Leaving Certificate Higher Level Maths Solutions Sample Paper 1, no. 4 1. (a) 2 T2 = __ 3 2 ar = __ 3 2 a = __ 3r 2 ∴ __ = 3 − 3r 3r 2 = 9r − 9r2 S∞ = 3 a _____ =3 1−r a = 3 − 3r 9r2 − 9r + 2 = 0 (b) (3r − 1) (3r − 2) = 0 1 2 r = __ or r = __ 3 3 1 r = __ 3 2 =2 ⇒ a = ____ 1 3 _3 ( ) 2 r = __ 3 2 ⇒ a = ____ =1 2 3 _3 ( ) a(1 − r5) S5 = ________ 1–r ( ( )) 1 5 1 1 − _3 _________ = 1 1−_ 3 = 2.61 a(1 − r5) _______ S5 = 1−r ( ( )) 2 5 2 1 − _3 _________ = 2 1−_ 3 = 2.99 2. (a) p(x) = 2x3 − x2 − 16x + 15 p(1) = 2(1)3 − 12 − 16(1) + 15 = 2 − 1 − 16 + 15 =0 ∴ x − 1 is a factor. 1 2x2 + x − 15 x − 1 ) 2x3 − x2 − 16x + 15 – 2x3 +– 2x2 x2 − 16x x 2 +– x 15x + 15 + – 15x +– 15 (x − 1) (2x 2 + x − 15) (x − 1) (2x − 5) (x + 3) (b) p′(x) = 6x 2 − 2x − 16 6x 2 − 2x − 16 = 0 at turning points 3x2 − x − 8 = 0 ______________ −(−1) ± √(−1)2 − 4(3)(−8) x = ______________________ 2(3) ___ 1 ± 97 √ x = _______ 6 x = 1.81 or x = −1.47 y = 2(1.81)3 − (1.81)2 − 16(1.81) + 15 x = 1.81 y = −5.38 (1.81, −5.38) x = −1.47 y = 2(−1.47)3 − (−1.47)2 − 16(−1.47) + 15 y = 30.01 (−1.47, 30.01) (c) y (–1.47,30.01) 30 25 20 15 10 5 0 (–3,0) –3 –2.5 3 2 –2 –1.5 –1 2x – x – 16x + 15 –0.5 –5 (1,0) 0 0.5 1 1.5 (2.5,0) 2 (1.81,–5.38) 2 2.5 x 3 3.5 3. z = x + iy (a) (b) _ z = x − iy 3 1 + __ __ =2+i z z () ( ) __ 1 _ 3 _ zz __z + zz ___z = zz (2 + i) _ _ _ z + 3z = zz (2 + i) x − iy + 3(x + iy) = (x + iy) (x − iy) (2 + i) x − iy + 3x + 3iy = (x2 + y2) (2 + i) 4x + 2iy = 2x2 + 2y2 + x2i + y2i ∴ 2x2 + 2y2 = 4x x2 + y2 = 2y x2 = −y2 + 2y _______ _______ x = √−y2 + 2y _______ 2( √−y2 + 2y ) + 2y2 = 4√−y2 + 2y −2y2 2 + 4y + 2y2 _______ = 4√−y2 + 2y _______ 4y = 4√−y2 + 2y _______ y = √−y2 + 2y y2 = −y2 + 2y 2y2 − 2y = 0 2y (y − 1) = 0 y=0 or y = 1 If y = 0 ⇒ x = 0 ________ __ If y = 1 ⇒ x = √−(1)2 + 2 = √1 = 1 ∴ Answer: 1 + i (c) Im 5i 4i 3i 2i z i Re –3 –2 –1 1 –i 2 – z –2i 3 4. (a) A−B=t t2 1 A − B = 2 + ____ − 1 + ____ t+1 t+1 2 t 1 = 2 + ____ − 1 − ____ t+1 t+1 2 t 1 = 1 + ____ − _____ t+1 t+1 t +1 + t2 − 1 = __________ t+1 2 t + t t(t + 1) = _____ = ______ = t t + 1 (t + 1) ( ) ∴ Rate of flow of A is greater than rate of flow of B by t litres/s. (b) In 4 minutes A will be greater than B by 4t = 4(4) = 16 litres. 5. (a) −60,000 m = _______ = −4,000 15 (b) The slope represents the decrease in the salvage value of the tractor each year. (c) S = −4,000n + 60,000 (d) −4,000n + 60,000 ≥ 0 −4,000n ≥ −60,000 n ≤ 15 ∴ Should not use any value of n > 15, as the salvage value will fall below 0. (e) S = 60,000 (1 − 0.20)14 S = €2,638.83 (f) S = 60,000 (1 − 0.20)n n ( ) 8 S = 60,000 ___ 10 as n → ∞ n ( 10 ) → 0 8 ___ So the salvage value will approach 0 but won’t fall below zero. The rate of depreciation will decrease as n → ∞ (n > 15 onwards). 4 6. (a) 32 x = ____ _____ 100 2+x 100x = 64 + 32x 64 x = ___ 68 x ≈ 0.941 (b) Pattern 30, 31, 32 … (i) In 6 years ⇒ 35 = 243 hundred = 24,300 7. (a) (ii) 3n − 1 (iii) No, the number of trees will not increase indefinitely. The number of trees will increase for some time but will then plateau. Reasons for this could include competition for water, light and/or nutrients. x = 2t + 3t2 dx ___ = 2 + 6t dt dy _____ −4t −1 ___ = ___ = dt 2 + 6t 2 y = 1 − 2t2 dy ___ = − 4t dt −8t = − 2 − 6t −2t = −2 t=1 If t = 1, x = 2(1) + 3(1)2 = 5 y = 1 − 2 (1)2 = −1 (5, −1) ∴ y − y1 = m(x − x1) 1 y + 1 = − __(x − 5) 2 2y + 2 = − x + 5 x+y−3=0 (b) y2 = 2xy − 4 [ ] dy dy 2y ___ = 2 y + x ___ dx dx dy dy 2y ___ = 2y + 2x ___ dx dx dy dy 2y ___ − 2x ___ = 2y dx dx dy _______ y 2y u ___ __ = _____ = y − x=v dx 2y − 2x u x v y du dv v___ + u___ dx dx dy y(1)+ x(1)___ dx dy y + x___ dx 5 2 dy dy dv ___ = v___ − u___ dx2 dx dx ( ) dy dy __ (y − x)__ dx − y dx − 1 _________________ = (y − x)2 dy dy __ (y − x)__ dx − y dx + y _______________ = (y − x)2 = dy __ dx (y − x− y) + y _____________ (y − x)2 dy __ dx (− x) + y = __________ (y −x)2 y ____ y − x (− x) + y ____________ = ( ) (y − x)2 −xy ____ y−x +y _______ = (y − x)2 2 −xy + y − xy _________ (y − x) = _________ (y − x)2 y2 − 2xy = _______ (y − x)3 (c) 1+x f(x) = _____ 2−x (i) Vertical ⇒ 2 − x = 0 2=x 1+x Horizontal ⇒ lim _____ x→∞ 2 − x _1 + 1 x _____ = lim 2 x→∞ _ x−1 = −1 y = −1 (ii) y x=2 5 4 3 1+x f(x) = —— 2–x 2 1 0 0 1 –8 –7 –6 –5 –4 –3 –2 –1 –1 y = –1 –2 x 2 3 4 5 –3 –4 –5 –6 6 6 7 8 9 10 11 12 13 14 15 16 (iii) du dv __ v__ dx − u dx ________ f ′(x) = v2 (2 − x) (1) − (1 + x) (− 1) f ′(x) = _____________________ (2 − x)2 2−x+1+x f ′(x) = ___________ (2 − x)2 3 f ′(x) = _______2 (2 − x) f ′(x) decreasing ⇒ f ′(x) < 0 3 _______ <0 (2 − x)2 ⇒3<0 False ∴ f (x) is never decreasing. −6 f ″(x) = −6(2 − x)−3 = _______3 ≠ 0 (2 − x) as −6 ≠ 0 ∴ No points of inflexion 8. (a) (i) ∫ p _ [ −cos 3q _______ 0 sin 3q dq = 2 ] p _ 2 3 0 3p __ −cos 2 −cos 3(0) = _______ − ________ 3 3 0 1 = __ + __ 3 3 1 = __ 3 [ 4 ______ (ii) ∫0 √9 + 4x dx Let u = 9 + 4x. 1 25 _1 = __∫9 u2 du 4 [] 3 u_2 1 __ __ = 4 _3 [ du = 4dx 1 __ du = dx 4 x = 0, u = 9 + 4(0) 25 2 9 ___ __ 1 2√25 3 2√9 3 = __ ______ − _____ 4 3 3 [ ] =9 ] x = 4, u = 9 + (4)(4) u = 25 ] [ ] 1 250 54 1 196 49 = __ ____ − ___ = __ ____ = ___ 4 3 3 4 3 3 7 1 (iii) ∫0 x(x − 1)3 dx Let u = x – 1. 0 = ∫−1 (u + 1)u3 du du = dx u +1 = x 0 = ∫−1 u4 + u3 du x = 0 ⇒ u = –1 u5 u4 0 = __ + __ 5 4 −1 (−1)4 __ (−1)5 _____ 05 __ 04 _____ 1 1 1 __ = + − − = − __ = − ___ 5 4 5 5 4 4 20 [ ] x=1⇒u=0 p _ (b) (i) ∫0 5 sin2 8x dx 1 1 = ∫0 5( __ − __ cos 16x ) dx 2 2 8 p _ 8 p _ 2 5 5 = ∫0 __ − __ cos 16x dx 2 2 p _ 5 5 = __x − ___ sin 16x 8 2 32 0 5 5 p 5 5 = __ __ − ___ sin 2p − __ (0) + ___ sin (0) 2 8 32 2 32 5p = ___ 16 [ ] ( ) 1 (ii) ∫−2 5 − 4x − x2 dx ___________ _________ √5 − 4x − x2 5 − (x2 + 4x) 1 dx __________ = ∫−2 ___________ √9 − (x + 2)2 let u = x + 2 5 − (x2 + 4x + 4 − 4) 5 + 4 − (x2 + 4x + 4) 9 − (x + 2)2 du = dx x = −2 ⇒ u = 0 x=1⇒u=3 3 du ______ ⇒ ∫0 _______ √32 − u2 u 3 = sin−1 __ 30 = sin−1 1 − sin−1 0 p = __ 2 [ (c) ] y 3 2 –4y2 + x = 0 (16,2) 1 0 –4 x 0 –2 2 4 6 8 10 12 14 16 –1 (4,–1) –2 –3 x – 4y = 8 8 18 20 x = 4y2 x − 4y = 8 4y2 − 4y − 8 = 0 y2 − y − 2 = 0 (y + 1) (y − 2) = 0 y = −1 y=2 ∴ y = −1 x = 4(−1)2 x=4 (4, −1) y=2 x = 4(2)2 x = 4(4) x = 16 (16, 2) ∴ A = Area under line − Area under curve 2 2 = ∫−1 4y + 8 dy − ∫−1 4y2 dy [ 2 4y = ___ + 8y ] [ ] 2 3 2 4y − ___ 2 3 −1 −1 4(4) 4(2)3 ______ 4(−1)2 4(−1)3 ____ ______ _____ = + 8(2) − − 8 (−1) − − 2 2 3 3 [ 32 4 = 8 + 16 − 2 + 8 − ___ − __ 3 3 36 = 30 − ___ 3 = 30 − 12 = 18 units2 9 ] Leaving Certificate Higher Level Maths Solutions Sample Paper 2, no. 4 1. (a) y 5 c1 c2 4 3 Radius = 3 Radius = 2 (4,2) (9,2) 2 1 0 x 0 1 –1 –1 2 3 4 5 6 7 8 9 10 11 12 13 –2 –3 Centre c1 = (4,2) Radius c1 = 3 Distance between the centres = 5 Centre c2 = (9,2) Radius c2 = 2 Radius c1 + Radius c2 = 5 Therefore, the circles touch externally. (b) y 7 6 c1 5 k c2 4 3 Radius = 5 2 (4,2) (6,2) (9,2) 1 0 –1 0 1 –1 x 2 3 4 5 6 7 8 9 –2 –3 Centre of k = (6,2) Radius of k = 5 Equation of k: (x − 6)2 + (y − 2)2 = 25 This simplifies to x2 + y2 − 12x − 4y + 15 = 0 10 10 11 12 13 2. (a) y 7 6 (h,k) 5 45 4 3 2 1 0 0 1 –8 –7 –6 –5 –4 –3 –2 –1 –1 x 2 3 4 –2 ___ Perpendicular distance from (h,k) to 2x − y + 5 = 0 is √45 ___ 2(h)______ − (k) + 5 ___________ = −√45 √22 + 12 ___ _____ 2h − k + 5 = ( −√45 )( √4 + 1 ) __ __ 2h − k + 5 = ( −3√5 )( √5 ) 2h − k + 5 = −15 2h − k = −20 Equation 1 (−1,3) is a point on the line 2x − y + 5 = 0 Slope of the line 2x − y + 5 = 0 is 2 1 Slope of ⊥ line is − __ 2 y2 − y1 _____ k−3 1 __ Slope of ⊥ line is ______ x2 − x1 = h + 1 = − 2 ⇒ 2k − 6 = −h − 1 2k + h = 5 Equation 2 Solving between Equation 1 and Equation 2 gives: 2k + h = 5 −k + 2h = −20 ____________ 2k + h = 5 −2k + 4h = −40 _____________ 5h = −35 h = −7 ⇒k=6 11 (b) y 7 6 (h,k) 5 45 4 3 2 1 0 C 0 1 –8 –7 –6 –5 –4 –3 –2 –1 –1 F –2 b x 2 3 4 m1 − m2 b = tan−1________ 1 + m1m2 2 − _13 b = tan−1________ 1 + (2)(_13 ) b= _5 −1 _ tan 38 _ 3 5 b = tan−1__ 8 b = 32° 3. (a) 1__ Margin of error = ___ √n 1__ ___ ∴ = ±3% √n 3 1__ ∴ ___ = ± ____ 100 √n 9 1 ______ ∴ __ n = 10,000 10,000 n = ______ 9 n ≈ 1,100 (b) 1__ _______ 1 ___ = _____ = ± 3% (c) The null hypothesis: There is no increase in support for the president. √n √1,100 Accept the null hypothesis. Reason: The result of the second poll is within the margin of error. 4. (a) (b) a = 3, b = 0.5 Range: [3, −3] Period: 4p 12 (c) 3 1 3 cos – x 2 y 2 1 0 x 0 p p — 2 –1 3p — 2 5p — 2 2p 3p 4p 7p — 2 –2 –3 (d) a sin bx = 0 means where the graph intersects the x-axis. The graph intersects the x-axis at x = 0, x = 2p and x = 4p . 5. (a) k=2 (b) A Q R P D B C Centre of Enlargement (c) F BD2 = BA2 + AD2 RQ2 = RF2 + FQ2 BD2 = 12 + 12 RQ2 = 22 + 22 BD = √2 RQ = √8 = 2√2 __ (d) __ Area of circle on ABCD = p r2 __ Area of circle on FRPQ = p r2 __ ___ 2 = p2 2 = 2p units2 p = __ units2 2 (e) __ = p ( √2 )2 ( ) √2 =p( ) 2 √2 = p ___ 2 __ p (Area of the circle on FRPQ) ÷ (Area of circle on ABCD) = 2p ÷ __ = 4 2 2 k (Area of circle on ABCD) = Area of the circle on FRPQ 13 6A. Diagram: A A' B" C" B B' C' C Given: Δ ABC and Δ A′B′C′ which are equiangular, where |∠A| = |∠A′|, |∠B| = |∠B′| and |∠C| = |∠C′| |BC| |CA| |AB| To Prove: _____ = _____ = _____ |A′B′| |B′C′| |C′A′| Construction: Pick B′′ on [AB] with |AB′′| = |A′B′|, and C′′ on [AC] with |AC′′| = |A′C′| Proof: ΔAB′′C′′ is congruent to ΔA′B′C′................(SAS) ∴ |∠AB′′C′′| = |∠ABC| ∴ B′′C′′ is parallel to BC ..........................corresponding angles |A′B′| |AB′′| ∴ _____ = _____.........................................choice of B′′, C′′ |A′C′| |AC′′| |AB| = ____ ......................................................Theorem 12 |AC| |AB| |AC| _____ _____ = .........................................rearrange |A′C′| |A′B′| |BC| |AB| Similarly, _____ = _____ |B′C′| |A′B′| Q.E.D. 6B. (a) S c 2 U E 3 1 R T In ΔTES and ΔTUR: |∠1| = |∠2| .............................. isosceles triangle TSE |∠1| = |∠3| .............................. isosceles triangle TUR ∴ |∠2| = |∠3| In ΔTES and ΔTUR |∠1| = |∠1|...................................common angle |∠2| = |∠3|...................................from above 14 ∴ ΔTES and ΔTUR are equiangular |TR| |TS| 1 ∴ ____ = ____ = __ as R is mid point of [TE] |TE| |TU| 2 ∴ U is mid point of [ST] (b) (i) A V Z W B In ΔAVB and ΔAZW: |∠AVB| = |∠AZW| ..............................both 90° |∠ABV| = |∠AWZ| ............................angles standing on the same arc ∴ ΔAVB and ΔAZW are equiangular (ii) As ΔAVB and ΔAZW are equiangular: |AV| |AB| ⇒ ____ = ____ |AZ| |AW| |AV| |AB| ∴ ____ = ____ |AZ| |AW| 6 4 ⇒ ____ = __ |AZ| 5 ∴ |AZ| = 3.333 7. (a) (i) 3 – 5 1 – 6 5 – 6 Good Shot Correct Club 2 – 5 2 – 7 Bad Shot Good Shot Wrong Club 5 – 7 Bad Shot 15 From the tree diagram, the probability of a good shot is: 5 2 or __ × __ 6 5 6 7 5 2 3 1 __ __ + __ × __ × 6 5 6 7 3 ___ 10 ___ + 30 42 71 ____ 210 3 1 __ __ × ( (ii) ) ( ) The probability that she has chosen the correct club, given that she plays a good shot, is: P(Correct club) × P(Good shot) P(Correct club/Good shot) = __________________________ P(Good shot) 3 1 __ __ × 5 6 = _____ 71 ____ 210 71 3 = ___ ÷ ____ 30 210 21 = ___ 71 (iii) The probability that she has chosen the wrong club, given that she plays a bad shot, is: P(Wrong club) × P(Bad shot) P(Wrong club/Bad shot) = ________________________ P(Bad shot) 5 5 __ __ × 7 6 = _______ 71 1 − ____ 210 25 139 = ___ ÷ ____ 42 210 125 = ____ 139 (b) (i) Mean is 73% of 130 = 94.9 Standard deviation is 6% of 130 = 7.8 x−µ z = _____ σ 80 − 94.9 z = ________ 7.8 z = −1.910 P(<80) = 1 − 0.9713 –3.5 –3 –2.5 –2 –1.5 –1–0.5 0 0.5 1 1.5 2 2.5 3 3.5 P(<80) = 0.0287 16 (ii) Mean is 73% of 140 = 102.2 Standard deviation is 6% of 140 = 8.4 P(>a) = 1 − 0.02 = 0.98 ∴ z = 2.06 x−µ z = _____ σ x − 102.2 2.06 = ________ 8.4 x > 199.5 Answer: 120 bottles 8. (a) B E 76° F 104° D 38° 104° 38° 6m A 1.5 m h 38° C (b) h 38° 2.5 m C h tan 38° = ___ 2.5 h = 1.953 m = 1 m 95 cm (c) |∠DCE| = 14° ∴ |∠ACE| = 42° In the triangle ACE: |AE| sin |∠ACE| = ____ |AC| |AE| sin 42° = ____ 10 ⇒ |AE| = 6.69 m (d) 17 (e) 72° xm 72° 54° 54° 5m 5m 5m 5m 5m 5 x ______ = ______ sin 72° sin 54° x = 4.253 m Timber required: 16(5) + 10(4.253) = 122.53 m = 123 m 18 Leaving Certificate Higher Level Maths Solutions Sample Paper 1, no. 5 1. (a) 2x2 − 2 ≤ 3x y 2x2 − 3x − 2 ≤ 0 Solve 2x2 − 3x − 2 = 0 x (2x + 1)(x − 2) = 0 1 x=2 x = − __ 2 2x2 − 3x − 2 ≤ 0 when (b) (i) –1 – –1 2 1 2 1 − __ ≤ x ≤ 2 2 2 + y = − 2x y = −2x − 2 −2x2 + 8xy + 42 = y −2x2 + 8x(−2x − 2) + 42 = − 2x − 2 −2x2 − 16x2 − 16x + 42 + 2x + 2 = 0 −18x2 −14x + 44 = 0 9x2 + 7x − 22 = 0 (9x − 11)(x + 2) = 0 11 x = ___ or x = − 2 9 11 y = −2 ___ − 2 9 22 = − ___ − 2 9 40 ___ =− 9 ( ) (ii) (i) =2 The line 2 + y = −2x and the curve −2x2 + 8xy + 42 = y intersect at two points: 40 11 ,− ___ ___ and (−2,2). 9 9 _________ ___ 14 ___ = _____________ __ __ 14 __ __ √63 − √28 √9 √7 − √4 √7 ( (c) y = − 2(− 2) − 2 ) __ 7 √__ __ 14 __ × ___ = _________ 3√7 − 2√7 __ √7 14√7 = _______ 21 − 14 __ 14√7 = _____ 7 __ = 2√7 ∴ a = 2 and b = 7 (ii) __ ___ 2√7 = √28 ∴ a = 1 and b = 28 is another way of expressing the solution. 19 2. (a) 1st year: 150 2nd year: 150 + 18 8 3rd year: 168 + __(18) = 184 9 8 n–2 after n years. Growth = 18 __ 9 8 17 – 2 = 3.08 cm 17th year growth is 18 __ 9 () () OR Tree Height (cm) Growth (cm ) Tree Height (cm) Growth (cm ) (b) yr 1 yr 2 150 168 18 yr 3 yr 4 184 198.2 yr 5 210.84 yr 6 222.07 yr 7 232.06 yr 8 240.94 16 12.64 11.23 9.99 8.88 14.2 yr 9 yr 10 yr 11 yr 12 yr 13 yr 14 yr 15 yr 16 yr 16 248.83 255.84 262.08 267.62 272.55 276.93 280.82 284.28 287.36 7.89 7.01 6.24 5.54 4.93 4.38 3.89 3.46 3.08 Height after 10 years ( ( )9 ) 8 18 1 – _9 150 + __________ 8 1–_ 9 = 150 + 105.8768146 = 255.88 cm OR Read from table given in part (a) – no penalty for early rounding if answer from table is given. (c) Max height = 150 + S∞ 18 = 150 + _____8 1 – _9 = 150 + 162 = 312 cm ∴ The tree will never exceed 312 cm in height. 3. (a) 2 2 2 2 3 48 24 12 6 3 1 48 = 24 × 3 2 3 3 19 342 171 57 19 1 342 = 2 × 32 × 19 2 2400 2 1200 2 600 2 300 2 150 2 75 5 75 5 15 3 3 1 1 2,400 = 25 × 52 × 3 ∴ H.C.F = 2 × 3 = 6 20 (b) 7n − 1 = 48 7n − 1 = 342 7n = 49 7n = 343 n=2 n = log7 343 49 = 72 − 1 n=3 73 − 1 = 343 2,400 = 7n − 1 2,401 = 7n log7 2,401 = n 4=n ∴ 2,400 = 74 − 1 (c) P(n): 7n − 1 is divisible by 6, for all n ∈N. P(1): 71 − 1 = 6 which is divisible by 6 ∴ P(1) is true. Assume P(k) is true. ∴ 7k − 1 is divisible by 6. P(k + 1): 7k + 1 − 1 = 7k · 7 − 1 = 7k · 7 − 7 + 7 − 1 = 7(7k − 1) + 6 Now 7k − 1 is divisible by 6. ∴ 7(7k − 1) is divisible by 6. and 6 is divisible by 6. ∴ 7k + 1 − 1 is divisible by 6 ∴ P(k + 1) is true if P(k) is true. Hence, by the principle of mathematical induction P(n) is true for all n ∈ N. 4. (i) 2 + 3i _____ 5+i 2 + 3i 5 − i = _____ ____ 5+i 5−i 10 − 2i + 15i − 3i2 = _______________ 25 − i2 10 + 13i + 3 = __________ 25 + 1 13 + 13i = _______ 26 1 1 = __ + __i 2 2 1 = __(1 + i) 2 ( )( ) 21 4 (ii) 2 + 3i 1 = __(1 + i) ) ( _____ 5 + i ) (2 4 14 = __ (1 + i)4 2 1 = ___((1 + i)2)2 16 1 = ___(1+ 2i + i2)2 16 1 ___ = (2i)2 16 1 = ___(4i2) 16 1 = ___(−4) 16 1 = −__ ∈ R 4 (iii) (a) z = 1 + 2i is a root. (1 + 2i)2 − (p − i)(1 + 2i) + q − i = 0 1 + 4i + 4i2 − (p + 2pi − i − 2i2) + q − i = 0 1 + 4i + 4i2 − p − 2pi + i + 2i2 + q − i = 0 −5 − p + q + 5i − 2pi − i = 0 −p+q=5 or −2pi + 4i = 0 −2p + 4 = 0 −2p = −4 p=2 ∴ −2 + q = 5 q=7 (b) z2 − (2 − i)z + 7 − i = 0 _______ −b ± √b2 − 4ac z = _____________ 2a _________________ (2 − i) ± √(−(2 − i))2 − 4(1)(7i) z = __________________________ 2(1) _________________ 2 − i ± √4 − 4i + i2 − 28 + 4i = ________________________ ____ 2 2 − i ± √−25 = ___________ 2 2 − i ± 5i = ________ 2 2 − i + 5i 2 − i − 5i = ________ or ________ 2 2 2 − 6i 2 + 4i = _____ or _____ 2 2 = 1 + 2i or 1 − 3i ∴ The other root is 1 − 3i. 22 5. (a) (b) ( ) 15 9 s = 16 − 16 ___ = 7.04 16 The lift is expected to stop about seven times. n ( ) 16 12 = 17 − 17 ___ 17 n 16 5 = 17 ___ 17 ( ) 5 16 ___ = ___ 17 ( 17 ) 5 16 ln ___ = ln( ___ ) 17 17 n n ( ) 5 16 ln ___ = n ln ___ 17 17 5 ln __ 17 ____ =n 16 ln __ 17 20.186 = n There were approximately 20 people in the lift. (c) (i) (ii) ( ) 1 A = b2 + 4 __bs 2 = b2 + 2bs s2 = (1.5)2 + (2.5)2 s2 = 8.5 s = 2.915475947 A = (3)2 + 2(3)(2.915475947) A = 26.49 m2 (iii) • IF a = b, then the shape is a cuboid – he has been given instructions not to use a cuboid. • IF a = 0, then the shape becomes a pyramid – this has proven impractical. (iv) 1, 9, 25, 49 12, 32, 52, 72 i.e. odd numbers squared Tn = (2n − 1)2 23 (v) (2n − 1)2 = 1,100 _____ 2n − 1 = √1,100 _____ 2n = √1,100 + 1 _____ n= √1,100 + 1 __________ 2 = 17.08 = 17 width = (17)(0.1 m) = 1.7 m 6. (a) (b) 100,000 × 0.15 = €15,000. 1.0675 = 1(1 + i)12 12 ______ √1.0675 = 1 + i 1.00545813 = 1 + i 0.00545813 = i 0.55% = i (c) i(1 + i)t A = P _________ (1 + i)t − 1 [ 0.005458(1.005458)120 = 85,000 ___________________ (1.005458)120 − 1 ] = 85,000[0.01138005072] = €967.30 (d) Year 0: −20,000 Year 1: _______ = (1.06)1 25,000 Year 2: ______2 = (1.06) 35,000 Year 3: ______3 = (1.06) 50,000 Year 4: ______4 = (1.06) NPV = −80,000 −18,867.92 22,249.91 29,386.67 39,604.68 −€7,626.66 As NPV < 0, it would not be worthwhile to invest in Patricia’s business. (e) F = P(1 + i)t = 15,000(1 + 0.035)5 = 15,000(1.035)5 = €17,815.29 24 (f) 50,000 − 17,815.29 = €32,184.71 32,184.71 = A + A(1.02)1 + A(1.02)2 + ..… … + A(1.02)59 = A(1 + (1.02)1 + (1.02)2 + .… + (1.02)59) [ ] 1 − 1.0259 = A 1 + _________ 1 − 1.02 = A[1 + 110.8348426] = A[111.8348426 32,184.71 ∴ A = ___________ 111.8348426 A = €287.79 7. (a) dy __________________________________ (1 + sin 3q)(2 cos 2q) − (sin 2q)(3 cos 3q) ___ = (1 + sin 3q)2 dx p p p p 1 + sin __2 2 cos __3 − sin __3 3 cos __2 p __ _______________________________ at q = ⇒ 6 p 2 1 + sin __ )( ( ) ( ( __ = ( ( )) ( ) 2 √3 1 (2) 2 _2 − __ 2 (3(0)) __________________ )( ) ) (1 + 1)2 2−0 = _____ 22 1 = __ 2 (b) 3 (i) _____ = 3(5 − x)−1 5−x dy 3 ___ = −3(5 − x)−2(−1) = _______2 dx (5 − x) _____ (ii) √x + 2 ( x + 2 ) 4x 4x = _____ _____ _____ (1 1 _ 2 1 _ (4x) = _______ 2 1 _ (x + 2)2 −1 __ ) ___ (1 −1 __ ) √x + 2 _2(4x) 2 · 4 − √4x _2 (x + 2) 2 (1) dy _________________________________ ___ = 1 _ dx ((x + 2)2 )2 ___ _____ 4x √_____ 2 ___ − ______ √x + 2 · ___ 4x 2 x +2 √ √ = _________________ _____ (x + 2) ___ 2√x___ + 2 ______ √4x ______ − _____ 2√x + 2 √4x _____________ = (x + 2) _____ __ 2√x + 2 ______ 2_____ √x ______ __ 2√x − 2√x + 2 _____________ = x+2 25 _____ __ √x 2 √x + _____ _____ __ − _____ x √ x +2 √ = ___________ (x + 2) (x + 2) − x _______ __ _____ √x √x + 2 = _______ x+2 2 1 _____ = _________ · _____ __ +2 x+2 2 = ___________ __ _____ 3 √x ( √x + 2 ) √x √x (iii) ______ 2x ( √3x + 1 ) 3 1 _ = (2x)(3x + 1)3 −2 3 ______ dy __ 1 ___ = 2x __(3x + 1) 3 (3) + √3x + 1 · 2 3 dx 3 ______ 2x __________ = 3 ______ 2 + 2√ 3x + 1 ( √ 3x + 1 ) [ ] 3 = ______ 3 2x + 2(√ 3x + 1 ) ______________ 3 _______ √3x + 12 2x + 2(3x + 1) = ____________ ______ ( 3√3x + 1 )2 8x + 2 = _________ 3 ______ 2 ( √3x + 1 ) (c) (i) y3 + y2 − x4 = 1 dy dy 3y 2 ___ + 2y___ − 4x3 = 0 dx dx dy 2 ___ (3y + 2y) = 4x3 dx dy _______ 4x3 ___ = 2 dx 3y + 2y 4(1)3 4 At (1,1), m = ___________ = __ 2 3(1) + 2(1) 5 y − y1 = m(x − x1) 4 y − 1 = __(x − 1) 5 5y − 5 = 4x − 4 4x − 5y + 1 = 0 (ii) f (x) = x3 + x2 − 1 f ′(x) = 3x2 + 2x f (1) = 13 + 12 −1 f ′(1) = 3(1)2 + 2(1) =1 =5 26 f (x1) x2 = x1 − _____ f ′(x1) 1 4 x2 = 1 − __ = __ 5 5 3 4 4 42 f __ = __ + __ − 1 5 5 5 19 = ____ 125 () () () 42 4 4 = 3 __ + 2 __ f ′ __ 5 5 5 88 = ___ 25 () () () f (x2) x3 = x2 − _____ f ′(x2) 19 ___ 125 4 ____ __ = − 88 __ 5 25 8. (a) 333 = ____ = 0.757 440 ( 0.6 ___ 0.4 ∫ ___ − 6 ) dx 4 x x = ∫0.6x−4 − 0.4x−6 dx 0.6x−3 0.4x−5 = ∫ _____ − _____ + c –5 −3 0.08 −0.2 ____ = ____ + 4 +c x x3 p _ ∫ 0 cos2 3q dq 6 (b) (i) p _ = ∫ 0 __2(1 + cos 6q) dq 6 1 1 _p = __ 6 1 + cos 6q dq 2 0 p sin 6q _6 1 __ _____ = q+ 2 6 0 sin 0 1 p sin p 1 = __ __ + ____ − __ 0 + ____ 2 6 6 2 6 p ___ = 12 ∫ [ [ ] ] [ ] 4 (ii) ∫2 5xex − 1 dx 15 5 __ = ∫3 eu du 2 2 let u = x2 – 1 du = 2x dx 1 du = x dx __ 2 x = 2, u = 22 − 1 = 3 5 = __[eu]315 2 5 = __[e15 – e3] 2 x = 4, u = 42 − 1 = 15 = 8,172, 493.22 27 (c) x2 + y2 = 36 y cuts x-axis at 6,−6 ∴−6≤x≤6 y2 = 36 − x2 6 ∫ –6 y2 dx 6 = p ∫–6 36 − x2 dx x Volume = p [ x3 = p 36x − __ 3 ] –6 6 –6 [ 3 (−6) 63 = p 36(+6) − __ − 36(−6) + _____ 3 3 = 288p units3 28 ] 6 Leaving Certificate Higher Level Maths Solutions Sample Paper 2, no. 5 1. (a) (i) –3 –2.5 –2 –1.5 –1 –0.5 0 0.5 1 1.5 2 2.5 3 –3 –2.5 –2 –1.5 –1 –0.5 0 0.5 1 1.5 2 2.5 3 P (≤ 1) = 0.8413 P (≤ −1) = 1− 0.8413 = 0.1587 –3 –2.5 –2 –1.5 –1 –0.5 0 0.5 1 1.5 2 2.5 3 P (–1 ≤ x ≤ 1) = 0.8413 – 0.1587 = 0.6826 Answer 0.6826 (ii) x–μ z = _____ σ 170 – 150 z = _________ = 1 20 190 – 150 z = _________ = 2 20 P (1 ≤ x ≤ 2) –3 –2.5 –2 –1.5 –1 –0.5 0 0.5 1 1.5 2 2.5 3 –3 –2.5 –2 –1.5 –1 –0.5 0 0.5 1 1.5 2 2.5 3 P (≥ 1) = 1− 0.8413 = 0.1587 P (≤ 2) = 1− 0.9772 = 0.0228 –3 –2.5 –2 –1.5 –1 –0.5 0 0.5 1 1.5 2 2.5 3 P (1 ≤ x ≤ 2) = 0.1587 – 0.0228 = 0.1359 Answer 0.1359 U 2. (a) M P 5% 5% 20% 70% 29 (b) (i) P(P∩M) 5 1 5 P(P|M) = ________ = ___ = __ or from Venn diagram P(P|M) = ___ = 0.5 10 2 10 P(M) (ii) P(P∩M) 5 5 1 P(M|P) = ________ = ___ = __ or from Venn diagram P(M|P) = ___ = 0.2 25 5 25 P(P) (iii) P(NP∩NM) 70 14 P(NM|NP) = __________ = ___ = ___ or from Venn diagram 75 15 P(NP) 70 14 P(Not P|Not M) = ___ = ___ 75 15 3. (a) 2x2 + 2y2 + 6x – 14y – 3 = 0 3 x2 + y2 + 3x – 7y – __ = 0 2 Centre = (–g, –f ) (–1.5, 3.5) _________ _________________ ___ Radius = √g2 + f 2 – c = √(1.5)2 + (3.5)2 + 1.5 = √16 = 4 (b) (i) Centre of circle x2 + y2 – 10x = 0 = (–g,–f ) _________ ____________ (5, 0) ___ Radius = √g2 + f 2 – c = √(5)2 + (0)2 – 0 = √25 = 5 If line is a tangent, the perpendicular distance from centre to the line should equal the radius. Perpendicular distance from (5, 0) to 3x – 4y + 10 = 0 is: ax1 + by1 + c 3(5) –______ 4(0) + 10 ___________ ______ = _____________ =5 √32 + 42 √a2 + b2 | 15 ___ + 10 _______ =5 √25 25 ___ =5⇒5=5 5 (ii) ∴The line is a tangent to the circle. If (2,4) is on the line and the circle, then (2,4) must be the point of contact. Is (2,4) on 3x – 4y + 10 = 0? 3(2) – 4(4) + 10 = 0 6 – 16 + 10 = 0 16 = 16 ∴ (2,4) is on the circle. Is (2,4) on x2 + y2 – 10x = 0? (2)2 + (4)2 – 10(2) = 0 4 + 16 – 20 = 0 20 = 20 ∴ (2,4) is on the circle. ∴ As (2,4) is on both the line and the circle, it is the point of contact. 30 _________________ 4. (a) |AB| = √(x2 – x1)2 + (y2 –y1)2 ________________ = √(0 – 2t)2 + (–t – 0)2 ______ ___ = √4t2 + t2 = √5t2 ___ ___ = √5t2 = √20 5t2 = 20 ⇒ t2 = 4 ⇒ t = ±2 (b) 6 5 45° 4 (4,3) 3 2 1 0 –2 0 –1 (3,0) 45° 1 2 3 4 x 5 6 7 8 9 –1 –2 m1 – m2 Tan 45° = ± ________ 1 + m1m2 –6 – m2 1 = ± _________ 1 + (–6)m2 –6 – m2 1 = + _________ 1 + (–6)m2 –6 –m2 1 = – _________ 1 + (–6)m2 1 – 6m2 = –6 – m2 5m2 = 7 7 m2 = __ 5 1 – 6m2 = 6 + m2 7m2 = –5 –5 m2 = ___ 7 Equations of lines −5 Point (4,3), Slope = ___ 7 y − y1 = m(x − x1) 7 Point (4,3), Slope = __ 5 y − y1 = m(x − x1) 5y − 15 = 7x − 28 5 y − 3 = − __ (x − 4) 7 7y − 21 = − 5x + 20 7x − 5y − 13 = 0 5x + 7y − 41 = 0 7 y − 3 = __ 5 (x − 4) 31 5. (a) Standard book proof (b) 92 = 32 + 82 − 2(3)(8) cos ∠DAB 81 = 9 + 64 − 48 cos ∠DAB 81 − 73 = −48 cos ∠DAB 8 − ___ = cos ∠DAB 48 1 cos−1 − __ 6 = ∠DAB ∠DAB = 99.594° 1 Area of triangle = __ a.b sin C 2 1 = __(3)(8) sin 99.594 2 = 12 sin 99.594 ( ) = 11.83 cm2 6A. (a) Centroid: The point at which the medians (lines from vertices to the mid point of opposite sides) meet. Incentre: The point at which bisectors of the angles meet. Orthocentre: The point at which the altitudes (lines from vertices drawn perpendicular to the opposite sides) meet. Circumcentre: The point at which the perpendicular bisectors of the sides meet. (b) D Circumcentre Incentre Centroid A B Orthocentre (c) Explaination: The circumcentre is outside because the triangle has an angle greater than 90o. (d) Explanation: Concurrent means they are collinear (on the same line). 32 6B. (i) B |∠CIB| = 71°...... Given |∠CIG| = 90° .... Angle in a semi-circle |∠BIG| = 90° − 71° = 19° C But |∠BIG| = |BCG| ...... Same arc [BG] G |∠BCG| = 19° (ii) 71° In the triangle CBH I |∠IHG| = 33° |∠CBH| = 90° 33° ∴ |∠BCH| = 57° But |∠BCG| = 19° H ∴ |∠GCI| = 38° (iii) B C 19° 76° G C 19° 38° G I As the angle at the centre of the circle standing on IG (Diagram 1) is twice the angle standing on the arc BG (Diagram 2), the ratio of the length of the arc IG to the arc BG is 2 : 1. 7. (a) (b) The pentagon is made up of three triangles so the missing angle is 3(180o) – (96o + 140o + 76o + 131o) = 97o 1 2 Area of triangle ABC = __ 2 (8.82)(9.61) sin 97° = 42.064 m 1 2 Area of triangle DAE = __ 2 (8.83)(8.8) sin 76° = 37.7 m 33 C 96° 8.8 m 8.82 m 140° B D 97° 8.83 m 9.61 m 76° 131° E 8.8 m A To find the area of triangle ACD, we need |DA| and |CA|. |DA|2 = 8.832 + 8.82 − 2(8.83)(8.8) cos 76° = 117.812 _______ |DA| = √117.812 = 10.854 m |CA|2 = 8.822 + 9.612 − 2(8.82)(9.61) cos 97° = 190.803 _______ |CA| = √190.803 = 13.81 m C 96° 8.8 m 8.82 m 140° D 13.81 m B 97° 8.83 m 10.854 m 9.61 m 76° 131° A 8.8 m Now we must find the angle ADC. 34 E |AC|2 = |AD|2 + |DC|2 − 2|AD|.|DC| cos |∠ADC| |13.81|2 = |10.845|2 + |8.8|2 − 2|10.845|.|8.8| cos|∠ADC| 190.716 = 117.614 + 77.44 − 190.872 cos|∠ADC| cos |∠ADC| = − 0.0229 |∠ADC| = 91.31° 1 1 Area of triangle ACD = __|CD|.|DA| sin|∠ADC| = __ (8.8).(10.854) sin 91.31° = 47.745 m2 2 2 Total area = 42.064 + 37.7 + 47.745 = 127.509 m2 = 128 m2 8. (a) Proof: A regular hexagon is made up of 6 equilateral triangles. A Join each of the vertices of ABCDEF to the centre point O. B F In the triangle AFO O |AF| = |AO| = |OF| ….. Radii of equal circles ∴ |∠FAO| = |∠AOF| = |∠OFA| = 60° E C Similarly, |∠OAB| = |∠ABO| = |∠BOA| = 60° D ∴|∠FAB| = 120° Similarly, all the vertex angles of ABCDEF = 120° ∴ ABCDEF is a regular hexagon. (b) Proof: Join each of the vertices of FBCE to the centre point O. |OF| = |OB| = |OC| = |OE| ….. Radii of equal circles A In the triangles OFE and OBC P F all sides are equal ……. Equal radii B O ∴ |∠EFO| = |OBC| = 60° Join A to F and join O to A. E |∠AFP| = |OFP| = 30°, as ΔAFP and ΔOFP are congruent. C D Similarly, |∠OBP| = 30° ∴ | ∠EFB| = 90° and |CBF| = 90° ∴ FBCE is a rectangle. 35 9. (a) Sample Data Sample Data Sample Size, 10 Sample Size, 20 Single Sample 100 Clear Samples Sample Samples Information Single Sample 100 s/√n: Sample Samples Data Set Size, N: 100 Mean, m: 164.72 Std. Dev., s: 10.2079 s/√n: Std. Dev., s: 10.2079 3.282 s/√n: Sample Means: 100 1.864 Sample Means: 100 Means, m: 165.286 Means, m: 164.853 Means, m: 164.735 Std. Dev., s: 2.96105 Std. Dev., s: 2.17909 Std. Dev., s: 1.85509 Sample Data Sample Data Sample Size, 40 100 Sample Data Sample Size, 50 Single Sample Clear Samples Sample Samples Information Sample Size, 60 Single Sample 100 Clear Samples Sample Samples Information Data Set Size, N: 100 Mean, m: 164.72 Std. Dev., s: 10.2079 s/√n: Std. Dev., s: 10.2079 1.614 s/√n: Sample Means: 100 1.444 Sample Means: 100 Means, m: 164.717 Means, m: 164.63 Std. Dev., s: 1.61937 Single Sample 100 Clear Samples Sample Samples Information Data Set Size, N: 100 Mean, m: 164.72 Std. Dev., s: 1.44511 Data Set Size, N: 100 Mean, m: 164.72 Std. Dev., s: 10.2079 s/√n: 1.317 Sample Means: 100 Means, m: 164.791 Std. Dev., s: 1.3297 The mean of the sample means approaches the mean of the population as the sample size increases. The means seem to become equal for sample sizes of 30 or greater. (ii) σ__ ≈s If the sample size is 30 or over ___ √n (i) The distribution seems not to be normal. (ii) This distribution seems to be normal. µ = 164.75 s = 10.23 n = 30 x = 160 x − µ ___________ 164 − 164.75 = − 0.4016 z = _____ σ__ = ___ 10.23 _____ ___ √n √30 –4 100 Clear Samples Information 3.228 Sample Means: 100 (d) Sample Samples Single Sample Mean, m: 164.72 Std. Dev., s: 10.2079 (c) Clear Samples Data Set Size, N: 100 Mean, m: 164.72 (i) Sample Size, 30 Information Data Set Size, N: 100 (b) Sample Data –2 0 2 4 P(z < − 0.4016) = 1 − P(0.4016) = 0.344 36
© Copyright 2025