.8 E4 sej/J 6.4 E6 sej/g 1.91 E4 sej/J 7.5 E5 sej/J 1.14 E6 sej/J 1.05 E15 sej/ha 1.69 E9 sej/g 2.13 E9 sej/g 3.8 E9 sej/g 6.43 E9 sej/g 19.5 E9 sej/g Emergy of Global Processes Emergy and the Spatial Organization of the Land The spatial organization of earth processes results in large differences in rates of earth cycle, energy flux, and unit emergy between the high energy mountain centers and the broad low plains in between. The larger scale features have longer turnover times, mass storages, and unit emergy values. Emergy of Global Processes Emergy and the Spatial Organization of the Land Land area from the earth's hypsographic curve (area of land versus altitude) is multiplied by the erosion rate from the previous Figure to obtain the areal distribution of earth cycling. The mass flow at each level is related to the whole earth emergy to obtain the emergy per mass with altitude. These unit emergy values are appropriate for evaluating sediments generated in the earth cycle. Annual Emergy Contributions to Elevated Lands* ___________________________________________________________________________________________________________________________________________________________ Altitude Area km 1012 m2 Erosion Rate Mass Upflow 103 g/m2/yr 1015 g/yr Emergy/mass 109 sej/g ___________________________________________________________________________________________________________________________________________________________ 0 1 2 3 4 5 148.1 42.3 19.7 8.5 2.7 0.5 -0.15 0.29 0.44 0.60 0.76 9.36 6.34 5.71 3.74 1.62 0.38 1.7 2.5 2.8 4.2 9.8 41.6 Emergy of Global Processes Emergy of Rocks The self organizational processes of the earth circulation generate many kinds of rock. Sediments become cemented, reefs are generated by eco-systems, sedimentary rocks are metamorphosed, etc. Emergy of Sediments and Rocks ___________________________________________________________________________________________________________________________________________________________ Component and Units Emergy* E24 sej/yr Production E15 g/yr Emergy/Unit E9 sej/g ______________________________________________________________________________________________________________________________________________________________ ____________________________________________________________________________________________ Global land cycle, g 15.83 Continental sediment, g 15.83 Pelagic-abyssal sediment, g 15.83 Shale 15.83 Sandstone 15.83 Limestone 15.83 Evaporites 15.83 Oceanic basalt, g 15.83 9.36 0.4-9.4 9.7 E15 3.9 E15 1.87 E15 1.68 E15 0.094 63.4 1.69 1.7-42 1.63 4.1 8.5 9.5 169.0 0.25 Emergy Intensities Table 3. Solar transformities of selected fuels and biofuels. (values also include the emergy associated to labor and services) Fuel Transformity (sej/J) Reference Coal Natural Gas Crude oil Refined fuels (gasoline, diesel, etc) 6.70E+04 8.04E+04 9.05E+04 1.11E+05 Odum et al., 2000 Odum et al., 2000 Odum et al., 2000 Odum et al., 2000 Hydrogen from water electrolysis (°) Hydrogen from steam reforming of natural gas Hydrogen from water electrolysis (*) 1.39E+05 1.93E+05 4.04E+05 Brown and Ulgiati, 2004 Raugei et al, 2005 Brown and Ulgiati, 2004 Methanol from wood Bioethanol from corn Ethanol from sugarcane Biodiesel 2.66E+05 1.89E+05 1.86E+05 - 3.15E+05 2.31E+05 Giampietro & Ulgiati, 2005 Giampietro & Ulgiati, 2005 Ulgiati, 1997 Giampietro & Ulgiati, 2005 Electricity from renewables (§) Electricity from fuel cells Electricity from thermal plants (#) 1.10E+05 - 1.12E+05 2.18E+05-2.68E+05 3.35E+05-3.54E+05 Brown and Ulgiati, 2004 Raugei et al, 2005 Brown and Ulgiati, 2004 Emergy Intensities Table 5. Emergy intensities for some common products (after Odum, 1996) Item Transformity (Sej/J) Corn stalks 6.6 E4 1 Rice, high energy 7.4 E4 Cotton 1.4 E5 2 Sugar (sugar cane) 1.5 E5 Corn 1.6 E5 Butter 2.2 E6 Ammonia fertilizer 3.1 E6 Mutton 5.7 E6 Silk 6.7 E6 Wool 7.4 E6 Phosphate fertilizer 1.7 E7 Shrimp (aquaculture) 2.2 E7 2 Steel 8.7 E7 1. After Brown and McKlanahan, (1996) 2. After Odum and Odum (1983) Specific Emergy (Sej/g) 1.4 E9 2.4 E9 7.8 E9 Emergy Flow Supporting the Geo-Biosphere Table 1. Annual Emergy Contributions to Global Processes* (after Odum et al. 2000) ___________________________________________________________________________________________________________________________________ Note Input Units Inflow Emergy/Unit Empower units/yr sej/unit (E24 sej/yr) ___________________________________________________________________________________________________________________________________ 1 2 3 4 Solar insolation, Deep earth heat, Tidal energy, Total J J J 3.93 E24 6.72 E20 0.52 E20 1.0 1.20 E4 7.39 E4 3.93 8.06 3.84 15.83 Emergy Flow Supporting the Geo-Biosphere Table 3. Annual Emergy Contributions to Global Processes Including Use of Resource Reserves (after Brown and Ulgiati, 1999) ________________________________________________________________________ Note Inputs & Units Inflow Emergy/Unit* Empower (J/yr) (sej/unit) E24 sej/yr ________________________________________________________________________ 1 Renewable inputs --15.8 Non-renewable energies released by society: 2 Oil, J 1.38 E20 9.06 E4 12.5 3 Natural gas (oil eq.), J 7.89 E19 8.05 E4 6.4 4 Coal (oil eq.), J 1.09 E20 6.71 E4 7.3 5 Nuclear power, J 8.60 E18 3.35 E5 2.9 6 Wood, J 5.86 E19 1.84 E4 1.1 7 Soils, J 1.38 E19 1.24 E5 1.78 8 Phosphate, J 4.77 E16 1.29 E7 0.6 9 Limestone, J 7.33 E16 2.72 E6 0.2 10 Metal ores, g 9.93 E14 1.68 E9 1.7 Total non-renewable empower 34.3 Total global empower 50.1 Global Emergy Intensities Table 2. Emergy of Products of the Global Energy System (after Odum et. al 2000) _____________________________________________________________________ Note Product Units Emergy* Production Emergy/Unit E24 sej/yr units/yr sej/unit _____________________________________________________________________ 1 Global latent heat, J 15.83 1.26 E24 12.6 sej/J 2 Global wind circulation, J 15.83 6.45 E21 2.5 E3 sej/J 3 Global precipitation on land, g 15.83 1.09 E20 1.5 E5 sej/g 4 Global precipitation on land, J 15.83 5.19 E20 3.1 E4 sej/J 5 Average river flow, g 15.83 3.96 E19 4.0 E5 sej/g 6 Average river geopotential, J 15.83 3.4 E20 4.7 E4 sej/J 7 Average river chem. energy, J 15.83 1.96 E20 8.1 E4 sej/J 8 Average waves at the shore, J 15.83 3.1 E20 5.1 E4 sej/J 9 Average ocean current, J 15.83 8.6 E17 1.8 E7 sej/J Regional Emergy Intensities Table 3. Solar transformities of selected fuels and biofuels. (values also include the emergy associated to labor and services) Fuel Transformity (sej/J) Reference Coal Natural Gas Crude oil Refined fuels (gasoline, diesel, etc) 6.70E+04 8.04E+04 9.05E+04 1.11E+05 Odum et al., 2000 Odum et al., 2000 Odum et al., 2000 Odum et al., 2000 Hydrogen from water electrolysis (°) Hydrogen from steam reforming of natural gas Hydrogen from water electrolysis (*) 1.39E+05 1.93E+05 4.04E+05 Brown and Ulgiati, 2004 Raugei et al, 2005 Brown and Ulgiati, 2004 Methanol from wood Bioethanol from corn Ethanol from sugarcane Biodiesel 2.66E+05 1.89E+05 1.86E+05 - 3.15E+05 2.31E+05 Giampietro & Ulgiati, 2005 Giampietro & Ulgiati, 2005 Ulgiati, 1997 Giampietro & Ulgiati, 2005 Electricity from renewables (§) Electricity from fuel cells Electricity from thermal plants (#) 1.10E+05 - 1.12E+05 2.18E+05-2.68E+05 3.35E+05-3.54E+05 Brown and Ulgiati, 2004 Raugei et al, 2005 Brown and Ulgiati, 2004 Agricultural Emergy Intensities Table 5. Emergy intensities for some common products (after Odum, 1996) Item Transformity (Sej/J) Corn stalks 6.6 E4 1 Rice, high energy 7.4 E4 Cotton 1.4 E5 2 Sugar (sugar cane) 1.5 E5 Corn 1.6 E5 Butter 2.2 E6 Ammonia fertilizer 3.1 E6 Mutton 5.7 E6 Silk 6.7 E6 Wool 7.4 E6 Phosphate fertilizer 1.7 E7 Shrimp (aquaculture) 2.2 E7 2 Steel 8.7 E7 1. After Brown and McKlanahan, (1996) 2. After Odum and Odum (1983) Specific Emergy (Sej/g) 1.4 E9 2.4 E9 7.8 E9 What Now? • We’ve estimated Nature’s work in primary processes – Rainfall, Wind, Tides/Waves, Soils, Rocks, etc. • Now we can compile these values to study secondary processes – Agriculture, Forestry, Fisheries, etc. • Knowing Nature’s work and studying embodied work in secondary processes is used for policy analysis Environmental Accounting of Sahelian Agroecosystems • Identify systems – Agroforestry, Rotating rangeland, Conventional cropping • Identify resource basis and yields – Climate, soil, purchased goods/services, yields, changes in internal stocks (e.g. SOM) • Synthesize information into Env. Acct. tables – Use previously computed transformities – Assess sensitivity to transformities – Determine if local values are needed Next… • Practical applications – Emergy analysis of states and nations – Environmental Impact Assessment • Soil Erosion • Water Supply • Recycling
© Copyright 2025