On the Estimation of the Distribution of Sample Means Based on Non-Stationary Spatial Data Magnus Ekstrom Yuri Belyaev Arbetsrapport 89 2001 Working Paper 89 2001 SW EDISH UNIVERSITY OF ISSN 1401- 1204 AGRICULTURAL SCIENCES (SLU) ISRN SLU- SRG- AR- - 89 -- SE Department of Forest Resource Management and Geomatics S- 901 83 UMEA Phone: 090- 786 58 25 Fax: 090- 14 19 15, 77 81 16 On the Estimation of the Distribution of Sample Means Based on Non-Stationary Spatial Data MAGNUS EKSTR O M and YURI BELYAEV Swedish University of Agricultural Sciences ABSTRACT. Two different methods of estimating the distribution of sample means based on non-stationary spatially indexed data a finite subset of the integer lattice 71}, are presented. {Xi : i E I}, where I is The information in the different cells in the lattice are allowed to come from different distributions, but with the same expected value or with expected values that can be decomposed additively into directional components. Furthermore, neighboring lattice cells are assumed to be dependent, and the dependence structure is allowed to differ over the lattice. It will be shown under such rather general conditions that the distribution of the sample mean can be estimated by resampling, as well as by a normal approximation for which a non-parametric estimator of variance is provided. The developed methods can be applied in assessing accuracy of statistical inference for spatial data. Key words: resampling, m-dependent random variables, estimating distributions, spatial data on integer lattices. 1. Introduction It is well known that Efron's (1979) bootstrap, based on independent and identically distributed ( i.i.d. ) observations, provides good estimators in nonparametric statistical analysis. However, Efron's bootstrap fails if the observations are not independent (cf. Singh, 1981, Remark 2.1). For making the bootstrap suitable for dependent observa tions, various block resampling methods have been proposed. Instead of drawing one sample observation at a time, as in Efron's bootstrap, a block of sample observations is drawn where the size of the block should increase at some rate as the sample size gets larger. In the present paper, some block resampling methods for spatially dependent data are proposed. The specific use of blocks for such data was first studied by Hall (1985). Other contributions have been made by Hall (1988), Garcia-Soidan & Hall (1997), and Lahiri et al. (1999), among others. See also Chapter 5 in Politis et al. (1999), and the references therein. Block resampling methods, like those suggested in the articles mentioned above, have been proposed to handle stationary spatial data. In this paper methods of es timating the distribution of sample means based on non-stationary spatial data are proposed. Assume that we have some spatially indexed data, i.e. {Xi : i E I}, where I is a finite subset of the integer lattice 71}. Remote sensing data from satellites are, for 1 example, of this form. For simplicity, the case when I is rectangular will be consid ered, but extensions to non-rectangular subsets of 7!}, that possess some regularity, are possible. The kind of data we consider is of the following type: The values registered at different lattice cells are allowed to come from different distributions, and the de pendence structure is allowed to differ over the lattice. We assume that all observed values are from distributions with the same expected value, or with expected values that can be decomposed additively into directional components. Furthermore, it will be assumed that observations separated by a certain distance are independent. The distribution of the sample mean under such conditions does not necessarily converge to a limit distribution. However, it will be shown that the sequence of distributions of sample means weakly approaches a sequence of normal distributions, for which Ekstrom (2001) provided consistent non-parametric variance estimators. The concept of weakly approaching sequences was introduced by Belyaev (1995), and further developed by Belyaev & Sjostedt-de Luna (2000). It is a natural general ization of weak convergence, without the need of a limit distribution. A block resampling scheme is also suggested in the present paper, and it is shown that the proposed sequence of resampling estimators weakly approaches the sequence of distributions of sample means, in probability. The type of estimators considered in this paper has been studied earlier by Belyaev (1996), who considered triangular arrays of row-wise finitely dependent r.v.s, and proposed blockwise resampling schemes for estimating distributions of sums of r.v.s. Lemma 1-2 and Theorem 1-3 in the next section extend and modify results of Belyaev (1996) to spatial lattice data. This paper is organized as follows: In the next section the estimators are introduced, and the obtained theoretical properties are presented. In Section 3, a simulation study is carried out in order to compare the different estimators. In Section 4 an approach, developed by the second author, for estimation of accuracy of discretely colored maps is considered. Proofs of lemmata are given in the Appendix. We use the following notation: All sets are shown by calligraphic letters A, and IAI is the number of elements in A; r.v.s are denoted by capital letters; point in index position is used for sums, e.g. X .. = L:i L:j Xij; bold letters are used for vectors and lists; £(Z ) is the distribution (probability measure) of a r.v. Z; Fz(-) and Fz(- I U) are the distribution function of Z and the regular conditional distribution function of Z given the r.v. U, respectively; N(fJ,, a2) is the normal distribution with mean /-l and variance a2; a 1\ b = min{a,b}; a V b = max{a,b}; an;::::: bn is used for sequences {an}n�l,{bn}n�l, for which there exist two constants 0 < c1 < c2 < oo such that c1 :S an/bn :S c2, n = 1, 2, .... We use � for convergence in probability and � for weak convergence. Two sequences of r.v.s {U�}n�l and {U�}n�l have weakly approach ing distribution laws { £(U�)}n�l, { £(U�)}n�l, if for any bounded continuous function j(-), E[j(U�)]- E[f(U�)]---+ 0 as n---+ oo. Then we write £(U�) A £(U�), n---+ oo. Let {U�, Zn}n�l be a sequence of pairs of r.v.s and {£(U� I Zn)}n�l be the sequence of v;.a(P) regular conditional distribution laws of u� given Zn. We write £(U� I Zn) £(U�) if E[f(U�) I Zn]-E[f(U�)] � 0, n---+ oo, for any bounded continuous function f(·). 2 2. Results Assume we have spatially indexed data Xn = {Xi: i E In}, where In={i = {i1, i2}: i1 =1, ..., n1, and i2 =1, ..., n2}, n = {n1, n2}. Observations separated by a certain distance will be assumed to be independent, as formalized in the following definition. Definition 1 The r.v.s Xi, i E In, are said to be spatially m-dependent if Xi' and Xi", i', i" are independent whenever li�- i�l > m1 or li;- i�l > m2, m={ml , m2}. E In, Remark. The results in this paper hold for more general data than indicated, i.e., the results are valid for arrays Xn= {Xi,n : i E In}, n1, n2=1, 2, ... , of collections of r.v.s Xi,n, such that for each n, the r.v.s in Xn are m-dependent. To keep the notation manageable, we will write Xi rather than Xi,n · Define m1,2=m1m2 and n1,2= n1n2. Also, let X .. = L:iEin Xi, X.. =X.. jn1,2, and !n=n1,2Var[X..] . We are interested in the expected value p.. = E[X ..] . X .. is a point estimator of p.. , and in order to do inference, e.g., confidence intervals, we need to estimate the distribution law £(�(X .. -p..)). Below, we suggest different methods for estimating this distribution. We introduce the following assumptions: AM: For all n, E [Xi] = 0, i E In. AD ( m): For all AL ( 5): For all n, n, the r.v.s Xi, i E In, are spatially m-dependent. and some positive constants 5::;2 and T0, E[ ! Xi i2H] , i E in <T0 · By AM and AD ( m), we have ( L m1i\(n1-il) E [X i] + L 2E [XiXi1+h1h ] l,2 iEin h1=l -i -i m1i\(n1 1) m2A(n2 2) + L L 2E [XiXil+hl,i2+h2] hl=l h2=1 m1i\(n1-i1) m2A(i2-l) + L L 2E [XiXil+hlh-h2 ] . = hl l h2=1 1 In = --;;;:-- ) 3 + m2A(n2-i2) L h2=l 2E [XiXi1h+h2 ] (1) Theorem 1 If AM, AD ( m) , and AL ( 6 ) are valid, then £(yfn1,2X .. ) A N(O,In), as n1,n2-+ oo, i.e., the sequences of distrib ution laws {£(yfn1,2X..)}n1,n22:1 and {N(O, ln)}n1,n22:1 weakly approach each other as n1,n2 -+ oo. Remark. If in Theorem 1, In-+ 1 > 0, as n1,n2 -+ oo, then yfn1,2X .. converges weakly to N(O, 1). This weak convergence also follows from more general results, e.g., from Theorem 6.1.2 in Lin & Lu (1996) on a-mixing random fields. Let 52j-l,i = {(j -1)ki + (j - 1)mi + 1,...,(j ki + (j -1)mi) 1\ ni} ' i = 1, 2, 52j,i = {j ki + (j - 1)mi + 1,...,(j ki + j mi) 1\ ni} ' i = 1,2, and define the following rectangular blocks of indices, Tj(1) = {i: i1E 82)!-1,1 and i2E 82j2-1,2} , j E J (1) = {(1,1),...,( sl, s2)}, Tj(2) = {i: i1E 82j1-1,1 and i2E 8212,2} , j E J (2) = {(1,1),...,( s1,t2)}, Tj(3) = {i: i1E 52)1,1 and i2E 8212-1,2} , j E J(3) = {(1,1),...,(t1, s2)}, Tj(4) = {i: i1E 82j1,1 and i2E 8212,2} , j E J(4) = {(1,1),...,(t1,t2)}, where kh > mh, and sh, th, h = 1,2, are the largest integers such that, kh + mh + nh-1 and th mh + nh-1 Sh-th _ 1. sh< < < - ---- k h + mh ' kh + mh ---l . X-.. = L4 Xn We can wnte l=l ( ), where Lemma 1 Under the assumptions of Theorem 1, and if kh = o(nh) as (i) and 4 (ii) kh,nh-+ oo, h = 1, 2, ,.,;r(n1)- ""rn-+ 0 ' (2) Lemma 2 (Ekstrom, 2001) Assume, for all n and i, that ai = ai( n) has an a b solute value less than or equal to 1. Then, under the assumptions of Theorem 1, for some constant 77 2::1 and b h-ah 2:: mh, h =1, 2, [ t+l a,x, ] [ E1 , �+1 a,X, ] 2+J (i) (ii) E E ,, :S T;'q(8rn,.(b"-"'")) I+J/2, '+' , , :S h = 1, 2, Tory(6 4m1,2(b1-a1)(b2-a2))1+ 0 /2, Proof of Theorem 1. The desired result is proved by Belyaev & Sjostedt (1996) in the case when the r.v.s Xi, i E In, are independent. That is, if AM, AD(O) , and AL(o) are valid, then (3) Without loss of generality we assume that m1,m2 2:: 1. By (1), the Cauchy-Schwarz, and the Lyapunov inequalities, respectively, one can verify that (4) and therefore the collection of r.v.s {J7i1,2X ..}n1,n2;:::1 is tight. If the difference of ele ments of two random collections tends to zero in probability, and if one of the collec tions is tight, then the other collection is also tight and the collections weakly approach each other in distribution (Lemma 7, Belyaev & Sjostedt-de Luna, 2000) . Thus, by 1 Lemma 1(i), it is enough to show that .C(J7i1,2X � )) A N(O, In), as kh/nh---+ 0 and kh,nh---+ oo, h = 1, 2. Consider the r.v.s, By their construction, they are independent and have expectation zero. Further, by Lemma 2(ii) and the upper bound (2) for sh, for any nh > kh V mh, h = 1, 2, Hence, the r.v.s xy), j E .:J(1), satisfy assumptions AM, AD(O) , and AL(o) (with T5 replaced by T5TJ(576m1,2)1+512). Thus, by (3), with xjl) instead of xi, sh instead of nh, 5 . -1 � 1 -1 . and by notmg that vn02Xn( ) = L...J jE .J(lJ Xi( )/ -JSi82, 1t follows that £( vn02Xn( )) +---t N( 0, In(1)), as s1, s2-+ oo. Observe that inequality ( 4) implies that the collection of normal distributions {N(O,ln)}n is tight as n1,n2 -+ oo. Two random collections, of which one is tight, weakly approach each other in distribution if and only if the difference of their charac teristic functions tend to zero (Theorem 1, Belyaev & Sjostedt-de Luna, 2000) . From Lemma 1(ii), ��) - In -+ 0, and so N(O, ��)) A N(O, In), as kh/nh -+ 0 and kh,nh-+ oo, h = 1, 2. Thus, we have £(Jn1,2X..) A £(Jn1,2X�1l) A N(O, ��1l) A N(O, In), as kh/nh-+ 0 and kh,nh -+ oo, h = 1, 2, and this completes the proof. wa D For making use of Theorem 1, we need to know or estimate the variance In· Define rectangular blocks of indices B; = { (5) and let (6 ) Xj = 2)Xi- X ..) Ii, i EBj where Ii is equal to 1 if i E In, and zero otherwise . In Ekstrom (2001) the following estimator of In is proposed: (7) where k1,2 = k1k2 = !BjI is the block size, and Jn = {j = {j1,j 2} : 2- k2, ...,n2}. We make the following assumption on k1 and k2: J1 = 2-k1, ...,n1, and J2 = = 2, then kh = o(nh) as kh,nh -+ oo, h = 1, 2. If 0 < 5 < 2, then (kl/k2)((k1k2/(n1n2)) log k2)15, (k2/k1)((k1k2/(n1n2)) log k1)15, and (kh/nh) log kh, h = 1, 2, all tend to zero as kh,nh-+ oo, h = 1, 2. Remark. If n1 ::=:::: n2, k1 ::=:::: k2, and k1n11logk1 -+ 0, as min{n1,n2,k1,k2} -+ oo, AK(5) : If 5 then AK(5) holds for any 0 < 5 S 2. Theorem 2 (Ekstrom, 2001) If AM, AD(m) , AL(5) , and AK(5) are valid, then 6 Remark. Alternatively, the estimators of variance suggested by Politis & Romano (1993) and Sherman (1996), which are consistent under the assumptions of Theorem 2, can be used. Further, if 6 =2, then for some c 1 > 0, E[(i'n - In?] ::::; c1(k 1, 2nl,� + k1 2 + k2 2). Thus, ifn1 ::=:: n2 and kh ::=:: y'nh, h = 1,2, then yn1,2E[(i'n-ln?J = 0(1). See Ekstrom (2001). By Theorem 1 and 2, N(O,i'n) can be used as an estimator of the distribution £(yn1,2(X .. - [j..)). Alternatively, a different, possibly non-normal (except in the asymptotics), approximation can be used, as will be seen in the next theorem. Let �k denote the collection of blocks { Bj : j E Jn}, and let b1, 2 = ( n1 + k1- 1)( n2 + k2- 1) denote the total number of blocks in �k· Draw randomly d1, 2 blocks with replacement from �k and let Mj equal the number of times the block Bj appears in the set �Z of re sampled blocks. Hence, {Mj, j E Jn} follow a multinomial distribution and E*[Mj] = d1, 2bl,�, E*[(Mj)2] = d1, 2bl,�(1- bl,� + d1, 2bl,�), and E*[Mj,Mj"] = d1, 2bl,�(-1 + d1 , 2), j ' # j", where E* denotes the expectation over the resampling distribution. Let 1/ 2 1_ b1, 2 _ '"" M':X?. X*n = � 3 3 n1, 2 k1, 2d1, 2 j E.:Jn ( ) The distribution of X� depends both on the original randomness of Xn and on ran domness generated by resampligg from the collection of blocks �k· We will consider the conditional distribution of X� given the data Xn. From ( 6) we have that (8) j E.:Jn and thus E*[X�IXn] = 0. Moreover, from (8) we see that j E.:Jn and so b1, 2 n1, 2k1, 2d12 , ( d1,2 (1b1 , 2 ) ) _1_ + d1, 2 - d1, 2 (-1 + d 1 2) '"" (X?)2 J ' � b12, 2 b 1 , 2 b1 , 2 jE.:Jn Thus, the conditional variance of A . = In yn1,2X� given Xn approaches In as n1, n2 -7 oo. 7 Theorem 3 Under the assumptions of Theorem 2, and if d1,2----+ oo as a(P)-'--+ £(y'n1,2X ..), £(y'n1,2X- n1* Xn) wf--- as n1,n2 ----+ oo, n1,n2----+ oo, i.e., the sequence of conditional distribution laws {£( yn1,2X � proaches {£(yn1,2X ..) }n1,n22:1, in probability, as n1,n2 ----+ oo. IX,. )}n1,n22:1 weakly ap Remark. From Theorem 3 above, together with Lemma 9 in Belyaev & Sjostedt-de Luna (2000) , it follows that supx IF (xi:X,.)- Fyfn1,2X ..(x)l � 0, as n1,n2 ----+ oo. Let W yfn1,2X� (z) = ez - 1- z-z2 /2. Lemma 3 Under the assumptions of Theorem d R n = � "" \lf b1,2 j� E.:ln ( ( 'tX'? 'L J 3, ) 1/2 b1 '2 n1,2k1,2d1,2 ) Proof of Theorem 3. Without loss of generality, we assume that m1 /\ m2 :2: 1. Note that n1 2(k1 2d1 2/b1 2)112X� is a sum of d1 2 i.i.d. r.v.s Xf*, ...,X�* , where Xf* takes the values Xj, j E Jn, with probability b;;}n2 on each value. By this fact and (8), the _ conditional characteristic function tp�J of X� given the data can be written as ' ' ' ' ' nl nz IXn) tp�(ti:X,.) = E* [eity!n1,2X;*.IXnJ = X,. ( L f--1,2 ( exp itXj jE.:Jn By Theorem 2 and Lemma 3, for any given t ) 1/2 1 '2 n1,2 1,2d1,2 ( � ) ) d1,2 E JR, ( 9) where exp(-t2 1n/ 2) is the characteristic function of the normal distribution N(O, In). Inequality (4) implies that {N(O,In)}n is tight. Hence, by Theorem 2 in Belyaev & IXn �� Sjostedt-de Luna (2000) , £( yn1,2X� ) (a( N(O, In), as n1,n2 ----+ oo. Denote the characteristic function of yn1,2X.. by tpn( ) By Theorem 1 in this paper and by Theorem 1 in Belyaev & Sjostedt-de Luna (2000) , tpn(t) - exp(-t2 1n/2) ----+ 0, · 8 . for any given t E JR. From this result, together with ( 9), we get that rp�(tJXn,)- rpn(t) � 0, for any given t, as n1, n2-+ oo. Hence, Theorem 2 in Belyaev D & Sjostedt-de Luna (2000) implies the desired result. as n1, n2 -+ oo, Similar results can be obtained under the following more general assumption on the first moment: AM': For all n, E[Xi]=f.L, iEin, where 11 may depend on n. Corollary 1 If AM', AD(m) , and AL(o) are valid, then (i) £(yn1,2(X.. - M)) A N(O, In), as n1, n2-+ oo. If, in addition, AK ( 6) is valid, then """ ) ( """ � wa(P *I"" n1, 2x n n1, 2 (x .. - f1 )), as n1, n2-+ '-' ( y;;:n-:-:: .mn ) f---)----'--t '-' ( y;;:n-:-:: {' {' oo. Proof. Note that the r.v .s Xf =Xi- f.L, i E In, satisfy the assumptions of Theorem 1, and that X?.=n l,� L.:iEin Xf =X ..- f.L· This implies that £(yff1'0(X ..- M)) A N(O,In), as n1, n2-+ oo, and thus (i) is proved. Since we see that neither :Yn nor X� depend on M· Hence, Theorem 2 and 3 implies (ii) and D (iii), respectively. Below we consider a case when observed r.v.s do not have a constant mean. AM": For all n, we have Yi = f.Li +Xi, where Xi, i E In, satisfy assumption AM. f.Li decomposes additively into directional components, i.e., f.Li=f1 +ri2 +Ci1, where f1 is the overall mean, ri2, i2 =1, ... , n2, are the row effects, and ci1, i1 =l, ... , n1, are the column effects. All effects, f.L, ri2, i2 =1, ... , n2, and ci1, i1 =1, ... , n1, may depend on n. It should be noted that the row and column effects are defined as deviations from the 2 1 overall mean so that L'.:� = 1 ri2 =0 and L'.:� =1 Ci1 =0. 9 Theorem 4 If AM", AD(m) , and AL ( 5) are valid, then £(yfn1,2(Y.. - M)) A N(O, In), as n1, n2 -+ oo. The result is an immediate consequence of Theorem 1 and the fact that - Proof. D X . . =Y.. -tJ. The ordinary-least-squares estimators of the effects are Thus, we estimate Mi with fli = fl +fi2 +cii, and we can define residuals, ei = Yi - Jli, i E In. Next we want to estimate the variance ln=n1,2 Var[Y.. ]=n1,2 Var[X ..]. It should be noticed that the r.v.s Xi, i E In, are not observable, and that we therefore cannot use the "old" estimator in of the variance In· Further, we cannot replace the Xis with the }is in the formula for in, since the varying mean values of the }is will then ruin the estimate of the variance In· We can, however, replace the Xis with the residuals, and so we obtain the following estimator of variance: Theorem 5 (Ekstrom, 2001) If AM", AD(m) , AL(o) , and AK(o) are valid, then Remark. If 5=2, then for some c2 > 0, E(i�-In?:::; c2(k1,2n l,� +k12 +k22 +kin12 + k�n22). Thus, if n1 :o::: n2 and kh :o::: vn:h, h=1, 2, then yfn1,2E(i�- In?= 0(1). See Ekstrom (2001). 10 By Theorems 4 and 5, N(O, 'Y�) can be used as an estimator of the distribution of -Jnl,2(Y.. - J.L). Alternatively, the following technique can be used. Let Yn = {Yi : i E In}, and define Yn* = ( ) 12 b1,2 / _ 1_ "" M�Y? 3 � J ' n1,2 k 1,2d 1,2 jE.:Tn Theorem 6 Under the assumptions of Theorem 5, and if d 1,2----+oo as n1, n2----+oo, Lemma 4 Under the assumptions of Theorem 6, d Rln = _!.2_ L .T, b1,2 jE.:Jn '±' ( ( ,;ty? " 3 b1,2 n1,2k 1,2d 1,2 ) 1/2) p --+ 0 , as n1, n2 ----+ oo. Proof of Theorem 6. The proof is almost identical to the proof of Theorem 3. Only some changes of notation are needed, and the references to Theorem 1 and 2, and Lemma 3, should be changed to Theorem 4 and 5, and Lemma 4, respectively. D Remark. It is easily seen that the results in this paper hold also for rectangular index sets I expanding in all directions, i.e. for I = { i : i1 =-n1, ... , n1 and i2 =-n2, ... , n2}. Moreover, the assumption on the index set to be of rectangular shape can be relaxed by using "subshapes" , as described in, for example, Sherman (1996). 3. A simulation study In this Monte Carlo study, non-stationary spatially m-dependent data Xi, i E In, are generated, where each Xi is a weighted average of independent and skewly distributed r.v.s such that Xi has a small variance if both i1 and i2 are small, whereas the variance of Xi is large when i1 and i2 are large. To be more specific, let mh = 2lh for some integer lh 2: 0, h = 1, 2, and define weights w (i) = vi/ L_��=-h L.��=-b Vj , where vi = ((1 + li1l)(1 + li2l))-1, i1 = -h, ..., h, i2 =-l2, ... , Z2. Define iz+b L w ( { li1 - J1l, li2 - J2l}) (Zj- E[Zj]) , 11 where the r.v.s Zi are independent and log-normal with parameters e=E(log Zi)=0, and 2 . 1 2:: Jh + lh O'j= Var(logZi)=, for allJ. 2 h= nh + 2 lh + 1 V l For judging the performance of an estimate Fn, of the distribution Fn of y'n1,2(X .. JJ), we calculate the maximum absolute difference supx IFn(x)- Fn(x)l, where Fn will be represented by the empirical distribution of 1 million replicates of y'n1,2(X .. - JJ). Three different estimators of Fn will be considered: NA: Normal approximation with the variance estimated by i'n; R1: Resampling estimator y'nl,2X� with d1,2 = b1,2 (this choice of d1,2 corresponds to the number of resampled blocks used by Belyaev (1996) & Sjostedt (2000) in their resampling schemes for sequences of m-dependent r.v.s); and R2: Resampling estimator y'nl,2X� with d1,2 = In1,2/k1,2l + 1, where Ix l denotes the smallest integer greater than or equal to x. In our study, 250 samples of Xn, are generated for each choice of rectangular shapes of the index and blocks sets, N=n1 x n2, K=k1 x k2, and m = { m1, m2 } . The maximum absolute differences for each of the three estimators of Fn are calculated. In Table 1-7, the mean (Mean) and the standard deviation (StDev) of the maximum absolute differences are presented for each estimator. Block size (K) 5X5 10 X 10 15 X 15 Table 1. N =25 Block size (K) 5X5 10 X 10 15 X 15 Table 2. N =25 Block size (K) 5X5 10 X 10 15 X 15 Table 3. N =50 NA Mean StDev Mean R1 StDev Mean 0.029 0.037 0.046 0.079 0.089 0.108 StDev Mean 0.039 0.044 0.052 0.104 0.106 0.113 0.059 0.031 0.078 0.065 0.040 0.085 0.079 0.048 0.097 x 25 and m = {1, 1}. NA Mean StDev Mean R1 0.085 0.041 0.102 0.080 0.047 0.098 0.084 0.055 0.102 x 25 and m = {2, 2}. NA Mean StDev Mean R1 0.045 0.022 0.067 0.037 0.025 0.061 0.046 0.032 0.070 x 50 and m = {1, 1}. 12 StDev Mean 0.021 0.024 0.029 0.069 0.063 0.071 R2 StDev 0.030 0.038 0.043 R2 StDev 0.037 0.043 0.050 R2 StDev 0.021 0.023 0.031 Jl Block size 5X5 (K) NA Mean StDev Mean R1 StDev Mean 0.025 0.027 0.031 0.097 0.074 0.079 0.078 0.025 0.098 0.049 0.029 0.070 15 X 15 0.053 0.034 0.075 Table 4. N =50 x50 and m = {2, 2}. lOxlO Block size NA (K) Mean StDev Mean 15 X 15 0.017 0.009 0.045 20 X 20 0.016 0.010 0.045 25 X 25 0.018 0.011 0.045 30 X 30 0.017 0.012 0.045 Table 5. N =250 x250 and m = {1, 1}. Block size NA (K) Mean StDev Mean 15 X 15 0.025 0.012 0.050 20 X 20 0.021 0.012 0.046 25 X 25 0.020 0.013 0.047 30 X 30 0.020 0.013 0.048 Table 6. N =250 x250 and m = {2, 2}. Block size NA (K) Mean StDev Mean 15 X 15 0.033 0.013 0.057 20 X 20 0.026 0.013 0.051 25 X 25 0.023 0.014 0.049 30 X 30 0.024 0.015 0.051 Table 7. N =250 x250 and m = {3, 3}. R1 StDev Mean 0.014 0.012 0.013 0.014 0.045 0.045 0.046 0.047 R1 StDev Mean 0.015 0.013 0.015 0.016 0.052 0.048 0.047 0.049 R1 StDev Mean 0.016 0.015 0.015 0.017 0.057 0.052 0.051 0.051 R2 StDev 0.025 0.027 0.032 R2 StDev 0.014 0.014 0.015 0.014 R2 StDev 0.014 0.016 0.014 0.016 R2 StDev 0.014 0.015 0.016 0.016 In Table 1-7 we see that the normal approximation performs �e best, even for rather small values of N. Further, for the resampling estimator �X� there is no real gain in choosing the number d1,2 of resampled blocks as large as b1,2; d1,2 = In1,2/k1,2l + 1 seems quite enough. To state guidelines on how to choose an optimal block size in a given situation is a difficult task under the assumptions given in this paper, and will not be discussed here. It is clear, however, that the block size should increase with n1 and n2. Also, the optimal block size depends on the strength of dependence, as seen in the tables above. The estimators N(O, ry�), £(�Y�) with d1,2 = b1,2, and £(�Y�) with d1,2 = In1,2/k1,2l + 1, gave less satisfactory results in our simulations, and we do not recom mend these estimators unless n1 and n2 are larger than in the simulations in this paper. An alternative to these estimators will be presented in a forthcoming paper. 13 4. An application to assessing characteristics of accuracy of discretely col ored digital maps The methods considered in this paper can be applied to assessing characteristics of accuracy of discretely colored maps created by using remote sensing data ( Belyaev 2000a, b ) . For example, different types of landscapes can be shown in maps by using different colors. Let JC = {1, 2, ... , q} be the number of colors used. A digital discretely colored map is a collection of small colored squares called pixels. We consider the lattice Z2 = { i = { il, i2}: il, i2 = 0, 1, 2, ... }, and the i-pixel is the square with the vertices { i1, i2}, { i1 + 1, i2}, { i1 + 1, i2 + 1}, { i1, i2 + 1}, whose color is coded by a digit Ci E JC. We denote pixels as { i, ci}, i E Z2. The same area can be shown by maps having different number of pixels. We consider a rectangular digital map 9Jtn = { { i, ci} : i E In} where as above In = { i = { i1, i2} : i1 = 1, ... , n1, i2 = 1, ... , n2}. Suppose that all pixels are correctly colored, i.e. 9Jtn is the true map with n1,2 = n1n2 pixels. Usually it is impossible or too expensive to create the true maps. Instead remotely sensed data §, e.g. data registered by satellite sensors, are used to obtain approximations to the true maps. Suppose that some classification based on § is used in selecting colors of pixels. Denote by ci the ( number of the ) color obtained after classifying a part of the data si E § related to the i-pixel. Assume that the cross-classification probabilities Pkz(s) = P(ci = l I Ci = k, si = s) are known. Here, Pkz(s) is the conditional probability to select color ci = l given the true color ci = k and the related remotely sensed data s = si. For sake of simplicity we assume that l E JC and square matrices IP'( s) = (Pkt(s)), s E §, have full rank. Then there exist inverse matrices IP'-1 (s) = (pkt(s)), s E §. The numbers Nk,z of pixels which have the true color k and have been classified as having the color l , are important characteristics of accuracy of the created map 9J1� = { { i, ci} : i E In}· By using the indicator functions we can write Nk,1 as follows: N;z = L I(ci = k)I(ci = l ). (10 ) iE'In Its mathematical expectation is E[N;z] = L I(ci = k)Pkt(si)· (11) iE'In Both values Nk,z and E[Nk,z] are not feasible. However, there exist the unbiased estima tors E[Nk,z] (12) fl;t = L f(ci = k)Pkz(si), iE'In where k I(ci = k) = "'""' � p l (s)I(ci = l). A • lEJC 14 (13) We will consider digital maps with very large numbers of pixels n. For simplicity, we will consider the asymptotic behavior as n1,n2 -+ oo. We can consistently estimate variances and distributions of normed deviations (N;1 - E[N;1 ])/ ytnlj, k,l E JC. Let g1,2 be the number of all boundary pixels, i.e., the pixels whose colors differ from the colors of some of their neighboring pixels. We need the following assumption: In words this assumption means that the number of pixels in 9J1n, constituting the boundaries dividing subsets of pixels having the same true colors, is comparable with the minimal diameter of In. Heuristically, this means that the boundaries dividing subsets of pixels having the same colors in the true map 9J1n can be well approximated by smooth curves. The r.v.s Xi considered in Section 2 will be defined here by the following relation: (14) We will use the same collection IJ3k of blocks Bi defined by (5) and suppose that the results of classification {ci : i E In } are m-dependent, m = {m1,m2} . Then AD(m) holds for Xn. We also introduce the following assumptions: From AC it follows that all i Xi l are uniformly bounded and AL(o) holds for any 5 > 0. If AK' holds then AK(2) also holds. Hence, all results stated in Section 2 are valid for r.v.s Xi, i E In defined by (14). But we can not directly use them in assessing distribution of deviations (15) because the values of indicators I(ci = k) are not observable. Henceforth, in order to be brief, we suppose that m1,m2,k1,k2 are even. We can solve the problem of assessing variance and the distribution function of deviations (15) by using instead of X'j the following r.v.s: Xj = Let 2::(-1)I(ii>ii+kl/2)+I(iz>h+kz/2)j(ci = k)pkz(s). iEBj x; = 2::(-1)I(il>h+h/2)+I(i2>Jz+k2/2l(xi _ x ..)Ii, iEBj 15 and �o fn 1 � �2 (X ) k1,2n1,2 j� E:Tn J = · Theorem 7 Suppose that the random pixels' colors C� { ci, i E In} in the created map 9J1� are m-dependent and assumptions AB, AC and AK' hold. Then = P �o fn- In --t 0 , (16) The proof of (16) is rather long. Here we give a short sketch of it. In the proof we use the equality XJ Xj if Bj is inside of In and it does not contain boundary pixels in 9J1n. Assumption AB implies that the share of such blocks tends to one as n1, n2 -t oo. Let A(1l(j, k, m) {i: j :::; i:::; j + (k- m)/2} and A(2l(j, k, m) {i: j + (k + m)/2 < i :S j + k} and let BJs,t) { i: i1 E A(s)(j1, k1, m1), i2 E A(t)(j2, k2, m2)}, s, t 1, 2. We define the following r.v.s: = = = = xjs,t) = (-1)s+t L (Xi - X ..)h iEBJ(s,t) Further we prove that �a fn = 1 k1,2n1,2 � � � � (X\s,t))2 + Ro 'E v n s,t-1 - ,2 J 3 n' -r -t oo. We then use Theorem 2 in Ekstrom (2001) for each sum , 1 t ) (k�,2n1,2)- L,jE:Tn (X? )2 with k�,2 (kl/2)(k2/2), and we obtain relation (16). The random sampling of d1,2 blocks Bj E s:Bk, j E :ln, can also be applied here. Let 1/2 b 1 2 , 1 _ _ � M': X�. j(a* � n1,2 n1,2k1,2d1,2 3 3 j E.Jn where R� � 0 as n1, n2 = = n ) ( Theorem 8 Under the assumptions of Theorem 7, (17) The proof of (17) can be obtained by using the same method as in Section 2. The detailed proof of Theorem 7 and 8 will be given in a separate paper with several numer ical examples. Presently we do not know how large n1, n2 should be so that it would be possible to apply the suggested asymptotic approach. 16 5. Appendix Two useful inequalities: Inequality A: For any positive numbers z1,... , Zr and A 2: inequality, 1 we have, from the Jensen ( Z1 + ... + Zr )A :::; rA-1(z1A + ... + zrA). Inequality B: For any independent random variables Z1,... ,Zr and A2: 1, with E[Zh] =0 and E[IZhiAJ < oo, h =1, . . . , r, it holds that E[IZ1 + ... + Zr lA] :::; W(A/2-l)vo(E[IZliAJ + ... + E[IZr lA]), < where 1 :::; 77 = TJ ( A) oo is a constant, and 77 :::; 2 if A:::; 2 ( Petrov 1995, p. 82-83). Proof of Lemma l(i) . Note that Xi' and Xi" are independent when i' and i" belong to two different blocks TP) and T�?). Thus, J J Define s2j-l,i,h = {(j-1)ki + (j-1)mi + (h-1)mi + 1,. . , ((j-1)ki + (j-1)mi + h mi) 1\ (j ki + (j-1)mi) 1\ ni} . . Further, define ,(2h)- { ..�1E z . s211-1,1,hand�2. E s212,2} ,J E J (2) and h-- 1,..., l , 'i, where l:::; (k1 + m1- 1)/m1, and • . { uj(2,g)- h .. 0(,2h) E . . } u 0(,2g)+2(f-l) . f:g+2(f-l)�l, f?l By Inequality A with A= 2 and r = 2, Inequality B with A= 2 and Inequality A with A=2 and r :::; M, respectively, 17 r = IU}�j I, and < � ;!;,, t hE/ [ C�, X, ) '] n ,, J ,h J ,g < 2 4:1 2 � L L L L E[Xf] ' j E.:J(2) g=1 h UC2l i T(2) E E J ,g J ,h 4m1,2(k1 + m1 + n1)(m2 + n2)k1m2T02/(2+J) (18) ' n1,2(k1 + m1)(k2 + m2) where the last inequality follows from (2) and the inequality l7j��� :s; k1m2 . Likewise, 2/(2+/i) < 4m1,2(m1 + n1)(k2 + m2 + n2)k2m1T0 3 ) (19) , ?J n1 '2E[(X� n1,2(k1 + mi)(k2 + m2) 2/(2+J) 2 < 4m1,2(m1 + n1)(m2 + n2) 'a 2 4 ( ) (20) n1 '2E[(Xn ) ] n1,2(k1 + m1)(k2 + m2) By the assumptions on kh and nh, h 1, 2, we see that n1,2E[(X(1))2] -----t 0, l 2, 3, 4, D and so �X�) � 0, l 2, 3, 4, as kh/nh -----t 0 and kh,nh -----t oo, h 1, 2. < = = = = Proof of Lemma l(ii). By the Cauchy-Schwarz inequality, and inequalities (4) and (18)-(20), l'l'n- 'l'};lI n,,, E = [ (t )'] X�l - E[(X).'l)'] 4 4 4 2 n1,2 L E[(X�)) ] - 2 L L E[X�)X�)] l=2 l=1 j=l+1 4 4 4 2 1/2 2 ) :s; n1,2 L E[(X� ) ] + 2n1,2 L L (E[(X�)?JE[(X�)) ] ) l=2 l=2 j=l+1 ' ) E x- x� E[X!Pi' +2n,, = t, ( [ t, J f' 4 4 4 12 2 ) � 2n ] n E[X + 1,2 L L (E[X�)j2E[X�)J 2 ) 1 :s; 1,2 L l=2 l=2 j=l+1 18 D Proof of Lemma Jez -1J::; JzJ, 3. By the inequalities Jw(z)l < lzJ2+P, if lz l < 1, 0 < p < 1, and �) ( 2 z l 2 + z P I{lzl2:1}::; 4JzJ2+P. Jw(z)l::; lzJ J{Izl<1} + le -11 + lz l + (21) Thus, by (21) and Inequality A, 2+p 2b1,2 l+p/2 2k1,2b1,2 x?. l+p/2 d 6t 6t 1 1 "" """' "' . . < � + d1,2 � �XJ - b1,2 n1,2k1,2d1,2 n1,2d1,2 jE.:Tn = R� ) + R� l, say. If we choose p such that 0 < p < 6 1\ 1, then by the Lyapunov inequality, E[JXiJ2+P]::; (E[JXiJ2H])(2+P)/(2H)::; TJ2+p)/(2H). This implies that a modified version of Lemma 2(ii) can be used, i.e., we can use Lemma 2(ii) with 6 and To replaced by p and TJ2+p)/(2H), respectively. Hence, if kh 2:: mh, h = 1,2, - 2 -+ l2 2 2 o2 2 < J16tJ +pT ( +p)/( H)'Ilm1,+p/ (b1,2/n1,2)l+P/2d1,p/ - 0 ' (22) E[R(1)] 2 ( ) � � ( ) 'I n 2 o2 2 < J16tJ +pT ( +P)/( H)'Ilm +P/ (k1,2b1,2 jn2 )l+P /2d p 1 --+ 0 ' E[R(2)] 1,l 2 2 1,2 1,-2 2 n 'I (23 ) D Proof of Lemma 4. Define P, = fl- J1 = X .., Ti2 = i\2- ri2 = X.i2/n1 - P,, i2 = 1,...,n2, and ci1 = ci1-Ci1 = Xi1.jn2-P,, i1 =1 , ...,n1. By inequality (21 ) and Inequality A, 19 2+p From (22) and (23) we see that Ri!:) � 0, h and Lemma 1 we have, for i1 1, ...,n1, = = 1,2, as n1,n2 ----+ oo. By Inequality A (24) and thus, by the Lyapunov inequality, Eli\21 2+P :::; (Ts1J)(2+p)/(2+5)(256m1,2/n1)l+P/2 . By Inequality A and Lemma 2(i), with p instead of 6, fi2 instead of Xi, and with (Ts7J)(2+p)/(2Hl(256m1,2/n1)l+P/2 instead of 18, we get (assuming k2 � m2), ) ( kl-1 J2+'"' k2-1 -. . 2+P l+p 16t2b1,2 l+p/2 '"' )l+'"' d k 1, 2 1 < E[R(3l] � � � r�2 J b1,2 n1,2k1,2d1,2 �l-]l �2-]2 J"Err 1 2 2 '11)(2+p)/(2+5)(b1,2k1/(n1,2n1))l+P/2d1,-p2 12 ----+ 0 ' < (2 5t m2m1,2)l+P/ '11( 7:J., 2 n · Jn _ · · - · '/ which implies that Rf:l � 0 as n1,n2 result follows. ----+ oo. Likewise, R�) � 0, and so the desired 0 Acknowledgements This work of both authors is a part of the Swedish research programme Remote Sens ing for the Environment, RESE ( home page http:/ / rese.satellus.se ) , supported by the Swedish Foundation for Strategic Environmental Research, MISTRA. For the second author this work is also supported by The Bank of Sweden Tercentenary Foundation. We thank Heather Reese for improving the English language. References Belyaev, Yu. K. (1995). Bootstrap, resampling and Mallows metric. Lecture Notes 1, Department of Mathematical Statistics, Umea University, Sweden. Belyaev, Yu. K. (1996). Central limit resampling theorems for m-dependent heterogeneous random variables. Research Report 1996-5, Department of Mathematical Statistics, Umea University, Sweden. 20 Belyaev, Yu. K. ( 2000a) . motely sensed data. On the accuracy of discretely colored maps created by classifying re Research Report 2000-10, Department of Forest Resource Management and Geomatics, Swedish University of Agricultural Sciences. Belyaev, Yu. K. ( 2000b ) Unbiased estimation of accuracy of digital discretely colored images. Theory Probab. Math. Statist. 63. Belyaev, Yu. K. & Sjostedt, S. ( 1996) . Resampling theorems for vector valued heterogeneous random variables. Research Report 1996-9, Department of Mathematical Statistics, Umea University, Sweden. & Sjostedt-de Luna, S. ( 2000) . Weakly approaching sequences of random distribu J. Appl. Probab. 37, 807-822. Belyaev, Yu. K. tions. Efron, B. ( 1979) . Bootstrap methods: another look at the jackknife. Ann. Statist. 7, 1-26. ( 2001) . Ekstrom, M. Non-parametric estimation of the variance of sample means based on non stationary spatial data. Manuscript. Garcia-Soidan, P. H. & Hall, P. ( 1997) . On sample reuse methods for spatial data. Biometrics 53, 273-281. Hall, P. ( 1985) . Hall, P. ( 1988) . Resampling a coverage pattern. Stochast. Process. Appl. 20, 231-246. On confidence intervals for spatial parameters estimated from nonreplicated data. Biometrics 44, 271-277. Lahiri, N. L. , Kaiser, M. S. , Cressie, N. , & Hsu, N.-J. distribution functions using subsampling ( with ( 1999) . discussion) . P rediction of spatial cumulative J. Amer. Statist. Assoc. 94, 86-110. Lin, Z. Y. & Lu, C. R. ( 1996) . Limit theory for mixing dependent random variables. Kluwer, Beijing. P etrov, V. V. ( 1995) . Limit theorems of probability theory: sequences of independent random vari ables. Oxford University P ress, Oxford. P olitis, D. N. & Romano, J. P. ( 1993) . Nonparametric resampling for homogeneous strong mixing J. Multivariate Anal. 47, 301-328. random fields. P olitis, D. N. , Romano, J. P. Sherman, M. ( 1996) . & Wolf, M. ( 1999) . Subsampling. Springer Verlag. Variance estimation for statistics computed from spatial lattice data. Statist. Soc. Ser. B 58, 509-523. Singh, K. ( 1981) . Sjostedt, S. Scand. J. Roy. On the asymptotic accuracy of Efron's bootstrap. Ann. Statist. 9, 1187-1195. ( 2000) . Resampling m-dependent random variables with applications to forecasting. ]. Statist. 27, 543-561. Magnus Ekstrom, Department of Forest Resource Management and Geomatics, Swedish University of Agricultural Sciences, S-901 83 Umea, Sweden. 21 Serien Arbetsrapporter utges i forsta hand for institutionens eget behov av viss dokumentation. Rapporterna ar indelade i foljande grupper: Riksskogstaxeringen, Planering och inventering, Bio metri, Fjarranalys, Kompendier och undervisningsmaterial, Examensarbeten samt internationellt. Forfattarna svarar sjalva for rapporternas vetenskapliga innehall. This series of Working Papers reflects the activity of this Department of Forest Resource Manage ment and Geomatics. The sole responsibility for the scientific content of each Working Paper relies on the respective author. Riksskogstaxeringen: 1995 1 (The Swedish National Forest Inventory) Kempe, G. Hjalpmedel fOr bestamning av slutenhet i plant- och ungskog. ISRN SLU- SRG- AR-- 1-- SE 2 Riksskogstaxeringen och Standortskarteringen vid regional rniljoovervakning. - metoder for att forbattra upplOsningen vid inventering i skogliga avrinningsomraden. ISRN SLU- SRG- AR-- 2-- SE. 1997 23 Lundstrom, A., Nilsson, P. & Stahl, G. Certifieringens konsekvenser for mojliga uttag av industri- och energived. - En pilotstudie. ISRN SLU- SRG- AR-- 23-- SE. 24 Fridman, J. & Walheim, M. Dod ved i Sverige. - Statistik fran Riksskogstaxeringen. ISRN SLU- SRG- AR-- 24-- SE. 1998 30 Fridman, J. & Kihlblom, D. & Soderberg, U. Forslag till rniljoindexsystem for natur typen skog. ISRN SLU- SRG- AR-- 30-- SE. 34 Lofgren, P. Skogsmark, sarnt trad- och buskrnark inom fjallomradet. En skattning av arealer enligt internationella agoslagsdefinitioner. ISRN SLU- SRG- AR- - 34-- SE. 37 Odell, G. & Stahl, G. VegetationsfOrandringar i svensk skogsmark mellan 1980- och 90- talet. - En studie grundad pa Standortskarteringen. ISRN SLU- SRG- AR-- 37-- SE. 38 Lind, T. Quantifying the area of edge zones in Swedish forest to assess the impact of nature conservation on timber yields. ISRN SLU- SRG- AR-- 38-- SE. 1999 50 Stahl, G., Walheim, M. & Lofgren, P. Fjallinventering. - En utredning av innehall och design. ISRN SLU- SRG-- AR-- 50-- SE. 52 Riksskogstaxeringen infor 2000- talet. - Utredningar avseende innehall och omfattning i en framtida Riksskogstaxering. RedaktOrer: Jonas Fridman & Goran Stahl. ISRN SLU- SRG- AR-- 52-- SE. 54 Fridman, J. m.fl. Sveriges skogsmarksarealer enligt internationella agoslags definitioner. ISRN SLU- SRG- AR-- 54-- SE. 56 Nilsson, P. & Gustafsson, K. Skogsskotseln vid 90- talets mitt - lage och trender. ISRN SLU- SRG- AR-- 56-- SE. 57 Nilsson, P. & Soderberg, U. Trender i svensk skogsskotsel - en intervjuundersokning. ISRN SLU- SRG- AR-- 57-- SE. 1999 61 Broman, N & Christoffersson, J. Matfel i provtradsvariabler och dess inverkan pa precision och noggrannhet i volymskattningar. ISRN SLU- SRG- AR- - 61-- SE. 65 Hallsby, G m. fl. Metodik for skattning av lokala skogsbransleresurser. ISRN SLU- SRG- AR-- 65-- SE. 75 von Segebaden, G. Komplement till "RIKSTAXEN 75 AR". ISRN SLU- SRG- AR-- 75-- SE. 2001 86 Lind, T. Kolinnehall i skog och mark i Sverige - Baserat pa Riksskogstaxeringens data. ISRN SLU- SRG- AR-- 86-- SE Planering och inventering: 1995 3 (Forest inventory and planning) Holmgren, P. & Thuresson, T. Skoglig planering pa amerikanska vastkusten - intryck fran en studieresa till Oregon, Washington och British Columbia 1- 14 augusti 1995. ISRN SLU- SRG- AR-- 3-- SE. 4 Stahl, G. The Transect Relascope - An Instrument for the Quantification of Coarse Woody Debris. ISRN SLU- SRG- AR-- 4-- SE 1996 15 van Kerkvoorde, M. A sequential approach in mathematical programming to include spatial aspects of biodiversity in long range forest management planning. ISRN SLU- SRG- AR-- 15-- SE. 1997 18 Christoffersson, P. & Jonsson, P. Avdelningsfri inventering - tillvagagangssatt och tidsatgang. ISRN SLU- SRG- AR-- 18-- SE. 19 Stahl, G. , Ringvall, A. & Lamas, T. Guided transect sampling - An outline of the principle. ISRN SLU- SRGL- AR-- 19-- SE. 25 Lamas, T. & Stahl, G. Skattning av tillstand och forandringar genom inventerings simulering - En handledning till programpaketet "NV SIM". ISRN SLU- SRG- AR-- 25-- SE. 26 Lamas, T. & Stahl, G. Om dektering av forandringar av populationer i begransade omraden. ISRN SLU- SRG- AR-- 26-- SE. 1999 59 Petersson, H. Biomassafunktioner fOr tradfraktioner av tall, gran och bjork i Sverige. ISRN SLU- SRG- AR-- 59-- SE. 63 Fridman, J. , Lofstrand, R & Roos, S. Stickprovsvis landskapsovervakning - En forstudie. ISRN SLU- SRG- AR-- 63-- SE. 2000 68 Nystrom, K. Funktioner fOr att skatta hojdtillvaxten i ungskog. ISRN SLU- SRG- AR-- 68-- SE. 70 Walheim, M. & Lofgren, P. Metodutveckling fOr vegetationsovervakning i fjilllen. 73 ISRN SLU- SRG- AR-- 70-- SE. Holm, S. & Lundstrom, A. Atgardsprioriteter. ISRN SLU- SRG- AR-- 73-- SE. 76 Fridman, J. & Stahl, G. Funktioner for naturlig avgang i svensk skog. ISRN SLU- SRG- AR-- 76-- SE. 2001 82 Holmstrom, H. Averaging Absolute GP S Positionings Made Underneath Different Forest Canopies - A Splendid Example of Bad Timing in Research. ISRN SLU- SRG- AR-- 79-- SE. Biometri: (Biometrics) 1997 22 Ali, Abdul Aziz. Describing Tree Size Diversity. ISRN SLU- SEG- AR-- 22-- SE. 1999 64 Berhe, L. Spatial continuity in tree diameter distribution. ISRN SLU- SRG- AR-- 64-- SE 2001 88 Ekstrom, M. Nonparametric Estimation of the Variance of Sample Means Based on Nonstationary Spatial Data. ISRN SLU- SRG- AR-- 88-- SE. 89 Ekstrom, M. & Belyaev, Y On the Estimation of the Distribution of Sample Means Based on Non- Stationary Spatial Data. ISRN SLU- SRG- AR-- 89-- SE. Fjarranalys: 1997 28 29 (Remote Sensing) Hagner, 0. Satellitfjarranalys for skogsforetag. ISRN SLU- SRG- AR-- 28-- SE. Hagner, 0. Textur till flygbilder for skattning av bestandsegenskaper. ISRN SLU- SRG- AR-- 29-- SE. 1998 32 Dahlberg, U., Bergstedt, J. & Pettersson, A. Faltinstruktion fOr och erfarenheter fran vegetationsinventering i Abisko, sommaren 1997. ISRN SLU- SRG- AR- - 32-- SE. 1999 43 Wallerman, J. Brattakerinventeringen. ISRN SLU- SRG- AR-- 28-- SE. 51 Holmgren, J., Wallerman, J. & Olsson, H. Plot - Level Stem Volume Estimation and Tree Species Discrimination with Casi Remote Sensing. ISRN SLU- SRG- AR-- 51-- SE. 53 Reese, H. & Nilsson, M. Using Landsat TM and NFI data to estimate wood volume, tree biomass and stand age in Dalarna. ISRN SLU- SRG- AR- - 5 3-- SE. 2000 66 LOfstrand, R., Reese, H . & Olsson, H. Remote Sensing aided Monitoring of Non Timber Forest Resources - A literature survey. ISRN SLU- SRG- AR-- 66-- SE. 69 TingelOf, U & Nilsson, M.Kartering av hyggeskanter i pankromaotiska SPOT -bilder. ISRN SLU-SRG-AR--69 --SE. 79 Reese, H & Nilsson, M. Wood volume estimations for Alvsbyn Kommun using SPOT satellite data and NFI plots. ISRN SLU-SRG-AR--79--SE. Kompendier och undervisningsmaterial: 1996 14 (Compendia and educational papers) Holm, S. & Thuresson, T. samt jagm.studenter kurs 92/96. En analys av skogstill standet samt nagra alternativa avverkningsberakningar for en del av Ostads sateri. ISRN SLU-SRG-AR--14--SE. 21 Holm, S. & Thuresson, T. samt jagm.studenter kurs 93/97. En analys av skogsstill standet samt nagra alternativa avverkningsberakningar fOr en stor del av Ostads sateri. ISRN SLU-SRG-AR--21--SE. 1998 42 Holm, S. & Lamas, T. samt jagm.studenter kurs 93/97. An analysis of the state of the forest and of some management alternatives for the Ostad estate. ISRN SLU-SRG-AR--42--SE 1999 58 Holm, S. samt studenter vid Sveriges lantbruksuniversitet i samband med kurs i strate gisk och taktisk skoglig planering ar 1998. En analys av skogsstillstandet samt nagra alternativa avverknings berakningar fOr Ostads sateri. ISRN SLU -SRG-AR--58--SE. 2001 87 Eriksson, 0. (Ed.) Strategier fOr Ostads sateri: Redovisning av planer framtagna under kursen Skoglig planering ur ett foretagsperspektiv HT2000, SLU Umea. ISRN SLU -SRG-AR--87--SE. Examensarbeten: 1995 5 (Theses by Swedishforestry students) Tornquist, K. Ekologisk landskapsplanering i svenskt skogsbruk - hur borjade det?. Examensarbete i amnet skogsuppskattning och skogsindelning. ISRN SLU-SRG-AR--5--SE. 1996 6 Persson, S. & Segner, U. Aspekter kring datakvalitens betydelse for den kortsiktiga planeringen. Examensarbete i amnet skogsuppskattning och skogsindelning. ISRN SLU -SRG-AR--6 --SE. 7 Henriksson, L. The thinning quotient - a relevant description of a thinning? Gallringskvot - en tillforlitlig beskrivning av en gallring? Examensarbete i amnet skogsuppskattning och skogsindelning. ISRN SLU-SRG-AR--7--SE. 8 Ranvald, C. Sortimentsinriktad avverkning. Examensarbete i amnet skogsuppskattning och skogsindelning. ISRN SLU-SRG-AR--8--SE. 9 Olofsson, C. Mangbruk i ett landskapsperspektiv - En fallstudie pa MoDo Skog AB, Ornskoldsviks forvaltning. Examensarbete i amnet skogsuppskattning och skogs indelning. ISRN SLU-SRG-AR--9 --SE. 10 Andersson, H. Taper curve functions and quality estimation for Common Oak (Quercus Robur L. ) in Sweden. Examensarbete i amnet skogsuppskattning och skogsindelning. ISRN SLU-SRG-AR--10--SE. 11 Djurberg, H. Den skogliga informationens roll i ett kundanpassat virkesflode. - En bakgrundsstudie samt simulering av inventeringsmetoders inverkan pa noggrannhet i leveransprognoser till sagverk. Examensarbete i amnet skogsuppskattning och skogsindelning. ISRN SLU-SRG-AR--11--SE. 12 Bredberg, J. Skattning av alder och andra bestandsvariabler - en fallstudie baserad pa MoDo: s indelningsrutiner. Examensarbete i funnet skogsuppskattning och skogsindelning. ISRN SLU-SRG-AR--14--SE. 13 Gunnarsson, F. On the potential of Kriging for forest management planning. Examensarbete i funnet skogsuppskattning och skogsindelning. ISRN SLU-SRG-AR--13--SE. 16 Tormalm, K. Implementering av FSC-certififering av mindre enskilda markagares skogsbruk. Examensarbete i amnet skogsuppskattning och skogsindelning. ISRN SLU-SRG-AR--16--SE. 1997 17 Engberg, M. Naturvarden i skog lamnad vid slutavverkning. - En inventering av upp till 35 ar gamla fOryngringsytor pa Sundsvalls arbetsomsade, SCA. Examensarbete i amnet skogsuppskattning och skogsindelning. ISRN-SLU-SRG-AR--17 --SE. 20 Cedervind, J. GP S under krontak i skog. Examensarbete i amnet skogsuppskattning och skogsindelning. ISRN SLU-SRG-AR--20--SE. 27 Karlsson, A. En studie av tre inventeringsmetoder i slutavverkningsbestand. Examensarbete. ISRN SLU-SRG-AR--27--SE. 1998 31 Bendz, J. SODRAs grona skogsbruksplaner. En uppfOljning relaterad till SODRAs miljoma.I, FSC's kriterier och svensk skogspolitik. Examensarbete. ISRN SLU-SRG-AR--31--SE. 33 Jonsson, b. Tradskikt och standortsforhallanden i strandskog. - En studie av tre backar i Vasterbotten. Examensarbete. ISRN SLU-SRG-AR--33--SE. 35 Claesson, S. Thinning response functions for single trees of Common oak (Quercus Robur L. ) Examensarbete. ISRN SLU-SEG-AR--35--SE. 36 Lindskog, M. New legal minimum ages for final felling. Consequences and forest owner attitudes in the county of Vasterbotten. Examensarbete. ISRN SLU-SRG-AR--36--SE. 40 Persson, M. Skogsmarksindelningen i grona och bla kartan - en utvardering med hjalp av riksskogstaxeringens provytor. Examensarbete. ISRN SLU-SRG-AR--40--SE. 41 Eriksson, F. Markbaserade sensorer for insamling av skogliga data - en forstudie. Examensarbete. ISRN SLU-SRG-AR--41--SE. 45 Gessler, C. Impedimentens potientiella betydelse for biologisk mfmgfald. - En studie av myr- och bergimpediment i ett skogslandskap i Vasterbotten. Examensarbete. ISRN SLU- SRG- AR-- 45-- SE. 46 Gustafsson, K. Umgsiktsplanering med geografiska hansyn - en studie pa B racke arbetsornrade, SCA Forest and Timber. Examensarbete. ISRN SLU- SRG- AR-- 46-- SE. 47 Holmgren, J. Estimating Wood Volume and B asal Area in Forest Compartments by Combining Satellite Image Data with Field Data. Examensarbete i amnet Fjarr analys. ISRN SLU- SRG- AR-- 47-- SE. 49 Hardelin, S. Framtida fO rekomst och rumslig fordelning av gamm al skog. - En fallstudie pa ett landskap i B racke arbetsornrade. Examensarbete SCA. ISRN SLU- SRG- AR-- 49-- SE. 1999 55 Imamovic, D. Simuleringsstudie av produktionskonsekvenser med olika miljomal. Examensarbete for Skogsstyrelsen. ISRN SLU- SRG- AR-- 55-- SE 62 Fridh, L. Utbytesprognoser av rotstaende skog. Examensarbete i skoglig planering. ISRN SLU- SRG- AR-- 62-- SE. 2000 67 Jonsson, T. Differentiell GPS-matning av punkter i skog. Point- accuracy for differential GP S under a forest canaopy. ISRN SLU- SRG- AR-- 67-- SE. 71 Lundberg, N. Kalibrering av den multivariata variabeln tradslagsfOrdelning. Examensarbete i biometri. ISRN SLU- SRG- AR-- 71-- SE. 72 Skoog, E. Leveransprecision och ledtid - tva nyckeltal fOr stym ing av virkesfl odet. Examensarbete i skoglig planering. ISRN SLU- SRG- AR-- 72-- SE. 74 Johansson, L. Rotrota i Sverige enligt Riksskogstaxeringen. Examens arbete i amnet skogsindelning och skogsuppskattning. ISRN SLU- SRG- AR-- 74-- SE. 77 Nordh, M. Modellstudie av potentialen for renbete anpassat till komrn ande slut avverkningar. Examensarbete pa jagmastarprogramrnet i amnet skoglig planering. ISRN SLU- SRG- AR-- 77-- SE. 78 Eriksson, D. Spatial Modeling of Nature Conservation Variables useful in Forestry Planning. Examensarbete. ISRN SLU- SRG- AR- - 74-- SE. 81 Fredberg, K. Landskapsanalys med GIS och ett skogligt planeringssystem. Examensarbete pa skogsvetarprogrammet i amnet skogshushallning. ISRN SLU- SRG- AR- - 81-- SE. 83 Lindroos, O. Underlag for skogligt lansprogram Gotland. Examensarbete i amnet skoglig planering. ISRN SLU- SRG- AR--83- SE. 84 Dahl, M. Satellitbildsbaserade skattningar av skogsornraden med rojningsbehov. Examensarbete pa akogsvetarprograrnm et i arnn et skoglig planering. ISRN SLU- SRG- AR- - 84-- SE. 85 Staland, J. Stym ing av kundanpassade timmerfloden -Inverkan av traktbankens stlorlek och utbytesprognosens ti llfOrlitlighet. Examensarbete i amnet skoglig planering. ISRN SLU-SRG-AR--85--SE. Internationellt: 1998 39 (International issues) Sandewall, Ohlsson, B & Sandewall, R. K. People' s options on forest land use - a research st udy of land use dynamics and socio- economic condit ions in a hist orical perspective in t he Upper Nam Nan Water Cat chment Area, Lao PDR. ISRN SLU-SRG-AR- -39 --SE. 44 Sandewall, M. , Ohlsson, B. , Sandewall, R. K. , Vo Chi Chung, Tran Thi Binh & Pham Quoc Hung. People' s options on forest land use. Government plans and farmers intentions - a strategic dilemma. ISRN SLU-SRG-AR--44--SE. 48 Sengthong, B. Estimat ing Growing Stock and Allowable Cut in Lao PD R using Data from Land Use Maps and the National Forest Inventory (NFI) . Master thesis. ISRN SLU-SRG-AR-- 48- -SE. 1999 60 Inter-active and dynam ic approaches on forest and land-use planning - proceedings from a training workshop in Vi etnam and Lao PDR, Apri l 12-30, 1999. Edited by Mats Sandewall ISRN SLU-SRG- AR--60--SE. 2000 80 Sawathvong. S. Forest Land Use Planning in Nam Pui National Biodiversit y Conservation A rea, Lao P. D. R. ISRN SLU- SRG-AR- - 80-- SE.
© Copyright 2024