Math 116 Team Homework 2 Cover Sheet Due Date: 21 Sept Our first meeting was Tuesday after class in the first floor computer lab of the Bob and Betty Beyster building. We were there from 9:30 untill0:30. In this time, we mainly talked about problem one. We struggled with part 1 because we did not understand how to compare the two integrals with you replaced t with -t. However, after visiting the Math Lab, we were able to come to an understanding that the function was W all contributed to the answering of the problem in different calculate the derivative of a function and I ways. On one would check that results the graph. On a different part, I would work out integral on the board and get feedback from the group that I was doing it right. took meticulous notes and copied down all of our findings along with contributing when needed. We breezed through the rest of problem 1 after we figured out part 1. Our next meeting was brief on Thursday in the Bursley lobby just to relay the information from Math lab to the rest of the team. After a general consensus, we adjourned the meeting. We then met again at the usual time of Thursday at 4:30 at the Coman Computer Center at Baits. We went to the meeting having already tried problems 2, 3, and 4. We discussed our results and realized that we got the same answers for 2 and 3. We spent some time on problem 4, but eventually were able to solve the problem. We looked over our final draft and decided that we were confident with all of our answers and concluded the meeting. This week's batch of problems was noticeably tougher than last week's. We recognized that we may need to set aside more time to be able to fmish the team homework for the weeks to come. Also, we determined that the Math Lab is a great resource when struggling with a part of a problem. Prot\em of -)\1.{ S J-.c 0 JJ po{ ~ fer ) c..u-') f0rc-i-~on <:1A vvc 1 y .2.\- an j were \-\- (r) =- S I X.(_- x_ Jx c;.s~ed \1'-'l,e tt1cr t-he. ne-d'ht\, We__ )::.-()CvJ t·hJ t fG> r on eVen fun cJ· ,ron f (;>() 1 f (-A) is C<[ ~u I T-o fc.x) n ,j -fc ( 0. fl 0 dd {v nc t cn f u J I f (- ;< J ;- s c t tJ a I t 0 - f 0 ) ., To tc:s+ t-he. -fvncJ~~n G.(- t-) 1 we. )e t- u = - x" Then 1 -T-o CG<lVcr+- :3x -\-? du. we.. uGe..d dlJ\ .:::--! +'-"' +~nJ dx ~ - dV.., J-< Once.. we s,;b5+;tvh~.J (u) ..for ~x) and 0-c1v.) +oc (c\x.'J we -fovrd t\1~1-. e-ven/ wo-S oddi o{ v' G. (- t J - th~n 6.C-r) tk -fv r,;:; () (1 G Port 2 o+ G. u-1 \.Jva,l\~ '1 0 . ,J;\1•-~d \AS .c, n d s 0 (- u) ~ ~ u h~-\- !hrte.J (:- J\ ~ ~ucl. ; 0 ~~nee -('vi) 2-\- .fo\ .b -t I '1 " - du bact- ~ n -for (v-) +o ge-t- , .s t~e- s,o m-c.- as ((t-) 6_(~) nlv)!be. ~ven . rctlf.-(.'::1 ~ (,~ \J.b; (\ j \e. f +o ldv..l d~[q'{,(V101 lc. vo.\vcs t\\- t-~o l/'.'1_,D.fi + afl ~ rr9 ht RIO'r'G/fln Svm 5. r:+ u~ ~ ,n ·k[vc.Js ,'n OJ.\ es~~.')llr.cflf)fJf._ tk v..i·J rh <>-( e.vGh ~ ,-n h:.;'vC( I; we .... (:, -o. (L.\"- 0) I tLCI\- 1'1-<..- VvZ. ')e<:~\ of ,nt~j'~t,'~,;' , ' j! V(() +vvo etutC1f,·onS ': W-G( C- 2.\- horne '-A/9\ F- f ea (}'l ov r ~j th<.. (h.t<Y\b~ .. ~ ,(lf.cf"t.:--../5. - - -b . z 0 0.. - ~I ) 0 I (. (X.. e_"' L L- f\) <:.~"<' ::~nn ( !-•)h \ ~ D \-. L (I Svm G~"' "\) QV(J? o-cc v. r a~ c y~ , e: of rh.e '1 i. o.\·Z - - ?,.\--0 n koJC , ~0 - (z. ~ k f t- The.. (._- >< '1 ) - D.o7'f7 VV1 ·~ ·s )- - 0 - t Q,, '-'.<>$ )\...11" 0, l 2 'I ( 1- k, ~tDvo{ C. -J.. '1 ) ::_ 0. l L 5~ \:oo r~ , <-"' .,. r. 0 .>'-.!. J'f\ J~'t-· l. \.f-. t ; 0 ' l.{ ) Rtc. rf\ oI)(' (:0 { ()'5<f7 -1-v ~d-V( v-s t-k Svrn_s 'i ~ b\-·c(fc-,(") Tk-_ n ~ kt 0 :: t- \ '-'\ tk I l' ;i ) '>'~, , jVl(~ io-r.. b- o, - fhc..r ~ rrvetl \N'o<:,_ {:c\ Ike \ c-"'-') - l \ a\;(<CJ-')6....- o-U.. " r C)\~ c ~C t'"'c. +vvq l.JV7.:' us 1--k m ~d- <-:.v'f'(\.5 .s ~ lrr a.\ \~H). L~ f- ~ t- t.r Clh t- - l~. 9 • 3, 2:1(. ) e 7_ 'L - 0 Z7 0) :::::; 6. ( o, "\ ) L\ t1ro·~(.xc-K 2-. (...1 Ll ) - z. o .3 c.· (..1 ( x e -x ) 0 . Y 52 :: g :.::) ~:;I T~~ qVc ro ,j e: of H~e es+i mq{r-on 0 cC'v. (C1}c L~ t ~- + Q. ~~ ::: ( o. s 57 s-) r _J_o. Y 52 &) ~ L 2 cr Ov.r {rn~, nJ:; -For +he t :. 0, Z1 0, L-\ 1 o~nJ 0, b o._pfo};(YI,qkon 0t G rn \Q \J'-'e {,(\~ 1~e nec~e,J \-c) 0(1_$vvcr +~"ncl 1 lf!c_\(CJ~,-n.J. _cl "J \r-.1&.. S ~-c. to of- C. 0) C{t C. (o.z.) V"C.':JC r.~ct .:s £' G. (0 . b) 0 , y ICJ 1) ~i$1[ (0.'1) ~ (o, b) ::::::: CJf 0. 0]1 Z ~~~-~ 0 . '1 t ~I 0.?7 b'; .5- p'obleuVJ \ -1-he.. ;f\~c:v-"'1f If\ v...hJih 0.L+-) "'-oJ b-esJll'--~j +,;) do +k·s: ,-1As, ,-kJ ~fltC\ \fit\ ;n v--k'c ~ the:. .;}e>pe 0 \=- ~ (_ r) r ' I \'.)S:, t ·\, C • ) he:_ fv,., c -l .L 001 To ( tv-.-c... . .- / s, ) Cl\C G. (r) v-iii\~ -ike Jcr,vcJ··vc of G-Ct) u1 (.1-). +k of ~ -r!v"s {u('\cl U'r'r-c()+G-11 r(i--) l ~ \ ;:.~ J,t.._ v) ·- r ( -t -+vf'\c.t·;CJn c..Jn Tl--.eo{'t'(i') of- s"-fv-\ d;l.. t\ h\ ' b' - -f (01.) • <.}..' be. 1 {ovi)J cc~l [v~lv..s v~,'0J •Jvkft:.-' fhe t'ncn }f"\ c\c.oS \lo.\v.c:-~ o ( ,e ~ o't l 7. vv-0. v--e.. ~ (0 <;. - ff\ \::.,l"'tG'-"" G.'(\· j ""'o"' \ l Once 1 ctv Oi. t bc:.. vc. (_<:v. [) <,<- Cuo '<l 01'\~ ~ ~ \c£.5 G.'U') v-o...S \A~ \-u -\-.:::0) <--c..f0 lr'OtS v-.-OS, \ Q ( 11 thq t- rk\;j.,., J~"-n:' \f -z: e. r o c.Jr Y'> x(cr-.Jc :,c.c~.o<J~ 0\- ,'-~v.s;0} .S \~-~-e-. Jn dt__f -fo (' G. (t ) fo t · } ~ ( ( Lj r ) c- ! ( e. -I p· 'i ) \...- ,~'-"' l J ~ ct t- c -M t- e \o, .S ;-n c: -c \tv c ~ ,..,-cv tl,.;;~-f ~G>.S'S ·;. Gte: \:V'C: V' 0c 0 v--c.s ·fo ( (c -IH ) \-o ecc v C! { Z<?.J C))t~£71\rk o"'l'j _ve;~{~e. of- (t-) {Qr v.Lch be ~ z c f'O l.tJ&lS ~ v" Lvr'l Y t ;. 0. \ .G U-) +~e~t (+) ~L: u ~as r 3 -\-o ._,'./ (_ ~ .rk in /cn/q { "'--kr~ (,._ U- J ~ \iJ c_ S>ct ~' 0 )')> 0 to .C1~J tk 1•'\ ~ ~. C. \ I \- • to ~~~~·:\ \h_c(\ I than T~ -\' ,.f( om -jQ \.IVO'~ ~ - -1- .:::: 0 w0 S _, I e_CJf,J - 'J'f \ C) ~ V.J \'0 l'n Zdo r<:>:;\+t'vC. \"\ u N'l k-c \k nv. n- bc.r r~~ r ..... I:) v01\v1e c..'ct) 0 rl ._, ~ ·ltJr r i.A_/,_,J,... o/'J -c,o · - - oil 0 :-- I vc:_ tJ GI~CJ kr rhuf\ J '1-0 .£-r 9 y~.f c. o.._\t or ('IC-.juttvc ~c..fo~.::: .-,I th.c; t \1'--C- c_.,h~<:.e. j rca fer fha r. V'vC cJ')C' \--c- \e-5,( thc:An \:? \Oro b\ecy1 1} . Cc.~ s,- f'l (.<.. ~' (\ J ~~ 0 () \J \lG~~;;, t' V ( \.N ~'I t 7 0 v--t.~n€'--J tho.t 1-l<- S\Q~e.. of- G.(t J ftlUSt b c. r os, \- l v c. 91' t k ·, n ru v a.l ( o 1 oD) • r h-e rc ~ ! c 1 fh-c_. ~un~\1C)n ~Lt) IS \ncr-coS\rJ -+-or 4)1 -Je~lueS c- f l t ) of\ Yk lnkrv6{ l ( O 1 oP) . 13_\ ?d<\ t- ~ o.. S'f ~.;cl for t\, c: v0-( ve- ~ () ~ (+) In ~'"' 1c~ \ le_ -\0~c~'ir:l0 . ~ ( t) w-o S coil Go.vc V..f, The- bc_st 'vv'J ~o S~'lvc:_ ~~·.-e.. rrctle.il'r· l.NC/S \-Q {tr·d ~he_ 10tr\val \ n ~"'~ G~ _ ~ Lt) v-'0.. ~ ~I' C fC-O.S ~('). 1 II:¢ ( ~U J 01 t~sd t v-C s\.,~~), \~<{vnc\~ wn, for ~~ ~\\;)~c._ Qf G \Jv o s \' k de(" l\/GI t 1V r. o f- G._ ( t) r G-. Ct ) . J c.) -f rf\! G.. (I j .c,t) ~ ( \). S-e J t\~ Q~ 0 I ~ .-\ d Q<A \ ( '-A.\---e__r C <...f c - I b+ ,, t-"'cw Ct (t') \»s~4-:vc to [\ccJJ+rvc o, Ot~cc. ~~ e-~ (I \Jv c_ I. \ ' 01-f ('-fc< lr W ·JQ ( V'-~fc\ 00i w-e- ~ 1 -~ \ :;aif'\ ) I I (- ~ \~j•\ 1 ~ 1 v ~ .I \.-;t;_>i I ~o!rds lrr\-t::-rv~l p I ,.!.,._ nLJv.::AI-; tk c\,os.c ~or tk - +~ ~-~ 1 5> vJ o c~(~"J(-- Lou.\J o{llj v-t:. I t =2~ ctnd ~ r, o,"' ~ d (~'i -~z. -1/ J ) Ju/,~r-:.c; c' '' l ('I 'vJ '\ -(f(IQ {o G.' (f)~ 1 +'or tc~'r e:och tnl-uvqf, +o I ()I I -:::..ll cJ \\ i V c.:1 \ v ( 5 \o·-.,:t 1'._.rc. -t.::: {;o~rn tp.(c_<-~lcJc J L_ ''(-1 ) wr:- ~--'L-1): '--\(-l) o -6i(-l)s··c-l(,(-1) "/ '-'l t- C::-tb(-1),, cf G.'\ (:I) _: - 2 2- 7 '-\ )r ~ l 9- 3 .:. ()e~ c.'(JI v'C. c..,., rc~-.1 0 fc ..r (_ I U '-' 1" \ l.v J 7 ',., '\ •• I L-) l'n)·' -•-=. \.-1l \,..'J' l - b • ·' = .,--' \_,o. . . - \\ . (_ () ) ~ 't. (r:>) '-1 " L-J o-" ) (?S, trv-c:; <>f\ 1-k ,1\ \u ~ q { .. (-z_--r~,[_..Jc.) ve_ \::-ne_\.N ~o~-r_ ~ 0) v-c-<; onlj •r-.cJco~;.n/· nn -\~Cit intcJvc.\ unJ _~Cr)-. v--'S ~nl'j concov 0~ -t0 ( v o l ue..s at6c: tween --c,s-~:.. an J -z.'\lz. .. 1 1 ~' ' u-) v 1.· ' ~1 ~ r\."'s~t!\/C, (-z_~c_ I S. ~ cc L- I , . '"' ' J v--a > an l j + J ill ~J s'pcAc-~ \o tcJ b\c GA ()\<:>'- Of\ U, -\or~ LO) of ~· ~ _,_I .t-. t Gt"f\0 ~ (~) +- \ we... \} .::J[vc-S rraJe -1-r.- 5 fCJ-~ h + 0 1a.o7~\ 0 l1> 1 0:Hi't\\ o."''\~c- n. 11t"'3\ (). c; (L '\ .. c.<, / ;.,1. / . 'Q. \ 0 -\ I ''1. ~ '\ ~o. I {1. l. ~ ) •<: 1\ ~ (>. '5 UJ ~(\(t b \e_\o.\\<:J'<1Sh"~ S't- t'- \ c ~ G -E Q( ~~(__ SoN'C ( etvt:Ste-\ bc~\Necn \-\ ( t J. o-(\ ex.~ )c-J(lCA_fro{l <0f th.e._ G.Ct) on·\ fhel(l "" \:i ( t j J G. 0) >JI ~ r e b< ~~ 1n tc-:J ru~ Is .{JnCf\Gfl -{(o(\'J""" Co@'\5 td/1 ~ +o +k Vo.(l'cJbfc_ (I.t). \hcr(.~Qf(.) -i~ Q/l!J d\{fcJC.~( 6;:\U/ccn t~c. .\-""~ ..fv-<lc,\\o'l1-:, v(6_s 1hL 1tde0ro\l bctvvec\(1 t\-z t0vo S-to..< ~0J c,a0<Jct~S, ().f- the {vf\c+ .rJI$. 0_ (-t) SlcAfJe.d "· t -1:::: 0 or~ \-\ U) ~\o( k ~ \-\(\) ~ G. U) \-\0) ot16 a(\ :J \- + : :. \ . '-\ - 5~ x. c- '1.. Jx. c~\"' ~ ~ _:;;;:> 0 cL:: --"'0 c 6 "--\-tV ~ v <V < ..-+<..Jr" c ---:::; <-.J 0 _...>: --4- 0 ~ V) 6 i)J lc;A c ,_ .:) ...... LJJ ::{) c _;> c c -r' ·r-.l r-""'" ~ 0 () ._:; .:- ..:;;, c: ~ ,...; .. g. c ~ 0 ., ,....:. ...., '-( '- -'ft ,_, ~ ' c ;r ~ :;::::. c ~ .-r> \ .~ -;:::- 0 - \ _;) c.! 0 .:.> :J \"" 0 0 "'·-" 0 J 4' ;f' 0 0 r;:! ' c "c -:;- I c. r-l - ~ ..::P \ c t ...-,.--. _,_ -\- '-....._/ :r:. \r (~ y c ,.r, 6 ,..J ~". ~ I I r-J ,~ J .; ,.) :.- • 0 I <i ..:> r t "'c' i 0 I ,.J ., ·,,....., ., .) ' "''· .......-., \ bI d ... I \..r, 0 '1 ,.. I r· 1~ ' f ~·) , ~ L :f ('!,J If k 'I L ~ L ~ '\\ ( i\i vJ I I ., , •r , JO f' ' 1 f'\ ' \.4;._; .L..._1,..._~--l ._.. ~.:,.._.;..~ . \ l '' (' II ,- f"t "" p I ~ '2 ~- \\2 'l~-"Ol~ Jri ..,.r \ I\.)~\,( - P-U \ Dk ,, q G1n£iJ ,tt I l '\_ -· ~- r. ·.A. ~0 I- • rro ' y L' ........ l jl_[ •' ,- I j__ L~)J ,,... ,. r ~ 'I I t I I 2 -:: ;r; , ) If' y, ~u 2-- 3_\t . : z .3 \) . -z I \ - I - \) J :; vJ z;r ~ f~vr ~ 2~ 1" l cv - \ I - j \ I c' ~·" \, r I (, . + :;:£::. \J i- Ul .......... w i--1 ) \ I I - \ r I, ll) 1 I- I1. l •)J- L 3 (" \ \ ' ' ,_ u2..• \ ) ' '? l ' \ •If'.__,__I\) I ,.... \ "2, -'\ 7o'~ Jt~W ..- r .I. ~· ) .,...... r-- -- ~ t I. tl.l l'" '( Lor~·, I -~ t-i I ~ (' "' I ~- \.._ (' u ;(\J (! {V1 ") vf J_ ')1 ) ~ J. h ' t "· 1 tvtoJ ,.. 'cJg l r 5~A }; 5 { t·r. v.-<;1, • "'• .. 1..€ ~ ( t {I<.·~·~ f / r "0'-··'e c. c~" c / Ot e>,• ,_ I r I f \. J' r I c r t 'I e . ( ... ~ ' \/ u '. ., I ) -!"(Orr' 1 V.t \,. \ ' .•. i\ 'F(' . I ·~ r f' r, ( t?W\( Vf[J [D, /(\I ' I r P-r -~o \ [9 /' f'. t r t/'rr of 1'\Uifr£~£-·r' ftf'.e, t-he Ir v- r , • ; 1 ' I ,u ._J '· \ f P, . ('~ ( C• I /: • ·,, ex i(• •t < ' ' I 5 ,y,,H•.("·, - I \ )"' ' ~ ~ n. • "'L ~ I IV ( t)y\ u-.·e rE'c'[ c.f 1r-rOw{' I ~ I ~~~ v~~t~,.,~ ~ 0 (.., tc::. tu~o ~ o..vv-. 9 c..li<J C< \ JI 1-~, ~r· (I. ( /', r. rf..A:.i(€1f,tc lv U"W'-£ of Ar """' ((• ~ • .!.~l£·,, -· , . . . 2 -(i)r ty'v... vr-1 ~ c- e c 1 (' o C;_• .v te . o»Se rt cf ly){ ( • ., ·,r ', , Tor <!;:: '( -::C;t.., ~'vi~) "'[ ......! \ L I -re ~- \ 0 (~ ' v ' , '· e v • /-~-I f I r; dJ?~ &vv-e~ { o.- ,,.e ( l '1, -- )";' <'., ~fx) ~. • hos c.. {cb \")·' r· ()" ;J~: ~~v : 0\A .. I o~ •J.,-7 ~4.'-'\ . ;. (' 0 u (;;.. : 1V'ob. Ac, ~ G J( ; -r t[\ ·- •:"v .-,;;: • :-J-·~l r ,....._) , G;Vi:· \-Y'cte;y ~V' MOve '--,, C\ ( )< ) CJ..~~ e t r-..) ... ~ +o •' ...1~ . d-~5 (.<>V· "! l 0 ~ \' ~-· P'""':cv::..'·y J.:1-e.,.: .•J. V'd~ <r( j 0 ;S ~~) -J r Problem 4: Section 7.1 #112 Assuming that wind resistance is proportional to velocity, the downward velocity v, of a vertically falling kt mass m is v =~9 (1 - e -in) in which g =acceleration due to gravity, k =some constant. We are asked to find h, a falling objects height above the earth's surface as a function of time, assuming the object sta rts at ho. We integrate the velocity function from ~0 to timet, and then subtract that from the original h~r, hO, to get the height as a function oft. '"- kt) dt h=ho-J0tmg T ( 1-e-m ~ '. ·""-' .,, [ \ <;(, ~(~ and rtmg Jo k '. 1 - ' 'M..' \>-~. \ ~ kt) kt) dt= mg rt dt + mg rt e-ktfmdt = mg (t +_e--)= -ktfm rt (1- e-m mg ((t (1- e-m dt = mg k Jo k Jo k Jo k k/m k +(~)e-ktfm) for [O,t]) mg =(t k kt) m + (m -)e-iit -k k Plug back into h: h = hO- ~g t - ( 9:; 2 kt) 2 e -in + 9:; to get the height of a falling object as a function of time.
© Copyright 2024