6.1-13 Let X1 , X2 , · · · , Xn be a random sample from a distribution having finite variance σ 2 . Show that n X (Xi − X)2 2 S = n−1 i=1 is an unbiased estimator of σ 2 . Solution: We need to show that E(S 2 ) = σ 2 . Recall that S 2 can be expressed as n 1 X 2 2 S = X − nX . n − 1 i=1 i 2 We obtain n h X i 1 2 E Xi2 − nX n−1 i=1 n h i X 1 2 E(Xi2 ) − nE(X ) = n − 1 i=1 n i 1 hX 2 2 2 = (σ + µ ) − nE(X ) . n − 1 i=1 E(S 2 ) = 2 Since E(X ) = E( Pn i=1 n Xi 2 ) = n P 2 E( n i=1 Xi ) n2 and ( Pn i=1 Xi )2 = Pn 2 i=1 (Xi ) + P i6=j Xi Xj , n i i X X 1 hX 1 hX E(X ) = 2 E (Xi )2 + Xi X j = 2 E(Xi )2 + EXi Xj . n n i=1 i=1 i6=j i6=j 2 When i 6= j, Xi and Xj are independent and thus EXi Xj = EXi EXj = µ2 . So n i 1 X i 1 hX 2 1h 2 2 2 2 2 µ = 2 n(σ + µ ) + n(n − 1)µ = σ 2 + µ2 . E(X ) = 2 (σ + µ ) + n i=1 n n i6=j 2 Therefore, " n # X 1 1 E(S 2 ) = (σ 2 + µ2 ) − n( σ 2 + µ2 ) n − 1 i=1 n 1 = n(σ 2 + µ2 ) − (σ 2 + nµ2 ) n−1 1 = (n − 1)σ 2 n−1 = σ2.
© Copyright 2025