Micro Sample X-ray Diffraction (µXRD) : Applications to Pharmaceutical Sciences NATURA IN MINIMIS MAXIMA (Nature is greatest in the smallest things) Joseph H. Reibenspies* & Nattamai Bhuvanesh Texas A & M University XDL X-ray Diffraction Laboratory TAMU/Chemistry www.chem.tamu.edu/xray Micro-sample X-ray Powder Diffraction • Why we use micro-samples at TAMU – Economy of resources – Simple/robust mounting technique – Minimize preferred orientation, transparency/sample displacement – Green Chemistry • When – SDPD investigations – Initial stages of Discovery – Identification of by-products – In situ experiments – RMA (routine materials analysis) Micro-sample Diffraction • • • Parameters to Optimize Micro-sample Diffraction experiment Maximize Intensity Decrease the Background Achieve acceptable particle statistics – Grinding – Mechanical Tumbling Debye, P. & Scherrer, P. Phys Z. (1916) 17, 277-283. Hull, A. W. Phys. Rev. (1917) 10, 661-696. Micro-sample Diffractometer • Instrumentationa – Bruker D8 GADDS diffractometer with fixed χ stage. • • • • • Copper radiation (40kv/40ma) with graphite monochromator and 17cm pinhole collimator. Transmission mode (capillary, loop, foil)b Multi-wire (HI-STAR) detector. – Single – crystal : 5cm sample to detector distance. – Powder : 12 or 25cm sample to detector distance. Oxford 600 Cryostream LN2 cold stream (110K). “Short” beam stop. aDepero et.al. J. Appl. Cryst. (2001). 34, 663-665 Sample Mounts : Loops/Foils a,b,c KAPTON aTeng, Mylar Foil (1990) J.Appl.Cryst. 23, 387 Thorne et.al. (2005) J. Appl. Cryst. 38, 333. c Thorne et.al. (2003) J.Appl.Cryst. 36, 1455. www.hampton.com www.mitegen.com www.moleculardimensions.com b Sample Mounts : PET Capillaries 0.3 mm PET tube 0.02mm wall PET = Poly(ethylene terephthalate) Thin walled Heat Shrink Tubing Source : Advanced Polymers Advantages •Inexpensive $0.25 /cm •Transparent to X-rays •Smooth low X-ray Scatter Pattern •Simple to Cut, Shape and Seal •Replaces Glass Capillaries and Fibers •Good at low temperatures *www.charles-supper.com X-ray Transparency* Copper Radiation (2.0mm)OD wall PET 86% 0.05mm (0.3mm) 96% 0.02 Boron Glass 62% 0.01 Quartz 61% 0.01 Glass 54% 0.01 ---------------------------------*SAXS reference Glassy Carbon µ(cm-1)* PET Boron Glass Quartz Glass Cu 8 71 75 111 Mo 0.67 7 8 12 PET Tubing X-ray Scatter Lin (Cps) 6 5 Quartz 4 angle = 16.351 ° , d=5.41663 7 -15 0 0 100 PET B-Glass 3 GLASS 2 -1 0 0 C h i - S c a le angle = 43.311 ° , d=2.08734 8 angle = 26.814 ° , d=3.32210 angle = 21.607 ° , d=4.10948 PET 9 PET Cu radiation 2.0 mm OD 0.05 mm wall PET 0.01 mm wall rest 1 0 5 10 20 30 2 -T h e ta - S c a le 40 50 6 Loading 1. 2. 1. 2. * Sample The sample is adhered to the loop by gently dragging the loop over the sample surface. The sample is “shaped” into a sphere and attached to the loop with mineral oil. A 1mm PET tube is attached to a small brass pin. The open end of the tube is “inserted” in the powder and quickly removed 5 ng sample on a 0.1mm loop 60 µg in a 0.7mm loop 200 µg on a Kapton loop 1 mg in a PET tube Bhuvanesh & Reibenspies (2003) J. Appl. Cryst. 36, 1480-1481 Bhuvanesh & Reibenspies (2006) J. Appl. Cryst. (in prep) Data Collection on the GADDS • • • The detector distance (12cm or 25cm) and beam center are calibrated. (Corundum). The sample is centered. Thee frames (at three different 2θ angles) are collected. The frames are un-warped and an area integration routine (cake integration) is employed to reduce the data. Corundum Standard in loop Raw Data Frame 180 170 160 150 140 130 120 Lin (Counts) • 110 100 90 80 70 60 50 40 30 20 10 5 8 10 20 30 40 2-Theta - Scale ? Frame: f:\loop_test\aa_mesh_Frame: f:\loop_test\aa_mesh_18002.001 - File: aa_mesh_18002.raw - Type: 2Th alone - Start: 3.000 ° - End: 74.300 ° - Step: 0.020 ° - Step time: Operations: Smooth 0.141 | Y Scale Add 5 | Background 1.000,0.000 | X Offset -0.082 | X Offset -0.164 | Range Op. Merge | Import ? Frame: f:\loop_test\aa_mesh_Frame: f:\loop_test\aa_mesh_18001.001 - File: aa_mesh_18001.raw - Type: 2Th alone - Start: 2.965 ° - End: 39.467 ° - Step: 0.020 ° - Step time: Operations: X Offset -0.067 | Displacement 0.062 | Y Scale Add -60 | Y Scale Add 54 | Y Scale Add 20 | Smooth 0.092 | Import Powder Pattern Collection ω scan 1. No movement – Still 2. ϕ scan only - Spin Debye-Scherrer 3. ω scan + ϕ scan – Tumble Gandolfi ϕ scan Gandolfi 2θ ω ϕ χ scan width time -30 -30 0 54.7 ω -179 600 use ϕ spin option Gandolfi G. Miner. Petrogra. Acta (1967). 67-74. “Cake” FRAME Integration FIT2D “Area” Integration Conventional “Slice” GADDS NT Software Reference Manual pp 1-5 to 1-15 Foil/Capillary/Loop (unprepared aspirin sample) Sample Displacement error Sample hard to center foil capillary loop predicted 20 10 9 8 7 6 5 4 d - S c a le 3 Sample Preparation and Scan Types Still/foil Still/Foil no sample preparation sample prepared Gandolfi/Loop no sample preparation (Ultra)Micro-samples on the Bruker Vario Powder Diffractometer 18 mm beam width 0.5mm slit I/Io ~ 0.03 D8 Vario FWHM GADDS 0.334o Vario 0.087o D8 GADDS 20 21 22 23 2-Theta - Scale 24 Argonne: Advanced Photon Source* Line : 1-BM-C (XOR line) 20.016 KeV λ = 0.61938Å MARS 345 IP *Lee, P et.al. (1999) Rev. Sci. Inst. 70, 4457-4462 Beam stop MARS image plate Collimator Data Collection at the APS • • • • • • The detector distance and beam center are calibrated. Background frames are collected (loop less the sample). The sample is centered. Three 1-60sec exposure frames are collected. The background frame (s) are subtracted from the data frame. An area integration (FIT2D*) routine is employed to reduce the data. .2 4 5 3-amino-4-hydroxybenzoic Acid 6 7 8 9 10 11 12 *Hammersley, A. P. (1995) ESRF Internal Report, EXP/AH/95-01, FIT2D V5.18 Reference Manual V1.6 13 14 15 2-Theta - Scale 16 17 18 19 20 21 22 23 24 25 Applications Pharmaceutical Sciences Structure Determination from Powder Data : 3-Bromophenylboronic Acid* Br HO B OH B -3H2O O Br O B B Br O Br B(OH)2 3 Br 2,4,6-Tris-(3-bromo-phenyl)-cyclotr iboroxane 3-Bromophenylboronic acid λ (Å) 0.6194 Spacegroup P21/c a (Å) 15.778(1) b (Å) 5.3083(6) c (Å) 9.375(1) β(°) 93.3(1) 3 rotation, 3 translation, and 1 torsion * β-lactamase inhibitor : Martin, R. et.al. (1994) Bioorganic & Med. Chem. Let. 4, 1299-1234. Ab Initio Structure Solution / Refinementa • Solution : FOXb • Refinement : TOPASc • Structure Parameters – – – – – – – – 2θ range Wavelength (Å) Chebychev bck number parameters Rp(%) Rwp(%) Rexp(%) RBrag (%) aBhuvanesh 1.35 – 20.0 0.619383 10 30 16.060 10.543 19.818 4.25 et.al. J.Appl.Cryst. (2005) 38 632. bFOX : Favre-Nicolin et.al. J. Appl. Cryst. 35 (2002), 734. cTOPAS : Bruker-AXS Karlsruhe, Germany OH Treholase Hydration/Dehydration at Room Temperaturea OH O HO OH O OH O OH OH OH 2H2O C12H22O11 ↔ C12H22O11 • 2H2O Form II & Form III (Tα) (Tβ) Vacuum 1mbar (RT) slow Form II aFuruki Form I (Th) Form I 1atm / RT fast 150oC Heat 80oC 10mins 1atm / RT very slow amorphous Form III T., Kishi, A. & Sakurai M. Carbohydrate Research (2005) 340 429. Trehalose Hydration Cold Stream 2H2O C12H22O11 ↔ C12H22O11 • 2H2O Vacuum Chamber 1. 2. 3. 4. 1mbar Vacuum for 24 hr Sample moved to cold stream Cold stream stopped Data collected 120sec/pattern 53% R.H. ~ 10 µg Dynamic 7.6 8 9 10 11 12 13 14 15 16 17 2-Theta - Scale 18 19 20 21 22 23 24 Calibrated Humidity Control LN2 cold stream Vacuum Chamber Salt Humidity % LiCl 15 KNO2 45 NaBr 58 NH4Cl 79.5 K2HPO4 92 --------------------------At 20oC CRC 59 (1978) E-46. K2HPO4 NH4Cl LiCl Flash Frozen Vacuum Chamber LN2 cold stream 110K 79.5%R.H Static 20min/scan T = 110K OXFORD LT 9min 6min 3min 0min 5 6 7 8 9 10 11 12 13 14 15 16 2-Theta - Scale 17 18 19 20 21 22 23 24 25 High Throughput Screening Mannitol 7 6 10 20 30 Polymorph I 2-Theta - Scale 40 7 10 20 30 Polymorph II 40 Fronczek, F. et. al. Acta Cryst. (2003) C59 o567-o570. Bruget, J-O., et.al. Pharm. Sci. (2000) 89 457-468. Roberts, S. et.al J. Pharm. Sci (2002) 28 1149-1159. 10 20 30 2-Theta - Scale 40 Polymorph III Evaporation from a binary mixture of solvents* Spot plate evaporation method A saturated solution of D-Mannitol in ethanol and water is prepared well 1 2 3 4 EtOH/H2O 100/0 50/1 20/1 9/1 100 98 95 well 5 6 7 8 EtOH/H2O 8/2 7/3 6/4 5/5 90% Evaporation mount 80 70 *Guillory, 60 50% J.K. in Polymorphism in Pharmaceutical Solids (2000) pp 184-227. Mannitol : Results* 50% %Ethanol 60 70 80 Polymorph I 90 95 98 Polymorph II 100Polymorph III *Reibenspies & Bhuvanesh J. Pharm. Biomed. Analysis 37 (2005) 611-614 In-Loop Evaporation DRY Cleaning X-Rays The Molecular Structure of Samples that are Liquid at RT by Micro-Sample X-ray Powder Diffraction Bruker GADDS Diffractometer • • • • • 0.7mm nylon loop dipped in neat Tetradecane Loop transferred to cold stream maintained at 274K Cold stream temperature slowly lowered to 272K Tetradecane was allowed to crystallized (~2 mins) Powder pattern collected – – – – • Tetradecane C14H30 Space Group _cell_length_a _cell_length_b _cell_length_c _cell_angle_alpha _cell_angle_beta _cell_angle_gamma _structure_solution Observed Calculated 12cm (sample-detector) Gandolfi scans 2theta set 20,40,60 deg 1200,2400,3600 sec Area Integration/Reduction 0 10 20 Norman et.al. Acta Chem. Scand. 26 (1972) 3913. Friedrich W. Physik. Z. 14 (1913) 317. 30 2-theta 40 P -1 4.27596 4.81530 18.66640 87.225 79.020 73.057 FOX 50 The Future? Area Detector/ Source/ Optics Resolution 3-bromophenyboronic acid Source Detect. Optic. FWHM -------------------------------------Tube MWPC graph. 0.36o 17 cm collimator Focus at crystal RAG SAXS Tube Long collimator Sync. IP osmic 0.35o MWPC CCGmir. 0.14o IP good 0.04o Single Crystal/Powder Diffractometer D8 Discover with GADDS* TXS source with Cu anode operated at 45kV / 100mA Cross-coupled Goebel Mirror 0.5mm pinhole collimator VÅNTEC-2000 detector 36cm sample to detector distance 0.3mm glass capillary 600 sec scan 24 30 40 50 *Kurt Erlacher, BRUKER-AXS 60 2-Theta - Scale 70 80 90 100 The Future Micro-Sample Diffractometer • Parallel optics – mirrors double/single bounce – Pin-hole collimation / Helium sealed/vacuum • Full positioning goniometer – Kappa or three-circle • High Resolution Low Background Detector – Long Exposures • Movable Detector Base – Close for small molecule single-crystal – Distance for powders • Low Temperature Chemistry Acknowledgement • Texas A & M University • Welch • NSF/MRI Funding
© Copyright 2025