Leaving Certificate Higher Level Maths Solutions SEC 2013 Sample Paper 1 1. (a) (i) ____________ __ __ _____ r = |− 1 + √3 i| = √(− 1)2 + (√3 )2 = √1 + 3 = 2 __ p 2p = __ but q is in the second quadrant. q = ___ 1 3 3 2p 2p r(cos q + i sin q) = 2 cos ___ + 2np + isin ___2np 3 3 √3 −1 ___ q = tan [ ( (ii) [ ( [( ( ) ) ( )] )] ( ( 2p 2p z2 = 2 cos ___ + 2np + isin ___2np 3 3 1 _ 2p 2p z = 2 cos ___ + 2np + isin ___ + 2np 2 3 3 __ p p z = √2 cos __ + np + isin __ + np 3 3 __ __ __ 1 __ 1 3 3 √ √ for n = 0: z = √2 __ + i___ : for n = 1: z = √2 − __ + i___ 2 2 2 2 [ ( ) (i) z4 ))] )] ( ( (b) ) ) ( ) Im(z) z2 z1 z3 (ii) 2. (a) (i) Re(z) 1 k = __ 2 To Prove: n(n + 1) 1 + 2 + 3 + 4 ... n = _______ 2 1(1 + 1) 2 For n = 1 1 = _______ = __ = 1. ∴ true for n = 1 2 2 2(2 + 1) 6 For n = 2 1 + 2 = _______ = __ = 3. ∴ true for n = 2 2 2 Assume true for n = k k(k + 1) ⇒ 1 + 2 + 3 ... k = _______ 2 Now for n = k + 1 (k + 1)(k + 2) Is 1 + 2 + 3 ... k + (k + 1) = ___________ 2 k(k + 1) We assumed that 1 + 2 + 3 ... k = _______ 2 k(k + 1) (k + 1)(k + 2) So is _______ + (k + 1) = ___________? 2 2 k(k + 1) + 2(k + 1) ___________ (k + 1)(k + 2) _______________ = 2 2 2 (k + 1)(k + 2) k + k + 2k + 2 ___________ ____________ = 2 2 2 (k + 1)(k + 2) k + 3k + 2 ___________ _________ = 2 2 1 (k + 1)(k + 2) (k + 1)(k + 2) ___________ ___________ = which is true. 2 2 ∴ It is true for n = k + 1 ∴ It is true for n = k ∴ It is true all values of n, where n ∈ N (b) |4x − 1| < 1 − 1 < 4x − 1 < 1 0 < 4x < 2 1 0 < x < __ 2 ∞ ∑ (4x − 1)r r=2 Writing out the series, starting at r = 2 we get (4x − 1)2 + (4x − 1)3 + (4x − 1)4 + (4x − 1)5 + ... This is a GP with a = (4x − 1)2 and r(common ratio) = (4x − 1) a S∞ = _____ 1−r (4x − 1)2 S∞ = __________ 1 − (4x − 1) (4x − 1)2 ________ S∞ = −4x + 2 3. (a) f : x |→ x3 + (1 − k2)x + k If x = −k is a root then x3 + (1 − k2)x + k = 0 (−k)3 + (1 − k2)(−k) + k = 0 −k3 − k + k3 + k = 0 0=0 ⇒ −k is a root of f (b) x = −k is a root of f ⇒ x + k is a factor of x3 + (1 − k2)x + k x2 − kx + 1 x + k | x3 + (1 − k2)x + k x3 + kx2 −kx2 + (1 − k2)x + k −kx2 − k2x x+k x+k ⇒ x2 − kx + 1 = 0 2 _______ −b ± √b2 − 4ac x = _____________ 2a __________ k ± √k2 − 4(1)(1) ______________ x= 2(1) _____ _____ k+ −4 k − √k2 − 4 x = __________ or x = __________ 2 2 2 One real root ⇒ b − 4ac < 0 √k2 k2 − 4 < 0 (k + 2)(k − 2) < 0 ⇒−2<k<2 4. (a) 2x + 8y − 3z = − 1 2x + 8y − 3z = − 1 2x − 3y + 2z = 2 _______________ 2x + y + z = 5 _______________ 11y − 5z = − 3 7y − 4z = − 6 11y − 5z = − 3 7y − 4z = − 6 ____________ 44y − 20z = − 12 35y − 20z = − 30 ______________ 9y = 18 y=2 7(2) − 4z = − 6 z=5 2x + 8(2) − 3(5) = − 1 2x + 1 = − 1 x=−1 (b) (i) y y = f(x) D A B y = g(x) x C y= −x+3 y=x−3 y= −x+3 y=x−3 y__________ =2 y________ =2 y__________ =0 x________ =0 2=−x+3 2=x−3 x=3 y=3 x=1 x=5 A(1,2) B(5,2) C(3,0) D(0,3) 3 (ii) Solution from diagram: 1 < x < 5 Algebraic solution: x − 3 < 2 ⇒x<5 and x − 3 < −2 x>1 ∴1<x<5 5. (a) Height = h cm Length = 20 − 2h cm 30 − 2h Width = _______ = (15 − h) cm 2 (b) Volume = h(20 − 2h)(15 − h) = (20h − 2h2)(15 − h) = 3,000h − 20h2 − 30h2 + 2h3 Volume = 2h3 − 50h2 + 300h (c) Square base ⇒ 20 − 2h = 15 − h h=5 Volume = 2h3 − 50h2 + 300h When h = 5 Volume = 2(5)3 − 50(5)2 + 300(5) Volume = 250 − 1,250 + 1,500 Volume = 500 cm3, which is the correct volume (d) 2h3 − 50h2 + 300h = 500 2h3 − 50h2 + 300h − 500 = 0 h = 5 is a solution ∴ h − 5 is a factor 2h2 − 40h + 100 h − 5 | 2h3 − 50h2 + 300h − 500 3 2 2h − 10h _________ − 40h2 + 300h − 500 2 − 40h + 200h _________________ + 100h − 500 + 100h − 500 ____________ ⇒ 2h2 − 40h + 100 = 0 _______ _______________ −b ± √b2 − 4ac 40 ± √1,600 − 4(2)(100) h = _____________ = ____________________ 2a 2(2) ____ 40 ± √800 h = _________ 4 h = 17.1 (impossible as 17.1 + 17.1 >22) h = 2.9 cm 4 (e) Capacity 800 600 550 cm3 400 200 h 5 10 15 17.1 cm 20 –200 If the capacity of the box is increased by 10%, it would give a volume of 550 cm3. If a line is drawn on the graph to give a volume of 550 cm3 (see line on graph), the corresponding height will be ≈ 17.1 cm. This is impossible as stated solution to part (d). 6. Initial Exploration m×n 2 3 4 5 6 2 3 4 5 6 Interior pieces only if m > 2 and n > 2 Interior Interior pieces Edge Edge pieces 3×3 1×1 1 8 3×3−1 4×4 2×2 4 12 4×4−4 5×5 3×3 9 16 5×5−9 6×6 4×4 16 20 6 × 6 − 16 m×n (m – 2) × (n – 2) mn – 2m – 2n + 4 5 m × n – Interior pieces = 2m + 2n – 4 6. (a) Interior mn – 2m – 2n + 4 Edges 2m + 2n – 4 3×3 9–6–6+4=1 6+6–4=8 3×4 12 – 6 – 8 + 4 = 2 6 + 8 – 4 = 10 4×3 12 – 8 – 6 + 4 = 2 8 + 6 – 4 = 10 4×4 16 – 8 – 8 + 4 = 4 8 + 8 – 4 = 12 Interior pieces = mn – Edge pieces for m > 2, n > 2, m ≤ 4 and n ≤ 4 (b) If Edge pieces = Interior pieces mn − 2m − 2n + 4 = 2m + 2n − 4 ∴ mn − 4m − 4n + 8 = 0 ⇒ m(n − 4) = 4n − 8 4n − 8 ∴ m = ______ n−4 Divide 4n − 8 by n − 4 4 n − 4 | 4n − 8 4n − 16 _______ +8 8 ∴ (4n − 8) ÷ (n − 4) = 4 + _____ n−4 (c) (d) From part (a) we know that m and n must be greater than 4. 8 From part (b) we know that m = 4 + _____ n−4 As we can only have whole number values of m, then n − 4 must be a divisor of 8. n−4=8 for n = 12 n−4=4 for n=8 n−4=2 for n=6 n−4=1 for n=5 8 8 m = 4 + _____ = 4 + __ = 5 n–4 8 8 8 m = 4 + _____ = 4 + __ = 6 n–4 4 8 8 m = 4 + _____ = 4 + __ = 8 n–4 2 8 8 m = 4 + _____ = 4 + __ = 12 n–4 1 Interior pieces < Edge pieces (n − 2)(m − 2) < 2m + 2n − 4 nm − 2m − 2n + 4 < 2m + 2n − 4 mn − 4m < 4n − 8 m(n − 4) < 4n − 8 4n − 8 8 m < ______ i.e. m < 4 + _____ n−4 (n − 4) 6 For n = 5 and m < 12 ⇒ m ≤ 11 For n = 12 and m < 5 ⇒ m ≤ 4 For n = 6 and m < 8 ⇒ m ≤ 7 For n = 8 and m < 6 ⇒ m ≤ 5 NOTE: For n = 7 and m < 6.66 8 For n > 12, m < 4 + _____ < 5 ⇒ m ≤ 4 n−4 For jigsaws with one side greater than 12 pieces and the other side less than 5 pieces Interior pieces < Edge pieces In part (a), if one of the sides is 4 or less, then the interior pieces will be less than the edge pieces. 7. (a) f ′(x) = 3x2 + 2x f (x) = x3 + x2 − 4 f (xn) xn + 1 = xn − _____ f ′(xn) 3 x1 = __ 2 f (x1) x2 = x1 − _____ f ′(x1) ( ) (2) ( _32 )3 + ( _32 )2 − 4 __4 3 ____________ _ x2 = 2 − = 3 2 3 3 3( _2 ) + 2( _2 ) 3 f _2 3 ____ _ x2 = 2 − 3 f′ _ (b) (i) 5 dx (t + 2)(2) − (2t − 1)(1) ______ 2t − 1 = x = _____ ⇒ ___ = __________________ 2 t+2 dt (t + 2) (t + 2)2 t y = ____ t+2 dy (t + 2)(1) − (t)(1) ______ 2 = ⇒ ___ = ______________ 2 dt (t + 2) (t + 2)2 dy ___ dy ___ dt ___ = × dx dt dx ) ( 2 ) dy ______ (t + 2) 2 2 ___ = × ______ = __ 2 dx (c) ( (t + 2) 5 5 (ii) The graph is a straight line. (i) f (x) = (1 + x)loge(1 + x) 1 f ′(x) = (1 + x) _____ + loge(1 + x)(1) = 0 1+x 1 + loge(1 + x) = 0 ( ) loge(1 + x) = − 1 ⇒ 1 + x = e−1 7 f(x) = 0 at turning point 1 ∴ x = __ e−1 1−e ⇒ x = _____ e As y = (1 + x) loge(1 + x) [ ( )] [ ( 1 1 __ ⇒ y = 1 + __ e − 1 loge 1 + e − 1 )] ( ) 1 1 __ ⇒ y = __ e loge e 1 y = __ e (−1) 1 y = − __ e ( 1 − e __ 1 ∴ Turning point at _____ e , −e (ii) f ′(x) = 1 + loge(1 + x) 1 f ′′(x) = _____ 1+x 1 − e __ 1 1 f ′′(x) = _______ =e at the point _____ e ,−e 1−e 1 + ____ e 1 − e __ 1 As e > 0 _____ e , − e is a minimum point ( ) ( 8. (a) ) ) ∫(sin 2x + e4x)dx ∫sin 2x dx + ∫e4x dx 1 4x 1 __ − __ 2 cos 2x + 4 e + c (b) (i) cos x + sin x y = ___________ cos x − sin x (cos x − sin x)(−sin x + cos x) − (cos x + sin x)(−sin x − cos x) dy __________________________________________________ ___ = (cos x − sin x)2 dx 2 2 2 2 (−cos x sin x + cos x + sin x − cos x sin x) − (−cos x sin x − cos x − sin x − cos x sin x) dy ________________________________________________________________________ ___ = (cos x − sin x)2 (−2 cos x sin x + 1) − (−2 cos x sin x − 1) dy _________________________________ ___ = dx (cos x − sin x)2 dy _____________ 2 ___ = dx (cos x − sin x)2 dx (ii) dy _____________ 2 ___ = dx (cos x − sin x)2 dy Is ___ = 1 + y2 ? dx cos x + sin x y = ___________ cos x − sin x dy cos x + sin x Assuming it is true ⇒ ___ = 1 + ___________ dx cos x − sin x 2 ( dy cos x + sin x + 2 cos x sin x ___ = 1 + ________________________ dx 2 (cos x − sin x)2 8 ) 2 dy 1 + 2 cos x sin x ___ = 1 + ______________ (cos x − sin x)2 dx 2 dy ____________________________ (cos x − sin x) + 1 + 2 cos x sin x ___ = dx (cos x − sin x)2 dy _______________________________________ cos2 x + sin2 x − 2 cos x sin x + 1 + 2 cos x sin x ___ = dx (cos x − sin x)2 dy _____________ 2 ___ = dx (cos x − sin x)2 dy ∴___ = 1 + y2 dx b (c) (i) cos x dx ∫a _______ 1 + sin x du du ⇒ ___ = cos x ⇒ dx = _____ cos x dx b b b b du cos x cos x _____ 1 __ = I = ________ dx = _____ du = ln u = ln(1 + sin x) | u cos x a u a 1 + sin x a a Let u = 1 + sin x ∫ ∫ ∫ I = ln(1 + sin b) − ln(1 + sin a) ( 1 + sin b I = ln ________ 1 + sin a ) b (ii) sin x ∫a ________ 1 + cos x dx Let u = 1 + cos x b du ⇒ ___ = −sin x dx du ⇒ dx = _______ − sin x b ∫ b ∫ ∫ b du sin x sin x ______ 1 _____ __ = − J = ________ dx = du = ln u = − ln(1 + cos x) | u u − sin x a 1 + cos x a a a J = − ln(1 + cos b) + ln(1 + cos a) 1 + cos a J = ln ________ 1 + cos b ( (iii) ) p p p a + b = __ ⇒ a = __ − b and b = __ − a 2 2 2 1 + sin b I = ln ________ 1 + sin a p 1 + sin( _2 − a ) 1 + cos a ____________ I = ln = ln ________ = J p _ 1 + cos b 1 + sin( 2 − b ) ( ( ) ) ( ) 9 Leaving Certificate Higher Level Maths Solutions SEC 2013 Sample Paper 2 1. (a) 1 − (0.383 + 0.575 + 0.004) = 0.038 E(X ) = 13(0.383) + 14(0.575) + 15(0.038) + 16(0.004) = 13.663 (b) E(X) is the excepted values of the distribution. It is the mean age of all second-year students in Irish schools. (c) Probability of success: p = 0.575 Probability of failure: q = 0.425 10 ( p)6 (q)4 6 10 (0.575)6 (0.425)4 6 = 0.248 ( ) ( ) 2. (a) (b) Stratified sampling: When subpopulations vary considerably, it is a good idea to sample each subpopulation (stratum) independently. Stratification is the process of grouping members of the population into relatively homogeneous subgroups before sampling. The strata should be mutually exclusive: every element in the population must be assigned to only one stratum. The strata should also be collectively exhaustive: no population element can be excluded. Then random sampling is applied within each stratum. This often improves the representativeness of the sample by reducing sampling error. Cluster sampling: Cluster sampling is a technique used when ‘natural’ groupings are evident in a population. It is often used in marketing research. In this technique, the total population is divided into these groups (or clusters) and a sample of the groups is selected. Then the required information is collected from the elements within each selected group. A common motivation for cluster sampling is to reduce the average cost per interview. Given a fixed budget, this can allow an increased sample size. Assuming a fixed sample size, the technique gives more accurate results when most of the variation in the population is within the groups, not between them. (i) 1__ = ___ √n 1 _____ = ______ √1,111 = 0.03 = 3% (ii) 234 _____ × 100 = 21% 1,111 21% ± Margin of error = 21% ± 3% ⇒ 18% → 24% 23% is within this interval so we can accept the party’s claim. 10 3. (b) 3 Slope l1 = __ 4 4 ∴ Slope l2 = – __ 3 (4k – 2, 3k + 1) is on l2 y – y1 = m(x – x1) 4 y – (3k + 1) = – __ (x – (4k – 2)) 3 4 y – 3k – 1 = – __ (x – 4k + 2) 3 3y – 9k – 3 = – 4x + 16k – 8 4x + 3y – 25k + 5 = 0 (c) (3,11) is on 4x + 3y – 25k + 5 = 0 4(3) + 3(11) – 25k + 5 = 0 12 + 33 – 25k + 5 = 0 50 – 25k = 0 k=2 k=2 (d) 4x + 3y – 25k + 5 = 0 4x + 3y – 25(2) + 5 = 0 4x + 3y – 50 + 5 = 0 4x + 3y – 45 = 0 l1 3x – 4y + 10 = 0 l2 4x + 3y – 45 = 0 9x – 12y + 30 = 0 16x + 12y – 180 = 0 25x – 150 = 0 x=6 18 – 4y + 10 = 0 4y = 28 y=7 (6,7) 4. Centre (−g, −f ) is on the line x + 2y – 6 = 0 – g –2f – 6 = 0 ……… Equation 1 x- and y-axes are tangents ⇒ g2 = c and f 2 = c ⇒ g2 = f 2 ⇒ g = ±f 11 g = f ……… Equation 2 and g = –f ……… Equation 3 – f – 2f – 6 = 0 f – 2f – 6 = 0 – 3f – 6 = 0 –f – 6 = 0 f = –2 f = –6 g = –2 g=6 As g2 = c and f 2 = c c=4 c = 36 The general equation of a circle is x2 + y2 + 2gx + 2fy + c = 0 5. x2 + y2 + 2(–2)x + 2(–2)y + 4 = 0 x2 + y2 + 2(6)x + 2(–6)y + 36 = 0 x2 + y2 – 4x – 4y + 4 = 0 x2 + y2 + 12x – 12y + 36 = 0 (a) 3 y y = 3 sin 2x 2 y = sin x 1 P x 2y = 1 –1 y = sin 2x –2 –3 (b) sin 2x = 0.5 p 11p 13p 17p p 2x = __ ⇒ x = ___, ____, ____, ____ 6 12 12 12 12 17p 1 P ____, __ 12 2 ( 6A. ) Proof by contradiction: A proof by contradiction is a proof in which an assumption is made. Then using valid arguments, a statement is arrived at which is clearly false: so the orginal assumption must have been false. Example: When proving that a tangent is perpendicular to the radius of a circle, we assume that it is not perpendicular and, using logical geometric arguments, we prove that this is false, so our orginal assumption is therefore not true. Therefore, it can be concluded that the tangent is perpendicular to the radius of a circle. A Example 1. We can use a proof by contradiction to prove the converse of Theorem 7. Theorem 7 states: In a ΔABC, suppose that |AC| > |AB|. Then |∠ABC| > |∠ACB|. In other words, the angle opposite the greater of two sides is greater than the angle opposite the lesser side. 12 B C The converse of Theorem 7 states: If |∠ABC| > |∠ACB|, then |AC| > |AB|. In other words, the side opposite the greater of two angles is greater than the side opposite the lesser angle. In the proof of the converse, it is assumed that |∠ABC| > |∠ACB|. It could happen that |AC| ≤ |AB|, the either Case 1: |AC| = |AB|, then |∠ABC| = |∠ACB| (Isosceles triangle). This contradicts our assumption. Case 2: |AC| < |AB|, then |∠ABC| < |∠ACB| (Theorem 7). This contradicts our assumption. This cannot happen. Thus we conclude |AC| > |AB|. 6B. To Prove: |∠DOC| = |∠DEC| Proof: A E |∠OEC| + |∠ODC| = 180° O ∴ DOEC is a cyclic quadrilateral. (circle is shown in the diagram) C ∴ |∠DOC| = |∠DEC| ……… They are standing on the same arc DC. B D Q.E.D. (ii) 70 60 50 40 30 20 10 0 RUN SWIM CYCLE 16 20 24 28 32 36 Time (minutes) 45 40 35 30 25 20 15 10 5 0 Competitors 70 60 50 40 30 20 10 0 Competitors (i) Competitors 30 34 38 42 46 50 54 58 Time (minutes) 80 70 60 50 40 30 20 10 0 10 14 18 22 26 30 Time (minutes) RUN 16 20 24 28 32 36 Time (minutes) Mean, Median ≈ 25 minutes (iii) This distribution is approximately normal so that 99.7% of the data is within ±3 standard deviations from the mean. Therefore (Max – Min) ≈ 30 – 10 = 20 ≈ ±3s. 20 ÷ 2 ≈ 3s. Therefore s ≈ 10 ÷ 3 ≈ 3.3 minutes Note: The standard deviation can also be found by getting the square root of the variance. 13 SWIM Competitors (a) Competitors 7. 80 70 60 50 40 30 20 10 0 10 14 18 22 26 30 Time (minutes) (iv) There is no modal time because no two competitors finished the events in the same time (since times are given to the nearest 1/1000 minute). (b) There is a moderately strong positive correlation between run and cycle times, i.e. those with fast cycle times tend to have fast run times. There is also a positive correlation between run and swim times but less strong than in the case of run versus cycle times, i.e. those with fast swim times tend to have fast run times. There is also a positive correlation between cycle and swim times but less strong than in the case of run versus cycle times, i.e. those with fast swim times tend to have fast cycle times. (c) y = 0.53(17.6) + 15.2 = 24.528 y = 0.58(35.7) + 0.71 = 21.46 24.528 + 21.46 _____________ 2 = 22.972 min = 23.0 min (to one decimal place) (d) 95% of the athletes took between ±2 standard deviations of the mean. Between 88.1 + 2(10.3) and 88.1 − 2(10.3) Between 108.7 minutes and 67.5 minutes (e) x–m z = _____ s 100 – 88.1 z = _________ 10.3 z = 1.16 0.8770 ∴ 87.7% finished in less than 100 min 224 × 0.877 = 196.448 196 athletes (f) F, F, S, F, F/S F = Failure P(F) = 0.0877 S = Success P(S) = 0.123 5! There are __ = 5 ways of arranging F, F, S, F, F. There is only one success at the end, S. 4! This gives a probability of 5(0.877)(0.877)(0.123)(0.877)(0.877) × (0.123) = 0.0447 5 This is really (0.123)1(0.877)4 × (0.123) = 0.0447 1 () 14 8. (a) (i) B 5 cm C 30 cm 22 cm D E 5 cm 4 cm a A F 25 22 ______ = __________ C sin 60º sin | ∠AFC | 25 22 ______ = __________ 0.8660 25 cm sin | ∠AFC | 25(0.8660) sin | ∠AFC | = _________ 22 25(0.8660) | ∠AFC | = sin–1 _________ 22 | ∠AFC | = 79.77° 22 cm ∴ | ∠ACF | = 40.23° 60° A F C |DE|2 = 202 + 182 –2(20)(18) cos 40.23° 20 cm 40.23° |DE| = 13.20 cm 18 cm D E (ii) 22 sin a = ___ 25 C 22 a = sin–1 ___ 25 a = 62° 25 cm a A 22 cm 90° F 15 r 9. 120° r 2a h 2a 90° r (2a)2 = r 2 + r2 – 2(r)(r) cos 120° 1 4a2 = 2r2 + 2r2 __ 2 2 2 2 4a = 2r + r (2a)2 = h2 + r2 4a2 = h2 + r2 ___ h2 = 4a2 – r2 √ 4a2 r = ___ 3 2a ___ r = __ √3 2a __ Volume of cylinder = p r 2h = p ___ √3 _______ h = √4a2 – r 2 __________ √ ( ) 2a __ h = 4a2 – ___ √3 ____ ( ) √3 2 8a2 ___ ________ √ h = 12a – 4a √ 3 h= √8a3 4a2 h = 4a2 – ___ 3 __ 4a2 √ 2a 2 = p ___ ___ __ 3 1 3 __ _________ 2 8a 2 = p ___ __ 3 3 ____ 2 __ __ ___ __ __ 8a √6 = p ______ 3 2 _________ √3 8a 2 √3 = p ___ __ ___ 3 √3 √3 3 2 9 __ ( ) 8√6 = ____ p a3 9 16 Leaving Certificate Higher Level Maths Solutions Sample Paper 1, no.1 1. (a) To prove: 2n ≥ n2 [n ∈ N, n ≥ 4] Test n = 4: 24 ≥ 42 16 = 16 ∴ p(4) is true. Assume p(k) is true, that is: 2k ≥ k2 * Test p(k + 1) 2k + 1 ≥ (k + 1)2 2.2k ≥ 2(k2) from * ≥ k2 + k2 ≥ k2 + k . k ≥ k2 + 3k since k ≥ 4 ≥ k2 + 2k + k ≥ k2 + 7k + 1 since k≥4 = (k + 1)2 ⇒ 2k + 1 ≥ (k + 1)2 ∴ p(k + 1) is true whenever p(k) is true. Since p(4) is true, then by induction p(n) is true for any positive integer n, n ≥ 4. (b) (i) 3ex − 7 + 2e−x = 0 2 3ex − 7 + __x = 0 e 3ex ex − 7ex + 2 = 0 3(ex)2 − 7ex + 2 = 0 let y = ex 3y2 − 7y + 2 = 0 (3y − 1)(y − 2) = 0 1 y = __ on y = 2 3 1 x e = __ ex = 2 3 1 x = ln __ x = ln 2 3 () (ii) Quadratic. 17 2. (a) 1.8 = i(1 + i)12 12 ____ 12 ____ √ 1.18 = 1 + i √ 1.18 – 1 = i 0.01388843 = i 130,000(0.01388843)2 = €133,636.07 (b) Amount owing after three months 130,000(1.01388843)3 = €135,492.06 t i(1 + i) A = P _________ (1 + i)t – 1 [ 54 0.01388843(1.01388843) = 135,492.06 ______________________ 54 (1.01388843) – 1 ] = €3,583.11 (c) 3. (a) (b) 3,583.11 × 54 = €193,487.94 y = 2x + 3 C xy = 2 A x2 + y2 = 6 D y = ln x B x2 + y2 = 6 xy = 2 22 __ 2 y +y =6 4 + y4 = 6y2 () y4 − 6y2 + 4 = 0 (y2)2 − 6(y2) + 4 = 0 let m = y2 __ m = √5 + 3 __ y2 = √ 5 + 3 y = ±2.29 or __ m = 3 − √5 __ y2 = 3 − √ 5 y = ± 0.87 y = 2.29 y = − 2.29 y = 0.87 y = − 0.87 x = 0.87 x = − 0.87 x = 2.30 x = −2.30 18 4. (a) (b) No real roots ⇒ b2 − 4ac < 0 x2 + kx + 8 − k = 0 y b2 − 4ac ≥ 0 x k2 − 4(1)(k − 8) ≥ 0 –8 –6 –4 –2 k2 − 32 + 4k ≥ 0 k2 + 4k − 32 ≥ 0 k2 + 4k − 32 = 0 (k − 8)(k + 4) = 0 k = 4 or k = –8 −8 ≥ k ≥ 4 5. (i) C − Po A = ______ Po 11,500 − 600 A = ___________ 600 A = 18.16666667 (ii) c p(t) = ________ 1 + Ae−kt 11,500 1,800 = __________________ 1 + 18.16666667e−k(1) 11,500 18.16666667e−k = ______ − 1 1,800 −k e = 0.29663608 3.371134085 = ek ln(3.371134085) = k 1.215249211 = k (iii) c P(t) = ________ 1 + Ae−kt 11,500 P(3) = ___________________________ 1 + 18.16666667 . e− (1.25249211)(3) P(3) = 8,075 19 2 4 (iv) c P(t) = ________ 1 + Ae−kt 11500 4000 = _______________________ 1 + 18.16666667 e−1.25249211t ( 11,500 _____ 4,000 − 1 ___________ −1.25249211t = ln 18.16666667 ) −1.25249211t = −2.270979754 t = 1.81316891 years t ≈ 1.8 years 6. (a) (b) 7.5 75 3 r = ___ = ____ = __ 10 100 4 3 Tn = ar n−1 = 10 __ 4 () n−1 Height (ft) (c) 10 9 8 7 6 5 4 3 2 1 2 1 3 4 5 6 7 8 9 10 n 10, 7.5, 5.625, 4.21875, 3.164, 2.373, 1.780, 1.335, 1.001, 0.751 (d) (e) () () () () () () () () () () () ] 3 32 33 3 Dn = 10 + 2.10 __ + 2.10 __ + 2.10 __ + 2.10 __ 4 4 4 4 2 3 4 3 3 3 3 Dn = 10 + 20 __ + 20 __ + 20 __ + 20 __ 4 4 4 4 2 3 3 3 3 D∞ = 10 + 20 __ + 20 __ + 20 __ + ... 4 4 4 a S∞ = ____ 1–r [ = 10 + [ ] 3 3 20 _4 20 _4 _____ _____ = 1 = 3 _ 1–_ ( ) 4 ( ) 4 3 4 = 20 __ __ 4 1 ( )( ) = 10 + 60 = 70 feet 20 4 ____ (f ) √ 2.10 t1 = ____ 32_______ 3 2.10 __ 4 t2 = 2. _______ 32 ________ 32 2.10 __ 4 t3 = 2. _______ 32 _______ ________ ________ 3 32 33 __ __ ____ 2.10 2.10 2.10 __ 4 4 4 2.10 t∞ = ____ + 2. _______ + 2. _______ 2. _______ + ... 32 ________ 32 32 32 ________ ________ 3 32 33 __ __ ___ 2(10) 2(10) 2(10) __ 4 4 4 20 = ___ + 2 _______ + 2 ________ + 2 ________ + ... 32 32 32 32 √ √ √ () () √ [√ √ () √ √ 20 20 3 3 3 = √32 + 2√32 [ √4 + √4 + √4 3 √ 4 20 20 +2 + = √32 √32 1 − 3 √4 ___ ___ () ___ __ __ ___ __ __ () () __ 2 3 __ + ... __ ___ ___ ___ ___ ] √ √ () () [ ] __ ______ __ __ =11.011 seconds 7. (a) y = 3x3 − 2x2 + 12x − 2 y ′ = 9x2 − 4x + 12 x0 = 0.5 7 3 _8 f (x0) _____ ____ x1 = x0 − ⇒ 0.5 − 1 f ′(x ) 12_ 0 4 = 0.183673469 = 0.18 0.112696 x2 = 0.18 − ________ = 0.17976 11.5716 = 0.1798 0.110381664 x3 = 0.1798 − ___________ 11.57175236 = 0.17026111 = 0.17 to two significant figures (b) (i) __ Let f (x) = √x _____ f (x + h) = √x + h _____ _____ __ __ __________ x + h + √x √_____ √x . __ f (x + h) − f(x) = √x + h − √x + h + √x h _____ = __________ __ √x + h + √x 21 ] f (x + h) − f(x) __ 1 1 _____h ____________ _____ = __________ = · __________ __ __ h √x + h + √x √x + h + √x f(x + h) − f(x) 1 _____ lim ___________ = lim __________ __ h h→0 h→0 √x + h + √x 1__ = ____ 2√x h _____ (ii) √ ( ) ( ) 1 y = _____ 3−x 1 _1 y = _____ 2 3−x dy __ 1 1 − _1 ___ = _____ 2 · − 1 (3 − x)−2 · − 1 dx 2 3 − x 1 1 _____ 1 = __ ______ · _______2 2 _____ (3 − x) 1 3−x √ (c) (i) u v y = x2 ex dy ___ = x2 · ex + 2xex dx = ex(x2 + 2x) (ii) ex(x2 + 2x) = 0 ex = 0 x2 + 2x = 0 or no solutions x(x + 2) = 0 x=0 or y=0 ( 4 Turning points: (0,0), –2, __2 e u (iii) x = −2 4 y = __2 e ) v dy ___ = ex(x2 + 2x) dx d2y ___ = ex(2x + 2) + ex(x2 + 2x) dx2 = ex(2x + 2 + x2 + 2x) = ex(x2 + 4x + 2) 2 | dy | dx ( dy ___ dx2 2 > 0 ∴ Local minimum at (0,0) (0,0) 2 ___ 4 2 −2, __ e2 ) = e−2((−2)2 + 4(−2) + 2) = − 0. 2706 … < 0 4 ∴ Local maximum at −2, __2 e ( ) 22 8. (a) (i) ∫e−2x dx 1 ⇒ − __ e−2x + c 2 (ii) ∫2 cos 2x dx ( ) 1 2 __ sin 2x + c 2 sin 2x + c (b) (i) r Let y = __x h 2 r y2 = __2x2 h Volume of cone ⇒ p h ∫0 y2 dx r2 = p Ι0:h:__2 x2dx h ∫ h r2 = __2 p 0 x2dx h [ ] r2 x3 h = __2 p __ 3 0 h 2 h3 pr __ 1 = ___ · − 0 = __pr2h 2 3 3 h (ii) y = 2x + 3 y−3 _____ =x 2 y_____ −3 2 = x2 2 ( ) 6 p (y − 3) dx ∫4 _______ 4 p = __ 4 2 6 ∫4 y2 − 6y + 9 dx [ 3 p y = __ __ − 3y2 + 9x 4 3 p 1 = __ 18 − 9__ 4 3 13p = ____ 6 [ ]| 6 4 ] 23 2 (c) _____ ∫0 √4 − x2 dx Let x = 2 sin q dx = 2 cos q dq α units x = 0 2 sin q = 0 sin q = 0 q=0 x=2 2 sin q = 2 sin q = 1 p q = __ 2 2 _____ p _ __________ ∫0 √4 − x2 dx = ∫0 √4 − 4 sin2 q 2 cos q dq ___________ = ∫0 √4 (1 −sin2 q) 2 cos q dq _______ = ∫0 √4 cos2 q 2 cos q dq = ∫0 2 cos q 2 cos q dq = 4∫0 2 cos2 q dq 1 (1 + cos 2q) dq = 4∫0 __ 2 = 2∫0 (1 + cos 2q) dq 2 p _ 2 p _ 2 p _ 2 p _ 2 p _ 2 p _ 2 [ ] sin 2q = 2 q + _____ dq 2 sin 2(0) p sin p p = 2 __ + ____ − 0 − _______ = 2 __ = p 2 2 2 2 [ ] ( ) 24 Leaving Certificate Higher Level Maths Solutions Sample Paper 2, no. 1 U 1. (a) A B 0.2 0.4 0.1 0.3 (b) From the Venn diagram ( A ∪ B )′ = 0.3 (c) P(B ∩ A) 0.4 P(B|A) = ________ = ___ = 0.6666 0.6 P(A) (d) Events are not independent because P(B|A) is not equal to P(B). 2. (a) (i) (ii) Number of Favourable Outcomes __ 1 ___________________________ = 6 5 P(Success) = P(not getting a six) = __ 6 1 __ P(Failure) = P(getting a six) = 6 Probability of not getting a six in the first two throws Total Outcomes = Failure, Success or 1 5 = __ × __ + 6 6 10 = ___ 36 5 = ___ 18 (iii) Success, Failure 5 __ 1 __ × 6 6 Method 1. 51 1st throw: Probability of Failure = __ = 0.833 > 0.5 6 5 5 52 2nd throw: Probability of Failure = __ × __ = __ = 0.6944 > 0.5 6 6 6 5 5 5 53 3rd throw: Probability of Failure = __ × __ × __ = __ = 0.5787 > 0.5 6 6 6 6 5 5 5 5 54 4th throw: Probability of Failure = __ × __ × __ × __ = __ = 0.4822 < 0.5 6 6 6 6 6 () () () () () () () () () () () () () ∴ Four throws will give a player a better than equal chance of starting the game. 1n 1 Method 2. Solving the inequality __ > __ 6 2 log 2 1 1 __ n __ > > 2 ⇒ n log 6 > log 2 ⇒ n > _____ ⇒ 6 n log 6 6 2 n > 0.3868 ∴ n = 4 () 25 3. (a) 3 k 2 1 0 –3 –2 –1 0 1 –1 2 3 4 5 6 7 8 9 10 –2 –3 l –4 –5 (b) Method 1. Solving simultaneously Method 2. Putting in the point to both equations x−y−5=0 3x + y + 5 = 0 2x + 3y − 6 = 0 ______________ 3x − 3y − 15 = 0 3(−2) + (1) + 5 = 0 2x + 3y − 6 = 0 ______________ ∴ (−2,1) is on 3x + y + 5 = 0 5x x − 3y + 5 = 0 ⇒ −6 + 6 = 0 − 21 = 0 1 21 ⇒ x = ___ = 4__ 5 5 1 4__ − y − 5 = 0 5 4 −y − __ = 0 5 4 ⇒ y = − __ 5 1 4 ∴ The point 4_5 ,− _5 is the ( −2 − 3(1) + 5 = 0 ⇒ −5 + 5 = 0 ∴ (−2,1) is on x − 3y + 5 = 0 (−2,1) is on both lies ∴ It is the point of intersection. ) point of intersection. (c) 3 k 2 1 0 –3 –2 –1 0 1 –1 A (3,0) 2 3 4 B (5,0) 5 6 7 8 9 10 1 4 P 4 5,– 5 ( –2 ) –3 l –4 –5 1 Area of ABP = __|AB| × Height 2 4 1 = __ (2) × __ 5 2 4 = __ units2 5 () 26 4. (a) 1 Area of triangle = __ a × b × sin C 2 1 = __ (3)(3) sin 120° 2 = 4.5(0.8660) = 3.90 units2 (b) 1 Area of sector OCRB = __ r 2q (q in radians) 2 2p 1 = __ (3)2 ___ 2 3 = 3p = 9.4248 sq. units Area of region CRB = Area of sector OCRB − Area of triangle OBC = 9.4248 − 3.90 = 5.52 sq. units 5. 6A. (a) Equation of circle with centre at A: (x + 1)2 + (y − 1)2 = 36 Equation of circle with centre at B: (x − 7)2 + (y − 1)2 = 9 (b) Centre: (2,1), Radius: 8 (c) Equation of the third circle: (x − 2)2 + (y − 1)2 = 64 A Diagram: D1 Dm = D E1 I E = Em C = Em + n Dm + n = B Given: Δ ABC To Prove: If a line l is parallel to BC and cuts [AB] in the ratio m : n, then it also cuts [AC] in the same ratio. Construction: Let l cut [AB] in D in the ratio m : n with natural numbers m, n. Proof: We prove only the commensurable case. Let l cut [AB] in D in the ratio m : n with natural numbers m, n. Thus, there are points (see diagram) D0 = A, D1, D2 , . . . , Dm − 1, Dm = D, Dm + 1 , . . . , Dm + n − 1, Dm + n = B, equally spaced along [AB], i.e. the segments [D0 D1], [D1 D2 ], . . . [Di Di + 1 ], . . . [Dm + n – 1 Dm + n] have equal length. 27 Draw lines D1 E1, D2 E2, . . . parallel to BC with E1, E2, . . . on [AC]. Then all the segments [AE1], [E1 E2], [E2 E3], . . . , [E m + n – 1C] have the same length, ...........................[Theorem 11] and Em = E is the point where l cuts [AC] ....................................................[Axiom of Parallels] Hence, E divides [AC] in the ratio m : n. Q.E.D. 6B. (a) G 6 J 1 5 H 3 E 4 2 E F In the triangles HJE and GFE: |∠1| = |∠2| .............................Given |∠3| = |∠4| .............................Same angle ∴ |∠5| = |∠6| .....................Third angle in triangles ∴ The triangles HJE and GFE are equiangular. ∴ The triangles HJE and GFE are similar. |EH| |JE| ∴ ____ = ____ |GE| |FE| Rearranging gives |EH| : |EJ| = |EG| : |EF| (b) [JH] is parallel to [FR] ......................Given |JE| |HE| ∴ ____ = ____ |ER| |EF| |HE| |EF| Rearranging gives ____ = ____ |EJ| |ER| ∴ |HE| : |EJ| = |EF| : |ER| But |EG| |HE| ____ ____ = ............................Part (a) |EJ| |FE| |FE| |EG| ∴ ____ = ____ |ER| |FE| |FE|2 = |EG| × |ER| 28 7. (a) E 30° 90° 40° 20 m S (b) Circumference (Length) of a circle = 2pr = 3.5 3.5 r = ___ = 0.557 2p Diameter = 2(0.557) = 1.1 m (c) E d E h 30° 90° 90° s d 20 m S h 40° s S 202 = d2 + s2 h tan 30° = __ d h tan 40° = __s √3 ___ h 0.8391 = __s __ h = __ 3 d __ d√3 h = ____ 3 __ d√3 s(0.8391) = ____ 3 s(0.8391) = d(0.5774) s = d(0.6880) 202 = d2 + (0.6880d)2 400 = 1.4734d2 d2 = 271.28 d = 16.47 __ d√3 As h = ____ 3 __ 16.47√3 _______ h= 3 = 9.509 = 9.5 m 29 h = s(0.8391) 8. (a) 24 Time in Hours 22 20 18 16 14 12 10 8 6 4 2 Age in Years 0 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 (b) Estimation of correlation coefficient 0.7 (c) Correlation coefficient 0.7365 Error 0.7 − 0.7365 = 0.0365 Percentage error: 100 Error % Error = ______________ × ____ = 4.96% 1 Accurate Figure 0.0365 100 % Error = ______ × ____ = 4.96% 0.7365 1 (d) The correlation coefficient seems to suggest a strong positive correlation between the ages of the swimmers and the times for their swims. However, one would want to be very careful in making general statements about the ages of the swimmers and their corresponding swim times. Does the general statement above lead us to conclude that the younger you are, the faster your swim time is? (e) (i) Male: Mean 15.9 hours. Standard deviation 2.78 (ii) Female: Mean 17.2 hours. Standard deviation 2.78 (f) The male times on average for the swim seem to be faster. There seems to be little variation in the times when comparing men with men and women with women. There is a greater spread of times among the female swimmers compared to the male swimmers. The correlation between the ages and swim times in the females is stronger (coefficient = 0.82) than the correlation between the ages and swim times in the males (coefficient = 0.66), but this could be due to a number of factors such as having a smaller sample of females. 30 Leaving Certificate Higher Level Maths Solutions Sample Paper 1, no. 2 x3 + 2x2 + 4x + (a + 4) 1. (a) x − 1| x4 + x3 + 2x2 + ax + b – 4+ 3 x – x 2x3 + 2x2 – 2x3 +– 2x2 4x2 + ax – 4x2 +– 4x (a + 4)x + b – (a + 4)x +– (a + 4) b+a+4 Remainder is 7 ∴b+a+4=7 b+a=3 (b) (i) a3 – a2b – ab2 + b3 = a2(a – b) – b2(a – b) = (a – b)(a2 – b2) = (a – b) (a – b) (a + b) = (a – b)2(a + b) (ii) a3 + b3 ≥ a2b + ab2? a3 – a2b – ab2 + b3 ≥ 0? (a – b)2(a + b) ≥ 0? (a – b)2 ≥ 0 as (any number)2 ≥ 0 If a, b ∈ N ⇒ a + b ≥ 0 (a – b)2(a + b) ≥ 0 a3 + b3 ≥ a2b + ab2 2. (a) ar = 750 ar4 = −6 −6 a = ___ r4 31 ar = 750 −6r ____ = 750 r4 −6 ___ = 750 r3 −6 ____ = r3 750 750 −1 ___ =r ∴ a = ____ = −3,750 −1 __ 5 5 (b) (c) 3. (a) Tn = arn – 1 1 n–1 = (–3,750) –__ 5 Sum to ∞ a _____ as |r| < 1 1−r −3,750 S∞ = ______ −1 1 − __ 5 S∞ = −3,125 ( ) log5(x − 2) = 1 − log5(x − 6) log5(x − 2) + log5(x − 6) = 1 log5[(x − 2)(x − 6)] = 1 (x − 2)(x − 6) = 51 x2 − 6x − 2x + 12 − 5 = 0 x2 − 8x + 7 = 0 (x − 7)(x − 1) = 0 x=7 or x=1 Reject as x>6 2 (b) 3 _ − x2 2x __ _______ √x 2x2 3 _ x2 ___ − __ 1 _ x2 1 _ x2 3 _ 2x2 − x1 4. (a) z = cos q + i sin q zn = cos nq + i sin nq 1 ______________ 1 __ = (cos nq + i sin nq )−1 = n z cos nq + i sin nq = cos (−nq ) + i sin (−nq ) = cos nq − i sin nq 1 = cos nq + i sin nq + cos nq − i sin nq zn + __ zn = 2 cos nq 32 (b) 64 cos6 q Expand using binomial or otherwise: 16 = z + __z = z6 + 6z4 + 15z2 + 20 + 15z−2 + 6z−4 + z−6 1 1 1 = z6 + __6 + 6 z4 + __ + 15 z2 + __ + 20 4 z z z2 64 cos6 q = 2 cos 6q + 12 cos 4q + 30 cos 2q + 20 ( ) ( ) ( ) ( ) 32 cos6 q = cos 6q + 6 cos 4q + 15 cos 2q + 10 ∴p=1 q=6 r = 15 s = 10 5. (a) n = 3.24 p = 2.15 V = 35.28 Find T: R = 0.0821 PV = nRT PV ___ =T nR (2.15)(35.28) ____________ =T (3.24)(0.0821) 285.1536067 = T (kelvin) 285.1536067 − 273 = T (celsius) 12.15°C = T (b) PV = nRT nRT V = ____ P nM = m m D = __ V m n = ___ M m Substitute both into D = __: V nM ___ nRT ___ D= P PM D = ____ RT (c) PM D = ____ RT M = 64.1 P = 1.226 T = 65°C (* Must be changed to Kelvin) 33 Tk = 65 + 273 = 338° K (1.226)(64.1) D = ____________ = 2.83196996 g/L (0.0821)(338) 6. (a) 42 = x2 + x2 − 2(x)(x)cos 60° 1 16 = 2x2 − 2x2 __ 2 2 2 16 = 2x − x () 16 = x2 60° 4=x x [ 1 ∴ Area of hexagon = 6 __(4)(4) sin 60° __ 2 √3 ___ =6 8 __2 = 24√3 cm2 [ ( )] (b) ] 4 Radius = perpendicular height of each Δ ∴ 42 = h2 + 22 4 16 = h2 + 4 h 12 = h2 ___ √12 = h 2 __ 2√3 = h __ r = 2√3 cm (c) x Volume of cone = 105.5 cm3 1 2 __ p r h = 105.5 3 105.5 ________ 105.5 h = _____ = __ 1 2 _ 1 __ p r p (2 3 )2 √ 3 3 = 8.395423248 cm ∼ − 8.4 cm (d) 3 cm 1 cm 4 cm ( ) 3+4 A = _____ (1) 2 7 A = __ (1) = 3.5 cm2 2 (3.5)(11) = 38.5 cm2 __ __ Hexagon ⇒ 24√3 × 2 = 48√3 cm2 34 Rectangular sides = 4 × 8.4 = 33.6 cm2 × 6 = 201.6 cm2 __ Total S.A. = 38.5 + 48√3 + 201.6 = 323.24 cm2 (e) V = 155.5 1 2 __ p r h = 155.5 3 155.5 ________ 155.5 __ = 12.37 cm h = _____ =1 1 _p r 2 _p ( 2 3 )2 √ 3 3 ∴ Rectangular sides = 4 × 12.37 = 49.48 cm2 × 6 = 296.88 cm2 __ T.S.A. = 296.88 + 48√3 + 38.5 = 418.52 cm2 418.52 − 323.24 = 95.28 cm2 95.28 ______ = 29.48% increase 323.24 7. (a) u 2t x = ____ = __ t+3 v (t + 3)(2) − (2t)(1) dx _______________ ___ = dt (t + 3)2 2t + 6 − 2t = _________ (t + 3)2 6 = ______2 (t + 3) 3t u y = ____ = __ t+3 v (t + 3)(3) − (3t)(1) dy _______________ ___ = dt (t + 3)2 3t + 9 − 3t = _________ (t + 3)2 9 = ______2 (t + 3) 9 dy _____ __ dy __ (t + 3)2 __ 9 dt _____ ___ = dx = 6 = _____ 6 dx __ dt (t + 3)2 35 (b) u v y2(x − 2) = 3x dy ⇒ y2 + (2xy − 4y)___ = 3 dx dy (2xy − 4y) ___ = 3 − y2 dx 2 dy _________ 3−y ___ = dx (2xy − 4y) y2 (x − 2) dv du u___ + v___ dx dx dy y2(1) + (x − 2)(2y) ___ dx dy ___ y2 + (2xy − 4y) dx 3 − 32 At (3,3) ⇒ M = _____________ (2(3)(3) − 4(3)) −6 = ___ 6 = −1 y − y1 = m(x − x1) y − 3 = −1(x − 3) y − 3 = −x + 3 x+y−6=0 (c) 1 y = __ x loge x y = x−1 loge x dy du dv ___ = v___ + u___ dx dx dx 1 = loge x(−1x−2) + (x−1) __ x loge x __ 1 1 + x · __ = −_____ x 2 x loge x __ 1 + 2 = −_____ 2 x x −loge x + 1 = _________ x2 dy At maximum/minimum, ___ = 0 dx −log x + 1 e ⇒ _________ =0 x2 −loge x + 1 = 0 ( ) 1 = loge x e=x 36 1 When x = e, y = __ e · logee 1 y = __ e·1 1 y = __ e ( ) 1 y has max/min value at e, __ e . du dv __ v__ d2y ________ dx − u dx ___ = dx2 v2 −1 x2( __ x ) − (−loge x + 1)(2x) _____________________ = x4 −x + 2xloge x − 2x = _______________ x4 −e + 2e logee − 2e When x = e ⇒ _______________ e4 −e + 2e − 2e ___________ e4 −e = ___4 e −1 = ___ < 0 ⇒ maximum value e3 1 1 __ ∴ y = __ x loge x has maximum value at e . 4 8. (a) (i) ∫1 (x + √__x )2 dx 4 = ∫1 (x2 + x + 2x√__x ) dx 4 = ∫1 (x2 + x + 2x ) dx 3 _ 2 [ 3 2 [ ] 5 4 _ 2 x x 2x2 = __ + __ + ___ 5 _ 3 2 1 5 _ ][ 5 _ 4 4 2(4) · 2 1 1 2(1) · 2 = __ + __ − _______ − __ + __ − _______ 3 2 3 2 11 1 = 3___ − ___ 15 30 2 5 3 2 3 2 5 7 = 3___ = 3.7 10 2 (ii) x−1 ∫1 ( _____ dx x3 ) 2 = ∫1 __xx3 − __x13 dx 2 = ∫1 __x12 − __x13 dx 2 = 2 ∫1 x−2 − x−3 dx 37 ] 2 [ ] 1 2 −1 2 −1 2 = [−x + ] = [ + ] − [ + ] 2 4 1 1 x x−1 x−2 = ___ − ___ −1 −2 __ __ 2 1 2 ___ __ ___ __ 1 =0−1 = −1 2 (b) 1 _____ ∫0 _______ dx 2 (i) √4 − x x 2 = sin−1 __ 20 0 2 __ = sin−1 − sin−1 __ 2 2 [ ] = sin−1 1 − sin−1 0 p = __ − 0 2 p __ = 2 1 e ∫0 ______ dx 1 + e2x (ii) x Let u = ex du = ex dx x = 0 ⇒ u = e0 = 1 x = 1 ⇒ u = e1 = e e ⇒ 1 ∫1 _____ du 1 + u2 = [tan−1 u]1e = tan−1 e − tan−1 1 p = tan−1 e − __ 4 2 (c) ∫0 sin(x − 2) · cos(x + 2) 1 __ 2 2 ∫0 sin(x − 2 + x + 2) + sin(x − 2 − x − 2) 2 ∫0 sin 2x + sin(−4) 1 = __ 2 2 1 −cos 2x = __ _______ + sin(−4)x 2 2 0 −cos 4 1 ______ 1 −cos 0 __ + 2 sin(−4) − __ ______ + 0 · sin(−4) = 2 2 2 2 1 1 1 = __ [1.840426801] − __ − __ 2 2 2 1 = 0.9202134 + __ 4 = 1.170213401 [ [ ] ] [ [ ] = 1.17 (to two decimal places) 38 ] Leaving Certificate Higher Level Maths Solutions Sample Paper 2, no. 2 1. (a) S BP C 0.16 0.11 0.21 0.52 (b) P(BP ∩ C) = 0.11 (c) P(BP) = 0.27 (d) P(PB ∩ C) 0.11 P(BP|C) = P(BP|C) = _________ = ____ = 0.344 0.32 P(C) 2. (a) Line k l m (b) Slopes 3 – __ 5 y-intercept Equation Intersection point 2 3x + 5y – 10 = 0 k ∩ m = (2,0) 2 4 – __ 7 0 y = 2x k ∩ p = (–2,3) 2 4x + 7y – 14 = 0 k ∩ w = (2,1) ( ) ( ) p ∞ Undefined None x = –2 22 p ∩ m = –2,___ 7 w 2 –3 2x – y – 3 = 0 10 20 l ∩ m = ___,___ 13 13 k: 3x + 5y − 10 = 0 l: y = 2x 3x + 5(2x) − 10 = 0 3x + 10x − 10 = 0 ⇒ 13x = 10 10 ⇒ x = ___: 13 10 20 y = 2 ___ ⇒ y = ___ 13 13 10 20 l ∩ k is ___,___ 13 13 ( ) ( ) ( ) 10 20 The three points that form the triangle are (−2,3), (−2,−4) and ___,___ . 13 13 1 __ Area = base × height 2 10 1 = __(7) 2___ 2 13 36 1 __ ___ = (7) 2 13 126 = ____ units2 13 ( ) ( ) 39 (c) 1 Slope = − __ (opposite slope of w) 2 Equation: y − y1 = m(x − x1) 1 y − (−3) = − __(x − (2)) 2 1 y + 3 = − __(x − 2) 2 2y + 6 = − x + 2 Point (2,−3) x + 2y + 4 = 0 3. (a) Equation of altitude from D to AB (slope of AB = −2): 1 Point (3,4) Slope = __ (opposite slope 2 to AB) A 6 5 4 3 2 1 0 y D –7 –6 –5 –4 –3 –2 –1 0 1 2 3 4 5 6 7 –1 –2 –3 –4 –5 B –6 –7 –8 Equation: y − y1 = m(x − x1) 1 y − 4 = __(x − 3) 2 2y − 8 = x − 3 x − 2y + 5 = 0 Equation of altitude from A to BD (slope of BD = 3): Point (–4,3) 1 Slope = – __ (opposite slope to BD) 3 Equation: y – y1 = m(x – x1) 1 y – 3 = –__(x + 4) 3 3y – 9 = –x – 4) x + 3y – 5 = 0 Solving simultaneously: x + 3y − 5 = 0 x − 2y + 5 = 0 5y − 10 = 0 ⇒y=2 ⇒ x = −1 Orthocentre (−1,2) 40 x (b) Distance from (0,0) to A( − 4,3): _________________ Distance from (0,0) to B(0,− 5): Distance from (0,0) to D(3,4) _________________ _________________ (x2 − x1 + (y2 − y1 √________________ 2 2 √(x 2 − x1) + (y2 − y1) _______________ = √16 + 9 = √0 + 25 = √9 + 16 = √25 = √25 = √25 =5 =5 =5 (x2 − x1 + (y2 − y1 √________________ )2 )2 − 0)2 + (3 − 0)2 √(−4______ ___ )2 )2 − 0)2 + (−5 −0)2 √(0______ − 0)2 + (4 − 0)2 √(3______ ___ ___ ∴ (0,0) is the circumcentre of the triangle ABD 4. (a) Answer: Skewed to the right. Reason: The mean is greater than the median. (b) (c) Answer: Between €310 and €820. Statistical description Mean salary Median salary Lowest salary Lower quartile Interquartile range Standard deviation Range (d) Statistical description Mean salary Median salary Lowest salary Lower quartile Interquartile range Standard deviation Range 5. (a) Value in € New value after €30 increase €630 €480 €310 €340 €510 €370 €1,000 €600 €450 €280 €310 €510 €370 €1,000 Value in € €600 €450 €280 €310 €510 €370 €1,000 New value after 10% increase €660 €495 €308 €341 €561 €407 €1,100 x−µ z = _____ s 150 − 130 20 z = _________ = ___ 8 8 z = 2.5 P(x > 150) = P(z > 2.5) = 1 − P(z < 2.5) = 1 − 0.9938 –3.5 –3 –2.5 –2 –1.5 –1 –0.5 0 = 0.0062 0.6% of 500 bars = 3.1 Answer: 3 bars 41 0.5 1 1.5 2 2.5 3 3.5 (b) x−µ z = _____ s x−µ z = _____ s 125 − 130 5 z = _________ = − __ 8 8 z = − 0.625 140 − 130 10 z = _________ = ___ 8 8 z = 1.25 P(z) = P( − 0.625 < z < 1.25) = P(z < 1.25) − P(z < − 0.625) = P(z < 1.25) − [1 − P(z < 0.625)] = 0.8944 − [1 − 0.7324] = 0.8944 − 0.2676 –3.5 –3 –2.5 –2 –1.5 –1 –0.5 0 = 0.6268 62.68% of 500 bars = 313.4 Answer: 313 bars 6A. A standard construction of incentre of equilateral triangle. 30° 6B. (a) |∠ HGK| = |∠ KJI| ……Same arc |∠ GKH| = |∠ JKI|…….Vertically opposite Therefore, the triangles are equiangular. Therefore, the triangles are similar. (b) 7. (a) As the triangles HGK and KJI are similar, |GK| ____ |HK| ____ = |KJ| |KI| Therefore, |GK|.|KI| = |HK|.|KJ| 6 7 8 9 10 11 1 0 6 3 2 5 1 0 6 3 1 0 6 3 1 0 6 7 6 7 Key: 6|1 = 6.1 42 0.5 1 1.5 2 2.5 3 3.5 (b) The distribution is skewed slightly to the right. Median 8.15 (c) Mean: 8.02 (d) Range [6.56 km, 9.48 km] (e) None of the following factors were taken into consideration: Standard deviation: 1.46 1. Engine size 2. Makes and model 3. Type of driving (city or motorway) 4. Fuel type (diesel or petrol) 8. (a) Volume of tank = pr2h = 3.14(30)2(200) = 565,200 cm3 = 565 litres (b) O 10 A 30 B C 10 1 cos |∠COB| = ___ = __ 30 3 −1 |∠COB| = cos 0.3 |∠COB| = 70.5° |∠AOB| = 141° Area of oil face = Area of sector − Area of ΔAOB 141p 1 1 = __ (30)(30) _____ − __ (30)(30) sin 141° 2 180 2 = 1,107.4 − 283.2 = 824.2 cm2 Volume of oil = 824.2 × 200 = 164,840 cm3 = 165 litres 43 (c) S P 20 R 30 O 20 2 cos |∠POR| = ___ = __ 30 3 −1 |∠POR| = cos 0.66666 = 48.2° |∠SOR| = 96.4° Area of empty part = Area of sector − Area of ΔSOR 96.4p 1 1 = __(30)(30) _____ − __ (30)(30) sin 96.4° 2 180 2 = 757.12 − 447.2 = 309.92 cm2 Volume of empty part = 309.92 × 200 = 61,984 cm3 = 62 litres Volume of oil = Volume of tank − Volume of empty part = 565 − 62 = 503 Volume of extra oil = 503 − 165 = 338 litres (d) O 30 20 L F W From part (b) Area below |LW| = 309.92 cm2 O 25 30 +++++++++++++++++++++++++++++++++++++++++++ J H G Area below |JH| 44 25 cos |∠GOH| = ___ = 0.833 ⇒ |∠GOH| = cos−10.833 30 |∠GOH| = 33.6° |∠JOH| = 67.2° Area below |JH| = Area of sector − Area of ΔJOH 67.2p 1 1 = __(30)(30) _____ − __ (30)(30) sin 67.2° 2 180 2 = 525.8 − 414.8 Area below |JH| = 111 cm2 Area of strip = 309.92 − 111 = 198 cm2 45 Leaving Certificate Higher Level Maths Solutions Sample Paper 1, no. 3 1. (a) f (m + 1) − f (m) = 34m + 4 + 24m + 6 −34m −24m + 2 = 34m(34 − 1) + 24m + 2(24 − 1) = 80 · 34m + 15 · 24m + 2 = 80 · 34m − 1 · 3 + 15 · 24m + 2 = 240 · 34m − 1 + 15 · 24m + 2 = 15[16 · 34m − 1 + 24m + 2] ∴ f (m + 1) − f (m) is divisible by 15 (b) f (x) = 34x + 24x + 2 Test for n = 1; 34(1) + 24(1) + 2 = 145, which is divisible by 5. Assume f (k) = 34k + 24k + 2 is divisible by 5. i.e. f (k) = 5λ Test if f (k + 1) is divisible by 5. From (a) f (k + 1) − f (k) is divisible by 15. f (k + 1) − f (k) = 15m f (k + 1) = f (k) + 15m f (k + 1) = 5λ + 15m = 5(λ + 3m) ∴ f (k + 1) is divisible by 5. Using induction, f (x) is divisible by 5. (c) We are being asked if f (x) is divisible by 15. If f (1) is not divisible by 15, then f (2) etc. is not divisible by 15. f (1) = 145 which is not divisible by 15. ∴ f (x) is not divisible by 15 for positive integers. 2. (a) w = −1 Im 3i 2i i Re w –2 –1 1 2 –i –2i –3i 46 (b) arg(w) = p |w| = 1 w = r (cos(q + 2np) + i sin(q + 2np)) = 1 (cos(p + 2np) + i sin(p + 2np)) = cos(p + 2np) + i sin(p + 2np) (c) z3 − w = 0 z3 + 1 = 0 z3 = − 1 z3 = cos(p + 2np) + i sin(p + 2np) 1 _ z = [cos(p + 2np) + i sin(p + 2np)]3 p + 2np p + 2np = cos _______ + i sin _______ 3 3 __ p p 1 i√3 n = 0 ⇒ z = cos __ + i sin__ = __ + ___ 3 3 2 2 n = 1 ⇒ z = cos p + i sin p = − 1 __ 3 i √ 5p 5p 1 n = 2 ⇒ z = cos___ + i sin___ = __ − ___ 3 3 2 2 −1, w , −w 2 __ 1 i√3 let w = __ + ___ 2 2__ __ 3 3 i i √ √ 1 1 __ ___ __ ___ w2 = + + 2 2 2 __ 2 1 i23 2i√3 = __ + ___ + ____ 4 4 __4 1 3 i√3 = __ − __ + ___ 4 4 __2 1 i√3 w 2 = − __ + ___ 2 __2 i√ 3 1 −w 2 = __ − ___ 2 2 ∴ Roots are −1, w , −w 2 ( ( (d) ) )( ( ) ) w2 − w + 1 = 0 __ −w 2 + w − 1 = 0? __ i√3 __ 1 i√3 1 − ___ __ + + ___ − 1 = 0? 2 2 2 2 1 − 1 = 0? 0=0ü 47 3. (a) y 5 x 7.5 (b) |2x − 5| ≥ 3 (2x − 5)2 ≥ 9 4x2 − 20x + 25 ≥ 9 4x2 − 20x + 16 ≥ 0 x2 − 5x + 4 ≥ 0 (x − 4)(x − 1) = 0 x=4 or x=1 y x x 4. (a) 1 4 1 x 4 8x2 + 4x3 + 2x4 + … x a = 8x2 r = __ 2 Tn = arn − 1 x n−1 = 8x2 __ 2 8xn + 1 8x2 xn −1 _____ = = _______ 2n −1 2n − 1 n + 1 8x = ______ 2n · 2−1 16xn + 1 = ______ 2n = 24 − n xn + 1 ( ) (b) The series converges when |r| < 1. x __ <1 2 x −1 < __ < 1 2 − 2 < x < 2 ⇒ |x| < 2 | | The series converges when |x| < 2. 48 (c) 8x2 a S∞ = _____ = ______x 1−r 1− 2 = = ( ) 3 2 8 _2 _____ 3 1 − _4 72 __ 4 ___ 1 _ 4 = 72 5. (a) A cross-section is created when a 2D plane intersects a 3D shape. The cross-sectional area is the area of the shape left on the plane, e.g. circle. (b) (c) (150)(490) sin α ≤ _________ 1,32,000 α ≤ 33.8° s(490) ________ ≤1 1,32,000 s ≤ 269.3877551 MPa 6. (a) (i) A = 55,000(1 + 0.1275(4)) = 83,050 83,050 Monthly instalment = ______ 4 × 12 = €1,730.21 (ii) 55,000 = [ ( ) ] 0.2 −12 × 4 x 1 − 1 + ___ 12 ______________ x = €1,673.67 0.2 ___ 12 Option 2 is the better option because monthly repayments are lower. (iii) 1,673.67 × 48 = 80,336.16 80,336.16 = 55,000(1 + 4i) 1.460657455 = 1 + 4i 0.11516436 = i ∴ Rate = 11.52% 49 (b) 25,000 (1 − (1 + 0.1375)−n) 80,000 = _______________________ 0.1375 11 ___ = 1 − (1 + 0.1375)−n 25 14 ___ = (1 + 0.1375)−n 25 14 log ___ = −n log(1.1375) 25 ( ) n = 4.50054779 The money will last four full years. (c) Linear (i) (ii) A ( P 0 (iii) Must have P>O Slope > O ) n A = P + (Pi)n ∴ Slope = Pi A = (Pi)n + P Therefore, for every increase of 1 in n, A increases by Pi. 7. (a) 1 f (x) = __ x 1 1 ____ _ f (x + h) − f (x) _______ x+h − x ____________ = h h −h ______ x(x + h) _______ −1 ______ = = h x(x + h) f (x + h) − f (x) −1 lim ____________ = _______ h x(x + 0) h→0 −1 = ___ x2 (b) Let f (x) = u(x) + v(x) f (x + h) = u(x + h) + v(x + h) f (x + h) − f (x) = u(x + h) + v(x + h) − u(x) − v(x) = u(x + h) − u(x) + v(x + h) − v(x) 50 u(x + h) − u(x) ____________ v(x + h) − v(x) f (x + h) − f (x) ____________ ____________ = + h h h f____________ (x + h) − f (x) u(x + h) − u(x) v(x + h) − v(x) lim = lim____________ + lim ____________ h h h h→0 h→0 h→0 dv du = ___ + ___ dx dx (c) f (x) = x3 − 6x2 + 18x + 5 (i) f ′(x) = 3x2 −12x +18 = 3(x2 − 4x + 6) = 3(x2 − 4x + 4 + 2) = 3((x − 2)2 + 2) = + (+ + + ) = + ∴ Increasing for all x. (ii) f ′(x) = 3x2 −12x + 18 f ″(x) = 6x − 12 6x − 12 = 0 6x = 12 x = 12 x = 2; f (x) = 25 (2, 25) (iii) f (x) = x3 − 6x2 + 18x + 5 We know that when x = 2, f (x) = 25. Test x = 0; then f (x) = 5. Test x = 5; then f (x) = 70. Test x = −1; then f (x) = −20. ∴ There is a root between x = 0 and x = −1. −1 Let xn = ___. 2 f (xn) xn + 1 = xn − _____ f ′(xn) −1 −5.625 x2 = ___ − ______ 2 24.75 x2 = −0.2727 8. (a) (i) ∫ 3 sin x dx −3cos x + c 51 (ii) 2x + __ 3 dx ∫______ √x ∫(2x + 3x ) dx 1 _ −1 __ 2 2 3 1 _ _ 2 __ · 2 x2 + 2 . 3x2 + c 3 1 _ 4 _2 __ x + 6x2 + c 3 3 (b) (i) y2 = 9 − x2 = p∫y2 dx = p∫9 − x2 dx ( x3 = p 9x − __ 3 )| [( 3 −3 33 = p 9(3) − __ )] [ ( 3 = 18p − [−18p] 3 (−3) − p 9(−3) − _____ 3 = 36p 1 (ii) e ∫2 _______ dx x (e − 1)2 x Let u = ex − 1. du ___ = ex dx du = ex dx 1 = ∫__2 du u = ∫u−2 du = − u−1 1 2 = − _____ x e −11 | [ −1 −1 − _____ = _____ 2 1 e −1 e −1 ] = 0.425459064 1 _ (c) (i) 1 ∫0 ______ dx 1 + 9x2 3 1 _ 1 ∫0 ________ dx 2 1 + (3x)2 3 3x _1 1 3 . __ tan−1 ___ 3 1 1 0 −1 3 tan 1 − 3 tan−1 0 3p ___ −0 4 3p ___ 4 | 52 )] b (ii) ∫0 1 + x 1 1 _____ dx = __ 2 a 1 dx ∫0 _____ 1+x 1 ∫ _____ dx 1+x Let u = 1 + x. du = dx ∫ __1u du = ln u = ln(1 + x) 1 ln(1 + x ) |0b = __ln(1 + x ) |0a 2 2[ln(1 + b) − ln 1] = ln(1 + a) − ln 1 2 ln(1 + b) − 2 ln 1 = ln(1 + a) − ln 1 ln(1 + b)2 − ln 1 = ln(1 + a) ln(1 + b)2 = ln(1 + a) (1 + b)2 = 1 + a _____ b = ± √1 + a − 1 53 Leaving Certificate Higher Level Maths Solutions Sample Paper 2, no. 3 1. (a) 2. (a) Function Range Period What is the Function? A [3,−3] 2p 3 cos x B [1,−1] 2p sin x C [3,−3] 2p 3 sin x D [ 12, − 12 ] p 1 __ sin 2x __ __ 2 The reaction times seem to be symmetric about 1.5 seconds. About 68% of all reaction times are between 1.4 and 1.8 seconds. About 95% of all reaction times are between 1.2 and 2 seconds. About 99.7% of all reaction times are between 1 and 2.2 seconds. (b) Percentage: 8.2% (c) Percentage: 24.1% (d) Interquartile range: Quartiles are 1.38 and 1.62; IQR is 0.24 seconds. (e) 1.58 seconds or more 3. (a) 4 3 B = (10.5,2.5) 2 1 0 R –5 –4 –3 –2 –1 0 1 2 –1 P A = (–3,–2) 3 4 5 6 7 8 –2 –3 –4 (b) P(1.5, −0.5 ) (c) Using the distance formula √(x2 − x1)2 + (y2 − y1)2 R(6,1) _________________ The distance |AP| = |PR| = |RB| = 4.47 54 9 10 11 12 13 4. (a) sin(A + B) = sin A cos B + cos A sin B __ ( 5 )( 2√3 ) ( 5 )( 2√3 ) 2 3 2√__ 4 2__ = __ ____ + __ ____ = 0.9518 (b) tan A + tan B tan(A + B) = ____________ 1 − tan A tan B 3 ___ 2 _ + __ 4 2 2 √ = ____________ 3 2__ 1− _ + ___ ( 4 ) ( 2√2 ) = 3.10 (to two decimal places) 5. (a) The line can be written as mx − y + c = 0 p (−4, −4) is on y = mx + c k ⇒ −4 = m(−4) + c ⇒ 4m − 4 = c __ m(−4) − (−4) + c _________ = ______________ = 2√2 √m2 + (−1)2 __ _________ m(−4) − (−4) + c = 2√2 ( √m2 + (−1)2 ) __ −4m + 4 + c = 2√2 (–4,0) 2√2 (–4, –4) _________ ( √m2 + (−1)2 ) But as c = 4m − 4: __ _________ ( √m2 + (−1)2 ) __ _________ 0 = 2√2 ( √m2 + (−1)2 ) −4m + 4 + 4m − 4 = 2√2 0 = 4(2)(m2 + 1) ⇒ 8m2 + 8 = 0 ⇒ m = ±1 As c = 4m − 4: when m = 1 when m = −1 c=0 c = −8 y=x y = −x −8 Equation of k: y = x Equation of p: x + y − 8 = 0 (b) Point: (−4, 0), Slope: −1 Point: (−4, 0), Slope: −1: y − y1 = m(x − x1) y − y1 = m(x − x1) y − 0 = −1(x + 4) y − 0 = 1(x + 4) y = −x − 4 y=x−4 x+y+4=0 x−y+4=0 55 2√2 6A. Theorem 2 (Isosceles Triangles) In an isosceles triangle the angles opposite the equal sides are equal. Converse: If in a triangle two angles are equal then the triangle is isosceles. Theorem 7 In ΔABC, suppose that |AC| > |AB|. Then |∠ABC| > |∠ACB|. In other words, the angle opposite the greater of the two sides is greater than the angle opposite the lesser side. Converse If |∠ABC| > |∠ACB| then |AC| > |AB|. In other words, the side opposite the greater of two angles is greater than the side opposite the lesser angle. Theorem 13 If two triangles ABC and A′B′C′ are similar, then their sides are proportional, in order: |BC| _____ |CA| |AB| _____ _____ = = |A′B′| |B′C ′| |C ′A′| Converse |BC| |CA| |AB| If _____ = _____ = _____, then the two triangles ABC and A′B′C ′ are similar. |A′B′| |B′C′| |C ′A′| 6B. (a) In the triangle QMR |SW| is parallel to |QR| ∴ |QS| : |SM| = |RW| : |WM| ...........Theorem But |QS| = |SM| ................................Given ∴ |RW| = |WM| ∴ W is the mid-point of RM (b) In the triangle PQM |PQ| is parallel to |SV| ∴ |QS| : |SM| = |PV| : |VM| ......... Theorem But |QS| : |SM| = |RW| : |WM|........Part(a) ∴ |PV| : |VM| |RW| : |WM| ∴ in the triangle PRM |WV| is parallel to |RP| .................Theorem (c) |VW| is parallel to |PR|.............Part(b) ∴ |∠RPS| = |∠SWV| and |∠PRV| = |∠SVW| ∴ The triangle VSW and the triangle SPR are equiangular. ∴ The triangle VSW and the triangle SPR are similar. ∴ |PS| : |SW| = |RS| : |SV| Rearranging: |PS| : |RS| = |SW| : |SV| 56 But |RS| = |PQ| ∴ |PS| : |PQ| = |SW| : |SV| But |PS| : |PQ| = 2 : 1 ∴ |SW| : |SV| = 2 : 1 ∴ |SW| = 2|SV| (d) 7. (a) (b) Value of ratio: 2:1 0 1 2 3 4 5 6 7 9 8 8 7 7 7 5 5 1 8 2 2 1 0 9 10 Key: 3|5 = 35 100 5 0 5 6 5 3 80 7 60 Class A 40 Class B 20 5 5 0 5 0 6 3 4 0 Each block represents 1 student Class A: Bimodal; median = 43.3 Class B: Negatively skewed; median = 65 (c) Class B Reason: Higher median value; all above 80% except for two outliers, 0 and 6. (d) (i) 2 Probability of passing is __ 3 1 ∴ Probability of not passing is __ 3 1 30 ∴ Probability of 30 students not passing = __ 3 2 Probability of passing is __ 3 1 ∴ Probability of not passing is __ 3 30 2 15 __ 1 ∴ Probability of 15 students passing = ___ __ 15 3 3 = 0.0247 () (ii) ( )( ) ( ) 57 15 8. (a) D C O 9 cm A 12 cm 18 cm B A |AC|2 = 122 + 92 |AO|2 = 182 + 7.52 ________ __________ |AC| = √144 + 81 |AO| = √324 + 56.25 ____ ______ = √380.25 = 19.5 cm = √225 = 15 cm (b) 7.5 cm Using the Cos Rule: 122 = 19.52 + 19.52 − 2(19.5)(19.5) cos|∠AOB| O 144 = 380.25 + 380.25 − 760.5 cos|∠AOB| 19.5 cm = 760.5 − 760.5 cos|∠AOB| 19.5 cm cos |∠AOB| = 0.8107 A |∠AOB| = cos−1 (0.8107) B 12 cm = 35.84° (c) Using the Cos Rule: 152 = 19.52 + 19.52 − 2(19.5)(19.5) cos|∠AOC| O 225 = 380.25 + 380.25 − 760.5 cos|∠AOC| = 760.5 − 760.5 cos|∠AOC| 19.5 cm 19.5 cm cos |∠AOC| = 0.7041 |∠AOC| = cos−1 (0.7041) A = 45.24° (d) C 15 cm 4.5 tan |∠O| = ___ 18 tan |∠O| = 0.25 O |∠O| = 14.04° 18 cm ∴ |∠ROS| = 2(14.04°) = 28.08° R 58 4.5 cm Midpoint of |RS|
© Copyright 2024