Math 113/114–Solutions to Final Exam Sample Problems 1. Find y 0 . (a) y 0 = (−1 − 3x2 ) sec2 (x2 − 1) + (1 − x − x3 ) · 2 sec2 (x2 − 1) tan(x2 − 1)(2x). 1 3 sec2 3x (b) ln y = ln x ln(tan(3x)) =⇒ y1 y 0 = ln(tan(3x)) + ln x · x tan 3x 3 ln x sec2 3x 0 ln x ln(tan 3x) ∴ y = (tan 3x) + x tan 3x √ √ 1 (c) y 0 = 3(tan2 x2 − sin x)(sec2 x2 − sin x) · 21 (x2 − sin x)− 2 (2x − cos x) (d) ln y = 3 ln(sin x) + 12 ln(3x5 + 1) − x3 ln e − 5 ln(2 − 5x2 ) 1 3 cos x 1 15x4 5(−10x) =⇒ y 0 = + − 3x2 − y sin√x 2 (3x5 + 1) 2 − 5x2 3 4 5+1 sin x 5x 15x 50x 2 ∴ y 0 = x3 3 cot x + − 3x + 2(3x5 + 1) 2 − 5x2 e (2 − 5x2 )5 √ √ √ 1 (e) y 0 = [sec2 (x2 − sin 1 − x2 )4 ](4(x2 − sin 1 − x3 )3 ){2x − (cos 1 − x3 ) 12 (1 − x3 )− 2 (−3x2 )} (f) Diff. implicitly, [cos(x − y 2 )](1 − 2yy 0 ) = 2x − y + xy 0 =⇒ 2x − y − cos(x − y 2 ) (−2y cos(x − y 2 ) + x)y 0 = 2x − y − cos(x − y 2 ) =⇒ y 0 = x − 2y cos(x − y 2 ) (g) We use logarithmic differentiation: taking natural log, we get ln y = (tan x) ln(sec x) 1 1 sec x tan x =⇒ y 0 = (sec x)tan x [(sec2 x) ln(sec x) + tan2 x] =⇒ y 0 = (sec2 x) ln(sec x) + tan x y sec x (h) Diff. implicitly. exy (y + xy 0 ) − 2yy 0 = yexy + xexy y 0 − 2yy 0 = 1 x 1 x =⇒ =⇒ (xexy − 2y)y 0 = 1 x − yexy =⇒ y 0 = 1 x − yexy xexy − 2y 2. Evaluate the limits. (a) lim (x − x→∞ p √ √ x2 + x + 1)(x + x2 + x + 1) √ x→∞ x + x2 + x + 1 2 2 x(−1 − x1 ) x −x −x−1 √ q = lim = lim x→∞ x→∞ x + x2 + x + 1 x + x2 (1 + 1 + x2 + x + 1) = lim (x − x x(−1 − x1 ) q x→∞ x 1 + 1 + x1 + = lim 1 x2 −1 1 = 1 + 1 = −2 1 x2 ) √ ( x2 = x, x > 0). (b) (1 − cos x)(1 + cos x) 1 − cos2 x 1 − cos x = lim = lim x→0 x sin 2x(1 + cos x) x→0 x sin 2x(1 + cos x) x→0 x sin 2x lim 1 sin x 1 1 1 1 1 sin2 x = lim · · · = ·1·1· = . x→0 2 x→0 x2 sin x cos x(1 + cos x) x cos x 1 + cos x 2 2 4 = lim (c) lim x→0 sin 3x sin 3x 3x 2x 3 3 sin 3x = lim cos 2x = lim · · · cos 2x = 1 · · 1 · 1 = . x→0 3x tan 2x x→0 sin 2x 2x sin 2x 2 2 1 2 (d) lim √ √ √ 2x − x 2x − x)( 2x + x) 2x − x2 √ √ = lim = lim x→2 (x − 2)( 2x + x) x→2 (x − 2)( 2x + x) x−2 x(2 − x) 1 x 2 √ √ = lim =− . = lim = x→2 −(2 − x)( 2x + x) x→2 −( 2x + x) −(2 + 2) 2 x→2 (e) lim √ x→−∞ (since √ 2x 2x = lim q 2 x + 1 x→−∞ x2 (1 + 1 x2 ) 2x q x→−∞ −x 1 + = lim x2 = −x, x < 0). 1 x2 = 2 = −2, −1 (f) x3 ( x13 − x42 + 1) x( x13 − x42 + 1) 1 − 4x + x3 = lim = lim = −∞, x→−∞ x2 (3 − 1 + 42 ) x→−∞ 3x2 − x + 4 x→−∞ 3 − x1 + x42 x x lim since 1/xr → 0 as x → −∞. 3. Evaluate the integrals. (a) 1 − x2 − 3x2 Z x dx = 2 3 Z 4 1 3 7 1 12 7 2 (x− 3 − 4x 3 ) dx = 3x 3 − 4 · x 3 + C = 3x 3 − x 3 + C. 7 7 (b) Z 1 x sin(1 − 2x ) dx = − 4 Z 2 sin u du = 1 1 cos u + C = cos(1 − 2x2 ) + C 4 4 (c) Let u = 1 + cos 2x, du = −2 sin 2xdx. x = 0 =⇒ u = 2, x = Z π 3 0 sin 2x 1 √ dx = − 2 1 + cos 2x Z 1 2 2 1 du √ = u 2 Z 2 u − 21 1 2 (d) Z 2 0 |3x − 1| dx = Z 1 3 0 −(3x − 1) dx + Z 2 1 3 π 3 (u = 1 − 2x2 , du = −4xdx). =⇒ u = 12 . 2 √ 1 1 1 2−1 1 du = · 2u 2 = 2 − √ = √ = √ . 2 1 2 2 2 2 1 2 2 3x2 3 3x (3x − 1) dx = x − + − x 2 0 2 1 3 1 3 1 3 3 1 1 13 = − · + ·4−2− · + = . 3 2 9 2 2 9 3 3 (e) Z 1 0 2 |2x + x − 1| dx = Z 1 0 |(2x − 1)(x + 1)| dx = − Z 0 1 2 2 (2x + x − 1) dx + Z 1 1 2 (2x2 + x − 1) dx 21 3 1 3 x x x2 x2 =− 2 + − x + 2 + − x 3 2 3 2 1 0 2 1 1 1 1 1 1 7 3 1 2 7 + − + 12 − 1 − + − + + = . =− + = 12 8 2 3 12 8 2 24 6 24 4 3 (f) Let u = 2 + cos2 θ, du = −2 cos θ sin θ dθ. Z Z 1 u3 1 1 u2 du = − · sin θ cos θ(2 + cos2 θ)2 dθ = − + C = − (2 + cos2 θ)3 + C. 2 2 3 6 (g) Let u = tan 7x, du = 7 sec2 7x dx. Then Z π4 tan 7x Z π4 e dx = sec2 7x etan 7x dx cos2 7x 0 0 Z π 7π 1 −1 u e du x = 0 =⇒ u = tan 0 = 0; x = =⇒ u = tan = −1 = 7 0 4 4 0 Z 0 1 1 1 1 1 eu du = − eu = − (e0 − e−1 ) = − 1− . =− 7 7 7 7 e −1 (h) Note that f (x) = −1 −x3 sin4 x x3 sin4 x is an odd function since f (−x) = = −f (x). So 1 + x4 1 + x4 Z π2 3 4 x sin x dx = 0. 1 + x4 −π 2 (i) Let u = x3 + 1, du = 3x2 dx. Z Z Z p p √ 1 3 2 5 3 3 (u − 1) u du x x + 1 dx = x x + 1 x dx = 3 Z 5 3 1 3 1 2 5 2 3 2 1 2 3 2 2 2 2 u − u +C = (x + 1) 2 − (x3 + 1) 2 + C. = (u − u ) du = 3 3 5 3 15 9 (j) Let u = 2 − x, du = −dx. Z Z Z √ √ 3 1 x 2 − x dx = − (2 − u) u du = − (2u 2 − u 2 ) du 4 3 3 5 2 5 4 2 = − u 2 − u 2 + C = − (2 − x) 2 + (2 − x) 2 + C. 3 5 3 5 (k) Let u = 3 + 7 tan 5x. So du = 35 sec2 5x dx. Then Z Z sec2 5x 1 du 1 1 dx = = ln |u| + C = ln |3 + 7 tan 5x| + C. 3 + 7 tan 5x 35 u 35 35 (l) Z (1 + ecos x ) sin x dx = Z (sin x + ecos x sin x) dx = − cos x − Z eu du (u = cos x, du = − sin x dx) = − cos x − eu + C = − cos x − ecos x + C. (m) First let u = π ln x, du = πx dx. Then Z e Z 1 π cos2 (π ln x) sin(π ln x) cos2 u sin u du dx = x π 0 1 Z 1 −1 2 =− t dt (t = cos u, dt = − sin u du and cos 0 = 1, cos π = −1) π 1 1 Z Z 2 2 1 2 2 t3 2 1 1 2 = t dt = t dt = −0= . = π −1 π 0 π 3 0 3π 3π 4 4. (a) f (x) = Z 2 tan x p 1 + t4 dt. Z tan x p Z up d d du 1 + t4 dt = − 1 + t4 dt · dx 2 du 2 dx tan x p p F.T.C. 2 2 4 4 = − 1 + u sec x = − 1 + tan x sec x. f 0 (x) = (b) f (x) = Z d dx 0 2 Z p 1 + t4 dt = − cos t2 dt. cot2 (1−tan x) f 0 (x) = d dx Z 0 cot2 (1−tan x) d =− du F.T.C. = Z u 0 cos t2 dt = − du cos t2 dt · dx d dx Z cot2 (1−tan x) cos t2 dt 0 (where u = cot2 (1 − tan x) −(cos u2 )2(cot(1 − tan x))(− csc2 (1 − tan x))(− sec2 x) = −2 cos(cot4 (1 − tan x)) cot(1 − tan x)(csc2 (1 − tan x)) sec2 x. 5. We first graph the function and the region. y y=x 2−2x 1 x −1 A= Z 1 −1 2 |x − 2x| dx = Z 0 −1 2 (x − 2x) dx − Z 1 0 −1 1 1 1 =− + 1 − + 1 = + 1 − + 1 = 2. 3 3 3 3 0 1 3 x3 x 2 2 (x − 2x) dx = − −x − −x 3 3 −1 0 2 6. We wish to maximize the volume of the cylinder, i.e., V = πr 2 h. r h 20−h 20 cm r h 5 cm 5 From the diagram we have 20 20 − h = =⇒ 20 − h = 4r =⇒ h = 20 − 4r. r 5 5 Then V = πr2 (20 − 4r) = 4πr 2 (5 − r) = 4π(5r 2 − r3 ), 0≤r≤5 Differentiating, dV = 4π(10r − 3r 2 ) = 4πr(10 − 3r). dr So the critical points are r = 0, 10/3. We will use the Extreme Value Theorem to verify: 2 10 10 100 5 10 2000π = 4π 5− = 4π · V (0) = 0, V (5) = 0, V · = . 3 3 3 9 3 27 So the maximum volume of the cylinder is 2000π cm3 . 27 7. y y=16−x2 y x x We wish to maximize the area A = 2xy. Then dA = 2(16 − 3x2 ). dx √ To find the critical points let dA/dx = 0 so that x2 = 16/3 =⇒ x = 4/ 3. Let’s use the first derivative test to verify: A = 2xy = 2x(16 − x2 ) = 2(16x − x3 ) =⇒ 4 x < √ =⇒ 3 4 x > √ =⇒ 3 √ So√the area is a maximum at x = 4/ 3. Then 8/ 3 by 32/3. dA > 0 =⇒ A increasing dx dA < 0 =⇒ A decreasing. dx y = 16 − (16/3) = 32/3. The dimensions of the rectangle are √ 8. We wish to maximize the area A = 4xy = 4x r2 − x2 . y x 2 +y2 =r2 2x 2y x p dA 4x 2 1 4(r2 − 2x2 ) 1 = 4 r 2 − x2 + (r − x2 )− 2 (−2x) = 4(r2 − x2 )− 2 (r2 − x2 − x2 ) = √ . dx 2 r 2 − x2 √ √ Setting dA/dx = 0, √ we get x = r/ 2. Let’s use the first derivative test to verify: √ if 0 < x < r/ 2, then dA/dx > 0√and if r/ 2 < x, then dA/dx < 0. √So A is increasing on the left r/ 2 and decreasing on the right of r/ 2, so A is a maximum when x = r/ 2. 6 Then y = q r2 − r2 2 = q r2 2 = √r . 2 √ √ So it is a square with 2r/ 2 by 2r/ 2. 9. The statement of the Mean Value Theorem: If a function f is continuous on [a, b] and differentiable on (a, b), then there is a number c ∈ (a, b) such that f 0 (c) = [f (b) − f (a)]/(b − a), a 6= b. Then since 1 ≤ f 0 (x) ≤ 4 for all x ∈ (2, 5), f is differentiable on (2, 5), then f is continuous on [2, 5]. Then (2) . But 1 ≤ f 0 (c) ≤ 4. by the Mean Value Theorem there exists a number c ∈ (2, 5) such that f 0 (c) = f (5)−f 3 (2) So 1 ≤ f (5)−f ≤ 4 =⇒ 3 ≤ f (5) − f (2) ≤ 12. 3 10. Step 1: Let f (x) = 3x + 2 cos x + 5. The function is continuous everywhere since it is the sum of everywhere-continuous polynomial and sine functions. We note that f (−π) = 3(−π) + 2 cos(−π) + 5 = −3π − 2 + 5 = −3π + 3 < 0, f (0) = 0 + 2 cos 0 + 5 = 7 > 0, so that f (−π) < 0 < f (0). Then by the Intermediate Value Theorem, there is a number c ∈ (−π, 0) such that f (c) = 0, i.e., there is a root x = c of the equation. We now show that there is exactly one real root. Assume that there are two roots, a and b such that a < b. Then f (a) = 0 = f (b). By Step 1, f is continuous on [a, b]. f 0 (x) = 3 − 2 cos x so f is differentiable on (a, b). Then by Rolle’s Theorem, there is a number d ∈ (a, b) such that f 0 (d) = 0, i.e. 3 − 2 cos d = 0. But this equation has no solution since −1 ≤ cos d ≤ 1 and hence f 0 (d) > 0. This is a contradiction to Rolle’s Thm. Therefore, there cannot be two roots of the given equation. 11. f (x) = 4 cos x on [0, π2 ]. Using x∗i = π6 , π4 , π3 , π2 , Note that the width ∆x is not the same for all the π π subintervals. ∆x1 = π6 , ∆x2 = 12 , ∆x3 = 12 , and ∆x4 = π6 . y=4cos x π π π π 6 4 3 2 So ππ π π π π ππ +f +f 6 6 12 √ 3 12 2 6 √4 π π π π π π π π 2π 3 π 2 π1 = 4 cos + 4 cos + 4 cos + 4 cos = · + · + +0 6 6 12 4 12 3 6 2 3 2 3 2 32 √ √ √ √ ! 2 2 3 π 1+2 3+ 2 π. = π+ π+ = 6 6 6 6 A ≈ f (x∗1 )∆x1 + f (x∗2 )∆x2 + f (x∗3 )∆x3 + f (x∗4 )∆x4 = f 12. f (x) = 2 + x2 on [1, 3]. x∗i = xi = 1 + i∆x = 1 + y i2 n where ∆x = f(x)=2+x2 2 1 +f 3 x 2 n. 7 Z 3 1 2 n n n X i2 2 i2 2X 2X ∗ f 1+ f (xi )∆x = lim 2+ 1+ = lim (2 + x ) dx = lim n→∞ n→∞ n n n n→∞ n i=1 n i=1 i=1 n n n n 2 X 4i 4i2 4 X 2 2X 4X = lim 3+ i+ 2 + 2 = lim 3+ i n→∞ n n→∞ n n n n i=1 n i=1 i=1 i=1 4 n(n + 1) 4 n(n + 1)(2n + 1) 2 3n + · + 2· = lim n→∞ n n 2 n 6 4(n + 1) 4(n + 1)(2n + 1) = lim 6 + + n→∞ n 3n · n 1 4 1 1 4 38 = lim 6 + 4 1 + + 1+ 2+ = 6 + 4 + (2) = . n→∞ n 3 n n 3 3 2 13. (a) y = x . (x − 1)2 (x − 1)[x − 1 − 2x] −1 − x −(x + 1) (x − 1)2 − x · 2(x − 1) = = = (x − 1)4 (x − 1)4 (x − 1)3 (x − 1)3 −(x − 1)3 + (x + 1) · 3(x − 1)2 (x − 1)2 [−(x − 1) + 3(x + 1)] y 00 = = 6 (x − 1) (x − 1)6 −x + 1 + 3x + 3 2x + 4 2(x + 2) = = = . (x − 1)4 (x − 1)4 (x − 1)4 y0 = √ (b) y = x 9 − x2 . 9 − 2x2 x 1 1 9 − x2 + (9 − x2 )− 2 (−2x) = (9 − x2 )− 2 (9 − x2 − x2 ) = √ , 2 9 − x2 √ 1 −4x 9 − x2 − (9 − 2x2 ) 12 (9 − x2 )− 2 (−2x) y 00 = 9 − x2 1 −x(36 − 4x2 − 9 + 2x2 ) x(2x2 − 27) −x(9 − x2 )− 2 [4(9 − x2 ) − (9 − 2x2 )] = = . = 3 3 2 9−x (9 − x2 ) 2 (9 − x2 ) 2 y0 = p √ 14. y = x 9 − x2 . So the domain is [−3, 3] and the function is continuous there. So by the Extreme Value Thm, there is an absolute max. and absolute min. on [−3, 3]. Using the result of #12(b), the critical points are x = ± √32 , ±3. At x = −3, at x = 3, y = 0, y = 0, r 3 9 9 9 = , 9− = √ 2 2 2 2 r 3 3 9 9 at x = − √ , y = − √ 9− =− . 2 2 2 2 3 at x = √ , 2 3 y=√ 2 r So the absolute min. value is − 92 at x = − √32 and absolute max. value is 9 2 at x = √3 . 2 8 15. The domain of f is x 6= 1 or (−∞, 1) ∪ (1, ∞). Using the results of 12(a), the critical point is x = −1. −(x + 1) (x − 1)3 (−∞, −1) (−1, 1) + − (1, ∞) − − − + y0 y − + decreasing increasing − decreasing So y is decreasing on (−∞, −1) ∪ (1, ∞) and increasing on (−1, 1). A local min. at x = −1, y = −1/4. No local maximum. From y 00 above possible inflection point is at x = −2. (−∞, −2) (−2, 1) x + 2 (x − 1)4 (1, ∞) y 00 y − + + + − + conc. down conc. up + + + conc. up. Hence, the inflection points occur at x = −2, y = −2/9. We now look for asymptotes. lim x→±∞ x 1 0 x x2 x = lim = 0. = lim = x−1 1 2 2 2 x→±∞ x→±∞ (x − 1) (1 − 0)2 ( x ) (1 − x ) So y = 0 is a horizontal asymptote. x = ∞ (since x → 1 and (x − 1)2 → 0 pos.) (x − 1)2 x = ∞ (since x → 1 and (x − 1)2 → 0 pos.). lim+ x→1 (x − 1)2 lim x→1− So x = 1 is a vertical asymptote. y −2 −1 x 0 (−2,−2/9) 1 (−1,−1/4) x=1 16. See the figure below. Then we are given that dV /dt = 2 cm3 /min, dr/dt = 1 cm/min. We wish to find dh/dt when r = 5 and V = 60. r h dV dr 2 dh V = πr h =⇒ = π 2rh + r dt dt dt dV dr dh 1 dV dr dh 2 = − 2πrh =⇒ = 2 − 2πrh =⇒ πr dt dt dt dt r π dt dt 2 9 Now when r = 5 and V = 60, h = 12/5π, then 2 − 24 1 22 dh 12 2 − 2π(5) (1) = = =− . dt 25π 5π 25π 25π So the height is decreasing at a rate of 22 25π cm/min. 17. See the figure below. Let x be the length of the shadow cast by the building and θ the angle of elevation of the sun. 400 θ x We are given dθ dt = −0.25 rad/h and wish to find dx dt when θ = π/6. dθ 400 dx 400 =⇒ sec2 θ =− 2 x dt x dt dx x2 dθ ∴ =− sec2 θ . dt 400 dt tan θ = We will now find x when θ = π/6, tan √ 400 400 400 π = =⇒ x = π = √1 = 400 3. 6 x tan 6 3 Then 4002 · 3 dx π =− sec2 (−0.25) = 400(3) dt 400 6 2 √ 3 2 1 = 400 ft/h. 4
© Copyright 2025