ON-LINE SYSTEMS FOR A U T O M A T E D S A M P L E INTRODUCTION IN A T O M I C S P E C T R O M E T R Y by L E S L I E JOHN PITTS BSC F I A P CRSC A thesis submitted to the University of Plymoutli in partial fulfilment for tlie degree of DOCTOR O F PHILOSOPHY Department of Environmental Science Faculty of Science In collaboration \vitli PS Analytical Ltd November 1995 LIBRARY STORE REFERENCE OMLY to No- [qQo345710o 2 6 F E B 1998 Date Class No. Contl.No, 90 0345710 0 ON-LINE SYSTEMS FOR AUTOMATED SAMPLE INTRODUCTION IN ATOMIC SPECTROMETRY LESLIE JOHN PITTS ABSTRACT A u t o m a t i o n has become i n c r e a s i n g l y common i n most a r e a s o f human e n d e a v o u r . I n t h e f i e l d o f a n a l y t i c a l chemistry, p a r t i c u l a r a t t e n t i o n has been p a i d t o o n - l i n e s y s t e m s w h i c h o f f e r h i g h sample t h r o u g h p u t . Among o t h e r a t t r i b u t e s , s u c h s y s t e m s a l s o o f f e r a d v a n t a g e s i n t e r m s o f ease o f a u t o m a t i o n and c o u p l i n g t o a v a r i e t y o f a n a l y t i c a l d e t e c t i o n s y s t e m s . T h i s t h e s i s d e s c r i b e s a number o f a u t o m a t e d a p p r o a c h e s t h a t have been developed t o f o m e i t h e r complete systems, o r u n i t s w h i c h may be i n c o r p o r a t e d i n t o h y p h e n a t e d t e c h n i q u e s . Two a u t o m a t e d s p e c i a t i o n s y s t e m s i n c o r p o r a t i n g a m i c r o w a v e r e d u c t i o n s t e p f o l l o w e d by h y d r i d e g e n e r a t i o n have been d e v e l o p e d and e v a l u a t e d . The f i r s t i s a c o n v e n t i o n a l s y s t e m employing atomic a b s o r p t i o n d e t e c t i o n , w h i l s t t h e second s y s t e m employs h i g h p e r f o r m a n c e l i q u i d c h r o m a t o g r a p h y t o separate the species prior to detection by atomic f l u o r e s c e n c e . S e l e n i u m has been u s e d t o e v a l u a t e b o t h s y s t e m s , t h e l a t t e r o f f e r i n g d e t e c t i o n l i m i t s o f 0.2 and 0.3 ng ml~^ f o r s e l e n i u m ( I V ) and s e l e n i u m ( V I ) r e s p e c t i v e l y . K i n e t i c s t u d i e s on t h e r e d u c t i o n p r o c e s s o f s e l e n i u m ( V I ) t o s e l e n i u m ( I V ) were c a r r i e d o u t . The r e d u c t i o n t o o k 6 m i n u t e s a t 70** C, w h i c h i s f a s t e r t h a n p r e v i o u s l y r e p o r t e d i n t h e literature. Thus t h e use o f o n - l i n e s y s t e m s e m p l o y i n g a r e d u c t i o n step are supported f o r t h i s element. P h o t o l y s i s was a l s o e v a l u a t e d as a means o f t r a n s f o r m i n g o r g a n o - m e t a l l i c s p e c i e s o n - l i n e . The r e s u l t s i n d i c a t e d t h a t p h o t o l y t i c t r e a t m e n t o f s e l e n o - m e t h i o n i n e may be e f f e c t i v e i n c l e a v i n g t h e c a r b o n - s e l e n i i a m bond, and p r o v i d e t h e b a s i s f o r an o n - l i n e s y s t e m t o p r e t r e a t o r g a n o - s e l e n i u m compounds. O n - l i n e p y r o l y s i s f o l l o w e d by p r e - c o n c e n t r a t i o n on a g o l d t r a p was employed t o determine mercury. This technique was i n c o r p o r a t e d i n t o a system employing gas chromatographyp y r o l y s i s - a t o m i c f l u o r e s c e n c e and u s e d t o d e t e r m i n e a r a n g e o f m e r c u r y s p e c i e s . I n a d d i t i o n t h e a p p r o a c h was a l s o u s e d t o d e t e r m i n e m e r c u r y i n s e d i m e n t s a m p l e s . Good a g r e e m e n t was o b t a i n e d w i t h two c e r t i f i e d r e f e r e n c e m a t e r i a l s (NIST 164 6 and NIST 8406. An a u t o m a t e d o n - l i n e pH a d j u s t m e n t s y s t e m was a l s o d e s i g n e d and d e v e l o p e d . T h i s d e v i c e f e a t u r e d t h e use o f ammonia gas t o avoid c o n t a m i n a t i o n o f samples p r i o r t o t r a c e a n a l y s i s . F i n a l l y , a number o f f u r t h e r a p p l i c a t i o n s o f t h e above s y s t e m s are discussed and a number o f avenues f o r f u t u r e work suggested. ACKNOWLEDGEMENTS I am g r a t e f u l t o a number o f p e o p l e a n d o r g a n i s a t i o n s who h a v e all assisted i nthe preparation o f t h i s contained Dr. t h e s i s and t h e work therein. Steve H i l l , D i r e c t o r o f Studies, f o r his continual help, s u p p o r t , a s s i s t a n c e , sense o f humour, a n d f o r p u t t i n g u p w i t h me f o r t h e l a s t three Professor Worsfold Paul years. f o r a l l h i s help, guidance and a p p r o a c h a b i l i t y i n h i s r o l e as s e c o n d s u p e r v i s o r . All the s t a f f i n b o t h t h e c h e m i s t r y department and t e c h n i c a l s e r v i c e s , w i t h very p a r t i c u l a r thanks t o Mr I a n D o i d g e . The E n g i n e e r i n g a n d P h y s i c a l S c i e n c e s R e s e a r c h C o u n c i l a n d t h e sponsoring support company PS A n a l y t i c a l Ltd., for their financial u n d e r t h e CASE a w a r d scheme, w i t h s p e c i a l t h a n k s t o Professor Peter S t o c k w e l l a n d Dr. Finally, t o my w i f e Hannah, Holly understanding and L i z a n d my d a u g h t e r s Verity, and s a c r i f i c e complete t h e work. Warren Corns. without I would have Rebecca, who's been Laura, patience, unable t o CONTENTS Page number Copyright statement 1 Author's d e c l a r a t i o n 2 T i t l e page 3 Abstract 4 Acknowledgements 5 Contents 6 List of figures 11 List of tables 15 Chapter 1 - Introduction 16 1.1 - Why automate? 18 1.2 - What i s a u t o m a t i o n 20 1.3 - From s a m p l i n g s i t e 1.4 - Batch versus continuous f l o w 24 1.5 - Outline of thesis 26 Chapter 2 - Hydride to results 22 generation,instrumentation and r e a g e n t s 28 2.1 - Hydride generation 29 2.1.1 - I n t e r f e r e n c e s and l i m i t a t i o n s 31 2.1.2 - Speciation studies differential employing reduction 33 2.1.3 - Instrumentation 35 2.1.3.1 - Hydride generator 35 2.1.3.2 - Detectors 37 2.1.3.3 - Microwave h e a t i n g system 38 2.1.3.4 - Photolysis source 40 2.1.3.5 - P y r o l y s i s oven 40 2.1.3.6 - Mercury p r e - c o n c e n t r a t i o n u n i t 44 2.2 - Background and t h e o r y b e h i n d t h e choice o f d e t e c t i o n systems 46 2.2.1 - Atomic absorption spectrometry 46 2.2.2 - Atomic fluorescence 52 2.2.3 - Atomic emission 2.2.4 - I n d u c t i v e l y c o u p l e d plasma-mass 2.3 - spectrometry spectrometry 59 spectrometry 63 Reagents 68 Chapter 3 - On-line hydride systems 69 3.1 - Introduction 3.2 - An i n v e s t i g a t i o n i n t o a p p a r e n t 70 signal enhancement d u e t o n i t r i c a c i d when determining selenium by h y d r i d e generation 73 3.2.1 - Background 73 3.2.2 - Experimental 75 3.2.3 - Further examination 3.3 - Conditioning of hydride o f t h e pump t u b i n g generation systems 3.4 - Development 79 84 o f a microwave r e d u c t i o n system 90 3.4.1 - Design c r i t e r i a 92 3.4.2 - P r i n c i p l e s o f microwave h e a t i n g 94 3.4.3 - The b a s i c s y s t e m o n - l i n e m i c r o w a v e system 3.5 - 97 Incorporation into a fully automated system 109 3.5.1 - Data h a n d l i n g 114 3.6 - Speciation studies 115 3.7 - An i n v e s t i g a t i o n i n t o of the kinetics the reduction o f selenium(VI) t o selenium(IV) 122 3.7.1 - Experimental 123 3.7.1.1 - Instrumentation 127 3.7.1.2 - Reagents 127 3.7.1.3 - Method 128 3.7.2 - Results 129 3.7.3 - Discussion 130 3.8 - Photolysis 134 3.8.1 - Experimental 135 3.8.2 - Discussion 136 3.9 - Summary 139 Chapter 4 - Applications of on-line pyrolysis 141 4.1 - Introduction 142 4.2 - Experimental 14 4 4.2.1 - The d e t e r m i n a t i o n o f m e r c u r y i n sediment 4.2.2 - 147 The a t t e m p t e d d e t e r m i n a t i o n o f mercury i n s i l v e r n i t r a t e 4.2.3 - The a t t e m p t e d d e t e r m i n a t i o n o f 8 148 m e r c u r y i n human h a i r 4.2.4 - 150 The a t t e m p t e d d e t e r m i n a t i o n o f mercury i n o i l 4.3 - 152 Mercury determinations employing gas c h r o m a t o g r a p h y c o u l p e d t o t h e pyrolysis 4.4 - system w i t h atomic fluorescence detection 152 Summary 161 Chapter 5 - Automated pH a d j u s t i n g system 162 5.1 - Introduction 163 5.1.1 - Theory 164 5.2 - Development 5.2.1 - Design o f t h e v a l v i n g 5.2.2 - Development 5.2.2.1 - The a n a l o g u e s y s t e m 5.2.2.2 - S e t t i n g up p r o c e d u r e o f t h e a n a l o g u e o f t h e system 166 170 of the electonics system 173 175 system 179 5.2.3 - The c o n t r o l s y s t e m 181 5.2.4 - The i n t e r f a c e e l e c t r o n i c s 187 5.2.5 - Design o f t h e r e a c t i o n 191 5.3 - Evaluation 193 5.4 - Discussion 201 5.5 - Summary 202 C o n c l u s i o n s and f u r t h e r work 203 Chapter 6 - vessel 6.1 - Conclusions 204 6.2 - F u r t h e r work 209 References 213 Appendix 1 223 C o n f e r e n c e s and c o u r s e s a t t e n d e d 225 Publications 227 Presentations 228 10 L I S T OF FIGURES Page number 2.1 - Diagram o f a f l o w injection hydride generator 2.2 - 36 Diagram o f t h e mercury fluorescence detector 39 41 2.3 - Diagram o f t h e microwave system 2.4 - Diagram o f t h e l a y o u t o f t h e h i g h power p h o t o l y s i s source 42 43 2.5 - Diagram o f t h e p y r o l y s i s oven 2.6 - Diagram o f t h e mercury p r e concentration unit 2.7 - The o p t i c a l 45 layout of a typical atomic absorption spectrometer 48 50 2.8 - D i a g r a m o f a h o l l o w c a t h o d e lamp 2.9 - D i a g r a m o f an electrodeless d i s c h a r g e lamp 2.10 - 51 Transitions involved i n the fluorescence processes 2.11 - 53 Diagram o f a b o o s t e d d i s c h a r g e h o l l o w c a t h o d e lamp 2.12 - Diagram o f a t y p i c a l 55 non-dispersive atomic fluorescence spectrometer 2.13 - Diagram o f t h e i n d u c t i v e l y coupled plasma t o r c h 2.14 - 57 61 Block diagram o f a t y p i c a l 11 ICP-MS 64 2.15 - L a y o u t o f a q u a d r u p o l e mass f i l t e r 3.2.1 - Diagram o f t h e b a s i c generation-quartz absorption 3.2.2 - Diagram - hydride furnace atomic d e t e c t i o n system 74 showing t h e e f f e c t o f s o l u t i o n preparation 3.2.3 o n o b s e r v e d enhancement - 80 Diagram o f t h e s i g n a l d r i f t against time 3.4.1 - 87 Diagram o f t h e b a s i c on-line microwave r e d u c t i o n system heating 98 3.4.2 - Initial 3.4.3 - Diagram o f a n o n - r e t u r n 3.4.4 - Diagram - c o i l designs 100 valve 102 showing t h e c o n s t r u c t i o n of heating, 3.4.5 Comparison details r e a c t i o n and c o o l i n g c o i l s between microwave i n j e c t i o n and c o n v e n t i o n a l l y - digested 108 Computer c o n t r o l l e d a u t o m a t e d microwave r e d u c t i o n s e l e n i u m s p e c i a t i o n system 110 112 3.5.2 - V a l v e s w i t c h i n g and t i m i n g d i a g r a m 3.6.1 - D i a g r a m o f t h e a u t o m a t e d HPLC-microwave reduction-hydride generation-AFS selenium s p e c i a t i o n system 3.7.1 - 106 flow standards 3.5.1 77 P h o t o m i c r o g r a p h s o f i n n e r b o r e o f pump tubings 3.3.1 66 Typical analysis hydride trace obtained generation 12 117 operating by under equilibrium conditions 3.7.2 - Trace o b t a i n e d generation employing coupled fluorescence 124 hydride t o atomic d e t e c t o r w i t h a one second sample i n j e c t i o n t i m e 3.7.3 - Plot of fluorescence against 3.7.4 - time 126 detector f o r various temperatures P l o t o f I n ( o u t p u t maximum against output output) time 131 3.7.5 - Plot of l n ( k ) against 3.8.1 - Plot of selenium a g a i n s t UV 1/T 132 concentration exposure time for detected seleno- methionine 3.8.2 - 129 137 P l o t of selenium concentration detected a g a i n s t UV exposure time for seleno- methionine to i l l u s t r a t e reaction rate 138 4.1 - Basic p y r o l y s i s system 145 4.2 - Coupled GC-Pyrolysis-AFS system 154 4.3 - E f f e c t o f column temperature 155 4.4 - E f f e c t o f c a r r i e r gas 156 4.5 - E f f e c t o f s a m p l e gas flow rate 157 4.6 - E f f e c t o f s h i e l d gas flow rate 158 4.7 - Response o f e t h y l m e r c u r y flow rate and d i m e t h y l mercury 160 5.1.1 - Typical combination 5.2.1 - Process o v e r v i e w 169 5.2.2 - Valving diagram 171 5.2.3 - E l e c t r o n i c s overview 174 13 pH electrode 167 5.2.4 - Overview o f t h e analogue system 5.2.5 - Analogue, circuit t i m e r s and l e v e l 176 detector diagram 177 5.2.6 - Logic c o n t r o l c i r c u i t diagram 5.2.7 - Interface electronics circuit 5.2.8 - First 5.2.9 - Final reaction 5.3.1 - Additional 183 diagram bubble-pump v e s s e l d e s i g n vessel design circuitry 192 194 t o improve c o n t r o l o f pH and sample 14 189 throughput 199 L I S T OF TABLES Page number 3.3.1 - Instrument operating during 3.4.1 - - - of hydrochloric - acid Analysis o f CRM Analysis coils 107 NIST 1643c - o f selenium 113 o f a mixed selenium standard (5 ng ml"' S e ( I V ) a n d S e ( V I ) ) 3.6.2 - Optimized operating conditions 119 f o r the complete system 4.1 - 121 Determination o f mercury i n c e r t i f i e d reference sediments 4.2 - 149 Instrument conditions f o r GC-pyrolysis- atomic fluorescence 5.2.1 - Initial 5.2.2 - S e t t i n g up p r o t o c o l 159 valve switching regime 172 f o r t h e analogue system 5.2.3 - 180 Reproducibility of the level detection s y s t e m s h o w i n g t h e mass o f w a t e r sampled 5.3.1 - 104 Table o f dimensions f o r t h e heating, determination 3.6.1 88 Absorbance r e a d i n g s f o r i n c r e a s i n g r e a c t i o n and c o o l i n g 3.5.1 employed hydride apparatus c o n d i t i o n i n g concentrations 3.4.2 conditions 195 A d j u s t e d pH o f 1 % n i t r i c under automatic c o n t r o l 15 acid samples 200 Chapter I Introduction 16 1.0 INTRODUCTION Over r e c e n t y e a r s , many f a c t o r s h a v e c o n t r i b u t e d for an ever i n c r e a s i n g carried out quality control products in and t o the niamber o f r o u t i n e c h e m i c a l t e s t s t o laboratories checks waste on of many incoming effluent government r e g u l a t i o n s raw all a r e t o be met types. and disease, and how outgoing monitoring competitive each i s a f f e c t e d p a r t i c u l a r e l e m e n t o r compound, more and need to be government obvious. is carried and other Since the often pushed out. The need regulatory sensitivity to the of limits, better t o keep p a c e w i t h demand. T h i s has to a demand for the about traces of a tests analyses laboratories analytical required led more body's the by i f viability more s e n s i t i v e for be industry, materials, require and In i s t o be m a i n t a i n e d . I n m e d i c i n e , as more i s d i s c o v e r e d health need in is techniques instrumentation is increase i n workload development of more automated systems. Fortunately coincided f o r t h e i n s t r u m e n t m a n u f a c t u r e r s , t h i s demand w i t h enormous a d v a n c e s i n t h e f i e l d s o f c o m p u t i n g , m e c h a n i c a l e n g i n e e r i n g and areas that resources the which instrument in turn makers have i n s t r u m e n t s which are c u r r e n t l y optics. have electronics, I t i s i n these invested produced has the massive advanced appearing. F i f t e e n years ago, o n l y t h e more a d v a n c e d i n s t r u m e n t s c o n t a i n e d , o r w e r e o p e r a t e d through, absorption a computer. Now, s p e c t r o m e t e r has even an 17 the most humble on-board microcomputer atomic which monitors the operation o f the instrument, and s l i g h t l y more advanced i n s t r u m e n t s use microcomputer i n t e g r a t e d c i r c u i t s f o r data handling as w e l l as c o n t r o l l i n g i n s t r u m e n t . Many l a r g e r i n s t r u m e n t s the ubiquitous IBM Personal completely operated it the operation o f the interface directly Computer o r s i m i l a r , Why Throughout and a r e and c o n t r o l l e d by i t - i n many i n s t a n c e s i s now t h e case o f no computer - no 1.1 with instrument. automate? the world, more automated systems are being developed i n a l l areas o f human endeavour. I n some cases, i t c o u l d be supposed t h a t these a r e i n t r o d u c e d t o a v o i d humans b e i n g s u b j e c t e d t o dangerous environments, w h i l s t i n o t h e r s , i t c o u l d be argued t h a t a u t o m a t i o n personnel automation avoids t h e need f o r s k i l l e d t o do a b o r i n g r e p e t i t i v e j o b . I n t r u t h , almost a l l i s i n t r o d u c e d p r i m a r i l y f o r f i n a n c i a l reasons. I n t h e case o f say t h e n u c l e a r power i n d u s t r y , t h e f a c t t h a t an automated r a d i o - a c t i v e f u e l r o d h a n d l i n g system does a v o i d t h e need f o r a man t o e n t e r t h e h o s t i l e environment i n w h i c h t h e rods a r e s i t u a t e d system were i s a beneficial available, very much side effect. higher I f no such wages would be demanded by t h e o p e r a t o r s who would have t o handle t h e rods, and t h e r e would be e x c e p t i o n a l l y h i g h a d d i t i o n a l c o s t s i n such t h i n g s as i n s u r a n c e p o l i c i e s , compensation payments and so on. 18 I t i s t r u e t h a t automated systems do a v o i d t h e r e q u i r e m e n t o f people d o i n g b o r i n g and r e p e t i t i v e j o b s , b u t a g a i n t h e prime motive for introducing the automation is financial. Bored people are l i k e l y t o make m i s t a k e s and m i s t a k e s c o s t money. It is also true that for i n s t a l l a t i o n o f an automated the company system may concerned, have a h i g h the initial c a p i t a l c o s t , b u t once purchased t h e system s h o u l d be a b l e t o c a r r y out i t ' s f u n c t i o n c o n t i n u o u s l y except f o r p e r i o d s s e t a s i d e f o r maintenance. and t a k e U n l i k e people, who l i k e t o e a t , s l e e p h o l i d a y s o c c a s i o n a l l y , machines w i l l f o u r hours a day, work t w e n t y t h r e e hundred and s i x t y f i v e days a year. They do n o t get i l l , do not argue w i t h t h e management and i n many cases o f f e r improved p r e c i s i o n over a n a l y s e s c a r r i e d o u t by p e r s o n n e l . The social impact of mechanisation p r e d i c t e d t o be b e n e f i c i a l t o a l l , drudgery and more f r e e t i m e t o be and automation was p r o v i d i n g a r e l e a s e from e n j o y e d by p o p u l a t i o n . I n t h e f i e l d o f c h e m i s t r y , i t was the general suggested that a u t o m a t i o n would f r e e t h e chemist from r o u t i n e e v a l u a t i o n s and enable him t o c a r r y o u t more i n t e r e s t i n g work^'^. true i n an ideal world, but employers are T h i s may not be primarily concerned w i t h whether o r not t h e i r employees are d o i n g work which i n t e r e s t s them, b u t whether t h e y are e a r n i n g p r o f i t s f o r the company. An a l t e r n a t i v e view i s t h a t machines r e p l a c e t h e more s k i l l e d and h i g h l y q u a l i f i e d workers, and t h u s downgrade them t o t h e s t a t u s o f machine minders, w h i l s t t h e l e s s s k i l l e d and l e s s q u a l i f i e d p e r s o n n e l are no l o n g e r r e q u i r e d a t a l l ^ . 19 Examples of this t h e o r y appear t o be more abundant than examples o f t h e former, n o t o n l y i n t h e area o f c h e m i s t r y , b u t in most o t h e r areas impact o f this mechanical study - of industry. Fortunately, the social advances a r e n o t w i t h i n t h e scope o f advances i n the f i e l d of automation are a b s o l u t e l y i n e v i t a b l e and i t i s t h e j o b o f governments and n o t s c i e n t i s t s t o cope w i t h t h e e f f e c t s o f these changes. 1.2 What i s automation? I t i s i m p o r t a n t t o d e f i n e e x a c t l y what i s meant by a u t o m a t i o n and m e c h a n i s a t i o n when a p p l y i n g these terms i n t h e f i e l d o f c h e m i s t r y . One o f t h e main r e g u l a t o r y b o d i e s i n c h e m i s t r y i s the I n t e r n a t i o n a l Union o f Pure and A p p l i e d Chemistry and it's definitions are t h a t (lUPAC) " m e c h a n i s a t i o n i s t h e use o f mechanical d e v i c e s t o r e p l a c e , r e f i n e , e x t e n d o r supplement human e f f o r t " , and t h a t "automation i s t h e use o f c o m b i n a t i o n s o f mechanical d e v i c e s t o r e p l a c e , r e f i n e , e x t e n d o r supplement human e f f o r t and f a c i l i t i e s i n t h e performance o f a given process, i n which a t l e a s t one major o p e r a t i o n i s c o n t r o l l e d w i t h o u t human i n t e r v e n t i o n , by a feedback The b e n e f i t s o f employing automated system". and mechanised systems have a l r e a d y been touched on. A p a r t from t h e obvious f i n a n c i a l and m a n a g e r i a l advantages o f n o t h a v i n g t o employ people t o c a r r y out r o u t i n e f u n c t i o n s , t h e r e are o t h e r v e r y considerable b e n e f i t s i n terms o f accuracy and p r e c i s i o n . Since one o f t h e 20 most a c c u r a t e l y measurable dimensions i s t h a t o f time, timed processes may be c o n t r o l l e d t o whatever l e v e l o f accuracy may reasonably be r e q u i r e d . Most c u r r e n t l y available computers have c l o c k speeds i n t h e range o f 25 - 120 MHz, so d i r e c t t i m i n g from these c l o c k s enables t i m i n g t o be c a r r i e d o u t t o sub-microsecond clocks accuracy. are available V a s t l y more to scientists accurate i f these and f a s t e r are r e q u i r e d , a l t h o u g h except f o r one o r two n o t a b l e e x c e p t i o n s such as i n t h e areas o f p h o t o c h e m i s t r y and r a d i o c h e m i s t r y , p r e s e n t t i m i n g from enough, and c e r t a i n l y many o r d e r s o f magnitude b e t t e r t h a n a person with a computer clocks i s generally accurate stopwatch. The advent o f stepper motors and o t h e r electromechanical d e v i c e s have a l s o enabled mechanised and automated systems t o deliver more accurately and w i t h measured q u a n t i t i e s o f chemicals greater repeatability, and s o l u t i o n s t o r e a c t i o n vessels, h o s p i t a l p a t i e n t s , e t c . Such has been t h e pace o f advance i n these areas, that chemists a r e becoming t o t a l l y r e l i a n t upon t h e i n s t r u m e n t , and t h e r e i s a g r e a t danger t h a t w i t h o u t a d e t a i l e d u n d e r s t a n d i n g o f t h e processes reaction, "smart involved i n a particular determination or e r r o r s o f g r e a t magnitude may be made. So c a l l e d systems" are being incorporated into various m a n u f a c t u r e r s s o f t w a r e i n an a t t e m p t t o m i n i m i s e such e r r o r s , but i t remains understanding vital that personnel with sufficient o f what t h e i n s t r u m e n t i s a c t u a l l y d o i n g and 21 what i t ' s l i m i t a t i o n s a r e , s h o u l d have o v e r a l l c o n t r o l . The o f t quoted example o f t h e near n u c l e a r war s t a r t i n g due t o t h e American r a d a r system d e t e c t i n g t h e r i s i n g moon and t h i n k i n g i t was a massive a t t a c k f o r c e , s h o u l d be r e c a l l e d by a l l who depend on t h e r e s u l t s o f i n s t r u m e n t s . 1.3 From san?>ling s i t e to r e s u l t s I n most cases t h e r e i s a s e t p a t h f o l l o w e d by a sample it's point of collection, r e q u i r e d by t h e end user. stages through The to the automation d i f f e r s i n c o m p l e x i t y and v i a b i l i t y , final o f these from results various and i n g e n e r a l , i t has been i n t h e h a n d l i n g o f samples w i t h i n t h e l a b o r a t o r y which has received manufacturers. most attention from instrument A t y p i c a l r o u t i n e f o l l o w i n g , f o r example, a water sample from a r i v e r , f o r p o l l u t a n t a n a l y s i s may proceed as shown below. C o l l e c t i o n o f sample from r i v e r of sample t o s t a b i l i z e i t - - i n i t i a l on-site treatment r e t u r n o f sample t o l a b o r a t o r y s p l i t t i n g o f sample f o r o r g a n i c and i n o r g a n i c a n a l y s i s sample p r e - t r e a t m e n t Clearly, the f i r s t - a n a l y s i s o f sample by i n s t r u m e n t ( s ) . t h r e e stages and o n l y when t h e sample are d i f f i c u l t t o automate, reaches t h e l a b o r a t o r y , can any a u t o m a t i o n commence. A t t h e p o i n t o f e n t r y , t h e sample may be bar-coded, so that i t ' s progression 22 through subsequent processes sample may may be throughout the be monitored carried out laboratory automatically. Splitting automatically, as itself. and the f i n a l presentation w h i c h most a u t o m a t i o n w i l l be Remote o n - s i t e and more o f t e n advances to the measuring have The power been system being with the of advent (CMOS) i n t e g r a t e d with capacity, rapidly. This type i n on-line of instrumentation monitoring is combined to presently of circuits this, improvements i n b a t t e r y p e r f o r m a n c e and to on-site w h i c h e x h i b i t v e r y low power consumption, and developments in exploited thanks mainly requirements reduced complementary m e t a l o x i d e s i l i c o n enabled will possible. than p r e v i o u s l y p o s s i b l e , again instrumentation transport i s required. I t i s in t h i s o n - l i n e m o n i t o r i n g i s now in electronics. the Sample p r e - t r e a t m e n t v a r y , d e p e n d i n g on what i n f o r m a t i o n area, may of have proceed restricted however, t o a l i m i t e d number o f p a r a m e t e r s o f i n t e r e s t - the p o s s i b i l i t y of a remotely deployed i n d u c t i v e l y coupled plasmamass s p e c t r o m e t e r i s s t i l l some way remote m e a s u r i n g s y s t e m a r e on-board computer computer, laboratory. or are for either subsequent transmitted Thus w h i l s t o f f . The there kept be via are t r u e t h a t most d e t e r m i n a t i o n s f o r some time, c a r r i e d out a radio memory o f to a link be an portable to numerous a p p l i c a t i o n s the for t h e answer, i t i s a r e , and w i l l c o n t i n u e i n the 23 i n the downloading w h i c h remote s e n s i n g and m o n i t o r i n g may still r e s u l t s from t h e laboratory. to 1.4 Batch versus continuous flow Once t h e sample has been r e c e i v e d , t h e a n a l y s t has t o d e c i d e how b e s t t o proceed w i t h t h e a n a l y s i s . When s m a l l numbers o f samples a r e b e i n g processed f o r a l i m i t e d number o f elements, batch processing i s t h e main method advantage o f t h e t e c h n i q u e i s • t h a t employed. The chief i t a l l o w s t h e sample t o remain as a d i s c r e t e e n t i t y t h r o u g h o u t t h e a n a l y t i c a l p r o c e s s , and so c r o s s c o n t a m i n a t i o n i s a v o i d e d . Small sample s i z e s a r e a l s o more e a s i l y handled by t h e b a t c h method. Automated b a t c h a n a l y z e r s a r e capable o f h i g h t h r o u g h p u t r a t e s , b u t a u t o m a t i o n i s more d i f f i c u l t , mechanical r e q u i r i n g r o b o t i c auto-samplers and o t h e r systems t o t r a n s p o r t t h e sample f r o m c o n t a i n e r t o instrument. The i d e a o f c o n t i n u o u s f l o w systems was f i r s t i n t r o d u c e d by Technicon w i t h t h e i r A u t o a n a l y s e r - a d e v i c e i n which sample solutions and b l a n k s a r e s e p a r a t e d from one a n o t h e r by a i r bubbles, whilst they travelled through t u b i n g ^ . Reagents a r e added o n - l i n e , carried out on-line, detector. Such glass and d e t e c t i o n capillary i s also as t h e now c o l o u r e d sample passes a systems a r e now r o u t i n e l y employed i n many l a b o r a t o r i e s which handle l a r g e numbers o f samples which have a s i m i l a r m a t r i x , and which r e q u i r e t h e d e t e r m i n a t i o n o f t h e same elements o r compounds. Continuous flow r e l a t i v e l y simple t o automate. the c o n t a m i n a t i o n can occur, fact that cross systems a r e They do however s u f f e r from a l t h o u g h by a t t e n t i o n t o d e s i g n and o p e r a t i n g procedures, t h i s may u s u a l l y 24 be kept system to a c c e p t a b l e l e v e l s . usually t a k e s the The output form o f from the d e t e c t o r sharp peaks, quantitative d e t e r m i n a t i o n s b e i n g b a s e d on peak h e i g h t measurements. Hybridised i n s t r u m e n t s which employ both batch and o n - l i n e p r i n c i p l e s a r e now a p p e a r i n g , and o f f e r a d v a n t a g e s o v e r s i n g l e method systems. An a l t e r n a t i v e t o t h e a i r segmented s y s t e m d e s c r i b e d above i s flow injection precise analysis (FIA). In this volume o f a n a l y t e i s i n j e c t e d technique, into a a moving very stream which i s unsegmented by a i r b u b b l e s . T h i s t e c h n i q u e was first employed i n e l e c t r o c h e m i c a l d e t e r m i n a t i o n s ^ , i n which a n a l y t e samples were m a g n e t i c a l l y s t i r r e d f o l l o w i n g i n t r o d u c t i o n i n t o a moving s t r e a m . The method was working mixing independently of induced sample and of one another^''', reagent dispersion, and l a t e r m o d i f i e d by two c o u l d be that this who realised accomplished avoided the by i t was initially thought that that flow excessive d i l u t i o n r e q u i r e d when u s i n g t h e m a g n e t i c a l l y s t i r r e d Whilst groups system. a i r segmentation was n e c e s s a r y t o p r e v e n t d i s p e r s i o n , promote m i x i n g and c l e a n t h e walls of the c a r r y i n g case^. Advantages include higher tubing, obtained throughput, this from was not found not having quicker response t o be the segmentation times, shorter s t a r t up and c l o s e down p e r i o d s , and g e n e r a l l y more s i m p l e and flexible equipment. publications There dealing with i s now the 25 a c o n s i d e r a b l e number technique including of many reviews'''^ 1.5 O u t l i n e of t h e s i s The work d e s c r i b e d i n t h i s thesis falls into four distinct s e c t i o n s , r e l a t e d by t h e coimnon t h r e a d s o f a u t o m a t i o n and line on- analysis. Much work was particular c a r r i e d out on h y d r i d e g e n e r a t i o n systems w i t h emphasis on the study of selenium speciation. W h i l s t e x i s t i n g t e c h n i q u e s c o u l d be o p e r a t e d i n a p a r t i a l l y o n - l i n e way, a f u l l y o n - l i n e system has not been d e s c r i b e d . Since p r e - r e d u c t i o n o f s e l e n i u m { V I ) i s r e q u i r e d when employing h y d r i d e g e n e r a t i o n , t h e development o f a microwave r e d u c t i o n system has enabled a number o f hyphenated t o be produced and induced techniques e v a l u a t e d . These have proved t o be u s e f u l and r e l i a b l e f o r t h e d e t e r m i n a t i o n and both speciation of selenium. Since t h e d e t e r m i n a t i o n o f t r a c e organo-selenium compounds by atomic s p e c t r o s c o p y r e l i e s upon t h e d e s t r u c t i o n o f t h e carbonselenium bonds and g e n e r a t i o n , work was consequential analysis c a r r i e d out t o examine t h e by hydride possibility o f employing o n - l i n e p h o t o l y s i s t o achieve bond cleavage. T h i s work i s f u l l y d e s c r i b e d i n Chapter 26 3. Considerable a t t e n t i o n the environment, biogenic fate. pyrolysis i s currently both in b e i n g p a i d t o mercury i n i t ' s bioavailability Chapter 4 c o n t a i n s d e t a i l s and pre-concentration d e t e r m i n a t i o n o f t h i s element. o f work techniques and i t ' s employing for Such methods are o f the interest s i n c e mercury i s a d i f f i c u l t element t o d e t e r m i n e , due t o t h e extreme problems o f l o s s e s o f a n a l y t e and a l s o c o n t a m i n a t i o n . Thus any system which reduces sample p r e p a r a t i o n w h i l s t m a i n t a i n i n g good s e n s i t i v i t y i s t o be still considered. The development o f an o n - l i n e pH a d j u s t i n g system i s d e s c r i b e d i n Chapter 5. T h i s system was pH adjustment analysis. As of a c i d i f i e d such, designed t o p r o v i d e automated aqueous samples, p r i o r minimal contamination was to trace a prime r e q u i r e m e n t , and was achieved by u s i n g gaseous ammonia as t h e adjusting contaminants reagent, thus avoiding the introduction t o t h e sample from s o l i d o r l i q u i d 27 reagents. of Chapter 2 Hydride generation, imirumentation and reamnts 28 2.1 Hydride g e n e r a t i o n I n 1969, Holak^^ r e p o r t e d a t e c h n i q u e f o r t h e d e t e r m i n a t i o n arsenic by the detection generation using an of atomic arsine, and absorption of i t ' s subsequent spectrometer. Holak employed m e t a l l i c z i n c and h y d r o c h l o r i c a c i d t o g e n e r a t e t h e hydride, which was introduction into were also acid^^, then trapped before t h e s p e c t r o m e t e r . Other r e d u c t i o n systems investigated and magnesium, cryogenically including aluminium zinc titanium(III) h y d r o c h l o r i c a c i d " ' " . The and - hydrochloric chloride - r e a c t i o n i s shown below i n E q u a t i o n 1. Equation 1 Zn + (n+2) 2 HCl + -* E-^ - 2H* EH„ (m and n may be A l l of the metal - acid reactions and this before + ZnCl^ + (excess) equal) s u f f e r e d f r o m b e i n g slow, made i t necessary t o t r a p t h e subsequent a n a l y s i s . A regimes have been plastic bags, hydride into evaluated pressurised either produced, number o f d i f f e r e n t including rubber containers^"''^^, silver diethyldithiocarbamate- hydrides nitrate and trapping balloons^^'^^, bubbling solution^^, or ephedrine^°. However, these the silver trapping t e c h n i q u e s a l l s u f f e r e d from one d i s a d v a n t a g e o r a n o t h e r - f o r example t h e a c i d vapour degraded t h e rubber from which b a l l o o n s were made, e t c . W h i l s t c r y o g e n i c t r a p p i n g was 29 one the of t h e more t r o u b l e f r e e t e c h n i q u e s advantage that i t separated hydrogen generated, available, the hydride i t a l s o had from the the excess so p r e s e n t i n g a g r e a t e r c o n c e n t r a t i o n o f the h y d r i d e t o t h e d e t e c t o r . A f t e r t h e i n t r o d u c t i o n o f sodium b o r o h y d r i d e as t h e r e d u c i n g medium, d i r e c t t r a n s f e r became t h e method o f c h o i c e , s i n c e t h e reduction using t h i s reagent i s v e r y much f a s t e r t h a n w i t h z i n c - h y d r o c h l o r i c a c i d . I t a l s o has generates these hydrides being from antimony, a l l the t h e advantages t h a t i t hydride arsenic, forming bismuth, elements, germanium, lead, selenium, t i n and t e l l u r i u m . I t a l s o has a s u p e r i o r r e d u c t i o n y i e l d and s u f f e r s l e s s c o n t a m i n a t i o n o f b l a n k s . The r e a c t i o n i s shown i n E q u a t i o n 2: Equation 2 BH4- + (n + 2) H** Since t h e use trapping, H* + + 3 H2O E"^ - -* EH„ (m and n may be H3BO3 + enabled 8H* (excess) equal) o f sodium b o r o h y d r i d e i t has H2 + obviates the need f o r automated h y d r i d e g e n e r a t o r s c o n s t r u c t e d , u s i n g p e r i s t a l t i c pumps^^ o r p r e s s u r i z e d pumping systems^^. Systems employing p e r i s t a l t i c t o be reagent pumps may be more e a s i l y automated, s i n c e l e s s o p e r a t o r i n t e r f e r e n c e i s required, and are o p e r a t e d f l o w modes. The pressurized i n flow i n j e c t i o n or reagent pumping continuous systems allow g r e a t e r c o n t r o l over r e a c t i o n c o n d i t i o n s ' ^ , and are m a i n l y used 30 i n t h e b a t c h mode 2.1.1 Of Interferences and l i m i t a t i o n s t h e two forms o f i n t e r f e r e n c e a f f e c t i n g using hydride generation, chemical determinations interferences a r e more p r o b l e m a t i c t h a n s p e c t r a l i n t e r f e r e n c e s . Since t h e a n a l y t e o f i n t e r e s t i s detached from i t ' s m a t r i x , s p e c t r a l i n t e r f e r e n c e s are r a r e l y encountered. Chemical i n t e r f e r e n c e s do p r e s e n t many problems however, and great care must be employed t o o b v i a t e their effects. unexpected c h e m i c a l i n t e r f e r e n c e i n which t r a c e s acid present signal i n the matrix level during An of nitric produced an enhancement i n t h e selenium determinations i s reported i n Chapter 3.2. A l a r g e volume o f l i t e r a t u r e has r e p o r t e d on t h e effects of different conflicting part interferences, are o f t e n views on t h e s e v e r i t y o f these e f f e c t s , t o t h e processes conditions but there employed involved by i n the hydride individual workers. A due i n generation number of c l a s s i c a l studies^*'" a r e however f r e q u e n t l y r e f e r r e d t o and these p r o v i d e much i n f o r m a t i o n on i n t e r f e r e n c e s . A new work^° contains an o v e r v i e w o f most o f t h e p u b l i s h e d subject o f hydride apparently generation, conflicting and c l e a r l y i l l u s t r a t e s many r e s u l t s obtained field. 31 work on t h e by workers i n t h i s The causes twofold. of The interferent chemical first interferences is the are thought p r e f e r e n t i a l reduction to be of the i o n e i t h e r t o a d i f f e r e n t o x i d a t i o n s t a t e or t h e f r e e m e t a l . T h i s can to g i v e r i s e t o slow r e a c t i o n k i n e t i c s f o r the species o f i n t e r e s t , c o - p r e c i p i t a t i o n , adsorption of the h y d r i d e or i t ' s c a t a l y t i c decomposition. I n t e r f e r e n c e s due t o t h e t r a n s i t i o n group m e t a l s f a l l i n t o t h i s c a t e g o r y . I t has been suggested^'"^^ t h a t these i n t e r f e r e n c e s c o u l d be reduced by t h e use o f a low c o n c e n t r a t i o n with a high postulated concentration t h a t the high o f sodium b o r o h y d r i d e combined of hydrochloric acid concentration acid. It would keep is the i n t e r f e r i n g element i n s o l u t i o n , and i t would be reduced l e s s , thus a l l o w i n g the hydride forming r e a c t i o n t o proceed more favourably. The second formation flame, cause of chemical interference i s due to o f compounds i n t h e r e l a t i v e l y c o o l argon-hydrogen in the cases of atomic absorption and atomic f l u o r e s c e n c e d e t e c t i o n . T h i s mode o f i n t e r f e r e n c e e x p l a i n s m u t u a l i n t e r f e r e n c e most h y d r i d e s have on one A number o f precautions to avoid the problems caused have been suggested by d i f f e r e n t workers, these may summarised be as v a r y i n g the c o n c e n t r a t i o n hydrochloric acid, elements the the use of standard such as of masking iron, 32 agents, mercury etc. by and addition, r a t i o s o f t h e sodium b o r o h y d r i d e use the another^**. interferences releasing the the use and and of pre- treatment to separate the analyte from the interfering compounds. 2.1.2 As S p e c i a t i o n studies enploying d i f f e r e n t i a l reduction more has been p r o c e s s e s which d i s c o v e r e d - about occur i n nature, the various i t h a s become r e c o g n i s e d t h a t t h e form i n w h i c h t h e element a vital of role. T h i s has important and t r a n s p o r t a t i o n o f t h e element system which critically Pb(IV), bio-accumulation through the ecological i s presented^^. Some o f t h e h y d r i d e state, i n many a r e a s depends upon t h e p h y s i c o - c h e m i c a l form i n t h e element oxidation increasingly i spresent plays implications i n t e r e s t . The t o x i c i t y , b i o - a v a i l a b i l i t y , chemical foinning e l e m e n t s these being As(III) exist i n more t h a n one and A s { V ) , Pb(II) and S b d I I ) and S b ( V ) , S e ( I V ) and S e ( V I ) and T e ( I V ) and T e ( V I ) . Even though sodium b o r o h y d r i d e p r o v i d e s a much f a s t e r reduction than differences zinc-acid, i n the rate there are of hydride still formation noticeable between t h e d i f f e r e n t s p e c i e s . Indeed, t h e o x i d a t i o n s t a t e o f t h e a n a l y t e p l a y s a c r u c i a l r o l e i n t h e f o r m a t i o n o f t h e hydride^^. I n t h e cases of selenium and tellurium f o r example, i t i s only p o s s i b l e t o d e r i v e t h e h y d r i d e from t h e l o w e r o x i d a t i o n s t a t e , and pre-reduction content be used must be i s t o be d e t e r m i n e d . to advantage employed i f the t o t a l T h i s apparent disadvantage i n the determination 33 element of may individual s p e c i e s , by f i r s t a n a l y s i n g f o r t h e more reduced m o i e t y , and then c a r r y i n g out a r e d u c t i o n s t e p and r e - a n a l y s i n g f o r t o t a l c o n c e n t r a t i o n . The c o n c e n t r a t i o n o f t h e more h i g h l y o x i d i s e d form i s o b t a i n e d by d i f f e r e n c e . I n t h e case o f a r s e n i c , t h e r e i s a two conversion of stage process i n t h e arsenic(V) t o arsine", and this p o t e n t i a l which i s dependant upon pH. At a pH has a redox o f 4.5, only a r s e n i c ( I I I ) produces a r s i n e , subsequent r e d u c t i o n i n 5 mol 1'^ h y d r o c h l o r i c a c i d y i e l d s t o t a l arsenic. Again, arsenic(V) be d e t e r m i n e d by d i f f e r e n c e . The selective determination antimony may be c a r r i e d out i n t h e same way^*. Thus i t may be species p r e s e n t generation, seen t h a t the i n a sample may determination be of i n the literature^^"". 34 of individual achieved using hydride and t h e r e are a number o f examples o f t h e use t h i s technique may of 2.1.3 Instrumentation During t h e course o f t h i s s t u d y , a number o f instriaments have been employed. 2.1.3.1 Hydride g e n e r a t o r E a r l y work was c a r r i e d o u t u s i n g a c o n t i n u o u s generator and (Model 10.003, PS A n a l y t i c a l L t d . , O r p i n g t o n , Kent) t h i s was l a t e r upgraded t o a f u l l y system flow hydride (Model 10.004, s i m i l a r mechanically, PS A n a l y t i c a l computer Ltd.). controlled Both u n i t s a r e employing a p e r i s t a l t i c pump t o s u p p l y r e d u c t a n t , a c i d b l a n k and sample v i a a s w i t c h i n g v a l v e t o a g a s - l i q u i d s e p a r a t o r . The b a s i c l a y o u t o f t h e system i s shown i n F i g u r e 2.1. The d i f f e r e n c e between t h e two models i s t h a t i n t h e e a r l i e r model, t h e t i m i n g i s s e t from t h e f r o n t p a n e l , using r o t a r y switches which a l l o w o n l y a l i m i t e d number o f p r e - s e t t i m i n g p e r i o d s . The l a t e r model d e r i v e s i t ' s t i m i n g from t h e computer s o f t w a r e , and has a much g r e a t e r f l e x i b i l i t y over t h e range o f t i m i n g p e r i o d s which may be s e t by t h e o p e r a t o r . T h i s f a c i l i t y became e s s e n t i a l when u s i n g t h e atomic f l u o r e s c e n c e d e t e c t o r i n " f l o w i n j e c t i o n " mode, as d e s c r i b e d i n Chapter 3.7. With b o t h systems, t h e o p e r a t i o n i s t h e same and f o l l o w s a f o u r stage p r o c e s s . The f i r s t stage i s t h e d e l a y , d u r i n g which 35 Fiquro 2 1 Diaqram o f a flow injection hydride generator \ .1(11 HI .nk ^ -KO^ BLANK IK............ ViCOH C MItCI O.Ai Kv>l.lilK-lvl POSITION C.\^I.I<|UKJ S\-|>.U.»IOf < A 1 \ pxM Nihil I ..IN l i t MviiihijiK Xicon C .unci Koi.iitu-i.-i SAMPLE POSITION C . V I H|IIUI Svp.ll.llO* 36 t i m e t h e sample reaches t h e s w i t c h i n g v a l v e . T h i s i s f o l l o w e d by t h e r i s e p e r i o d , d u r i n g which t h e s i g n a l reaches a steady s t a t e . There t h e n f o l l o w s t h e a n a l y s i s t i m e , d u r i n g which t h e d e t e c t o r makes measurements, and finally t h e decay p e r i o d , d u r i n g which t h e s i g n a l r e t u r n s t o t h e b a s e l i n e . Each o f these p e r i o d s may be v a r i e d , depending upon t h e r e a c t i o n b e i n g i n v e s t i g a t e d . The kinetics l a t e r model of the (Model 10.004, PS A n a l y t i c a l L t d . ) p r o v i d e s t o t a l v e r s a t i l i t y i n t h e c o n t r o l o f these t i m i n g p e r i o d s . The same g e n e r a t o r may be employed as a c o l d vapour g e n e r a t o r f o r use i n t h e d e t e r m i n a t i o n o f mercury, a l t h o u g h a s l i g h t l y d i f f e r e n t g a s - l i q u i d s e p a r a t o r i s t h e n recommended. 2.1.3.2 Detectors The atomic a b s o r p t i o n s p e c t r o m e t e r used t h r o u g h o u t t h i s s t u d y was a model SP 9 (ATI, Cambridge). The b a s i c t h e o r y r e g a r d i n g atomic a b s o r p t i o n s p e c t r o m e t r y i s g i v e n i n S e c t i o n 2.2.1, and the functioning of the instrument i s more f u l l y described there. The atomic fluorescence instrument used is known as the E x c a l i b u r (PS A n a l y t i c a l , O r p i n g t o n , K e n t ) . I t ' s o p e r a t i o n and t h e o r y i s g i v e n i n more d e t a i l i n S e c t i o n 2.2.2. 37 The mercury f l u o r e s c e n c e d e t e c t o r used t h r o u g h o u t was a Merlin Kent). This the (Model 10,023, PS A n a l y t i c a l L t d . , unit i s shown i n F i g u r e 2.2, and study 02:pington, features a f l u o r e s c e n c e measuring system which may be employed e i t h e r as a s t a n d alone computer i n s t r u m e n t , o r as p a r t o f a f u l l y i n t e g r a t e d controlled analytical system. When using the f l u o r e s c e n c e d e t e c t o r f o r t h e d e t e r m i n a t i o n o f mercury, h i g h sensitivity a wide w i t h r o u t i n e d e t e r m i n a t i o n s below 1 pg ml"^ linear range over seven orders of and magnitude are available. Finally, an spectrometer L i b e r t y 200 AES was coupled a l s o used. The plasma-atomic instrument emission employed was ( V a r i a n I n s t r u m e n t s ) and f u r t h e r d e t a i l s o f ICP- Microwave h e a t i n g s y s t e m microwave h e a t i n g system employed was (Prolabo, Paris, France). This unit a Microdigest employs a microwave beam, has f u l l power c o n t r o l i n 5% s t e p s and of a i n s t r u m e n t s are g i v e n i n S e c t i o n 2.2.3. 2.1.3.3 The inductively the h e a t i n g p e r i o d from seconds t o h o u r s . p r i m a r i l y designed The focused control system f o r the d i g e s t i o n of i n d i v i d u a l 301 was samples, c o n t a i n e d i n d i s c r e t e tubes i n t h e microwave c a v i t y area. I n t h e a p p l i c a t i o n s p r e s e n t e d i n t h i s t h e s i s , i t was o p e r a t e d as a c o n t i n u o u s f l o w h e a t i n g system, w i t h t h e h e a t i n g c o i l b e i n g 38 F i g u r e 2.2 Mercury f l u o r e s c e n c e detector Photo Multiplier Tubc(PMT) Filler 0 Mv-'IClltA Semite S:Hiipk' Out Sheath Gas O u t Sheath Gas Sample LcMS AperiLiic Iniroduciioii C l i u n n c v 39 & Aperture contained i n a blank tube within the operated v i a a simple m u l t i f u n c t i o n cavity area. keypad, on t h e I t is control u n i t which houses t h e m i c r o p r o c e s s o r system and o t h e r c o n t r o l electronics. Figure The b a s i c system i s shown i n schematic form i n 2.3. 2.1.3.4 Photolysis The h i g h power UV source source used was c o n s t r u c t e d i n house, a diagram o f i t i s shown i n F i g u r e 2.4. and The diagram shows t h e h o r i z o n t a l c r o s s - s e c t i o n t h r o u g h t h e i n s t r u m e n t . The UV source i s an a x i a l l y mounted 400 w a t t mercury d i s c h a r g e lamp, with the u n i t b e i n g c o o l e d by a h i g h f l o w r a t e f o r c e d a i r system. 2.1.3.5 P y r o l y s i s oven The p y r o l y s i s oven employed was a model 10.550 (PS A n a l y t i c a l L t d . , O r p i n g t o n , Kent) . The u n i t i s shown i n diagrammatic form i n F i g u r e 2.5. I t f e a t u r e s a v e r y r a p i d h e a t i n g c y c l e , p r e c i s e c o n t r o l o f t e m p e r a t u r e , and i s f u l l y programmable. I t has been engineered tube i n such a way remaining cool t e m p e r a t u r e s o f 800 t h a t t h e ends o f t h e s i l i c a to the ^'C. 40 touch, even with sample sample F i g u r e 2.3 Microwave h e a t i n g system MAIN UNIT CONTAINING POWER S U P P L Y SAMPLE TUBE SHIELDING WAVE GUIDE CONTROL UNIT 41 MAGNETRON F i g u r e 2.4 Photolysis source 3 0 0 mm SAMPLE TUBES O o 2 0 0 mm 1ong 25 mm I . D . 4 0 0 WATT U.V SOURCE o SAMPLE TUBES 42 3 0 0 mm F i g u r e 2.5 Pyrolysis oven HEAT SINKS HEATING ELEMENT y\ v^s v \ v s SILICA SAMPLE TUBE PROGRAMMABLE HEATING CONTROLLER 43 2.1.3.6 Mercury p r e - c o n c e n t r a t i o n unit The i n s t r u m e n t used was a Galahad (Model 10.500, PS A n a l y t i c a l Ltd., Orpington, Kent). This u n i t f e a t u r e s the t r a p p i n g o f mercury vapour on a g o l d - sand t r a p . T r a p p i n g may f o r a p r o l o n g e d p e r i o d i f necessary, take place a f t e r which t h e mercury i s r e l e a s e d from t h e amalgam formed by h e a t i n g . The vapour i s t h e n swept from t h e t r a p mercury into the d e t e c t o r i n a stream o f c a r r i e r gas, u s u a l l y argon. The l a y o u t i s shown i n F i g u r e 2.6. Other models o f mercury p r e - c o n c e n t r a t i n g u n i t s are a v a i l a b l e from t h e same m a n u f a c t u r e r , computer controlled dedicated a n a l y t i c a l valving systems requirements. 44 i n which are automatic employed for F i g u r e 2.6 Mercury p r e - c o n c e n t r a t i o n unit S I L I C A WOOL PLUGS ^€ATER COIL CON^ECTIONS CO0L1M3 GAS OUTLET SAMPLE tM-ET SAMPLE OUTLET COXING GAS INLET 0-RINC SEALS COLO SATO hCATING ELEMEhTT 45 2.2 Background and t h e o r y b e h i n d the c h o i c e o f d e t e c t i o n systems There are f o u r d e t e c t i o n systems which are commonly employed in conjunction absorption with h y d r i d e g e n e r a t i o n . These spectrometry (AAS), atomic are atomic fluorescence s p e c t r o m e t r y (AFS), i n d u c t i v e l y c o u p l e d plasma-atomic e m i s s i o n spectrometry (ICP-AES) and inductively c o u p l e d plasma-mass spectrometry (ICP-MS). Other t e c h n i q u e s have been used, but are now r a r e l y employed. 2.2.1 Atomic a b s o r p t i o n spectrometry T h i s t e c h n i q u e r e l i e s upon t h e a b s o r p t i o n o f e l e c t r o m a g n e t i c energy, a t a wavelength s p e c i f i c t o t h e element concerned, by f r e e atoms o f t h a t element. Fraunhofer^^ n o t i c e d dark l i n e s i n the spectrum o b t a i n e d from s u n l i g h t , and i n 1823, measured t h e i r wavelengths. He, and a number o f l a t e r astronomers were o b s e r v i n g atomic a b s o r p t i o n l i n e s . A l t h o u g h t h e method c o n s i d e r e d t h e o r e t i c a l l y p o s s i b l e f o r use i n was the laboratory, i t was o f l i t t l e importance i n a n a l y t i c a l c h e m i s t r y due t o t h e very high measurements. O.OOlnm, resolution required Monochromators would be to capable required to make of isolate a quantitative resolution typical of atomic a b s o r p t i o n l i n e s . These would be p r o h i b i t i v e l y expensive t o produce, even i f t h e i r p r o d u c t i o n were p o s s i b l e . Thus t h e a p p l i c a t i o n o f atomic a b s o r p t i o n s p e c t r o m e t r y f r o m a continuum source was not f e a s i b l e . 46 In 1953, Walsh^^ achieved t h e b r e a k t h r o u g h i n the form o f a l i n e source, which enabled atomic a b s o r p t i o n s p e c t r o m e t r y t o become t h e most w i d e l y used t e c h n i q u e f o r t h e d e t e c t i o n and determination of metallic and metalloid elements. Walsh r e a l i s e d t h a t by r e p l a c i n g t h e continuum source w i t h an atomic s p e c t r a l source, t h e monochromator would o n l y be r e q u i r e d t o f i l t e r o u t o t h e r l i n e s produced by t h e source (e.g. f r o m t h e lamp f i l l e r g a s ) , which would u s u a l l y be w e l l s e p a r a t e d the from l i n e s o f i n t e r e s t . This p r o v i d e d t h e b a s i s f o r a p r a c t i c a l atomic a b s o r p t i o n s p e c t r o m e t e r . The l a y o u t o f a t y p i c a l i n s t r u m e n t i s shown i n F i g u r e 2.7. I t consists of a source, electrodeless discharge monochromator and a a hollow lamp cathode (EDL), d e t e c t i o n system. an lamp (HCL) or atom cell, a The source emits r a d i a t i o n c h a r a c t e r i s t i c o f t h e element i n q u e s t i o n , and t h i s r a d i a t i o n i s d i r e c t e d i n t o t h e atom c e l l . T h i s may s i m p l y be a flame, but other cells have been developed to meet p a r t i c u l a r r e q u i r e m e n t s . The purpose o f t h e atom c e l l i s t o produce a c l o u d o f atoms i n t h e ground ground produce energy state. These s t a t e atoms t h e n absorb photons from t h e source, a r e d u c t i o n i n t h e amount o f energy and reaching the d e t e c t o r when an a n a l y t e i s p r e s e n t . The l i g h t passes t h r o u g h a monochromator, which n o r m a l l y has a r e s o l u t i o n i n t h e o r d e r of 0.2 - 0.02 nm, and on t o t h e d e t e c t o r . The d e t e c t o r i s u s u a l l y a p h o t o m u l t i p l i e r tube, b u t t h e s u i t a b i l i t y o f s o l i d s t a t e d e t e c t o r s i s s t a r t i n g t o be i n v e s t i g a t e d . 47 F i g u r e 2.7 The optical layout of a typical atomic absorption spectrometer DEUTERIUM SOURCE (FOR BACKGROUND CORFECTIONI HOLLOW CATHODE LAMP 0 0 BURNER SPRAY CHAMBER MONOCHROMATOR O PHOTOMULTIPLIER TUBE FUEL OXIDANT ELECTRONICS UNIT (AMPLIFIERDISPLAY. CONTROL) SAMPLE INLET 48 Figures 2.8 cathode and lamp respectively. 2.9 and show the the The latter construction of electrodeless type of lamp the hollow discharge lamp offers a higher i n t e n s i t y o f l i g h t o u t p u t , b u t are more complex t o d r i v e and construct, the and t h e r e f o r e more costly to utilise in i n s t r u m e n t . Since h i g h l i g h t o u t p u t i s not a r e q u i r e m e n t atomic a b s o r p t i o n s p e c t r o m e t r y , t h e use in o f these lamps tends t o be r e s t r i c t e d t o those elements f o r which h o l l o w cathode lamps are u n a v a i l a b l e due t o poor With the huge improvements in performance. the production of optical components which has o c c u r r e d s i n c e Walsh's o r i g i n a l work, t h e use o f a continuum the work possessing has very source has been exploited^^'^^, b u t so f a r been high restricted resolution to research laboratories monochromators. If such monochromators s h o u l d become a v a i l a b l e i n t h e f u t u r e a t v e r y low c o s t , an i n s t r u m e n t o f f e r i n g m u l t i - e l e m e n t c a p a b i l i t y w i t h background correction built in viable. 49 could become financially F i g u r e 2.8 Diagram o f a h o l l o w c a t h o d e lamp ANODE ELECTRICAL + —• OUARTZ WINDOW CONNECTIONS _ HOLLOW CATHODE GLASS ENVELOPE CONTAINING Ne OR Ar AT 1 - 5 50 TORR Figure 2.9 Diagram o f a n e l e c t r o d e l e s s d i s c h a r g e lamp C E R A M I C TUBE O QUARTZ CO[L 4 Lur-ns R F - r-emolnder t o o c L OS BULB c o n t o 1 n 1 ng element, or- s o 1L i n Ar oL low eorb-Ked sci-cen pi-essure EARTHED BRASS TUBE 51 END WINDOW 2.2.2 Atomic f l u o r e s c e n c e Atomic fluorescence spectrometry is a relative newcomer t o t h e list of t e c h n i q u e s a v a i l a b l e t o the a n a l y s t . As t h e name i m p l i e s , t h e t e c h n i q u e r e l i e s upon l i g h t b e i n g absorbed and t h e n r e - e m i t t e d by the atoms of concentrations, the interest in i n t e n s i t y of the the analyte. emitted At low radiation is d i r e c t l y p r o p o r t i o n a l t o t h e c o n c e n t r a t i o n o f t h e a n a l y t e , and to the radiant power of the source at the analytical wavelength. At h i g h c o n c e n t r a t i o n s o f a n a l y t e , s e l f a b s o r p t i o n can occur. The two modes o f f l u o r e s c e n c e o f i n t e r e s t are resonance and non-resonance. I n t h e former, t h e l i g h t i s e m i t t e d a t t h e same w a v e l e n g t h as t h a t used t o p r o v i d e e x c i t a t i o n , generally more i n t e n s e Figure the 2.10 fluorescence radiational shows the processes"", processes, and of the and fluorescence transitions involved with lines solid dotted lines this is processes. in both representing representing non- r a d i a t i o n a l ones. I n t h e n o n - r a d i a t i o n a l t r a n s i t i o n s , a s i n g l e headed arrow i n d i c a t e s n o n - r a d i a t i o n a l d e a c t i v a t i o n , w h i l s t a double headed arrow s i g n i f i e s a t h e r m a l a c t i v a t i o n process. When t h e e m i t t e d r a d i a t i o n i s o f a h i g h e r energy and t h e r e f o r e a s h o r t e r wavelength, t h e term A n t i - S t o k e s Since t h e f l u o r e s c e n c e e m i s s i o n the e x c i t a t i o n i n t e n s i t y , i s applied. intensity i s proportional to t h e need f o r a v e r y i n t e n s i t y l i n e source i s apparent. 52 I t was stable, high t h i s f a c t o r which F i g u r e 2.10 Transitions involved in the fluorescence processes 71^ 7K 7K 71s: IK INCREASING EhCRGY NORMAL DIRECT RESONANCE STEPWISE Lire Th« solid lines indicoLo pt~ocsss«s. On d o L L s d dsecLlvoLion ant I-SLoUss rodiaLional Imss. a smgla end a d o u b l s hoadsd I s sraplpysd nCRMALLY ASSISTED RESONANCE procsssos. ThERMALLY ASSISTED ANTISTOKES doLLod h o a d s d ar-row tinss mdiceLss a arrow, e LKornoI a c L l v o L l o n v K s n t h e «aiiLL«d r a d i a t i o n 53 TVCRMALLY ASSISTED D I R E C T Llt-C mdicato GROLTO STATE non-rodisLiv« non-radiaLional procsss. Tho Lorm i s of a s h o r t s r w a v e l s n g t h . delayed t h e development o f t h e t e c h n i q u e . Continuum do provide not sufficient r e g i o n o f t h e spectrum. energy, particularly sources i n the UV Xenon a r c lamps have been employed, b u t problems o f s c a t t e r do occur. Moreover, t h e i n t e n s i t y over the a b s o r p t i o n h a l f - w i d t h i s r e l a t i v e l y low when compared w i t h l i n e sources, i n which a l l t h e r a d i a t e d energy i s c o n c e n t r a t e d i n t h e few e m i s s i o n l i n e s o f interest. I n cases where s u i t a b l e vapour d i s c h a r g e lamps e x i s t , they have been employed w i t h success, b u t t h e range o f such lamps is severely l i m i t e d . The c o n v e n t i o n a l h o l l o w cathode lamp as absorption spectrometers do not provide employed i n atomic sufficiently high i n t e n s i t y e m i s s i o n s , u n l e s s t h e y are p u l s e d . Boosted d i s c h a r g e h o l l o w cathode lamps (BDHCL) have overcome t h e low problem, 2.11. and an emission example o f such a lamp i s shown i n F i g u r e I n these lamps, t h e i n t e n s i t y o f e m i s s i o n i s r a i s e d by superimposing a p o s i t i v e column d i s c h a r g e across the hollow cathode discharge^^. T h i s p r o v i d e s a d d i t i o n a l e l e c t r o n s f o r t h e h o l l o w cathode plasma, e n s u r i n g t h a t most o f t h e atoms are excited, thus i n c r e a s i n g r a d i a t e d output w i t h o u t i n c r e a s i n g sputtering. The absence o f ground s t a t e atoms i n t h e light p a t h combined w i t h t h e low v o l t a g e - h i g h c u r r e n t d i s c h a r g e obviates self-absorption. BDHCLs have overcome t h e low source i n t e n s i t y problem i n many cases, and have a l l o w e d t h e development o f commercial 54 atomic F i g u r e 2.11 Diagram of a b o o s t e d d i s c h a r g e h o l l o w cathode lamp HOLLOW CATHODE EXCITED ATOMS ANODE 1 > " ^^^ r RADlAT ION BOOST DISCHARGE ANODE 2 ^ ' ELECTRON EMITTER f l u o r e s c e n c e i n s t r u m e n t s / such as t h e one used t h r o u g h o u t this study. been Other high intensity sources which have i n v e s t i g a t e d i n c l u d e microwave e x c i t e d e l e c t r o d e l e s s d i s c h a r g e lamps, and l a s e r s . The former are between 200 - 2000 times more i n t e n s e t h a n h o l l o w cathode lamps, b u t have s u f f e r e d from s t a b i l i t y problems. These have been reduced by t h e o p e r a t i o n o f t h e lamps w i t h i n t h e r m o s t a t t e d microwave c a v i t i e s . Lasers have a l s o been employed as sources, i n p a r t i c u l a r the tunable dye l a s e r . The o u t p u t from l a s e r s can be s u f f i c i e n t t o cause saturation fluorescence, which nullifies the effects of quenching and s e l f - a b s o r p t i o n . The design importance through and in operation atomic quenching, critical. of the atom fluorescence. the Since selection of W h i l s t n i t r o g e n may cell the is of energy vital is carrier lost gas is be employed as t h e c a r r i e r f o r atomic a b s o r p t i o n d e t e r m i n a t i o n s , b e i n g d i a t o m i c i t i s u s u a l l y avoided for fluorescence work. Fortunately, n e g l i g i b l e quenching c r o s s - s e c t i o n a l area, and argon has a i s generally employed. Hydrogen a l s o has a low v a l u e , and so the use o f a hydrogen d i f f u s i o n flame has been employed w i t h g r e a t e f f e c t . The preference for circular flames f o r fluorescence studies non-dispersive atomic i s almost u n i v e r s a l . The basic fluorescence diagram, layout of instrument i t can be a typical i s shown i n F i g u r e seen t h a t the 2.12. instrument is From the basically s i m p l e i n d e s i g n , c o n s i s t i n g o f a source and a l e n s t o focus 56 F i g u r e 2,12 Diagram of a fluorescence typical non-dispersive atomic spectrometer BOOSTED DISCHARGE HOLLOW CATHODE SIGNAL LAMP PROCESSING AND DISPLAY FILTER FLAME ATOM PHOTOMULTI P L I E R TUBE 57 AMPLIFIER t h e beam i n t o t h e atom c e l l . A t r i g h t angles t o t h i s assembly is a c o l l e c t o r lens, f i l t e r and a l i g h t d e t e c t o r ( u s u a l l y a p h o t o - m u l t i p l i e r t u b e ) . The o u t p u t from t h e d e t e c t o r i s f e d through an a m p l i f i e r and i n t o design of the o p t i c a l a readout assembly d e v i c e . The a c t u a l is critical, i f optimum performance i s t o be o b t a i n e d . Very s m a l l q u a n t i t i e s o f l i g h t a r e i n v o l v e d , and these must be c o l l e c t e d as e f f i c i e n t l y as possible, with efforts being made t o a v o i d degrading the signal v i a s c a t t e r etc. I n a dispersive instrument, the f i l t e r is s i m p l y r e p l a c e d by a monochromator. Atomic f l u o r e s c e n c e has a number o f advantages over atomic a b s o r p t i o n and atomic e m i s s i o n . As may be observed from F i g u r e 2.12, of t h e i n s t r u m e n t a t i o n i s l e s s complicated than i n e i t h e r the other particularly techniques techniques. Good i n t h e f a r UV are r e l a t i v e l y sensitivity region, where i s obtained, the other two i n s e n s i t i v e . The method i s h i g h l y s e l e c t i v e due t o t h e employment o f a l i n e source, and has low spectral i n t e r f e r e n c e . The t e c h n i q u e a l s o enjoys e x c e l l e n t l i n e a r i t y over a t l e a s t s e v e r a l o r d e r s o f magnitude (seven i n the case o f t h e mercury f l u o r e s c e n c e d e t e c t o r ) . A p a r t from t h e disadvantages r e g a r d i n g quenching, s c a t t e r i n g and s e l f a b s o r p t i o n a t h i g h c o n c e n t r a t i o n s a l r e a d y mentioned, the o n l y o t h e r major l i m i t a t i o n o f t h e t e c h n i q u e i s reduced s e n s i t i v i t y f o r elements w h i c h absorb and e m i t i n t h e v i s i b l e r e g i o n o f t h e spectrum, when compared w i t h atomic 58 emission. 2.2.3 Atomic e m i s s i o n spectrometry A number o f atomic e m i s s i o n s p e c t r o m e t e r s have been employed as d e t e c t o r s f o l l o w i n g h y d r i d e g e n e r a t i o n . These i n c l u d e t h e d i r e c t c u r r e n t plasma (DCP), microwave induced plasma (MIP) and i n d u c t i v e l y c o u p l e d plasma (ICP). W h i l s t t h e r e i s s t i l l some work b e i n g c a r r i e d o u t u s i n g t h e DCP, most a t t e n t i o n i s now c o n c e n t r a t e d on ICP. MIP has a number o f advantages ICP, b u t as y e t has s t i l l n o t been f u l l y over developed. The new g e n e r a t i o n o f ICP i n s t r u m e n t s o p e r a t e a t h i g h e r f r e q u e n c i e s {41MHz c . f . 27.12MHz), and a r e more t o l e r a n t t o h i g h e r l e v e l s of gases such as hydrogen which i s produced i n the hydride g e n e r a t i o n r e a c t i o n t h a n were t h e i r p r e d e c e s s o r s . Atomic e m i s s i o n s p e c t r o s c o p y i s t h e measurement o f t h e l i g h t e m i t t e d by atoms, which have been e x c i t e d by t h e i n p u t o f energy, as t h e y drop back to their ground states. Atomic e m i s s i o n may be observed a t t h e s i m p l e s t q u a l i t a t i v e l e v e l i n the " p l a t i n u m w i r e flame t e s t s " which w i l l be f a m i l i a r t o any s t u d e n t o f c h e m i s t r y . The t e c h n i q u e i s a l s o commonly employed i n flame photometers f o r t h e q u a n t i t a t i v e d e t e r m i n a t i o n o f t h e alkaline earth solution i s aspirated light elements. I n these into i n s t r u m e n t s , t h e sample t h e flame, and t h e i n c r e a s e i n e m i s s i o n due t o t h e element o f i n t e r e s t measured by a p h o t o c e l l , s p e c t r a l s e l e c t i o n b e i n g accomplished w i t h a s i m p l e filter between t h e flame and t h e d e t e c t o r . Many atomic a b s o r p t i o n s p e c t r o m e t e r s a l s o have t h e f a c i l i t y f o r o p e r a t i o n i n t h e e m i s s i o n mode, a g a i n u s i n g t h e flame as t h e e x c i t a t i o n 59 source. A g r e a t advance was made i n t h e l a t e 1970's when two workers operating independently produced similar designs f o r an i n d u c t i v e l y c o u p l e d plasma t o r c h . The main d i f f e r e n c e between the d e s i g n s was t h a t o f t h e o v e r a l l d i a m e t e r - t h e F a s s e l " d e s i g n has an o u t s i d e d i a m e t e r o f 18mm, w h i l s t t h e G r e e n f i e l d t o r c h has one o f 27mm. A t y p i c a l d e s i g n o f an i n d u c t i v e l y c o u p l e d plasma t o r c h i s shown i n F i g u r e 2.13. I t c o n s i s t s o f three c o n c e n t r i c quartz tubes, w i t h a water c o o l e d two o r t h r e e t u r n r a d i o - f r e q u e n c y (RF) c o i l around one end. The i n n e r tube c a r r i e s an a e r o s o l o f t h e sample i n a stream o f argon, at a f l o w r a t e o f about 1 1 min"^. The m i d d l e tube may have an a u x i l i a r y t a n g e n t i a l f l o w o f argon t h r o u g h i t , t h i s f l o w b e i n g optional i n a l l - a r g o n plasmas. The o u t e r t u b e has a n o t h e r t a n g e n t i a l f l o w o f argon p a s s i n g t h r o u g h i t a t a f l o w r a t e o f 10 - 15 1 min"\ which p r o v i d e s argon f o r t h e plasma i t s e l f , whilst simultaneously providing cooling f o r the torch. The plasma i s s t r u c k by a h i g h v o l t a g e d i s c h a r g e from a T e s l a coil, which i o n i z e s some o f t h e argon, and p r o v i d e s a source o f e l e c t r o n s . These i o n s and e l e c t r o n s t h e n i n t e r a c t w i t h t h e r a p i d l y changing magnetic this causes circular the ions horizontal f i e l d i n d u c e d by t h e RF c o i l , and and e l e c t r o n s t o f l o w path. C o l l i s i o n a l energy i n a closed exchange then occurs between i o n s , e l e c t r o n s and t h e argon atoms, t o produce a white hot f i r e b a l l . The t a n g e n t i a l f l o w o f argon i n the o u t e r tube p r o v i d e s t h e r m a l i s o l a t i o n between t h e f i r e b a l l and 60 F i g u r e 2.13 Diagram o f t h e i n d u c t i v e l y c o u p l e d p l a s m a t o r c h TAIL FLAME PLASMA R.F. COIL TANGENTIAL FLOW OF COOLANT ARGON TANGENTIAL FLOW OF ARGON AEROSOL OF ARGON AND SAMPLE 61 the t u b e . The f l o w o f argon and sample though t h e i n n e r tube must be s u f f i c i e n t t o punch a h o l e t h r o u g h t h e f i r e b a l l , and thus an annulus i s produced. The a n a l y t e atoms r e s i d e i n t h e area o f t h e f i r e b a l l f o r about 2 m i l l i s e c o n d s , d u r i n g which t h e y a r e s u b j e c t e d t o temperatures and temperatures nitrous are at least oxide-acetylene elements i n atomic atomization o f 6 - SOOO'^K. These t i m e s twice flames, as those experienced i n used f o r refractory absorption spectrometers. i s more complete, fewer The consequent chemical i n t e r f e r e n c e s occur and i o n i z a t i o n i n t e r f e r e n c e s are s m a l l o r n o n - e x i s t e n t ^ ^ . The plasma itself is a brilliant white, non-transparent doughnut shaped e n t i t y , topped by a f l a m e l i k e t a i l . which extends a few m i l l i m e t r e s shows a continuum spectrum, above t h e t o p o f t h e tube produced by t h e r e - c o m b i n i n g o f argon and o t h e r i o n s w i t h e l e c t r o n s . T h i s continuum and an o p t i c a l l y above t h e core, t r a n s p a r e n t r e g i o n occurs with The core spectral diminishes some 10 - 30 mm measurements made usually between 5 and 25mm above t h e c o i l . The RF capable energy i s s u p p l i e d by a h i g h power RF generator, o f p r o v i d i n g up t o about 2 kW o f power a t 27 MHz. Higher f r e q u e n c i e s are now b e i n g employed i n some i n s t r u m e n t s , which things, gases result i n a more s t a b l e plasma, which among other e x h i b i t s a h i g h e r t o l e r a n c e t o o r g a n i c s o l v e n t s and such instruments. as hydrogen These l a t e r which were p r o b l e m a t i c i n earlier generation instruments operate at a p p r o x i m a t e l y 41 MHz. 62 As a source f o r atomic e m i s s i o n measurements, t h e i n d u c t i v e l y coupled plasma o f f e r s h i g h s t a b i l i t y , high sensitivity and freedom from i n t e r f e r e n c e s , b u t t h e c a p i t a l and r u n n i n g c o s t s are h i g h . A l l such instr\aments are computer c o n t r o l l e d , are therefore well able t o operate i n an and automated mode. Optimum v i e w i n g h e i g h t s f o r a l l t h e elements are s t o r e d i n t h e s o f t w a r e , and may ICP-AES offers be a u t o m a t i c a l l y s e t by t h e i n s t r u m e n t . a wide choice of spectral l i n e a r i t y , and t h e p o s s i b i l i t y o f simultaneous d e t e r m i n a t i o n s . This fully latter f e a t u r e has lines, good multi-element r e c e n t l y been more e x p l o i t e d by commercial m a n u f a c t u r e r s in their latest g e n e r a t i o n o f i n s t r u m e n t s which employ s o l i d s t a t e d e t e c t o r s . 2.2.4 The is I n d u c t i v e l y c o u p l e d plasma - mass s p e c t r o m e t r y i n d u c t i v e l y coupled undoubtedly instruments for one of trace plasma - mass s p e c t r o m e t e r the most element sensitive and versatile determinations currently a v a i l a b l e t o t h e a n a l y t i c a l chemist. to p e r f o r m simultaneous (ICP-MS) I t o f f e r s the facility d e t e r m i n a t i o n s on most elements and also i s o t o p i c determinations. The l a y o u t o f a t y p i c a l i n s t r u m e n t i s shown i n F i g u r e The ICP t o r c h d e s c r i b e d i n t h e p r e v i o u s s e c t i o n i s employed 63 2.14. F i g u r e 2.14 B l o c k d i a g r a m of a t y p i c a l i n d u c t i v e l y c o u p l e d plasma-mass spectrometer QUADRUPOLE MASS F I L T E R ION L E N S tn _ / ICR TORCH I SAMPLE AEROSOL FROM SPRAY CHAMBER / COOLANT DETECTOR VACUUM PUMPS INTERFACE AUXILLIARY ARGON GAS CONTROL SYSTEM COMPUTER I 1 64 ARGON in t h i s case as an i o n source, and i s h e l d i n t h e h o r i z o n t a l p l a n e . The stream o f i o n s g e n e r a t e d by t h e plasma i s d i r e c t e d towards t h e f i r s t o f two n i c k e l ( o r p l a t i n u m ) cones, which a r e h e l d a x i a l l y w i t h t h e t o r c h . The f i r s t o f these cones i s t h e sampler, t h e second t h e skimmer, and these a c t i n such a way as t o produce a beam o f i o n s i n t o t h e quadrupole mass f i l t e r . There i s a t h r e e stage p r e s s u r e r e d u c t i o n between t h e t o r c h which o p e r a t e s a t a t m o s p h e r i c p r e s s u r e , t o t h e quadrupole mass f i l t e r which o p e r a t e s a t a p r e s s u r e o f a p p r o x i m a t e l y 2 x 10'^ bar. A f t e r p a s s i n g t h r o u g h t h e cones, t h e beam o f i o n s t h e n passes t h r o u g h a c c e l e r a t i n g mass f i l t e r . in electrodes before entering the The l a y o u t o f a quadrupole mass f i l t e r i s shown F i g u r e 2.15. The f i l t e r c o n s i s t s o f f o u r p r e c i s i o n ground m e t a l r o d s , which a r e s y m m e t r i c a l l y a r r a n g e d and p a r a l l e l t o the a x i s o f t h e i o n beam. The opposing rods a r e connected e l e c t r i c a l l y t o one a n o t h e r , and each p a i r i s connected t o a v a r i a b l e d i r e c t c u r r e n t (DC) s u p p l y . Each p a i r o f rods i s a l s o connected t o a v a r i a b l e r a d i o f r e q u e n c y (RF) g e n e r a t o r i n such a way t h a t each p a i r has a s i g n a l which i s 180** o u t o f phase w i t h t h e o t h e r p a i r . Mass scanning i s a c h i e v e d by a l t e r i n g t h e frequency o f t h e RF supply whilst holding the applied p o t e n t i a l c o n s t a n t , o r by a l t e r i n g t h e p o t e n t i a l s o f t h e two sources w h i l s t k e e p i n g t h e r a t i o between t h e s e p o t e n t i a l s and the f r e q u e n c y c o n s t a n t . The e f f e c t on t h e i o n s i s t o cause o s c i l l a t i o n s about t h e a x i s i n t h e f i e l d s produced, the resonant and o n l y i o n s i . e . those i o n s who's masses a r e o f t h e c r i t i c a l v a l u e , pass t h r o u g h t h e f i l t e r t o t h e d e t e c t o r - nonresonant ions c o l l i d e w i t h t h e rods. 65 F i g u r e 2.15 L a y o u t o f a q u a d r u p o l e mass f i l t e r OETECTOR PATH OF NON RESONANCE ION AXiS - A C GENERATOR 0 C SUPPLY FOCUSSED ION BEAM 66 The t e c h n i q u e does s u f f e r from a number o f i n t e r f e r e n c e s , one o f w h i c h i s due t o o v e r l a p o f e l e m e n t s This process i s known as i s o b a r i c having t h e same mass. interference, and with r e f e r e n c e to t h i s p a r t i c u l a r study which has c o n c e n t r a t e d i n particular of t h i s this interference renders the use i n s t r u m e n t p r o b l e m a t i c . T h i s i s due t o t h e f a c t naturally masses upon s e l e n i u m , occurring correspond selenium i n some has cases compounds p r o d u c e d i n t h e plasma, s i x isotopes, that and their of argon and from w h i c h t h e y could to t h e masses not t h e r e f o r e be s e p a r a t e d . In one, g e n e r a l however, and new the technique instruments i s an e x t r e m e l y are being developed improve d e t e c t i o n l i m i t s and s p e c i f i c i t y . 67 to powerful further 2.3 Reagents A number o f r e a g e n t s These are l i s t e d have been employed d u r i n g below, with their this respective study. source supply : Sodium s e l e n i t e ( 9 9 % ) Aldrich, Gillingham, Dorset Sodium s e l e n a t e (99%) Aldrich, Gillingham, Dorset Sodium B o r o h y d r i d e (98%) Aldrich, Gillingham, Dorset H y d r o c h l o r i c a c i d (37%) Aldrich, Gillingham, Dorset Hydrochloric Dorset. Merck, Poole, Dorset. Merck, Poole, Dorset. Merck, Poole, Dorset. acid (Aristar) Nitric MercJc, Poole, acid (Aristar) M e r c u r y AA s t a n d a r d (lOOOppm) 68 of J On-line hydride systems 69 3.1 Introduction The work described determination in by h y d r i d e this chapter concentrates g e n e r a t i o n o f t h e element S e l e n i u m i s an e s s e n t i a l t r a c e element on the selenium. f o r mammals, a v i a n s , c e r t a i n p l a n t s and b a c t e r i a , but i s a l s o h i g h l y t o x i c t o t h e s e species. It is a peroxidase, constituent which affords o x i d a t i v e damage^\ of the protection enzyme to glutathione cells against I n t h e environment, s e l e n i u m may be found i n t h e o r g a n i c form a s s e l e n o - a m i n o a c i d s and s e l e n o - e n z y m e s " which are readily dimethyldiselenide". transformed Selenium window" o f any e s s e n t i a l is into dimethylselenide has the narrowest required toxic "tolerance element^'''^^. The " t o l e r a n c e t h e d i f f e r e n c e between t h e minimum amount and window" o f an element f o r good h e a l t h , and t h e amount w h i c h w i l l e x h i b i t effects. A selenium d e f i c i e n c y i n man may result in cardiomyopathy^^. S i n c e t h i s window i s so n a r r o w i n t h e c a s e of selenium, techniques t h e need f o r a c c u r a t e f o r the determination and s e n s i t i v e analytical o f t h i s element a r e r e a d i l y apparent. S e l e n i u m i s a Group V I A m e t a l l o i d , w i t h 78.96 and h a s o x i d a t i o n accounts mainly f o r only as an states o f +6, an a t o m i c w e i g h t o f +4, +2, 0 and - 2 . I t 9 x 10"^ % o f t h e e a r t h s c r u s t , impurity i n sulphur, sulphide and o c c u r s and sulphate d e p o s i t s " . I t has i n d u s t r i a l use as a r e d colourant f o r g l a s s , and owing t o t h e f a c t t h a t t h e m e t a l - l i k e form i s v e r y light s e n s i t i v e , i t i s u s e d i n p h o t o c o p y i n g m a c h i n e s , and t o a s m a l l 70 extent in selenium the electronics i n sea water industry. i s low, The concentration i . e . 4 pg ml'^ i n s h a l l o w i n deep w a t e r as s e l e n i t e , and of water and 60 pg ml'^ 30 pg ml'^ 120 pg ml"^ r e s p e c t i v e l y as s e l e n a t e " . S i n c e i t i s e s t i m a t e d t h a t 8000 t o n n e s o f s e l e n i u m a r e i n t r o d u c e d i n t o t h e s e a year", these localised Selenium '^Se f i g u r e s may has to i n c r e a s e , p a r t i c u l a r l y s i x n a t u r a l l y o c c u r r i n g i s o t o p e s , '^Se (9.02%), "Se trace suffers each in areas. ( 9 . 1 9 % ) . The many start and ( 7 . 5 8 % ) , '''Se ( 2 3 . 5 1 % ) , '°Se first choice technique elements is often (0.89%), (49.81%) and f o r the determination ICP-MS, but this "Se of technique from a niomber o f i n t e r f e r e n c e s when s e l e n i u m h a s to be d e t e r m i n e d . I s o b a r i c i n t e r f e r e n c e s such as "Ar'*°Ar, ^^Ar^Ar, "Ar*°Ar, "Ar*°Ar and ^°Ar"Cl a l l l i m i t t h e u s e f u l n e s s o f ICP-MS i n selenium s t u d i e s . Fortunately, hydride generation a method w h i c h a c h i e v e s v i r t u a l l y 100% and combined w i t h an atomic to determine selenium fluorescence is absorption down t o about employed as improvement i n s e n s i t i v i t y the 1-2 conversion provides efficiency spectrometer ng ml'^. method of of approximately When i s able atomic detection, an three orders of magnitude i s p o s s i b l e . In inorganic encountered only the +4 compounds, selenium is most frequently i n e i t h e r t h e +4 o r +6 o x i d a t i o n s t a t e s . Of t h e s e , state reacts t o form t h e h y d r i d e , and therefore a r e d u c t i o n o f any +6 form p r e s e n t i n t h e sample i s n e c e s s a r y . This property of selenium has been r e g a r d e d 71 as a problem i n many c a s e s , a d d i n g a f u r t h e r s t e p f o r t h e a n a l y s t t o c a r r y out when t o t a l s e l e n i u m d e t e r m i n a t i o n s problem may however be t u r n e d regarding sample may reduction selenium. t o a d v a n t a g e when the i n d i v i d u a l species first be a n a l y z e d concentration present of information i s required. for selenium(IV), s t e p c a r r i e d out, before The a r e r e q u i r e d . The p e r c e i v e d and t h e n a n a l y s i n g again selenium(VI) The may a for total then be c a l c u l a t e d by s u b t r a c t i n g t h e former f i g u r e from t h e l a t t e r . 72 3.2 An investigation enhancement due s e l e n i u m by 3.2.1 A into to the nitric apparent acid when signal determining hydride generation Background number of enhancement workers when generation have selenium reported has been an apparent determined signal by hydride The i n c r e a s e i n s i g n a l o n l y occured when n i t r i c a c i d was p r e s e n t , as i s t h e case when n i t r i c a c i d i s added t o l i q u i d samples a t t h e time o f c o l l e c t i o n t o p r e v e n t c a t i o n s due t o a d s o r p t i o n onto v e s s e l s u r f a c e s (plate o u t ) . There a r e a number o f r e p o r t s i n t h e l i t e r a t u r e t h a t n i t r i c a c i d i s an i n t e r f e r e n t s u p p r e s s i n g selenium hydride suggesting the s i g n a l i n However no r e f e r e n c e c o u l d be found r e p o r t i n g an enhancement e f f e c t , and so t h i s was The systems^^'^^'^^'""" . investigated further. apparatus Figure generation loss of 3.2.1 used f o r t h i s i n v e s t i g a t i o n i s i l l u s t r a t e d i n I t consists of a hydride generator, an atomic a b s o r p t i o n s p e c t r o m e t e r employing a q u a r t z f u r n a c e , w i t h d a t a collection and processing by computer using Touchstone® software. It was first necessary enhancement effect conditions. This was to could evaluate be whether observed accomplished by the under first reported laboratory preparing s t a n d a r d c o n t a i n i n g 25 iig 1"^ o f selenium as sodium s e l e n i t e 73 a F i g u r e 3.2.1 Diagram o f t h e b a s i c h y d r i d e furnace atomic generation-quartz absorption detection system RADIATION HEATED FROM DETECTOR. ELECRONICS HOLLOW QUARTZ CATHODE TUBE AND READOUT LAMP HYDRIDE GENERATOR BLANK REDUCTANT 74 SAMPLE i n 3 mol 1"^ h y d r o c h l o r i c a c i d . The s i g n a l o b t a i n e d f o r t h i s s t a n d a r d was measured ( i n r e p l i c a t e ) and compared w i t h a 3 mol 1"^ h y d r o c h l o r i c a c i d b l a n k . Two 25 ml a l i q u o t s o f t h e s t a n d a r d were t h e n t a k e n . To one o f these 25 / i l o f c o n c e n t r a t e d acid was added, hydrochloric and acid. t o the other These 25 modified /xl o f nitric concentrated standards were then e v a l u a t e d a g a i n s t t h e 3 mol I ' - h y d r o c h l o r i c a c i d b l a n k . The solution containing the n i t r i c absorbance reading over 10% a c i d was higher found than t o give the an solution c o n t a i n i n g no n i t r i c a c i d . T h i s o b v i o u s l y e s t a b l i s h e d t h a t an enhancement undertaken d i d occur, i n an and attempt so a t o more systematic fully study was understand the mechanisms i n v o l v e d . 3.2.2 Experimental A s e r i e s o f s o l u t i o n s were p r e p a r e d by t a k i n g 25 /xl a l i q u o t s of a 130 mg 1"^ s o l u t i o n o f s e l e n i u m as sodium s e l e n i t e and adding them t o 100 ml v o l u m e t r i c f l a s k s . To each o f these was added 26.7 ml o f h y d r o c h l o r i c a c i d , t o g i v e a f i n a l s o l u t i o n s t r e n g t h o f 3 mol 1"^. A n a l a r n i t r i c added i n t h e range 10-500 / i l t o these making up t o volume w i t h a c i d was solutions, d e i o n i s e d water. acid then prior to They were then analyzed, a g a i n u s i n g t h e h y d r i d e g e n e r a t i o n - q u a r t z f u r n a c e atomic a b s o r p t i o n technique, against a standard prepared i n a s i m i l a r method, b u t c o n t a i n i n g no n i t r i c a c i d . D e t e r m i n a t i o n s 75 were c a r r i e d o u t by t h e b r a c k e t i n g method, t h a t i s s t a n d a r d , sample 1, s t a n d a r d , sample 2, s t a n d a r d e t c . The reading o b t a i n e d f o r t h e sample i n each case was t h e n compared w i t h the mean v a l u e f o r t h e standards compensates f o r i n s t r u m e n t a l d r i f t . observed, be either side. This method Again, enhancements were a l t h o u g h t h e i n c r e a s e s i n s i g n a l d i d n o t appear t o directly proportional t o the quantity of n i t r i c acid present. A f u r t h e r s e r i e s o f experiments sample s o l u t i o n s were p r e p a r e d first was performed i n which t h e i n d i f f e r e n t o r d e r s . For t h e s e r i e s of s o l u t i o n s , the a l i q u o t of concentrated stock was p l a c e d i n the flask, f o l l o w e d by t h e n i t r i c h y d r o c h l o r i c a c i d and f i n a l l y acid, the t h e water. I n t h e next series, the h y d r o c h l o r i c a c i d was added b e f o r e t h e n i t r i c a c i d , and i n the f i n a l s e r i e s , t h e n i t r i c a c i d a d d i t i o n was made a f t e r t h e water. These s o l u t i o n s were t h e n d e t e r m i n e d as p r e v i o u s l y , a g a i n u s i n g t h e b r a c k e t i n g t e c h n i q u e . The r e s u l t s a r e shown i n Figure 3.2.2. As may be preparation has a g r e a t enhancement observed. observed, effect the order o f sample upon t h e degree o f s i g n a l Since t h e r e was a p o s s i b i l i t y o f m o l e c u l a r s p e c i e s c a u s i n g t h e enhancement, background these experiments correction. Determinations were also were Similar made repeated results using were two o t h e r systems, namely i n d u c t i v e l y coupled plasma - atomic employing obtained. detection emission s p e c t r o m e t r y and atomic f l u o r e s c e n c e s p e c t r o m e t r y . A g a i n 76 F i g u r e 3.2.2 Diagram showing t h e e f f e c t of s o l u t i o n preparation on o b s e r v e d enhancement 78 u r c &0 Q c: 0 CO Q 40 3a h 2a la SB lea Uoltime ^ ^ e 4e5 0 15a 2 e a 2 5 a s e a s s e HC1-H20-HN03 of B ni-tr*ic a.oid HC1-HN03-H20 500 i n uL ""O HN03-HC1-H20 similar results performed were obtained. i n which other Further aspects of experiments were t h e system were i n v e s t i g a t e d , i n c l u d i n g t h e g a s - l i q u i d s e p a r a t o r , reagents and pump t u b i n g . Using reagents from other s u p p l i e r s made no d i f f e r e n c e t o t h e observed enhancements. A U-tube t y p e gasl i q u i d s e p a r a t o r was f a b r i c a t e d from Q u i c k - f i t glassware i n house, and produced virtually identical results t o those p r e v i o u s l y o b t a i n e d . The e f f e c t s o f t h e pump t u b i n g were t h e n examined. Up u n t i l t h i s stage o f t h e s t u d y , o n l y one t y p e o f pump t u b i n g had been s u p p l i e d f o r use w i t h t h e h y d r i d e g e n e r a t o r system. T h i s was t h e s t a n d a r d t u b i n g s u p p l i e d by t h e m a n u f a c t u r e r o f the hydride material, system, a pink and was o f a s i l i c o n e transparent sample and a c i d b l a n k , type being rubber supplied type of f o r the and a b l u e t r a n s p a r e n t type f o r t h e r e d u c t a n t . T h i s t y p e o f t u b i n g had been s u c c e s s f u l l y employed f o r t h e d e t e r m i n a t i o n o f selenium elements f o r many y e a r s . and o t h e r h y d r i d e However, because f r a g i l e n a t u r e , i t was subsequently tubing, which advantage that i s physically i t provided of i t ' s rather r e p l a c e d by 'Santoprene' more a forming robust. more constant had t h e delivery t o the gas-liquid repeated u s i n g t h i s t u b i n g , and no enhancement e f f e c t s were sample The experiments of reagents noted, separator. This were w i t h a s e c t i o n o f t h e o l d t u b i n g p l a c e d between t h e inlet and t h e pump, t h e enhancements observed. 78 were again 3,2.3 Further e x a m i n a t i o n o f t h e pump txibing An more d e t a i l e d e x a m i n a t i o n o f t h e s u r f a c e o f b o t h t y p e s o f pump t u b i n g was t h e n conducted. An i n i t i a l e x a m i n a t i o n o f t h e s u r f a c e o f t h e t u b i n g was made by o b t a i n i n g i n f r a r e d s p e c t r a , to see i f any t r a c e observed. This was carried r e f l e c t a n c e attachment spectrometer. o f carbon-selenium out using bonds a could be total internal on a P e r k i n Elmer F o u r i e r Transform No such bonds were d e t e c t a b l e , b u t s i n c e t h e s e l e n i u m c o n c e n t r a t i o n i n t h e t u b i n g would be e x t r e m e l y low i f p r e s e n t a t a l l , t h i s t e c h n i q u e would be u n l i k e l y t o be capable of i t ' s d e t e c t i o n . Samples o f b o t h types o f t u b i n g were examined u s i n g a scanning e l e c t r o n microscope. The photomicrographs a r e shown i n F i g u r e 3.2.3. The s u r f a c e o f t h e i n s i d e o f t h e e a r l y tube t y p e can c l e a r l y be seen t o have what appears t o be a honeycomb o f h o l e s i n i t ' s s u r f a c e , a l t h o u g h from these p i c t u r e s , i t i s n o t p o s s i b l e t o be c e r t a i n whether these a r e h o l e s i n , o r mounds on, t h e s u r f a c e . A n a l y s i s o f t h e t u b i n g was a l s o c a r r i e d o u t u s i n g t h e X-ray back s c a t t e r i n g attachment on t h i s i n s t r u m e n t . The r e s u l t s f r o m t h i s study were i n c o n c l u s i v e - no s e l e n i u m was found i n e i t h e r sample o f t i i b i n g , a l t h o u g h t h i s was n o t s u r p r i s i n g s i n c e t h e l i m i t o f d e t e c t i o n on t h i s i n s t r u m e n t i s i n t h e o r d e r o f 1 % . The main d i f f e r e n c e observed between t h e s p e c t r a produced f o r t h e two t u b i n g s was t h e presence o f h i g h c o n c e n t r a t i o n s o f aluminium i n t h e Santoprene t u b i n g . I t i s 79 F i g u r e 3.2.3 Photomicrographs of the b o r e s of the piin^ tubing Upper - t h e o l d e r p i n k tubing Lower - new tubing Santoprene 80 assumed t h a t alumina i s used as a f i l l e r i n t h e f o r m u l a t i o n o f t h i s t u b i n g , and t h i s i d e a i s r e i n f o r c e d by e x a m i n a t i o n o f t h e p h o t o m i c r o g r a p h o f t h i s t u b i n g . The s u r f a c e i s e x t r e m e l y rough with jagged peaks and t r o u g h s i n the surface structure. W h i l s t t h i s m a t e r i a l may p r o v i d e a s u r f a c e a t which r e a c t i o n s may occur, i t c l e a r l y does n o t have h o l e s i n i t i n t o which s e l e n i u m compounds may be t r a p p e d . Since selenium d i e t h y l d i t h i o c a r b a m a t e [Se (SzCNEtj) J used i n s i l i c o n e may be rubber as a v u l c a n i z i n g agent^^ and o t h e r s e l e n i u m compounds a r e used as c o l o u r a n t s e s p e c i a l l y i n t h e p r o d u c t i o n o f red coloured g l a s s " , the p o s s i b i l i t y of selenium b e i n g p r e s e n t i n t h e m a t r i x o f t h e t u b i n g i t s e l f c o u l d n o t be r u l e d o u t . E n q u i r i e s t o t h e m a n u f a c t u r e r s were u n s u c c e s s f u l due t o commercial c o n f i d e n t i a l i t y . An a t t e m p t was made t o d i g e s t t h e s i l i c o n e r u b b e r i n a m i x t u r e of nitric resulting and h y d r o f l u o r i c a c i d s , i n a PTFE c o n t a i n e r . The liquid was a n a l y s e d f o r selenium, but again the r e s u l t s were i n c o n c l u s i v e . Since s e l e n i u m h e x a f l u o r i d e i s a gaseous compound, i t i s p o s s i b l e t h a t any s e l e n i u m p r e s e n t was c o n v e r t e d i n t o t h i s form, and was s u b s e q u e n t l y lost. I t would appear t h e r e f o r e t h a t two p o s s i b i l i t i e s c o u l d account for t h e enhancement. The f i r s t contributes t o the overall i s that selenium selenium i n t o t h e a n a l y t e s o l u t i o n , t h e former level releasing t h i s o n l y o c c u r i n g when n i t r i c acid i s present i n trace q u a n t i t i e s . 81 by tubing T h i s t h e o r y does not e x p l a i n why t h e enhancements are d i f f e r e n t , depending upon the o r d e r i n which t h e s o l u t i o n s are prepared. A second p o s s i b i l i t y concerns t h e apparent h o l e s i n t h e s u r f a c e of t h e t u b i n g . I f selenium i s a t t r a c t e d i n t o these h o l e s , t h e n an e q u i l i b r i u m may be s e t up, i n which t h e r e i s an i n t e r c h a n g e between selenium i n t h e s o l u t i o n p a s s i n g t h r o u g h t h e t u b i n g , and t h a t h e l d a t t h e s u r f a c e . When t h e s t a n d a r d s o l u t i o n i s passed t h r o u g h t h e t u b e , a c e r t a i n percentage w i l l be r e t a i n e d on o r i n t h e w a l l o f t h e t u b e . T h i s w i l l value being selenium o b t a i n e d by complex structure, and may is t h e d e t e c t i o n system. formed, be r e s u l t i n a given i t is likely to If a be a too great t o enter the holes nitrolarge i n the t u b i n g . I n such c i r c u m s t a n c e s , more selenium w i l l a r r i v e a t t h e detection exactly system the and will same t o t a l result selenium i n a higher reading, f o r c o n c e n t r a t i o n . This could account f o r t h e observed e f f e c t s r e g a r d i n g t h e o r d e r i n which the samples were p r e p a r e d . The largest enhancement effect o c c u r r e d when t h e a l i q u o t o f c o n c e n t r a t e d n i t r i c a c i d was added d i r e c t l y t o t h e selenium s t o c k s o l u t i o n . I f t h e f o r m a t i o n o f a complex were t o occur, i t i s l i k e l y t o do so more e f f i c i e n t l y at h i g h c o n c e n t r a t i o n s o f r e a c t a n t s . As dilutions occurred, e.g. by adding t h e n i t r i c a c i d a f t e r t h e h y d r o c h l o r i c a c i d , t h e e f f e c t s d i m i n i s h . C l e a r l y , f u r t h e r work would be necessary t o prove t h i s h y p o t h e s i s , a l t h o u g h t h i s i s o u t s i d e t h e scope o f t h i s work. However, t h e s t u d y does demonstrate t h e need f o r caution when selecting 82 appropriate tubing, especially f o r use i n on-line c o n n e c t i o n s may have t o be made. 83 systems where a number of 3.3 Conditioning From t h e e a r l i e s t into selenium o f s e l e n i u m h y d r i d e g e n e r a t i o n systems experiments c a r r i e d out d u r i n g t h i s h y d r i d e g e n e r a t i o n , i t was response d r i f t e d with time i n an apparent that upward d i r e c t i o n s t a n d a r d sampled a t t i m e zero would g i v e a l o w e r study the i.e. a absorbance r e a d i n g t h a n t h e same s t a n d a r d r u n a g a i n say 30 minutes later. These e a r l y experiments atomic a l l employed q u a r t z absorption spectroscopy furnace (QFAAS) as t h e d e t e c t i o n system, w i t h s o l u t i o n s t r e n g t h s i n t h e 10 - 30 ng ml'^ range. I t was noted t h a t these apparent i n c r e a s e s i n s e n s i t i v i t y c o n t i n u e d f o r an hour o r so, a f t e r which t i m e t h e system became more I n s t r u m e n t d r i f t was practice to set a t f i r s t suspected, the instruments settled. and so i t became t h e running at least an hour b e f o r e any measurements were made, b u t t h i s d i d not overcome the increase in monochromator i n sensitivity. It was noted that the t h e atomic a b s o r p t i o n s p e c t r o m e t e r used d i d r e q u i r e f r e q u e n t adjustment as i t warmed p r o g r e s s i v e l y d u r i n g use, but again this did not account for the change in sensitivity. During conversations with other users of the hydride g e n e r a t i o n equipment, i t became apparent t h a t t h i s e f f e c t well known, a l t h o u g h cases, users seemingly condition the little system documented. by running I n most selenium s o l u t i o n s t h r o u g h t h e equipment a number o f t i m e s b e f o r e 84 was any measurements a r e made. I n a d d i t i o n , f o r h i g h e s t accuracy, t h e procedure of bracketing 3.2.2). The r e a d i n g s should be employed f o r t h e standards (see s e c t i o n either side o f the sample a r e averaged, and t h e r e a d i n g f o r t h e sample c a l c u l a t e d a g a i n s t t h i s mean v a l u e . T h i s i s a v e r y e f f e c t i v e for overcoming d r i f t , even f a i r l y s h o r t t e r m d r i f t . however slow t h e r a t e o f sample t h r o u g h p u t , technique I t does and s i n c e most workers use some k i n d o f computer system f o r d a t a c a p t u r e and calculation of results, b r a c k e t i n g becomes something problem t o f i t i n t o these systems. The Touchstone® s o f t w a r e employed i n these l a b o r a t o r i e s does a l l o w f o r new to be run p e r i o d i c a l l y , of a and will back standards calculate the c o n c e n t r a t i o n s o b t a i n e d from t h e e a r l i e r r e s u l t s , b u t i t does not do so relative t o time. The u s e r c o n c e n t r a t i o n s e i t h e r based on t h e f i r s t therefore obtains s e t o f standards, when t h e response was low o r from t h e l a t e r s e t o f s t a n d a r d s , when t h e response has i n c r e a s e d . The p r o b l e m w i t h t h i s i s t h a t t h e i n c r e a s e i n s e n s i t i v i t y occurs t h e exact rate o f increase o v e r a p e r i o d , and s i n c e i s unknown, i t i s i m p o s s i b l e t o c a l c u l a t e r e s u l t s o b t a i n e d i n t h e way d e s c r i b e d . When u s i n g t h e QFAAS system, t h e d e t e c t i o n l i m i t s o b t a i n e d a r e g e n e r a l l y i n t h e low ng ml"^ r e g i o n , and t h e v a r i a t i o n s due t o t h e above e f f e c t accurate work. a r e n o t t o o s e r i o u s , except Once t h e atomic fluorescence f o r t h e most system became a v a i l a b l e here t h i s d r i f t became more p r o b l e m a t i c , due t o t h e much g r e a t e r s e n s i t i v i t y o f t h e i n s t r u m e n t a t i o n . D u r i n g work i n t h e BCR program t o measure selenium 85 i n n a t u r a l waters f o r example, t h i s i n c r e a s e i n s e n s i t i v i t y became a r e a l problem, even a f t e r c o n d i t i o n i n g o f t h e equipment had been c a r r i e d out i n t h e way p r e v i o u s l y employed f o r use w i t h QFAAS. Thus i t was d e c i d e d t o i n v e s t i g a t e t h e process i n more d e t a i l . A 250 ml s t a n d a r d s o l u t i o n c o n t a i n i n g 1 ng ml'^ o f s e l e n i u m as sodiiam s e l e n i t e i n 3 mol 1'^ h y d r o c h l o r i c a c i d was A 1.3 prepared. % s o l u t i o n o f sodium b o r o h y d r i d e i n 0.1 mol 1"^ sodium h y d r o x i d e was f r e s h l y p r e p a r e d , as was a 3 mol 1'^ s o l u t i o n o f h y d r o c h l o r i c a c i d . A c o n t i n u o u s f l o w h y d r i d e g e n e r a t i o n system was s e t up as d e s c r i b e d i n Chapter 2, w i t h t h e apparatus not h a v i n g been employed f o r selenium d e t e r m i n a t i o n s f o r a t l e a s t f o u r weeks p r i o r t o t h e experiment. T h i s was coupled t o an atomic f l u o r e s c e n c e d e t e c t i o n system. The d e t e c t i o n system was s w i t c h e d on and a l l o w e d t o warm up f o r two hours p r i o r t o use, and t h e h y d r i d e g e n e r a t o r was a l l o w e d t o o p e r a t e pumping b l a n k solutions f o r one hour p r i o r selenium s t a n d a r d was t o readings being taken. The t h e n i n t r o d u c e d i n t h e normal way, and t h e r e s u l t s from making one d e t e r m i n a t i o n e v e r y two minutes or so were r e c o r d e d t o produce t h e p l o t shown i n F i g u r e 3.3.1. The i n s t r u m e n t c o n d i t i o n s are shown i n Table 3.3.1. The commonly suggested e x p l a n a t i o n f o r t h e observed e f f e c t i s that active selenium sites hydride on t h e s u r f a c e o f t h e glassware molecules and that this results capture in a d i m i n u t i o n o f the analyte reaching the d e t e c t o r . Gradually, these a c t i v e s i t e s are f i l l e d up, and t h u s an i n c r e a s e i n t h e 86 F i g u r e 3.3.1 Diagram o f the s i g n a l d r i f t a g a i n s t 55 2B Time 3B Cm i n s ) 87 time Table 3.3.1 Instrument operating conditions Reductant f l o w r a t e 4 ml min'^ Sample f l o w r a t e 8 ml min"^ Blank f l o w r a t e 8 ml min"^ Argon purge f l o w r a t e 200 ml min'^ Instrument 100 gain Data c o l l e c t i o n mode X 10 Peak h e i g h t 88 numbers o f selenium atoms r e a c h i n g t h e d e t e c t o r o c c u r s . Since t h e c o n c e n t r a t i o n o f t h e selenium i n these s o l u t i o n s i s v e r y low, t h e f i l l i n g o f t h e a c t i v e s i t e s i s slow. for T h i s accounts t h e o b s e r v a t i o n t h a t t h e e f f e c t i s l e s s o f a problem when employing QFAAS - t h e h i g h e r d e t e c t i o n l i m i t s o f t h i s system mean t h a t higher concentrations o f analyte a r e used, and t h e r e f o r e t h e s i t e s a r e f i l l e d more q u i c k l y . Thus i t i s recommended from t h i s work t h a t s e v e r a l i n j e c t i o n s are made u s i n g a h i g h c o n c e n t r a t i o n o f sodium s e l e n i t e ml"^) a t t h e commencement o f work. T h i s s h o u l d a c t i v e s i t e s , and i f t h e system i s t h e n l e f t ( 1 pg saturate the f o r a period of f i f t e e n minutes before running the standards, e q u i l i b r i u m w i l l be r e - e s t a b l i s h e d . 89 3.4 Development o f a microwave r e d u c t i o n system As d i s c u s s e d above ( S e c t i o n 2.1), c e r t a i n elements must be i n the a p p r o p r i a t e o x i d a t i o n s t a t e i n order t o f a c i l i t a t e the f o r m a t i o n o f t h e h y d r i d e . I n t h e case o f selenium, t h i s i s t h e +4 state. generation When determining i t i s therefore total selenium necessary by t o perform hydride a pre- r e d u c t i o n s t e p i n o r d e r t o reduce any s e l e n i u m ( V I ) which may be p r e s e n t t o s e l e n i u m ( I V ) . A number o f systems may be used t o achieve t h i s r e d u c t i o n . D'Ulivo"'^° and others^^ a r e advocates of hydrogen bromide r e d u c t i o n , b u t by f a r t h e most commonly employed technique temperature uses i n an open hydrochloric acid topped a t an e l e v a t e d container. The r e d u c t i o n r e a c t i o n proceeds as f o l l o w s : HSeO^" + 3H' + 2C1' = H2Se03 + Clztaqj + H2O The r e a c t i o n i s g e n e r a l l y c a r r i e d out a t about 70°C, a l t h o u g h o t h e r t e m p e r a t u r e s have been r e p o r t e d , w i t h g r e a t e r o r l e s s e r t i m e s cjuoted f o r t h e r e a c t i o n " " ^ ^ . A n a l y t e l o s s e s have been r e p o r t e d when t h e s o l u t i o n has been b o i l e d , and these l o s s e s have been a t t r i b u t e d t o v o l a t i l e selenium c h l o r i d e s and 0x0c h l o r i d e s such as SeO.Clz and Se02.2HCl^^ p a r t i a l r e d u c t i o n t o metallic selenium^^ o r a d s o r p t i o n o n t o t h e v e s s e l s u r f a c e " . Using t h e r a d i o t r a c e r ''^Se, Piwonka e t . al.^"^ found t h a t when using 5M h y d r o c h l o r i c a c i d and b o i l i n g t h e m i x t u r e f o r 25 minutes o r more, a l t h o u g h a l l o f t h e r a d i o - t r a c e r remained i n the solution, t h e p r o p o r t i o n converted 90 into the hydride decreased, i n d i c a t i n g t h a t some change i n o x i d a t i o n s t a t e had occurred, probably t o Se(0). Again employing r a d i o t r a c e r s , Krivan e t . a l . " e s t a b l i s h e d t h a t back o x i d a t i o n o c c u r r e d when t h e reduced s o l u t i o n were left b e f o r e a n a l y s i s , and t h i s c o u l d e x p l a i n some o f t h e apparent losses which had been r e p o r t e d . A f t e r one week, 94% o f t h e Se(IV) produced had been o x i d i s e d back t o Se{VI) , and was t h u s r e n d e r e d u n d e t e c t a b l e by h y d r i d e g e n e r a t i o n (without a f u r t h e r r e d u c t i o n s t e p ) . The back o x i d a t i o n may be e x p l a i n e d by t h e reaction : HzSeOa + CI2 + Over a f u r t h e r p e r i o d H2O ^ HzSeO^ o f f o u r weeks, + 2HC1 t h e 6% r e m a i n i n g as s e l e n i t e d i d n o t change, and t h i s may t h e r e f o r e be c o n s i d e r e d t o be t h e e q u i l i b r i u m c o n c e n t r a t i o n . T h i s back o x i d a t i o n may be o b v i a t e d t o an e x t e n t by t h e use o f an open topped in which t o heat the a c i d i f i e d sample, t h u s vessel allowing the c h l o r i n e g e n e r a t e d i n t h e r e d u c t i o n r e a c t i o n t o escape. When t h e d e t e r m i n a t i o n o f t o t a l s e l e n i u m i s r e q u i r e d , t h e p r e r e d u c t i o n s t e p may be c o n s i d e r e d t o be a nuisance, s i n c e i t involves considerable also provides e f f o r t on t h e p a r t o f t h e chemist, and o p p o r t u n i t i e s f o r contamination When s p e c i a t i o n d e t e r m i n a t i o n s 91 t o occur. o f selenium a r e r e q u i r e d , t h e i n a b i l i t y of selenium(VI) t o form t h e h y d r i d e may be used t o advantage. Since i n t h e i n o r g a n i c form, s e l e n i u m e x i s t s o n l y i n t h e o x i d a t i o n s t a t e s o f +4, +6 and 0 ( e l e m e n t a l s e l e n i u m ) , by first analysing the sample before reduction, c o n c e n t r a t i o n o f selenium{IV) i s determined. then subjected t o a r e d u c t i o n step, the I f t h e sample i s and t h e n re-analyzed, t o t a l i n o r g a n i c selenium w i l l be d e t e r m i n e d . The c o n c e n t r a t i o n of s e l e n i u m ( V I ) may t h e r e f o r e be o b t a i n e d by s u b t r a c t i n g t h e selenium(IV) With figure the current from the t o t a l interest selenium i n selenium concentration. s p e c i a t i o n , i t was d e c i d e d t o i n v e s t i g a t e t h e p o s s i b i l i t y o f an automated o n - l i n e speciation system, capable in the first d e t e r m i n i n g s e l e n i u m ( I V ) and s e l e n i u m ( V I ) instance of (via the t o t a l ) but w i t h t h e p o t e n t i a l t o be adapted f o r use w i t h o t h e r elements w i t h r e d u c i b l e species such as a r s e n i c and t i n . 3.4.1 The Design basic flow criteria injection-hydride generation system is d e s c r i b e d i n s e c t i o n 2.1.2, and t h i s formed t h e b a s i s f o r t h e work. I t was r e c o g n i s e d t h a t t h e d e t e r m i n a t i o n o f s e l e n i u m { I V ) c o u l d be c a r r i e d o u t o n - l i n e by s i m p l y segmenting t h e incoming sample stream. W h i l s t some peak s p r e a d i n g c o u l d occur, t h i s i s not a huge p r o b l e m when d e t e r m i n i n g selenium using hydride g e n e r a t i o n , s i n c e measurements a r e made when t h e system i s i n equilibrium. selenium I n addition, hydride generated by measuring could 92 be peak areas, a l l ascribed t o the a p p r o p r i a t e sample. I f p a r t o f t h e sample c o u l d be reduced onl i n e and s u b s e q u e n t l y selenium analyzed, concentration could then a f i g u r e f o r t h e t o t a l also be o b t a i n e d . The main problem became one o f h e a t i n g t h e sample i n o r d e r t o achieve the d e s i r e d r e d u c t i o n s t e p . I t was t h e g e n e r a l p r a c t i c e i n .these l a b o r a t o r i e s t o reduce a sample by adding an equal volume o f h y d r o c h l o r i c a c i d , and t h e n h e a t i n g t h e m i x t u r e i n a beaker i n a water b a t h a t 70 °C f o r 30 m i n u t e s . The sample was t h e n c o o l e d , any l o s s e s caused by e v a p o r a t i o n made up w i t h water, performed. during Since heating, b e f o r e t h e a n a l y s i s was some a c i d would a l s o u n d o u b t e d l y this process was n o t i d e a l , be l o s t since i t is i m p o r t a n t t o m a t r i x match samples and standards as c l o s e l y as p o s s i b l e i f g r e a t e s t accuracy i s t o be o b t a i n e d . I n d e s i g n i n g t h e o n - l i n e system, t h e assumption was made t h a t t h e r e d u c t i o n t o o k i n t h e o r d e r o f 30 minutes. time halved Assuming t h a t t h e r e a c t i o n f o r each 10 °C r i s e i n t e m p e r a t u r e , t h e n i t was supposed t h a t i t would be necessary t o c a r r y out t h e r e d u c t i o n in t h e gas phase i n o r d e r t o achieve acceptable reduction times t o s u i t an o n - l i n e system. A number o f h e a t i n g systems were c o n s i d e r e d baths, " g r a p h i t e baths" including o i l and so on, b u t t h e obvious f o r such work was microwave h e a t i n g . 93 choice 3.4,2 P r i n c i p l e s o f microwave heating There a r e t h r e e ways i n which heat may be t r a n s f e r r e d f r o m a source t o a body, these being c o n d u c t i o n , c o n v e c t i o n and r a d i a t i o n . W h i l s t almost a l l commonly employed h e a t i n g systems are s p e c i f i e d as r e l y i n g on one o f these h e a t i n g methods, heat i s i n f a c t t r a n s f e r r e d from t h e heat source t o t h e body b e i n g heated by a t l e a s t two, and more g e n e r a l l y a l l t h r e e systems. Using t h e example o f h e a t i n g a beaker o f w a t e r on a h o t p l a t e for instance, most heat is transferred directly via c o n d u c t i o n . However, s i n c e a l l b o d i e s w i t h t e m p e r a t u r e s above a b s o l u t e zero e m i t i n f r a red radiation, some heat transfer w i l l o c c u r t h r o u g h r a d i a t i o n f r o m t h e h o t p l a t e b e i n g absorbed by t h e beaker and c o n t e n t s . There w i l l a l s o be c o n v e c t i o n c u r r e n t s i n t h e a i r s u r r o u n d i n g t h e t o p o f t h e h o t p l a t e and the beaker, and these w i l l c o n t r i b u t e t o t h e o v e r a l l heat g a i n of t h e w a t e r and beaker, within the licjuid i n t h e beaker, t h e r e w i l l a l s o be c o n v e c t i o n c u r r e n t s a t work, t r a n s f e r r i n g the heat throughout t h e body of the l i q u i d . From this seemingly s i m p l e example, i t can be seen t h a t a l l t h r e e heat t r a n s f e r systems make a c o n t r i b u t i o n t o t h e o v e r a l l h e a t i n g process. Microwaves a r e a form o f e l e c t r o m a g n e t i c r a d i a t i o n , and have a f r e q u e n c y range from 300 MHz t o 300 GHz. T h i s r a d i a t i o n i s n o n - i o n i z i n g , and causes m o l e c u l a r m o t i o n by m i g r a t i o n o f i o n s and r o t a t i o n o f d i p o l e s . I t does n o t however, cause any change in the molecular structure of the material 94 being heated. M a t e r i a l s range i n t h e i r a b i l i t y t o absorb microwave radiation f r o m t h o s e which a r e r e f l e c t i v e , and do n o t t h e r e f o r e absorb any energy, t h r o u g h those which absorb some o f t h e energy, t o those which a r e t o t a l l y t r a n s p a r e n t , and a g a i n do n o t absorb any o f t h e energy. Only a b s o r p t i v e m a t e r i a l s a r e heated by microwave energy. R e f l e c t i v e m a t e r i a l s such as m e t a l s f i n d use in the c o n s t r u c t i o n of the i n s i d e o f t h e microwave oven, w h i l s t t r a n s p a r e n t m a t e r i a l s a r e used as c o n t a i n e r s f o r t h e m a t e r i a l s which r e q u i r e h e a t i n g . A b s o r p t i v e samples which a r e s u b j e c t e d t o microwave will heat up partly i n accordance with their energy dissipation factor, t a n 6, which i s t h e d i e l e c t r i c l o s s o f t h e m a t e r i a l divided by the d i e l e c t r i c dielectric dissipate loss is a measure t h e i n p u t microwave w h i l s t the d i e l e c t r i c ability constant of of a energy that material. sample's ability The to i n t h e f o r m o f heat, c o n s t a n t i s a measure o f t h e sample's t o impede t h e microwave energy as i t passes t h r o u g h the sample^^ . Thus when microwave energy e n t e r s a m a t e r i a l , t h e rate at which dissipation the energy i s absorbed f a c t o r of that m a t e r i a l . have a t a n 6 o f i n f i n i t y , value of tan 6 of and zero. depends upon the Transparent m a t e r i a l s reflective Materials m a t e r i a l s have a which have a high d i s s i p a t i o n f a c t o r provide a r e s u l t a n t lower p e n e t r a t i o n of microwave energy at a given frequency. One way of c h a r a c t e r i z i n g p e n e t r a t i o n i s by c o n s i d e r i n g t h e h a l f - p o w e r d e p t h . T h i s measure i s t h e d e p t h below material a t which t h e power d e n s i t y 95 the surface of the i s half that a t the surface. The half-power depth inverse of varies the with frequency, approximately the square root f r e q u e n c y , and i s therefore specified at a given by of that frequency. As s t a t e d above, t h e two mechanisms by which microwave energy i s t r a n s f e r r e d t o a m a t e r i a l are i o n i c c o n d u c t i o n and dipole r o t a t i o n , and i n most p r a c t i c a l a p p l i c a t i o n s , these processes occur s i m u l t a n e o u s l y . the applied I o n i c c o n d u c t i o n occurs as a r e s u l t o f electromagnetic m i g r a t i o n of d i s s o l v e d field, and is the conductive i o n s , r e s u l t i n g i n h e a t i n g due t o the e l e c t r i c a l r e s i s t a n c e o f t h e sample t o induced c u r r e n t The absorption o f energy due t h e s i z e , charge and subject flow. t o i o n i c m i g r a t i o n depends upon c o n d u c t i v i t y of d i s s o l v e d i o n s , and is t o i o n i n t e r a c t i o n w i t h s o l v e n t m o l e c u l e s . Thus t h e f a c t o r s which a f f e c t i o n i c c o n d u c t i o n are i o n concentration, i o n m o b i l i t y and t e m p e r a t u r e . I n an aqueous s o l u t i o n o f sodium c h l o r i d e , t h e r e i s an a p p r o x i m a t e l y f o u r f o l d i n c r e a s e i n tan 6 between 0 molar ( i . e . pure w a t e r ) and a 0.5 molar s o l u t i o n . The due other rotation. partial cause of When an alignment microwave electric of heating field molecules is which is applied, have a to dipole there is permanent induced d i p o l e moment. I n f a c t , t h e average t i m e spent by molecule i n the a l i g n e d the state i s only s l i g h t l y greater t i m e i t spends i n a n o n - a l i g n e d p o s i t i o n , and electric field starts to collapse, thermal or the than when t h e disorder r e s t o r e d . During the p e r i o d of alignment, a small a is amount of energy i s t a k e n up by t h e m o l e c u l e , and when r e l a x a t i o n o f t h e 96 f i e l d o c c u r s , t h i s energy i s absorbed by t h e system as h e a t . The e f f i c i e n c y o f h e a t i n g due t o d i p o l e r o t a t i o n i s dependant upon t h e sample's t e m p e r a t u r e and v i s c o s i t y , which a f f e c t t h e d i e l e c t r i c r e l a x a t i o n t i m e o f t h e sample i n q u e s t i o n . A t 2.45 GHz, one o f t h e f o u r frequencies a l l o c a t e d f o r microwave h e a t i n g , a l i g n m e n t and randomising o f t h e molecules occurs 4.9 x 10^ t i m e s p e r second. The r e l a t i v e c o n t r i b u t i o n s made by d i p o l e r o t a t i o n and i o n i c c o n d u c t i o n i n t h e h e a t i n g o f a sample v a r y w i t h temperature, and w i t h t h e c o m p o s i t i o n o f t h e sample. I n i c e , t h e molecules a r e r i g i d l y h e l d i n a c r y s t a l l a t t i c e , and t h e r e f o r e m o l e c u l a r mobility i s inhibited. The d i e l e c t r i c d i s s i p a t i o n f a c t o r i s t h e r e f o r e c o r r e s p o n d i n g l y low - 2.7 x 10 a t 2.45 GHz, as opposed t o t h e v a l u e o f 12.2 f o r water a t 27 °C. 3.4.3 The b a s i c o n - l i n e microwave s y s t e m Once i t had been e s t a b l i s h e d t h a t h e a t i n g by microwave d i d produce t h e r e q u i r e d r e d u c t i o n o f s e l e n i u m { V I ) on a b a t c h a n a l y s i s , a b a s i c o n - l i n e system was d e v i s e d . T h i s i s shown i n F i g u r e 3.4.1. The a c i d i f i e d sample i s i n t r o d u c e d v i a a p e r i s t a l t i c pump t o t h e h e a t i n g c o i l c o n t a i n e d i n a microwave c a v i t y . From here, 97 F i g u r e 3.4.1 Diagram o£ the basic on-line microwave r e d u c t i o n system > PBSSTALTC REACTOICOL ARGON < OUARTZ T - n f l E 0/\S-UOUD S5>ARAT0R rtXNG VALVE PBBSTALT1C fiBXCTANTI 98 W the sample travels unheated, and on through a reaction coil thence t o a c o o l i n g c o i l which contained i n an is ice b a t h . A f t e r c o o l i n g , t h e sample e n t e r s t h e m i x i n g v a l v e , where it meets a stream o f sodium b o r o h y d r i d e solution, which i s pumped u s i n g a second p e r i s t a l t i c pump. The reacting mixture then from passes to a gas-liquid hydrogen s e l e n i d e produced separator, i s . flushed into q u a r t z tube i n an atomic a b s o r p t i o n The e a r l y problems encountered a whence flame the heated spectrometer. i n v o l v e d the assumption r e g a r d i n g t h e temperature and aforementioned residence time i n o r d e r f o r t h e r e d u c t i o n r e a c t i o n t o t a k e p l a c e . Attempts were made t o produce from a bumping, caused by heating coil. The flow system which uneven b o i l i n g first d i d not suffer of the reactants i n the heating c o i l employed i s shown i n F i g u r e 3.4.2.a, b u t d i d s u f f e r from v i o l e n t bumping. A number of a l t e r n a t i v e s were e v a l u a t e d , shown as 3.4.2.b. I t was diminished using this c u l m i n a t i n g w i t h the found t h a t bumping was coil. In this design, design considerably the reactant s o l u t i o n passes t h r o u g h a mass of minute g l a s s beads, which cause d i s p e r s i o n o f t h e l i q u i d and thus p r o v i d e a v e r y l a r g e s u r f a c e area. effect boiling by As the process. the l i q u i d b o i l s , glass beads, t h e r e i s a l s o a damping resulting in a much U n f o r t u n a t e l y , even w i t h t h e l e s s b o i l i n g produced by t h i s heating c e l l , smoother violent t h e huge changes i n volume produced by f i r s t b o i l i n g t h e l i q u i d , and then c o o l i n g i t back t o about room temperature, baseline. 99 r e s u l t e d i n a very unstable F i g u r e 3.4.2 Initial heating c o i l designs GLASS WIDOL PLUG GLASS BEADS GLASS F R I T FIGURE FIGURE 3.4.2o 100 3.4.2b I t was observed t h a t r a p i d f l u c t u a t i o n s occurred i n the flow r a t e o f t h e a n a l y t e i n t o t h e g a s - l i q u i d s e p a r a t o r , and i t was r e a l i s e d t h a t these would cause t h e b a s e - l i n e i n s t a b i l i t y . An a t t e m p t t o dampen out these f l u c t u a t i o n s u s i n g p u l s e damping t u b i n g was made. T h i s c o m m e r c i a l l y a v a i l a b l e p r o d u c t c o n s i s t s o f a narrow bore tube, which has more l a t e r a l e l a s t i c i t y b u i l t i n t o t h e tube m a t e r i a l t h a n i s normal. The r e s u l t should be t h a t as t h e p r e s s u r e i n c r e a s e s due t o a p u l s e , t h e tube w a l l dilates t o absorb t h e i n c r e a s e . As reverse takes place, t h e p u l s e subsides, so damping o c c u r s . A t t e m p t s the t o employ t h i s t y p e o f p r o d u c t on t h i s system were t o t a l l y u n s u c c e s s f u l - i t is felt t h a t t h e y are almost c e r t a i n l y more s u i t e d t o l i q u i d o n l y systems i n which t h e p r e s s u r e i n c r e a s e s would be greater. Pressure check v a l v e s are c o m m e r c i a l l y a v a i l a b l e , b u t are v e r y expensive, and so available materials, one was designed and constructed from t h e d e s i g n o f which i s shown i n F i g u r e 3.4.3. As can be seen, i t i s s i m p l y a n o n - r e t u r n v a l v e , t h e body f a b r i c a t e d f r o m P.T.F.E., as was t h e diaphragm. The major problem o f t h e v a l v e i n v o l v e d t h e s p r i n g . C l e a r l y , t h i s needed t o be f a b r i c a t e d f r o m an i n e r t m a t e r i a l , and a l t h o u g h a number d i f f e r e n t p l a s t i c m a t e r i a l s were t r i e d , none proved a b l e t o w i t h s t a n d t h e h o s t i l e chemical environment required t o operate. 101 i n which t h e y were F i g u r e 3.4.3 Diagram o f a n o n - r e t u r n v a l v e DIAPHRAGM INLET PTFE BODY OUTLET SPRING 102 since the system still suffered f l u c t u a t i n g b a s e l i n e , i t was from decided an unacceptably t o i n v e s t i g a t e whether t h e system c o u l d be o p e r a t e d a t a lower t e m p e r a t u r e , below t h e boiling point of the analyte c o n s i s t e n t r e d u c t i o n s . I t was mixture, and still give t h e o r i s e d t h a t even i f a l l t h e s e l e n i u m ( V I ) p r e s e n t was n o t reduced, i f a c o n s t a n t p r o p o r t i o n was reduced, t h e n t h e b a s i s o f a r e d u c t i o n system c o u l d e x i s t . It was thus discovered that " c o n v e n t i o n a l wisdom" had been wrong r e g a r d i n g t h e k i n e t i c s of t h e r e d u c t i o n r e a c t i o n , and later work (see seStion a c c u r a t e i d e a o f how 3.7) r e s u l t e d i n p r o v i d i n g a more long the r e d u c t i o n a c t u a l l y takes. By c a r e f u l o p t i m i s a t i o n o f t h e system parameters, i t was found t h a t t o t a l r e d u c t i o n c o u l d be achieved w i t h o u t b o i l i n g , and on a t i m e s c a l e which enabled an o n - l i n e system t o be developed. First, the effect of differing hydrochloric acid c o n c e n t r a t i o n s were i n v e s t i g a t e d s i n c e , f o r economic reasons, it is desirable consistent with to full use the reduction. A selenium as sodium s e l e n a t e was acidified to produce lowest equal acid 25 prepared, volumes of concentration fig 1"^ solution of a l i q u o t s taken and sample with acid s t r e n g t h s o f 2,4,6,8 and 10 mol 1"^ . The r e s u l t i n g absorbances a r e shown i n Table 3.4.1. As may be observed, no i n c r e a s e i n absorbance o c c u r r e d a t c o n c e n t r a t i o n s above 6 mol 1~\ t h i s a c i d s t r e n g t h was and employed f o r t h e r e s t of the work. 103 so T a b l e 3.4.1 Absorbance r e a d i n g s f o r i n c r e s i n g concentrations of h y d r o c h l o r i c a c i d Acid concentration (mol 1 Absorbance 2 0.005 4 0.011 6 0.160 8 0.160 10 0.159 104 s i n c e t h e o u t p u t o f t h e microwave u n i t was steps, i t was decided a d j u s t a b l e i n 5% t o s e t t h e f l o w r a t e o f t h e sample a t t h e maximum p e r m i t t e d u s i n g t h e p a r t i c u l a r pump and tubing c o m b i n a t i o n employed (9.3ml min'M , and t o v a r y t h e power i n p u t to the sample cell. The r e d u c t i o n e f f i c i e n c y was power output to achieve maximum t h e n o p t i m i z e d . T h i s was a c h i e v e d at a power s e t t i n g o f 35%, w i t h a d i m i n u t i o n o c c u r r i n g above t h i s f i g u r e . T h i s r e d u c t i o n i n e f f i c i e n c y may o x i d a t i o n of the selenium{IV) be due t o t h e back by f r e e c h l o r i n e . A number o f d i f f e r e n t d e s i g n s o f h e a t i n g , r e a c t i o n and c o o l i n g coils were provided evaluated, maximum before conversion arriving at efficiency. a system which coils were The f a b r i c a t e d i n house from b o r o - s i l i c a t e g l a s s , t o t h e s t r u c t u r e shown i n F i g u r e 3.4.4 Once these evaluated range 10 and s i z e s shown i n T a b l e 3.4.2. parameters using sodium had been selenate optimized, standard the system was solutions i n the - 50 /xg 1"^. Reductions were c a r r i e d o u t u s i n g t h e o n - l i n e microwave system and both t h e c o n v e n t i o n a l method o f h e a t i n g a l i c p a o t s o f t h e s o l u t i o n i n 6 mol 1"^ t o 70 °C f o r 30 m i n u t e s on a h o t p l a t e . The r e s u l t s are shown i n F i g u r e 3,4.5. The r e s u l t s i n d i c a t e t h a t t h e response o f t h e microwave f l o w i n j e c t i o n system was l i n e a r up t o a c o n c e n t r a t i o n of 30 /ig 1"^, w h i c h r e p r e s e n t s an absorbance o f 0.3, becomes n o n - l i n e a r due above which t h e to self absorption. 105 plot F i g u r e 3.4.4 Diagram showing t h e c o n s t r u c t i o n d e t a i l s o f t h e h e a t i n g , r e a c t i o n and c o o l i n g A. 13 1.06 coils T a b l e 3.4.2 Table of the dimensions of the heating, N turns r e a c t i o n and c o o l i n g c o i l s A mm B mm C nmi D min HEATING COIL 200 13 20 20 REACTION COIL 180 0 20 55 13 COOLING COIL 200 10 20 100 25 107 5 - F i g u r e 3.4.5 C o m p a r i s o n between microwave f l o w and conventionally digested injection standards 15.0 n 12.5 A MICROWAVE F.I CO < 10.0 H < lU DC < 7.5 - < 5.0 H LU CONVENTIONAL DIGEST 2.5 A 0.0 50 CONCENTRATION 108 (ug 1"^) 3.5 Incorporation o f microwave heating into a fully automated h y d r i d e g e n e r a t i o n s y s t e m Since t h e e f f i c a c y o f t h e t e c h n i q u e t o p r o v i d e t h e r e d u c t i o n of selenium(VI) basic t o selenium(IV) had been system was developed t o p r o v i d e speciation system. The d e s i g n f o r t h i s established, the a totally automated system i s shown i n F i g u r e 3.5.1. I n t h i s system, a d u a l - c h a n n e l p e r i s t a l t i c pump i n t r o d u c e s b o t h a sample stream and h y d r o c h l o r i c a c i d stream t o a s w i t c h i n g v a l v e which i s under computer c o n t r o l . I n t h e p o s i t i o n shown i n t h e diagram, t h e sample t r a v e l s t h r o u g h t h e microwave route, and i s d i r e c t e d by a second computer c o n t r o l l e d s w i t c h i n g v a l v e t h r o u g h t h e h y d r i d e g e n e r a t o r stage and on t o t h e d e t e c t o r . H y d r o c h l o r i c a c i d i s meanwhile pumped from the reservoir, bypasses t h e microwave unit, and i s d i r e c t e d t o waste by t h e second s w i t c h i n g v a l v e . When s w i t c h i n g v a l v e 1 i s rotated through 90°, t h e sample passes t o waste, w h i l s t t h e h y d r o c h l o r i c a c i d stream passes i n t o t h e microwave u n i t . The second s w i t c h i n g v a l v e c o n t r o l s which o f t h e two streams passes on t o t h e h y d r i d e g e n e r a t i o n s t e p , and s u b s e q u e n t l y t o t h e d e t e c t i o n system. Should sample volumes be l i m i t e d , t h e a u t o s a m p l e r may sample from a second hydrochloric introduced acid reservoir, t o t h e system. microwave u n i t has e i t h e r once t h e sample I t i s obviously a blank acid stream p a s s i n g t h r o u g h i t a t a l l 109 times. vital has been that the s t r e a m o r a sample Figure-3.5.1 Computer reduction AUTOSAMPLER c o n t r o l l e d automated microwave selenium speciation DUAL C H A M C L SWITCHING PERISTALTIC PUMP VALVE HQ RESERVOR MICROWAVE MXWG VALVE system REACTION COOLNG COL COL SWrTCHNG VALVE •! PERISTALTIC DETECTOR QUARTZ T - T l B E WASTE REDUCTANT GAS-LIOUD SEPARATOR OATAUC OOKIHOLlfC 110 The switching profiles throughput arrangements, are shown in timings Figure and 3.5.2. resultant Using this r a t e s o f f i f t e e n samples per hour were signal system, achieved. T h i s f i g u r e c o u l d almost c e r t a i n l y be improved by upon f u r t h e r optimization design of purge gas r a t e s and modifications to o f t h e m i x i n g v a l v e . These s h o u l d the reduce t h e s i g n a l decay t i m e s , and t h u s i n c r e a s e - t h e speed o f t h e system. To v a l i d a t e t h e system, a c e r t i f i e d r e f e r e n c e m a t e r i a l , NIST 1643c Trace Elements i n Water was obtained agreement are given was i n Table obtained f i g u r e o f 12.7 3.5.1. As between c o n c e n t r a t i o n {12.3 fig I ' M certified analyzed, the and can be the seen, total i n t h e samples analyzed, ± 0.7 ^g 1'^ . I t was results good selenium and further the found t h a t t h e presence o f s m a l l c o n c e n t r a t i o n s o f n i t r i c a c i d had no e f f e c t on t h e accuracy o f t h e r e s u l t s , p r o v i d e d t h a t m a t r i x m a t c h i n g o f sample and standards s h o u l d be normal p r a c t i c e . Ill was c a r r i e d o u t , as i s , o r F i g u r e 3.5.2 V a l v e s w i t c h i n g and t i m i n g diagram SAMPLE #1 T O T A L Se Se(IV) TIME SWITCHING VALVE #1 SWITCHING VALVE #2 (mins) SAMPLE # 2 Table 3.5.1 A n a l y s i s of C e r t i f i e d Reference Material NIST 1643c - d e t e r m i n a t i o n o f s e l e n i u m Analysis no Se(IV) pg 1"^ S e ( V I ) ]iq T o t . Se Vig 1-^ 1 9.8 2.5 12.3 2 9.8 2.5 12.3 3 9.8 2.6 12.4 4 10.0 2.6 12.6 5 9.9 2.4 12.3 Mean 9.8 2.5 12.3 113 3.5.1 When Data selenium handling i s determined using flow injection-hydride g e n e r a t i o n , steady s t a t e c o n d i t i o n s a r e u s u a l l y sought i n t h e gas-liquid s e p a r a t o r , and a f l a t topped, p l a t e a u shaped peak r e s u l t s . T h i s p e a k shape l e n d s i t s e l f t o quantification using p e a k h e i g h t m e a s u r e m e n t s . However t h e T o u c h s t o n e S o f t w a r e Analytical L t d . , Orpington, Kent) used with the (PS system e m p l o y e d a l s o e n a b l e d peak a r e a m e a s u r e m e n t s t o be made. S i n c e i n p r a c t i c e n o t a l l p e a k s w e r e i d e a l i n shape, a c o m p a r i s o n o f the r e s u l t s obtained from i d e n t i c a l s a m p l e s was carried out, u s i n g b o t h p e a k a r e a a n d p e a k h e i g h t modes. B o t h m e t h o d s o f quantification gave almost p e a k a r e a mode was a d o p t e d The s o f t w a r e uses a performs a box-car analogue to digital Turbo Pascal, identical f o r the rest of t h i s system of integration 1. This handled, the f u l l continuous on c o n v e r t e r . The and t h e e s s e n t i a l Appendix shows the from and the i s written in are i l l u s t r a t e d i n the data c o m p l e x due operating instructions etc. 114 the study. readings i n which b e i n g more However, measurement, programme elements t h e method programme i n c l u s i o n o f hardware results. is t o the 3.6 Seleniiim s p e c i a t i o n The automated studies system d e s c r i b e d i n the previous s e c t i o n was u s e d t o e v a l u a t e t h e i n o r g a n i c s e l e n i u m s p e c i a t i o n i n a number o f aqueous s a m p l e s . The r e s u l t s compared f a v o u r a b l y w i t h obtained using system r e l i e d other techniques. However t h e basic those on-line upon t h e d i f f e r e n c e method o f c a l c u l a t i n g t h e r e s u l t s . A number o f c r i t i c i s m s o f t h i s a p p r o a c h c a n b e made. The prime that reason i f an e r r o r f o r not applying a d i f f e r e n c e c a l c u l a t i o n i s i s made i n t h e d e t e r m i n a t i o n o f one o f t h e species, t h i s r e s u l t a u t o m a t i c a l l y a f f e c t s the r e s u l t obtained via the calculation f o r the other moiety. Thus further d e v e l o p m e n t o f t h e s y s t e m was i n v e s t i g a t e d i n o r d e r t o s e e i f it could be m o d i f i e d or altered t o determine each species directly. In order t o achieve this, i t would clearly be n e c e s s a r y t o s e p a r a t e t h e s p e c i e s p r i o r t o a n a l y s i s , a n d t h e o b v i o u s way i n which t o attempt Performance L i q u i d employing this separation Chromatography was b y t h e u s e o f H i g h (HPLC). The a d v a n t a g e o f HPLC f o r t h e s e p a r a t i o n i s t h a t t h e s p e c i e s present a r e a n a l y z e d d i r e c t l y w i t h o u t d e r i v i t i z a t i o n . The m a i n p r o b l e m however, i n adapting t h e system described i n the previous s e c t i o n t o i n c o r p o r a t e HPLC s e p a r a t i o n , became one o f d e t e c t o r sensitivity. min"\ A typical elution rate f o r HPLC i s 1 - 1.5 m l t h e sample i n t r o d u c t i o n r a t e i n t h e system d e s c r i b e d i n C h a p t e r 3.5 i s 8 m l m i n " \ overcome. I n addition, a n d t h i s m i s m a t c h a l s o h a d t o be the previous 115 system used a pre- a c i d i f i e d s a m p l e w i t h a n a c i d c o n c e n t r a t i o n o f 6 m o l 1"^ - s u c h an acid concentration could n o t be employed with an i o n exchange column, s i n c e i t w o u l d d e s t r o y t h e column. Therefore p o s t - c o l u m n a c i d i f i c a t i o n w o u l d be r e q u i r e d , f u r t h e r diluting t h e e l u e n t . I t became o b v i o u s sensitive to be used as t h a t AAS w o u l d be i n s u f f i c i e n t l y the detector, and the atomic f l u o r e s c e n c e d e t e c t o r w o u l d h a v e t o be e m p l o y e d . A s y s t e m was t h e r e f o r e s e t up as shown i n F i g u r e As may be observed from 3.6.1. t h e diagram, the f i r s t block of i n s t r u m e n t a t i o n i s a s i m p l e HPLC s e t up i n c l u d i n g t h e a b i l i t y to switch between different eluents. A post-column mixing v a l v e was f i t t e d a n d 7 m o l 1"^ h y d r o c h l o r i c a c i d was i n t r o d u c e d to t h e a n a l y t e s t r e a m a t t h e r a t e o f 7 m l min"*, t h u s a c h i e v i n g t h e d e s i r e d f l o w r a t e and a c i d c o n c e n t r a t i o n f o r t h e microwave reduction that step. employed liquid The r e m a i n d e r o f t h e s y s t e m was s i m i l a r t o i n earlier separator. emanating from automated The s e l e n i u m the separator system, hydride t o t h e gas- and hydrogen was p a s s e d d r y i n g tube b e f o r e e n t e r i n g t h e atomic up through mixture a membrane fluorescence detector. D r y i n g o f t h e g a s e s a r e n e c e s s a r y due t o t h e f a c t t h a t vapour quenches fluorescence. The f i r s t experiments see i f separation containing sodium c a r r i e d o u t were t o e v a l u a t e e l u e n t s , t o could be 5 n g ml'^ o f s e l e n i u m selenate water was prepared, achieved. as b o t h and performance o f t h e eluents. I n i t i a l l y , 116 A mixed sodium used standard s e l e n i t e and t o determine the low concentrations of F i g u r e 3.6.1 Diagram o f t h e automated HPLC-microwave r e d u c t i o n - h y d r i d e generation-AFS speciation selenium system BEHSON B A X - 1 0 MilOU I EXCBAIIGE COLUMN a.UENT \ ELUENT 2 ^—^ nixirc VALVE PeRISrALTlC PERISTALTIC o o MIXING VALVE REDUCTANTI OOOLirC C O I L REACTICW C O I L MICROWAVE DRIER TVJ8E AWIC R-UORESCEMIE CAS-LIQUID SEPARATOR DEfECTOR I COrWTER DATA L i r e Selenite Time/s Typical chromatogram selenite and of 5 ng selenate 117 g selenium as I phthalate (100 mmol I'M were employed, and w h i l s t e x c e l l e n t s e p a r a t i o n was a c h i e v e d , c r y s t a l s o f p h t h a l i c a c i d formed a t the post-column mixing valve when t h e a c i d stream met the c o l u m n e l u e n t . These c r y s t a l s e v e n t u a l l y l e d t o a b l o c k i n g o f t h e t u b i n g , r e n d e r i n g p h t h a l a t e u n s u i t a b l e f o r use. Potassium sulphate was then tried, s e p a r a t i o n when a s t e p and this provided base-line c o n c e n t r a t i o n g r a d i e n t was i . e . 25 mmol 1"^ a t pH 5 f o r t h e f i r s t employed, 200 s e c o n d s f o l l o w e d b y 100 mmol 1"* a t a s i m i l a r pH f o r t h e r e m a i n d e r o f t h e r u n . A number o f d i f f e r e n t pHs w e r e e v a l u a t e d b e t w e e n pH 5 a n d pH 7, w i t h no d i s c e r n a b l e d i f f e r e n c e s b e i n g d e t e c t e d i n e i t h e r p e a k shape o r p e a k a r e a . The c o n d i t i o n s p e r t a i n i n g t o t h e m i c r o w a v e o p e r a t i o n w e r e as d e s c r i b e d p r e v i o u s l y i n C h a p t e r 3.5. Once t h e s y s t e m h a d b e e n shown t o o p e r a t e identical efficiently, five i n j e c t i o n s o f t h e m i x e d s t a n d a r d w e r e made and t h e p e a k a r e a s m e a s u r e d . These r e s u l t s a r e shown i n T a b l e 3 . 6 . 1 . As c a n be s e e n , t h e p r e c i s i o n o f f e r e d b y t h e s y s t e m i s i n t h e order of 1.5 and 2.0% RSD for selenite and selenate r e s p e c t i v e l y . The l i m i t s o f d e t e c t i o n w e r e t h e n d e t e r m i n e d f o r selenium(IV) and s e l e n i u m ( V I ) a n d w e r e f o u n d t o be 0.2 a n d 0.3 ng ml'^ r e s p e c t i v e l y . In order t o evaluate Material, analyzed. and 2.8 content NXST SRM a real 1643c sample, a - Trace C e r t i f i e d Reference Elements i n Water I t was f o u n d t o c o n t a i n 10.6 n g ml"^ o f ng ml"^ o f selenium(VI) , o f 13.4 n g m l * ^ This giving a was selenium(IV) total selenium i s i n good agreement w i t h t h e 118 Table 3.6.1 A n a l y s i s o£ a mixed s e l e n i u m standard (5 ng ml-^ S e ( I V ) and S e ( V I ) ) Peak LOD areas Analysis Se(IV) 1 761 249 2 776 238 3 770 249 4 761 247 5 788 241 Mean 771.2 S 244.8 S Sn-l 11.34 S (3 X s,.i) 0.22 n g ml** 119 Se{VI) 5.02 S 0.31 n g ml'^ certified is value currently selenium of 12.7 ± 0.7 ng ml'*. No reference material a v a i l a b l e w i t h c e r t i f i e d values species. The values for individual o b t a i n e d agree c l o s e l y w i t h the v a l u e s p r e v i o u s l y o b t a i n e d w i t h t h e e a r l i e r automated system. It was rise found t h a t higher concentrations of selenium(VI) t o an e l e v a t e d b a s e - l i n e , b u t t h i s c o u l d be gave overcome d i l u t i o n o f more c o n c e n t r a t e d s e l e n i u m ( V I ) s o l u t i o n s . The o p e r a t i n g c o n d i t i o n s employed f o r t h e t o t a l system are by full shown i n T a b l e 3.6.2. The s y s t e m was t h e n employed t o e v a l u a t e t h e c o n c e n t r a t i o n s o f t h e s e l e n i u m s p e c i e s i n samples o f s e l e n i u m s o l u t i o n s s u p p l i e d to this laboratory for a n a l y s i s programme. The agreement w i t h those analysis under the BCR selenium c o n c e n t r a t i o n s o b t a i n e d were i n g o o d obtained by conventional reduction subsequent a n a l y s i s v i a h y d r i d e g e n e r a t i o n coupled fluorescence detection. 120 and t o atomic Optimized T a b l e 3.6.2 con5)lete operating conditions for the system HPLC Sample l o o p 1 ml Sample pH 7 M o b i l e phase 1 25 mmol 1'^ KjSO^, pH5 M o b i l e phase 2 100 mmol 1"' K2SO4, pH5 M o b i l e phase s w i t c h i n g 200 seconds Eluent 2.0 ml min"^ flow rate Microwave 20% Power Hydride Reductant HCl flow flow continuous generation 4 ml min'^ rate 8 ml min"^ rate Argon purge f l o w rate 350 ml min"^ Argon d r i e r f l o w rate 1000 ml min"^ Detector Primary Boost lamp c u r r e n t 25 mA lamp c u r r e n t 25 mA Gain 1000 121 X 10 3.7 An i n v e s t i g a t i o n i n t o the k i n e t i c s o f t h e r e d u c t i o n selenium ( V I ) t o selenixim ( I V ) As d i s c u s s e d i n S e c t i o n 3 . 1 , t h e r e a p p e a r s t o be reports in the literature selenium(VI) i s reduced also of reflected regarding the conflicting rate at which t o selenium(IV) . This disagreement i n t h e recommended c o n d i t i o n s f o r which is the r e d u c t i o n s h o u l d be c a r r i e d o u t , t h e d e b a t e b e i n g f u e l l e d an a p p a r e n t loss o f selenium d u r i n g the r e d u c t i o n process. As p r e v i o u s l y s t a t e d , t h e most commonly employed method f o r the r e d u c t i o n o f selenium(VI) i s t o heat in by t h e sample t o 70 "^C t h e p r e s e n c e o f 6M h y d r o c h l o r i c a c i d "Conventional wisdom" suggests that f o r a given period. this period i s usually t h i r t y m i n u t e s . A number o f w o r k e r s h a v e r e p o r t e d t h a t h e a t i n g above this compounds. temperature a loss of volatile selenium I t has b e e n r e p o r t e d b y K r i v a n e t . a l . ^® f o l l o w i n g work using were i n fact produced, causes radiotracers, due by t h e that apparent losses t o t h e back o x i d a t i o n of selenium o f the selenium (IV) action of free chlorine. T h e i r work showed t h a t i f t h e s e l e n i u m ( I V ) s o l u t i o n produced by t h e h y d r o c h l o r i c a c i d r e d u c t i o n was l e f t was converted back to f o r one week, 94% o f t h e s e l e n i u m ( I V ) selenium(VI). This figure remained c o n s t a n t o v e r t h e n e x t f o u r weeks, and so may be r e g a r d e d the equilibrium c o n c e n t r a t i o n . Since h y d r i d e depends u p o n t h e s e l e n i u m as the generation of the being i n the selenium(IV) oxidation state, i t i s clear that the a n a l y t i c a l determination should proceed immediately upon c o m p l e t i o n o f t h e r e d u c t i o n 122 step. I t i s also easy to understand the early confusion p r o d u c e d by t h i s back o x i d a t i o n . During the development of the microwave reduction system ( S e c t i o n 3 . 4 ) , i t had been assumed t h a t i f t h e r e d u c t i o n s t e p took thirty minutes at 70 ""C, then in order to achieve r e d u c t i o n i n an o n - l i n e p r o c e s s , t h e r e d u c t i o n r e a c t i o n would have t o be c a r r i e d out a t a h i g h e r t e m p e r a t u r e . n e c e s s a r y due to the l i m i t e d time that T h i s would be t h e a n a l y t e would be i n t h e s y s t e m . I t was a n t i c i p a t e d t h a t t h e r e a c t i o n would have t o be carried out i n the S e c t i o n 3.4.1, t h i s was gas phase. As d i s c u s s e d above not i n f a c t found t o be the c a s e , in and so t h e k i n e t i c s o f t h e r e d u c t i o n were s t u d i e d i n more d e t a i l . 3.7.1 The Experimental d e t e r m i n a t i o n o f t r a c e l e v e l s o f s e l e n i u m has g e n e r a l l y relied an upon t h e t e c h n i q u e element specific of hydride detector, generation, since i t was coupled to introduced by Holak. L a t t e r l y , t h e u s e of a q u a r t z f u r n a c e - a t o m i c spectrometer (QFAAS) as a detection system absorption has become i n c r e a s i n g l y common, s i n c e i t p r o v i d e s good d e t e c t i o n l i m i t s , good r e p r o d u c i b i l i t y and employs equipment commonly a v a i l a b l e i n most l a b o r a t o r i e s . U s i n g t h i s t e c h n i q u e , w i t h a c o n t i n u o u s flow hydride a typical generator a n a l y s i s may give a response similar take to t h a t shown i n F i g u r e i n the order of as shown i n F i g u r e 3.7.1. As 123 2.1, 2 minutes, c a n be seen, and Figure 3.7.1 Typical analysis trace obtained generation by hydride o p e r a t i n g under e q u i l i b r i u m conditions u (J •Ui u ifi a: o r) >j TIMI-; 124 (Kcconds) tou t h e r e i s an i n i t i a l d e l a y p e r i o d o f t y p i c a l l y 10-15 during which time the sample reaches the seconds, switching valve, i m m e d i a t e l y p r i o r t o sample i n t r o d u c t i o n i n t o t h e g a s - l i q u i d separator. T h i s i s f o l l o w e d by a r i s e time o f t y p i c a l l y seconds i n which the d e t e c t o r output heads towards a state. around An analysis period of 45-60 seconds 15-20 steady follows, d u r i n g w h i c h time the measurement i s made. At t h e end o f period, the switching valve ceases to supply this a n a l y t e to the g a s - l i q u i d s e p a r a t o r , and t h e s i g n a l r e t u r n s t o the b a s e l i n e as the gas-liquid a n a l y t e . The method r e l i e s separator is cleared of any remaining d e c a y time i s t y p i c a l l y 30-45 s e c o n d s . Thus upon an e q u i l i b r i u m being reached i n the l i q u i d s e p a r a t o r , and as a consequence o f t h i s , i t has difficult these The to f o l l o w anything inbuilt use orders of atomic proved but t h e s l o w e s t r e a c t i o n s due fluorescence detectors, o f magnitude more s e n s i t i v e t h a n to o f an analyte. which are s e v e r a l QFAAS, o f f e r a r a p i d I t i s also possible to a l t e r the c o n d i t i o n s used f o r the hydride generation, under computer c o n t r o l , use v e r y s h o r t sample i n j e c t i o n these gas- delays. response to the presence Under the conditions the resulting peaks and times. resemble flow i n j e c t i o n p e a k s as shown i n F i g u r e 3.7.2, and t h e e q u i l i b r i u m c o n d i t i o n s i n t h e gas l i q u i d s e p a r a t o r a r e not u p s e t v e r y s h o r t p e r i o d i n w h i c h t h e sample i s b e i n g over the introduced. As can be s e e n i n F i g u r e 3.7.2, the c o m p l e t e a n a l y s i s i s o v e r i n less lasts than for 45 2 seconds. seconds, Since a the sample i n j e c t i o n "snapshot" 125 of the stage r e a c t i o n may only be Figure 3.7.2 Trace o b t a i n e d employing h y d r i d e coupled to atomic fluorescence w i t h a one second i n j e c t i o n generation detection time to u 'CO u 'CO •cC C •' I Ml-: ( crcoful::) 126 00 o b t a i n e d . I f t h i s i s r e p e a t e d a t one minute i n t e r v a l s , i t i s t h e n p o s s i b l e t o b u i l d up a p i c t u r e o f t h e complete reaction process. 3.7.1.1 The Instrumentation apparatus generator used {model f o r thi-s study consisted of a hydride 10.004 from PS A n a l y t i c a l L t d . , Sevenoaks, Kent) f i t t e d w i t h a Perma-pure d r i e r tube (PS A n a l y t i c a l L t d ) , and used i n c o n j u n c t i o n w i t h an atomic f l u o r e s c e n c e d e t e c t o r (Excalibur,PS A n a l y t i c a l computer Ltd.). control using Ltd.). The i n s t r u m e n t s were under Touchstone™ software(PS Analytical F u r t h e r d e t a i l s o f t h e i n s t r u m e n t a t i o n are g i v e n i n Chapter 2. 3.7.1.2 Reagents The r e a g e n t s used f o r t h i s s t u d y were sodium b o r o h y d r i d e 98% ( A l d r i c h ) , sodium s e l e n a t e 99% ( A l d r i c h ) , sodium s e l e n i t e 99% ( A l d r i c h ) and h y d r o c h l o r i c a c i d (Analar-BDH). Water was 18M ohm from a M i l l i - Q system. 100 pg ml"^ s t o c k solutions s e l e n i t e were p r e p a r e d . ml'^ were prepared solutions 1.3% m/v daily o f sodium s e l e n a t e and sodium Working s t r e n g t h s o l u t i o n s o f 50ng from these. Sodium borohydride i n 0.1 mol 1"^ NaOH were a l s o 127 prepared daily. 6 mol 1"^ h y d r o c h l o r i c a c i d s o l u t i o n s were p r e p a r e d as required. 3.7.1.3 Method A beaker containing 200ml o f p l a c e d i n a w a t e r bath, (50, 55, 60, achieved, every whilst seconds, calculated out in maintaining and then and operated e q u i l i b r i u m had at continuous operated the s t o r e d by triplicate to resulting sample temperature solution from t h e . The used, and The beaker was carried software felt was that this g r e a t e r p r e c i s i o n t h a n peak h e i g h t , b e a r i n g mind t h e v e r y s h o r t s a m p l i n g t i m e s was concentrations computer. T h i s p r o c e s s each been agitation. selenium i n t h e peak a r e a mode, s i n c e i t was would p r o v i d e was and h e a t e d t o t h e r e q u i r e d t e m p e r a t u r e 70 °C) . Once t h e r m a l s y s t e m was 60 1'^ h y d r o c h l o r i c a c i d a s m a l l a l i q u o t (100 p i ) o f t h e s t o c k introduced hydride 65 and 6 mol the sharp in peaks obtained. 3.7.2 Results The results the detector plotted of the t r i p l i c a t e output (related e x p e r i m e n t s were averaged, and t o Selenium(IV) c o n c e n t r a t i o n ) a g a i n s t t i m e f o r e a c h t e m p e r a t u r e as shown i n F i g u r e 3.7.3. I t c a n be seen t h a t t h e c u r v e s o b t a i n e d a r e e x p o n e n t i a l 128 F i g u r e 3.7.3 Plot of fluorescence detector output time f o r v a r i o u s against terr^^eratures OH ;H Time o o C •JG ( n i « s > GH C 129 C OS c VH C i n c h a r a c t e r , and so were r e p l o t t e d u s i n g I n ( o u t p u t maximum o u t p u t ) a g a i n s t t i m e as shown i n F i g u r e 3.7.4. The r e s u l t i n g straight order lines indicate i n character. that I t can the reaction i s pseudo-first be seen from the Arrhenius equation, k=A exp(-EyRT) where k = r a t e constant, A = pre-exponential f a c t o r , = a c t i v a t i o n energy, r = gas c o n s t a n t and T = temperature (K) t h a t t h e s l o p e o f these l i n e s may be c a l c u l a t e d t o o b t a i n t h e r a t e c o n s t a n t . A p l o t o f l n ( k ) a g a i n s t 1/T a l s o produced a s t r a i g h t l i n e as shown i n F i g u r e 3.7.5, t h e s l o p e o f which i s equal t o E;^/R. The result obtained gave a value f o r the a c t i v a t i o n energy f o r t h e r e a c t i o n o f 90.39kJ mol"' u s i n g 6M hydrochloric acid. 3.7.3 Discussion The a c t i v a t i o n energy c a l c u l a t e d i n t h i s s t u d y i s h i g h e r t h a n that r e p o r t e d by Bye & Lund^^ b u t lower than the figure r e p o r t e d by P e t t e r s o n & 01in"'° (90.4kJ mol"^ c . f . 83kJ mol"^ and 126 kJ mol"^ respectively). However, c o n d i t i o n s w i t h r e g a r d t h e chemical the experimental composition of the t e s t s o l u t i o n s were n o t i d e n t i c a l t o those used by Bye and Lund. They were l o o k i n g a t s o l u t i o n s c o n t a i n i n g p e r c h l o r i c a c i d i n 130 F i g u r e 3.7.4 P l o t o f I n (output maximum - output) against time Tine Cmins) --^>-- Ga c 131 — I — fes c 7B C F i g u r e 3.7.5 Plot of In(k) against 1/T 0.0 n 0.5 - o. o -1.0 - CO S -1.5 - -2.0 -2.5 0.0029 0.00295 0.00300 1/T 132 0.00305 0.0031 addition to hydrochloric duplicate conditions a c i d , i n an a t t e m p t t o more c l o s e l y applicable to "real" samples. a d d i t i o n , t h e i r v a l u e f o r the a c t i v a t i o n energy was u s i n g 4 mol 1"^ h y d r o c h l o r i c used i n t h i s s t u d y . The fluorescence points a p p l i c a t i o n o f the more r a p i d atomic Olin explained energy as a Lund w i t h r e g a r d s the that t h e r e was flask to function of water exact m a t r i x bath and the for the uncertainties in used by used. They of Bye indicated introduction contents r e a c h i n g a c o n s t a n t t e m p e r a t u r e , and value conditions a t i m e l a g between the the calculations. t h e i r higher t e m p e r a t u r e , s i n c e t h e y r e p e a t e d the and 1'^ system i n t h i s work a l s o enabled many more data and activation obtained a c i d , as opposed t o the 6 mol t o be o b t a i n e d , on which t o base the Petterson In of that a l s o t h a t the the flask contents o f the f l a s k d i d not reach the t e m p e r a t u r e o f t h e b a t h . I t i s difficult to believe these factors likely that would the o b t a i n e d by Bye t h a t Bye affect lower and four points the accuracy Lund d i d not their results, figure Lund was From t h e i r p u b l i c a t i o n , and due for the realise and that i t i s more activation energy t o the l a c k o f data points. i t appears t h a t they obtained only at each t e m p e r a t u r e - c l e a r l y t h i s would a f f e c t of the produced. Since the on these g r a d i e n t s , plots, and hence the slopes of lines c a l c u l a t i o n o f a c t i v a t i o n energy r e l i e s an obvious e x p l a n a t i o n o f the lower f i g u r e becomes a p p a r e n t . I n t h i s study, the a c t u a l t e m p e r a t u r e o f the t e s t s o l u t i o n s were measured. P e t t e r s o n and O l i n a l s o i n d i c a t e that f u l l reduction t o o k t h i r t y minutes a t 65 ''C. 133 As can be seen from Figure temperature, full 3.7.3, our results r e d u c t i o n was indicate achieved that at this w i t h i n t e n minutes under our e x p e r i m e n t a l c o n d i t i o n s . From t h e p l o t s o f o u t p u t a g a i n s t time i n F i g u r e 3.7.3, i t can be seen t h a t t h e r e a c t i o n goes t o c o m p l e t i o n a f t e r 6 minutes a t 70**C. Prolonged are h e a t i n g f o r - p e r i o d s o f 30 minutes o r more t h e r e f o r e unnecessary. - S h o r t e r heating times may also reduce t h e p o t e n t i a l f o r c o n t a m i n a t i o n when u s i n g open topped c o n t a i n e r s . As r e p o r t e d by K r i v a n e t . a l . " , the s o l u t i o n may be b o i l e d under r e f l u x , b u t i t i s o f t e n more p r a c t i c a b l e when dealing w i t h l a r g e numbers o f samples t o have containers s i t t i n g i n a water b a t h , r a t h e r t h a n h a v i n g a l a r g e a r r a y o f r e f l u x i n g systems i n o p e r a t i o n . 3.8 Photolysis Since t h e development o f t h e HPLC-microwave-HG-AFS system proved s u c c e s s f u l f o r t h e s p e c i a t i o n o f selenium i n i t ' s inorganic forms, organo-selenium compounds were also i n v e s t i g a t e d , t o see whether t h e y were rendered d e t e c t a b l e by microwave t r e a t m e n t . I n o r d e r t o achieve t h i s d e t e c t a b i l i t y , the t r e a t m e n t would need t o c l e a v e t h e selenium-carbon bonds, and convert any selenium released t o the selenium(IV) o x i d a t i o n s t a t e . I n s p i t e o f a number o f e f f o r t s i n t h i s direction, they remained stubbornly unaffected and undetectable. 134 Organo-selenium compounds are e x t r e m e l y r e s i s t a n t t o a c i d i c degradation''^"", and as a r e s u l t , severe regimes have had t o be employed f o r t h e i r d e t e r m i n a t i o n i n e n v i r o n m e n t a l and b i o l o g i c a l samples e.g. t h e use o f a m i x t u r e o f n i t r i c , s u l p h u r i c and p e r c h l o r i c acids'*. Newer t e c h n i q u e s u s i n g GC-MS a f t e r d e r i v i t i z a t i o n t o form the t r i m e t h y l s i l y l a t e d compound have been reported'^ f o r the a n a l y s i s o f s e l e n o - m e t h i o n i n e . However, these t e c h n i q u e s are p r i m a r i l y employed when a number of organo-selenium compounds have to be quantified i n d i v i d u a l l y . I n environmental a n a l y s i s , i t i s f r e q u e n t l y only required t o s p e c i a t e on the b a s i s of organo-selenium compounds, s e l e n i u m { I V ) and s e l e n i u m ( V I ) , and so a method o f r e l e a s i n g t h e selenium from organo-selenium compounds t o render i t d e t e c t a b l e v i a h y d r i d e g e n e r a t i o n i s o f g r e a t p o t e n t i a l use. Since microwave energy had no e f f e c t i n an a c i d i c environment, i t was d e c i d e d t o i n v e s t i g a t e whether p h o t o l y s i s would r e l e a s e the selenium d i r e c t l y by b r e a k i n g t h e carbon-selenium bond. This t e c h n i q u e has been employed i n s i m i l a r circumstances f o r t h e d e t e r m i n a t i o n o f arsenic'^'" and tin''^. 3.8.1 Experimental A stock s o l u t i o n o f seleno-methionine {Aldrich, Gillingham, Dorset) was prepared, c o n t a i n i n g a p p r o x i m a t e l y 100 mg 1'^ i n 3 mol 1"^ h y d r o c h l o r i c a c i d . From t h i s s o l u t i o n , a f u r t h e r d i l u t i o n was made t o g i v e a s o l u t i o n o f 100 pg ml"S and t h i s was d i v i d e d between t h e f o u r q u a r t z tubes o f t h e UV exposure u n i t d e s c r i b e d i n S e c t i o n 2.1.3.6. The tubes were t h e n p l a c e d i n t h e exposure u n i t , and exposed f o r 1,10, 30 and 60 m i n u t e s . The samples were removed from t h e exposure u n i t a t t h e a p p r o p r i a t e t i m e s , and analyzed using standard hydride g e n e r a t i o n t e c h n i q u e s (see S e c t i o n 3.3). The r e s u l t s are shown 135 g r a p h i c a l l y i n F i g u r e 3.8.1, and a s c a n be o b s e r v e d , show t h a t t h e maximum c o n v e r s i o n taken place repeated after using a from o r g a n i c t o i n o r g a n i c s e l e n i u m had 60 m i n u t e s . more The dilute experiments solution were then (25 ]ig ml"M , and e x p o s u r e s made a t 5, 10, 20, 30, 40, 50, 60 and 70 m i n u t e s . These s a m p l e s were a g a i n a n a l y z e d , to o b t a i n and recovery yields. and t h e r e s u l t s c a l c u l a t e d These a r e shown i n F i g u r e show t h a t 100% r e c o v e r y i s reached after 60 m i n u t e s . S i n c e bromide/bromate i s employed t o c o n v e r t species to the inorganic e x h i b i t e d by s e l e n i u m form, organo-mercury and i n v i e w o f t h e a f f i n i t y f o r bromine, t h e s e r e a g e n t s to t h e seleno-methionine s o l u t i o n s i n v a r y i n g and t h e e x p o s u r e s r e p e a t e d the photolytic strengths left 3.8.2, were added concentrations, i n t h e hope t h a t t h e y may c a t a l y s e reaction. The bromide/bromate solution were v a r i e d from 0.5 t o 10%, t h e s o l u t i o n s f o r 30 m i n u t e s b e f o r e being 12% h y d r o x y l a m i n e h y d r o c h l o r i d e . decolourised with being 50 p i o f I n a l l c a s e s , no improvement i n r e a c t i o n r a t e was o b s e r v e d . 3.8.2 The Discussion exact mechanism involved i n t h e breakdown m e t h i o n i n e by UV r a d i a t i o n i n t h e s t r o n g l y a c i d i c employed h e r e released seleno- conditions i s n o t known. I t i s p r o b a b l e t h a t t h e s e l e n i u m from selenium(IV) of the seleno-methionine oxidation state, goes directly since the s o l u t i o n to the conditions do n o t appear t o be l i k e l y t o g i v e r i s e t o f u r t h e r o x i d a t i o n . However, t h e p o s s i b i l i t y selenium(VI) oxidation of of the r e a c t i o n proceeding to give ( w i t h f r e e c h l o r i n e p l a y i n g a p a r t a s i n t h e back selenium(IV) by S e c t i o n 3.4) and t h i s b e i n g to the heating effects conventional reduction -see r e d u c e d back t o s e l e n i u m ( I V ) due of t h e lamp and the high acid c o n c e n t r a t i o n cannot be r u l e d o u t on t h e b a s i s o f t h e r e s u l t s obtained. Further investigations are obviously 136 required to Figure 3.8.1 Plot of selenium concentration detected a g a i n s t UV exposure time f o r s e l e n o methionine 7 S .B GB .B 2S.B h IB ZB 3B Time 137 IB (mi«s) (>B Figure 3.8.2 P l o t of selenium concentration detected a g a i n s t UV exposure time f o r s e l e n o m e t h i o n i n e to i l l u s t r a t e r e a c t i o n r a t e VB Time 138 Cr»i«s) elucidate which o f these potential mechanisms are in fact followed. W h i l s t t h e t i m e t a k e n t o achieve cleavage o f t h e carbonselenium bond may a t f i r s t appear t o be t o o l o n g f o r t h i s t e c h n i q u e t o have any a p p l i c a t i o n i n an o n - l i n e system, i t s h o u l d be remembered t h a t i n these experiments, l a r g e sample volumes were used, and these were p l a c e d a t some d i s t a n c e from t h e UV source. I f a c a p i l l a r y - c a r r y i n g t h e sample s o l u t i o n were p l a c e d c l o s e r t o t h e lamp, a much s h o r t e r p e r i o d f o r t h e r e a c t i o n s h o u l d be r e a l i s e d . The d i s t a n c e between sample and lamp i s c r i t i c a l since the i n t e n s i t y of the radiation d i m i n i s h e s w i t h t h e square o f t h e d i s t a n c e . Thus, t h e p o s s i b i l i t y o f i n c o r p o r a t i n g a UV exposure stage w i t h i n a system s i m i l a r t o t h a t d e s c r i b e d i n S e c t i o n 3.6 c o u l d p r o v i d e a " u n i v e r s a l selenium s p e c i a t i o n system", capable o f p r o v i d i n g d e t e r m i n a t i o n s f o r s e l e n i u m { I V ) , s e l e n i u m ( V I ) and organoselenium compounds. 3.9 Summary The s t u d i e s c a r r i e d out on selenium have y i e l d e d a number o f interesting results. The apparent i n c r e a s e i n s i g n a l when d e t e r m i n i n g selenium i n t h e presence o f t r a c e s o f n i t r i c a c i d v i a h y d r i d e g e n e r a t i o n was found t o be a r e a l e f f e c t and found t o be a s s o c i a t e d w i t h t h e t y p e o f pump t u b i n g employed. The exact mechanism r e s p o n s i b l e f o r t h e e f f e c t was not determined, a l t h o u g h two p o s s i b l e e x p l a n a t i o n s were suggested. The work c a r r i e d out on t h e c o n d i t i o n i n g o f the h y d r i d e g e n e r a t i o n systems i n d i c a t e d t h a t a t t r a c e and u l t r a t r a c e 139 l e v e l s , c o n d i t i o n i n g c o u l d t a k e some c o n s i d e r a b l e t i m e i f t h e system i s not p r e - t r e a t e d by i n i t i a l sample i n j e c t i o n s o f a r e l a t i v e l y high concentration of selenium(IV). I f conditioning i s not c a r r i e d o u t , t h e n d e t e r m i n a t i o n s s h o u l d be c a r r i e d out u s i n g t h e " b r a c k e t i n g method". The use o f an o n - l i n e microwave p r e - r e d u c t i o n s t e p was found t o be f e a s i b l e , and t h i s l e d t o t h e development o f an automated system f o r selenium s p e c i a t i o n d e t e r m i n a t i o n s u s i n g h y d r i d e g e n e r a t i o n and t h e n ^ q u a r t z f u r n a c e - a t o m i c a b s o r p t i o n spectroscopy as a d e t e c t i o n system. T h i s development was f u r t h e r r e f i n e d t o achieve d i r e c t d e t e r m i n a t i o n s o f selenium species by s e p a r a t i o n u s i n g HPLC, and employing t h e more s e n s i t i v e atomic f l u o r e s c e n c e d e t e c t o r t o compensate f o r sample d i l u t i o n . The i n v e s t i g a t i o n i n t o t h e k i n e t i c s o f the selenium{VI) r e d u c t i o n process i n d i c a t e d t h a t under our c o n d i t i o n s , f u l l r e d u c t i o n t o o k p l a c e w i t h i n s i x minutes a t 70**C, thus o b v i a t i n g t h e need f o r l o n g e r h e a t i n g , and t h e r e b y r e d u c i n g t h e dangers o f c o n t a m i n a t i o n . The use o f a p h o t o l y s i s stage t o f r e e selenium from organoselenium compounds has been e s t a b l i s h e d t o be e f f e c t i v e . The p o s s i b i l i t y o f i n c o r p o r a t i n g such a stage i n t o a comprehensive selenium s p e c i a t i o n system i s an obvious f u t u r e development. 140 'er 4 AppUcatiom q on-line pyrotysm 141 Pyrolysis 4.1 Introduction Pyrolysis may organic be d e f i n e d as compounds" materials have concentrated "the t h e r m a l d e c o m p o s i t i o n although also for been - i n c l u d e d . exclusively on mercury of this study inorganic The study has as the metal also under investigation. Mercury i s an unusual element, b e i n g t h e o n l y m e t a l which i s l i q u i d a t room t e m p e r a t u r e . I t forms amalgams w i t h most o t h e r metals (except i r o n and p l a t i n u m ) and these t a k e t h e form o f solids or liquids, depending on the p r o p o r t i o n of mercury p r e s e n t . T h i s p r o p e r t y i s employed w i d e l y i n d e n t i s t r y , a l s o p r o v i d e s t h e b a s i s f o r a simple and e x t r e m e l y detector f o r traces o f mercury. The change in and sensitive electrical p r o p e r t i e s o f a g o l d w i r e due t o amalgamation are employed t o provide quantitative measurements f o r the element. After exposure and measurement, t h e w i r e i s s i m p l y heated t o d r i v e o f f t h e mercury and r e n d e r i t s u i t a b l e f o r t h e next sample. Both t h e m e t a l and i t ' s compounds are h i g h l y t o x i c , and t h e r e are very studies exists many r e p o r t s i n t h e on flora and literature fauna^°. Since from b o t h n a t u r a l and of toxicological environmental anthropogenic sources, mercury and in view o f t h e severe e f f e c t s t r a c e q u a n t i t i e s o f t h e element may have on b o t h i n d u s t r i a l processes and on human h e a l t h , much 142 work i s currently biogenic Mercury being undertaken to fully elucidate the pathways o f t h e species i n v o l v e d . contamination i n c i d e n t s such as t h e much quoted Minamata Bay d i s a s t e r ^ ^ have a l e r t e d s c i e n t i s t s t o some o f t h e problems concerning mercury, but i n various areas of the w o r l d , mercury i s s t i l l w i d e l y used f o r r e c l a i m i n g g o l d from muds and g r a v e l s , rivers and hence and s u b s e q u e n t l y large quantities reach t h e sea. There escape into i s current concern i n t h e U n i t e d S t a t e s over h i g h l e v e l s o f mercury found i n f i s h and t h e mammals which f e e d on them i n t h e Everglades. These h i g h l e v e l s a r e thought gold t o come from mercury used by p r o s p e c t o r s i n t h e Amazon and i t ' s t r i b u t a r i e s , which i s washed by ocean c u r r e n t s around t h e bay o f Mexico, b e f o r e b e i n g d e p o s i t e d i n t h e Everglades area^^. Concern i s a l s o growing r e g a r d i n g t h e use o f mercury amalgams i n d e n t i s t r y . A number o f s t u d i e s have i l l u s t r a t e d t h e h a r m f u l e f f e c t s which may a r i s e with amalgams®^'^^, and concern mercury from h a v i n g d e n t a l c a v i t i e s i s growing filled for the h e a l t h o f d e n t i s t s and t h e i r s t a f f who have been s u b j e c t e d t o c o n t i n u o u s l y h i g h l e v e l s o f mercury i n t h e i r work. Mercury, once i n g e s t e d , c o n c e n t r a t e s through i n t h e kidneys t h e b r a i n membrane b a r r i e r . b l o c k s v a r i o u s nerve f u n c t i o n s . and a l s o passes Once i n t h e b r a i n , i t Mercury i s a l s o a b l e t o pass t h r o u g h t h e p l a c e n t a i n t o t h e f o e t u s " , and development o f t h e b r a i n and nervous system may be i m p a i r e d . There i s i n c r e a s i n g evidence o f a l i n k between mercury and A l z h e i m e r s disease"'®"', 143 and a l s o o f i t ' s d e t r i m e n t a l e f f e c t s upon t h e immune system^ . There i s c l e a r l y a need f o r methods f o r t h e d e t e r m i n a t i o n o f mercury which a r e b o t h s e l e c t i v e and v e r y s e n s i t i v e . Early t e c h n i q u e s were based on c o l o u r i m e t r i c methods, b u t s u f f e r e d from a l a c k o f s e n s i t i v i t y , and a l s o problems o f l o s s e s and c o n t a m i n a t i o n due t o t h e l o n g p r e p a r a t i o n steps i n v o l v e d . I n 1963, t h e use o f c o l d spectrometry vapour g e n e r a t i o n - atomic was reported^^, and s i n c e t h e n , t h i s has become t h e most w i d e l y employed t e c h n i q u e mercury i n biological fluorescence generation absorption samples^". The l a t e r d e t e c t i o n instruments has improved still d e t e c t i o n , and t h i s t e c h n i q u e f o r the determination of introduction of coupled t o cold vapour further the l i m i t s of i s f a s t g a i n i n g acceptance as a s i m p l e , s e n s i t i v e and r e l i a b l e method f o r t h e d e t e r m i n a t i o n of mercury. throughout 4.2 For A mercury fluorescence detector was used t h i s s t u d y and t h i s i s d e s c r i b e d i n Chapter 2. Experimental a l l the investigations i n t h i s employed section, was c o n f i g u r e d as shown i n F i g u r e observed from t h e diagram, t h e apparatus t h e system 4.1. As may be c o n s i s t e d o f a gas m i x i n g v a l v e a t t h e i n l e t o f t h e p y r o l y s i s oven. The c a r r i e r gas employed addition was argon, o f oxygen and t h e m i x i n g when required. valve The allowed the gases from the p y r o l y s i s oven t h e n passed i n t o a p r e - c o n c e n t r a t i o n u n i t , 144 Figure 4.1 Basic p y r o l y s i s system OXYGEN INLET 123,4 Cn GOLD TRAP TQ CLEAN ARGON ARGON INLET PYROLYSiS OVEN PRE- MERCURY CONCENTRATION FLUORESCENCE UNIT DETECTOR which t r a p p e d t h e mercury liberated f r o m t h e sample i n the o v e n on a g o l d sand t r a p . The o u t l e t o f t h e p r e - c o n c e n t r a t i o n u n i t was c o n n e c t e d d i r e c t l y Mercury has a vapour t o the fluorescence detector. p r e s s u r e o f 0.0016 mbar a t 22*" C w h i c h c o r r e s p o n d s t o a c o n c e n t r a t i o n o f a p p r o x i m a t e l y 14 mg m'^. vapour therefore provides a source The o f contamination which a f f e c t s e v e r y t h i n g i n t h e vicinity^°. A s s u m i n g t h a t t h e a n a l y s t has amalgam f i l l i n g s , c o n t a c t between t h e sample and e x h a l e d b r e a t h must be a v o i d e d , s i n c e t h i s c o n t a i n s e a s i l y mercury with vapour. detectable Rigorous c l e a n i n g o f a l l equipment the analysis of this element is vital. concerned This cleaning e x t e n d s t o t h e s i l i c a sample t u b e s used i n t h e p y r o l y s i s T h i s was a c c o m p l i s h e d by s u b j e c t i n g t h e t u b e s t o an oven. initial h e a t i n g a t 800° C f o r 30 m i n u t e s , a f t e r w h i c h t h e y w e r e s t o r e d in a 30% s o l u t i o n o f A r i s t a r n i t r i c were i n t r o d u c e d , a c i d . B e f o r e t h e samples t h e t u b e s were d r i e d externally with paper t o w e l l i n g , t h e n a r g o n w h i c h h a d b e e n p u r i f i e d u s i n g an i n - l i n e g o l d t r a p was u s e d t o d r y t h e i n s i d e o f t h e t u b e . The t u b e was then subjected to a purified to t e n minutes a was level element at 800** C, with a r g o n f l o w i n g t h r o u g h i t a f t e r w h i c h i t was a l l o w e d c o o l b e f o r e t h e s a m p l e was l o a d e d i n t o regime to further found t o reduce which t h e background d i d not a f f e c t cleaning l e v e l s o f mercury the determination i n any o f t h e s a m p l e t y p e s l i s t e d 146 i t . This below. of the Using t h e system o u t l i n e d above, a number o f investigations were c a r r i e d o u t . These w e r e : a) t h e d e t e r m i n a t i o n o f m e r c u r y i n s e d i m e n t s b) an a t t e m p t t o determine mercury i n s i l v e r c ) an a t t e m p t t o use t h e t e c h n i q u e of mercury i n h a i r d) an a t t e m p t 4.2.1 f o r the determination and-finally t o determine mercury i n o i l The d e t e r m i n a t i o n o f mercury i n Since the more nitrate commonly employed sediments methods of determining m e r c u r y i n s e d i m e n t s i n v o l v e much sample p r e p a r a t i o n , w i t h t h e c o n s e q u e n t i a l r i s k s o f l o s s e s and c o n t a m i n a t i o n , any which i s able to reduce these steps i s of interest. w o r k e r s h a v e r e p o r t e d t h e use o f c a p i l l a r y gas (GC) f o r organo- mercury studies^S technique Some chromatography b u t t h e s e methods still r e q u i r e c o n s i d e r a b l e sample p r e - t r e a t m e n t . A s i m p l e and r o b u s t technique f o r determining therefore desirable. Using total the apparatus o u t l i n e d samples of sediment mercury above {approximately in a i n Chapter 30 mg) sediment 5.2, were is weighed carefully p o s i t i o n e d i n t h e h e a t i n g zone o f t h e s i l i c a sample t u b e s u s e d in the p y r o l y s i s oven. 147 After r u n n i n g a number o f d i f f e r e n t found that produced h e a t i n g the the temperatures results s e d i m e n t s t o 550° C shown i n T a b l e 4.1. i t was for five Heating minutes at lower resulted i n inconsistent results, whilst heating at h i g h e r temperatures heating h e a t i n g regimes, had no b e n e f i c i a l e f f e c t , f o r l o n g e r p e r i o d s . The results neither did show good agreement b e t w e e n t h e c e r t i f i e d v a l u e s and t h o s e o b t a i n e d e x p e r i m e n t a l l y ( 64.2 ng g"' c . f . 63 ± 12 ng g"^ i n t h e c a s e o f NIST 4.2.2 The atterr5>ted determination of mercury i n 1646). silver nitrate Silver nitrate is used extensively in the photographic i n d u s t r y as a p r e c u r s o r i n t h e p r e p a r a t i o n o f p h o t o s e n s i t i v e emulsions in both films and contamination of s i l v e r n i t r a t e f i l m manufacturers analysis silver reported, but nitrate papers. Mercury i s a serious problem f o r the e v e n a t l o w ng g"^. V a r i o u s m e t h o d s f o r t h e o f mercury i n s i l v e r have been printing into most nitrate a t t h e nanogram i n v o l v e the a halide salt, conversion f o l l o w e d by level of cold the vapour m e t h o d s a p p l i e d t o t h e f i l t r a t e ^ ^ . As d i s c u s s e d above, p r o b l e m s from mercury importance losses of contamination when a n a l y s i n g f o r t h i s apparatus was silver nitrate element, are and of paramount thus efforts s e t up as d e s c r i b e d p r e v i o u s l y , and samples w e r e made t o e m p l o y The and pyrolysis. ( a p p r o x i m a t e l y 30-40 mg) 148 were l o a d e d into T a b l e 4.1 D e t e r m i n a t i o n o f mercury i n c e r t i f i e d reference sediments Analysis NIST 8406 NIST 1646 Estuarine sediment Tenessee R i v e r Sediment 1 67.2 58.1 2 61.8 59.3 3 66.0 58.1 4 64 .2 61.2 5 61.4 59.4 Mean 64.2 59.2 Certified value 63 ± 12 ng g"^ 149 (60) ng g-1 the silica sample t u b e s . V a r i o u s heating c y c l e s were tried, from v e r y g e n t l e h e a t i n g a t 100** C up t o more i n t e n s e h e a t i n g at 500* C. Absolutely Various no sample was heating mercury was times detected were at also any employed. temperature. A t h e n s p i k e d w i t h m e r c u r y vapour by d r a w i n g v a r i o u s volumes o f t h e vapour above a r e s e r v o i r o f the element a gas s y r i n g e , and t h e n i n j e c t i n g t h i s i n t o the s i l v e r into nitrate sample. A g a i n no m e r c u r y w a s - d e t e c t e d . The i n s t r u m e n t a t i o n was checked correctly, the and found c o n c l u s i o n was to be and and r e a c h e d t h a t a t low t e m p e r a t u r e s , of m e r c u r y f o r s i l v e r r e l e a s e d . At operating was the so affinity so g r e a t t h a t t h e mercury was higher temperatures, the s i l v e r n i t r a t e not sublimes presumably the mercury i s t e m p o r a r i l y r e l e a s e d , only to recombine w i t h t h e s i l v e r n i t r a t e as soon as i t c o n d e n s e s . I t was t h e r e f o r e concluded this particular 4.2.3 The t h a t t h e t e c h n i q u e was u n s u i t a b l e f o r problem. The a t t e n p t e d d e t e r m i n a t i o n o f mercury i n hiiman h a i r determination o f m e r c u r y i n human h a i r may screening technique be used i f mercury exposure i s suspected. m e r c u r y l e v e l s i n hair^° a r e around 1 yg g'\ a n a l y t i c a l procedures a r e r e q u i r e d . The and so Normal sensitive c o n v e n t i o n a l methods employed f o r t h i s a n a l y s i s i n v o l v e t h e d i g e s t i o n of t h e sample, and A number s u b s e q u e n t a n a l y s i s by c o l d vapour of experiments were 150 as a performed hair generation. along the lines i l l u s t r a t e d p r e v i o u s l y , b u t w i t h sample w e i g h t s o f l e s s t h a n 10 mg. These l o w w e i g h t s o f sample were due t o t h e f a c t that t h e m a t e r i a l has e x t r e m e l y l o w d e n s i t y , a n d sample v o l u m e i s l i m i t e d b y t h e s i z e o f t h e h e a t i n g zone a n d t h e b o r e silica of sample t u b e s . H e a t i n g 300 °C i n a r g o n alone o f t h e sample t o a of the temperature r e s u l t e d i n t h e p r o d u c t i o n o f smoke p a r t i c l e s which f l o o d e d t h e fluorescence d e t e c t o r . Experiments were performed to investigate released a t temperatures samples from 60 t h i s d i d occur, whether mercury would below t h e c h a r r i n g p o i n t by h e a t i n g t o 150 °C i n 10 **C i n c r e m e n t s , r e s u l t s were v e r y and w h i l s t inconsistent. The a d d i t i o n o f v a r y i n g amounts o f o x y g e n t o t h e a r g o n gas was t h e n made so t h a t the organic matter was i n t o c a r b o n d i o x i d e . S l o w l y i n c r e a s i n g t h e sample at a rate be o f 10 °C min"^ was carrier converted temperature required t o avoid a n y smoke p r o d u c t i o n , b u t a g a i n t h e r e s u l t s were i n c o n s i s t e n t , o f t e n b y a t l e a s t one o r d e r o f m a g n i t u d e . In spite of the fact a number of t h a t these experiments occasions, obtained. This may be equipment, particularly no consistency due when to such w e r e r e p e a t e d on of limitations small results in weights were weighing are being employed, d i f f i c u l t i e s i n h a n d l i n g t h e m a t e r i a l o r s i m p l y t h e fact that such small sample weights are not r e p r e s e n t a t i v e o f t h e main b u l k o f m a t e r i a l . 151 sufficiently 4.2.4 The atten5)ted d e t e r m i n a t i o n o f mercury i n o i l A s i m i l a r t e c h n i q u e was a p p l i e d t o o i l s a m p l e s , t o t h a t above. In this case, t h e use of a silica crucible s h a p e d and c o n s t r u c t e d t o f i t i n t o t h e s i l i c a employed A lack i n the reproducibility of o b t a i n e d , and t h e same c o n c l u s i o n s i . e . that problems sample t u b e and sufficiently 4 .3 the results was the very that the represent small size was r e a c h e d as t o t h e p o s s i b l e t h e l o w d e n s i t y o f t h e sample i n weighing precision, samples of such results in with sufficient samples may now t h e main b u l k o f t h e sample. Mercury d e t e r m i n a t i o n s en5>loying gas chromatography c o u p l e d to the p y r o l y s i s system w i t h fluorescence The spoon, t o c o n t a i n t h e o i l samples. similar causes given use of atomic detection capillary gas chromatography as a means of s e p a r a t i n g v o l a t i l e o r g a n o - m e r c u r y compounds has a l r e a d y b e e n r e f e r r e d to^°. T h i s i s commonly f o l l o w e d b y an e l e c t r o n c a p t u r e detector when compounds. A process the halogenated d e r i v i t i z a t i o n step non-halogenated considerable since determining care to sensitivity i s therefore required compounds, ensure of that the 152 organo-mercury no and this requires contamination detector is to so occurs, high. Contamination o f solvents i soften a p a r t i c u l a r Using t h e apparatus pyrolize the problem. shown i n F i g u r e 4.2, i t was p o s s i b l e t o organo-mercury compounds directly s e p a r a t i o n b y t h e column, and t h u s d e t e c t t h e mercury after directly u s i n g a t o m i c f l u o r e s c e n c e . The GC was a Pye U n i c a m m o d e l 104, fitted with diameter (S.G.E., internal polar an u l t r a b o r e diameter Australia). fused s i l i c a , BP-1 s t a t i o n a r y phase 0.53mm i n t e r n a l diameter employed. coliimn, This inlet adaptor o f 0.53mm The c o l u m n was 3m x coated w i t h silica employed A 350mm x post-column as a 0.53mm a 5 micron non- (S.G.E., A u s t r a l i a ) . fused internal was a l s o resistively heated t r a n s f e r l i n e a n d h e l d a t 150 °C v i a a V a r i a c t r a n s f o r m e r , f e d t h e e l u e n t s f r o m t h e column d i r e c t l y i n t o the heated zone o f t h e p y r o l y s i s o v e n , w h i c h was h e l d a t 800 ^'C. A number o f e x p e r i m e n t s were p e r f o r m e d t o d e t e r m i n e t h e e f f e c t o f c o l u m n t e m p e r a t u r e , c a r r i e r gas f l o w r a t e , sample gas f l o w r a t e a n d s h i e l d g a s f l o w r a t e , a n d t h e s e a r e shown i n F i g u r e s 4.3 - 4.6. Using the conditions shown i n Table e x p e r i m e n t s were p e r f o r m e d t o d e t e r m i n e t h e response mercury c h l o r i d e and d i e t h y l mercury, F i g u r e 4.7. 153 4.2, of ethyl a n d t h e s e a r e shown i n F i g u r e 4.2 Coupled G C - p y r o l y s i s - A F S s y s t e m SAMPLE INLET HELIUM CARRIER GAS G C OVEN L NE MERCURY PYROLYSIS FLUORESCENCE OVEN DETECTC3R ARGON SAMPLE GAS INLET ARGON SHEATH GAS INLET 154 F i g u r e 4.3 E f f e c t o f column temperature f.VHHHH ( r.lHHHH VH Co 1Limii X ±.emper*Ei.i:u.r'e D i R t l xIfi l1 MCK-t^ur-*^ G C - F I D chromatogram of I yl of a standard muture o( 10 p&/ml of D E M . N W C and ENlC as mercury in n-hexane. ^1 L 155 Figure 4.4 E f f e c t of c a r r i e r gas flow r a t e G3UBUU r.HMHHH Cair-r-ier- zs 3B cfa.s F l o w r-a-te 156 F i g u r e 4.5 E f f e c t of s a n ^ l e gas flow rate G'lHBHB eaBBBB SSBBBB •JHHHHH 1MHUBH 3!SBBBH SBB 3BB -X Dic3t.l.Ml 157 M F i g u r e 4.6 E f f e c t o f s h i e l d gas flow rate Sr.HHBB HMUUU -40BBBH • BB 158 9BB Table 4.2 Instrument conditions f o r GC-pyrolysis- atomic f l u o r e s c e n c e Gas c h r o m a t o g r a p h oven 100 °c temperature Column t y p e BP-5 .600 X 0.53 ( i d ) mm 5% p h e n y l d i m e t h y l s i l o x a n e . Carrier gas Transfer l i n e Helium temperature (7.5 m l min'M 150 **C P y r o l y s i s oven t e m p e r a t u r e 800 °C Sheath gas Argon (600 m l min'M Sample gas Argon (250 m l min'M 159 F i g u r e 4.7 Response o f e t h y l mercury and d i m e t h y l mercury leaaaee UUMUUU cuuuua iHMHea oa -IB Coiice«-tic*a.*t. i o n ^ •0 DEM 160 EMC 4.4 Summary The u s e o f p y r o l y s i s as a m e t h o d o f d e t e r m i n i n g t o t a l m e r c u r y i n s e d i m e n t s a m p l e s was f o u n d t o w o r k s a t i s f a c t o r i l y w i t h good agreement being obtained with sample concentrations o f a p p r o x i m a t e l y 60 ng g"^. When a p p l i e d t o l o w e r d e n s i t y o r g a n i c r i c h samples, t h e method d i d n o t prove reliable. I t is strongly suspected that this is due to the u n r e p r e s e n t a t i v e n e s s o f t h e sample s i z e , r a t h e r t h a n a d e f e c t i n t h e equipment o r t h e t e c h n i q u e . The u s e o f t h e c o u p l e d t e c h n i q u e G C - P y r o l y s i s - A F p r o d u c e d some encouraging r e s u l t s , and w a r r a n t s 161 further investigation. er 5 162 5 Development o f an automated pH a d j u s t i n g 5.1 In system Introduction many sample analytical is critical determinations, i foptimal e m p l o y e d i s t o be m a i n t a i n e d . been mentioned selenium many species other control performance o f t h e pH o f a o f the technique One e x a m p l e o f t h i s h a s a l r e a d y i n C h a p t e r - 3, i . e . the determination of b y HPLC-microwave r e d u c t i o n - H G - A F S , h o w e v e r examples do exist. I n many cases, samples a r e a c i d i f i e d upon c o l l e c t i o n i n o r d e r t o s t a b i l i z e t h e sample and prevent " p l a t e o u t " , t h e l o s s o f c a t i o n s f r o m t h e s o l u t i o n due t o t h e i r a d s o r p t i o n onto t h e surface o f glass containers'^. I n such cases, i t i s o f t e n necessary t o adjust t h e pH o f t h e sample j u s t p r i o r t o a n a l y s i s . T h i s p r o c e s s i s u s u a l l y c a r r i e d out manually, and which i s extremely tedious f o r the p r a c t i t i o n e r , c o s t l y i n terms o f labour. When t r a c e a n d u l t r a - t r a c e determinations are required, the pH a d j u s t m e n t also r e q u i r e s t h a t t h e reagents contaminants t o t h e sample. At such u s e d do n o t a d d levels, p r o b l e m a t i c s i n c e many commonly u s e d r e a g e n t s working a t these u n d e s i r a b l e f o r obvious levels, dilution be I n addition, o f t h e sample i s r e a s o n s . The n e e d f o r an a u t o m a t e d pH a d j u s t i n g system, which addresses t h e a f o r e m e n t i o n e d is therefore may are unavailable i n t h e p u r i t y necessary t o avoid contamination. when this apparent. 163 problems Previous work by Jackson e t a l ^ ^ d e s c r i b e s a system f o r the n e u t r a l i z a t i o n o f samples o b t a i n e d f r o m t h e d i g e s t i o n o f f o o d by s u l p h u r i c a c i d . I n t h i s p r o c e s s , was n e u t r a l i z e d reagent t h e s t r o n g l y a c i d i c sample u s i n g g a s e o u s ammonia. S i n c e t h e use o f t h i s a v o i d s a f f e c t i n g t h e volume o f t h e sample s o l u t i o n by dilution, a n d a l s o a v o i d s c o n t a m i n a t i o n o f t h e s a m p l e , i t was selected as t h e r e a g e n t employed batch f o r -this work. processing, - using The o r i g i n a l w o r k electromechanical timers e t c . T h i s a p p r o a c h c l e a r l y has l i m i t a t i o n s , a n d so t h e d e s i g n o f an a u t o m a t e d o n - l i n e s y s t e m was initiated. 5.1. Theory I n a sample o f pure w a t e r , falls t o zero, due i t ' s electrical conductivity t o s e l f - i o n i z a t i o n . The p r o c e s s r e p r e s e n t e d by t h e equations 2H2O (1) ^ Using (1) ^ may be : H3O* (aq) o r more H2O never + OH- (aq) " simply H* (aq) + OH" (aq) the l a t t e r equation, the e q u i l i b r i u m constant may be defined : K, = [H*] tOH-] [H2O] Since o n l y a few m o l e c u l e s o f water a c t u a l l y i o n i s e , be r e g a r d e d at constant as a c o n s t a n t 164 temperature. [HjO] may The i o n i c product o f water K„ K^, i s = At a temperature Kc X constant o f 25''C, = [H *] [OH'] K^^ = 1 x 10"^^ mol^ dm"^ a n d s i n c e t h e c o n c e n t r a t i o n s o f h y d r o g e n and h y d r o x y l i o n s a r e e q u a l , their c o n c e n t r a t i o n s a r e 1 x lO"' m o l d i t i " \ In any aqueous s o l u t i o n , is determined and hydroxyl and t h e degree o f a c i d i t y o r a l k a l i n i t y by t h e r e l a t i v e c o n c e n t r a t i o n s o f t h e hydrogen ions. If [H^] ) i f [OH"] [0H-] t h e s o l u t i o n w i l l ) [H^] be the solution w i l l acidic be alkaline A n e u t r a l s o l u t i o n contains equal concentrations o f both [H*] The = [0H-] = 10 -''mol pH o f a s o l u t i o n i s d e f i n e d as - l o g i o [ H * ] , a n d e f f e c t i v e l y removes t h e n e e d f o r awkward n e g a t i v e Measurement of pH may be carried indices. out using electrode i n conjunction with a standard reference The ions c o n n e c t i o n b e t w e e n t h e e.m.f o f t h e c e l l g i v e n by t h e Nernst Eccii = a hydrogen electrode. (E^^^n) a n d pH i s equation : E^^, + ( 2 . 3 R T / F ) l o g [H Maq) ] I n o r d e r t o measure pH, t w o h a l f c e l l s may be c o n s i d e r e d , t h e 165 left-hand cell electrode t y p i c a l l y being a saturated calomel and has a p o t e n t i a l Ejc^i,, reference whilst the right-hand e l e c t r o d e i s a h y d r o g e n e l e c t r o d e who's p o t e n t i a l i s g i v e n b y the equation : E(HVH2) At = - 59.16mV 25°C, t h e p o t e n t i a l o f t h e c e l l E = -59.16mV x x t h u s becomes : pH - Thus i t may be seen t h a t f o r - a n i n c r e a s e voltage from the electrode will pH i n pH o f 1 u n i t , t h e d e c r e a s e b y 59.16 mV. This change i s w h a t i s m e a s u r e d b y "pH m e t e r s " w h i c h a r e i n f a c t high input defined impedance as b e i n g voltmeters. at 0 volts, By convention, pH 7 is and t h e r e f o r e a c i d i c s o l u t i o n s g i v e a p o s i t i v e o u t p u t , and a l k a l i n e s o l u t i o n s a n e g a t i v e one. In practice, place glass o f t h e glass o r membrane electrodes e l e c t r o d e , due t o g r e a t e r ease o f use, a n d combination electrodes combination electrode i s i l l u s t r a t e d 5.2 a r e employed i n a r e now g e n e r a l l y e m p l o y e d . One s u c h i n Figure 5.1.1. Development o f t h e s y s t e m The o v e r a l l d e s i g n c r i t e r i a i d e n t i f i e d f o r t h e s y s t e m i n v o l v e d t h e t r a n s f e r o f t h e s a m p l e f r o m an a u t o s a m p l e r t o a v e s s e l i n which treatment w o u l d o c c u r , i . e . a d j u s t m e n t o f t h e sample's 166 F i g u r e 5.1.1 T y p i c a l combination pH e l e c t r o d e FILLING HOLE AgIAgCl ELECTRODE AglAgCl 0.1M HC1 ELECTRODE SOLUTION 3 M KCl GLASS CERAMIC-LI QUID MEMBRANE JUNCTI ON 167 pH to a pre-determined value. The sample would r e t u r n e d t o a f r e s h c o n t a i n e r p o s i t i o n e d on t h e or passed d i r e c t l y carry out vessel the and determination. connecting cycle, before An t o the a n a l y t i c a l overview t u b i n g can the process i s of this At then autosampler, i n s t r i i m e n t w h i c h was this be stage, step reaction subjected to a cleaning repeated. process i s shown as a f l o w diagram i s t o reset the system at s w i t c h on. solutions controls. then The of known d e s i r e d pH pH via the buffer in first The s t e p i s t o s e t up t h e pH e l e c t r o d e i n t h e n o r m a l way buffer to the F i g u r e 5 . 2 . 1 . From t h e d i a g r a m , i t can be s e e n t h a t t h e process be next using and two slope o f t h e t r e a t e d sample s o l u t i o n s i s set. From t h i s point, the sample i n t r o d u c t i o n , removal of t u b i n g and the system e n t e r s the adjustment sample from the a loop which consists o f i t ' s pH and system. of subsequent Following this, the e n t r y v a l v e s a r e washed t o e r a d i c a t e a l l t r a c e s o f t h e s a m p l e , and t h e r e a c t i o n v e s s e l and e x i t s y s t e m a r e washed o u t t w i c e . A t t h e end o f t h e s e c o n d wash c y c l e , t h e s y s t e m i s reset, event and that the next sample i s introduced. In the unlikely each sample r e q u i r e d a d j u s t i n g t o a d i f f e r e n t t h e s e t t i n g o f t h e pH c o u l d be 168 included i n the control pH, loop. F i g u r e 5.2.1 Process overview S W n C I I ON & SEI RESET UP pll E E E C I R O D K SEI D E S I K E ! ) pH INIRODUCESAMI'LI A D . I U S I ph Ri:sEr PUMP OUI SAMPLE WASH X 2 169 5.2.1 Design o f the v a l v i n g From t h e s p e c i f i c a t i o n design identified above, i t was p o s s i b l e t o t h e v a l v i n g a r r a n g e m e n t s f o r t h e f l o w o f s a m p l e , wash s o l u t i o n and gases, and t h e s e a r e shown i n F i g u r e 5.2.2. The v a l v e s w i t c h i n g c o n d i t i o n s f o r e a c h p r o c e s s were these evaluated,and a r e shown i n T a b l e 5 . 2 . I . - F i g u r e 5.2.2 shows t h e s y s t e m i n t h e r e s e t c o n d i t i o n - a l l - v a l v e s a r e as shown and t h e pump is o f f . An increment s i g n a l i s sent e n a b l e s e l e c t i o n o f a sample. A f t e r t o t h e autosampler t o a preset delay t h e pump and v a l v e 2 a r e s w i t c h e d on a n d s a m p l e i n t r o d u c t i o n commences. Valve 2 is pressurised a vent, during i s sent prevents filling. upon a s i g n a l f r o m signal and Sample the level vessel introduction becoming terminates s e n s o r , w h e r e u p o n an t o the autosampler s o l u t i o n , adjustment the increment f o r i t to select a wash o f t h e pH a n d w a s h i n g o f t h e e n t r y t u b i n g commences. T h i s i s f a c i l i t a t e d b y v a l v e 1 s w i t c h i n g o n , so as t o p a s s t h e wash s o l u t i o n t o w a s t e , a n d v a l v e 3 a l s o s w i t c h i n g on, t o allow ammonia laden argon to enter the reaction v e s s e l . N e u t r a l i s a t i o n o f t h e s a m p l e s o l u t i o n now o c c u r s . When t h e d e s i r e d pH o f t h e sample h a s b e e n a c h i e v e d by t h e pH probe, valve 3 switches as determined o f f t o prevent further ammonia f r o m r e a c h i n g t h e s a m p l e . V a l v e s 4,5 and 6 s w i t c h o n , valves 5 solution, and 6 to select and v a l v e V a l v e 2, t h e v e n t , 4 t o allow argon taken by the treated t o enter the vessel. i s now c l o s e d a n d t h u s t h e v e s s e l p r e s s u r i s e d by t h e argon, solution. the route and t h i s becomes e f f e c t i v e l y pumps o u t t h e The s o l u t i o n may be d i r e c t e d t o a new c o n t a i n e r on 170 F i g u r e 5.2.2 Valving diagram PERISTALTIC PUMP VENT WASTE V2 REACTION VESSEL CONTROL ROTAMETERS AMMONIA RESERVOIR WASTE OUTLET ARGON SUPPLY 171 T a b l e 5.2.1 VALVE 1 RESET SAMPLE INTRO A D J U S T pH — — — EJECT SAMPLE + WASH INTRO — WASH CYCLE — EJECT WASH — WASH INTRO — WASH CYCLE — EJECT WASH — I n i t i a l v a l v e s w i t c h i n g regime VALVE 2 — + VALVE 3 — + — — + — + + — — — — — — — VALVE 5 VALVE 6 — — — — — — — + + + — — — — — — — + + VALVE 4 + + + — — — — — + + + — — S signifies sample - W signifies wash 17 ALTTOSAMPLER S s w w w w w w w w PUMP — + — + + — — + — — the original or d i r e c t l y Washing autosampler, t o another autosampler a l t o g e t h e r i n t o a measuring system. o f the reaction vessel now commences - a l l valves s w i t c h o f f , w i t h t h e e x c e p t i o n o f v a l v e 2, a n d t h u s t h e v e s s e l is filled that 4 and w i t h wash s o l u t i o n . the vessel switched thus is full, Once t h e l e v e l sensor t h e pump i s s w i t c h e d on t o a l l o w a r g o n t o b u b b l e t h r o u g h provide agitation. After a preset detects o f f and v a l v e the solution wash p e r i o d , t h e wash s o l u t i o n i s e j e c t e d t o w a s t e b y s w i t c h i n g on v a l v e 5 a n d valve before 2 o f f . This whole wash procedure t h e system advances t o t h e r e s e t i s then repeated, position. With t h e o p e r a t i o n o f t h e v a l v e system e s t a b l i s h e d , t h e design of the t h e e l e c t r o n i c s was i n i t i a t e d . design of the different A l l t h e components used i n sections are readily a v a i l a b l e f r o m most s u p p l i e r s . 5.2.2 The Development o f t h e e l e c t r o n i c s s y s t e m e l e c t r o n i c s employed sections and t h e o v e r v i e w i n this system has t h r e e i s shown i n Figure distinct 5.2.3.. The p r i m a r i l y a n a l o g u e s e c t i o n w h i c h c a r r i e s o u t t h e measurement and comparisons o f values, command, a n d an i n t e r f a c e a digital which valves. 173 s e c t i o n f o r c o n t r o l and provides switching of the F i g u r e 5.2.3 E l e c t r o n i cs o v e r v i e w ANALOGUE SECTION AMPLIFY. TIMERS, DISPLAY CONTROL SECTION INTERFACE VALVES. PUMP S AUTOSAMPLER 174 5.2.2.1 An The overview with the analogue system o f t h e a n a l o g u e s y s t e m i s shown i n F i g u r e full circuit d i a g r a m shown i n F i g u r e 5.2.5. As be s e e n , t h e o u t p u t s i g n a l f r o m t h e p r o b e f i r s t operational high amplifier. i n p u t impedance loading the probe. This device, a CA (10^^ ohms) w h i c h The amplifier 5.2.4, can e n t e r s a CMOS 3140E, has a i s required to very avoid i s c o n f i g u r e d i n the non- i n v e r t i n g mode, w h i c h adds t o t h e o v e r a l l i n p u t impedance o f the input circuit. p r o d u c t i o n o f pH to Due to probes, manufacturing some a d j u s t m e n t s variations in the must be a v a i l a b l e c o m p e n s a t e , and t h e s e a r e p r o v i d e d b y t h e s l o p e and b u f f e r controls. Since pH is adjustment i s a l s o r e q u i r e d t o compensate f o r v a r i a t i o n s s o l u t i o n temperature. between the output a m p l i f i e r A I C 3 . The an analogue crystal p a c k a g e . The w h i c h has from temperature These a d j u s t m e n t s of the output to digital readout, also these input amplifier from t h i s and the s e c t i o n i s measured v i a converter and devices being displayed on incorporated a liquid in and when t h e p r o b e r e a c h e s t h e p r e - s e t d e s i r e d pH equivalent to one value voltage level, the c o m p a r a t o r AIC4 w i l l go h i g h , and t h i s s i g n a l w i l l be s e n t t o t h e l o g i c c i r c u i t r y . S i n c e t h e s y s t e m has designed in final p r o c e s s e d s i g n a l i s a l s o compared w i t h a output from the an are a l l i n c o r p o r a t e d been p r e - s e t by t h e o p e r a t o r , t h e pH dependant, neutralize acidified t o t h e d e s i r e d pH will from the probe, u n t i l adjustment achieved. 175 solutions, the always exceed the been voltage voltage o f t h e s o l u t i o n ' s pH has been F i g u r e 5.2.4 Overview o f t h e analogue s y s t e m PROBE TO LOGIC SET pH FROM SENSOR • FROM SYSTEM START OR LOGIC 1 ^1 TO L O G I C R E S E T TIMER 1 1 TO LOGIC LEVEL DETECTOR FROM L O G I C • E J E C T TIMER 1 ^1 TO L O G I C FROM L O G I C • WASH TIMER 1 ^1 TO L O G I C A/S TIMER 1 1 TO INTERFACE FROM LOGIC 176 F i g u r e 5.2.5 Analogue, t i m e r s and l e v e l d e t e c t o r c i r c u i t diagram MQ4 A C3 4 TO I C 3 - Q CN ^ CCNTRXLCR set in «i IN LO , MAIN ANALOGUE CIRCUIT 4 HH mi CA 3 M ( £ oun^JT TO CCWTROLLER , 7555 1 r r t vKxa cr PT w« CT JL tCLeCICD rCR M M TIrCR FRCM CCWTROLLER 1(X TIMER CIRCUIT DIAGRAM LEVEL DETECTOR CIRCUIT This section of the c i r c u i t r y also incorporates a level d e t e c t i o n c i r c u i t . Since t h e system i s d e s i g n e d t o n e u t r a l i z e samples c o n t a i n i n g trace q u a n t i t i e s of analyte, t h e use o f i n v a s i v e probes t o d e t e c t t h e l e v e l i n t h e r e a c t i o n v e s s e l was thought undesirable. The use o f an i n f r a r e d d e t e c t i o n system was developed which t r a n s m i t s a s i g n a l t o t h e l o g i c c i r c u i t r y when the desired described volume has • e n t e r e d the vessel. The i s more f u l l y l a t e r . * Three t i m e r s a r e i n c o r p o r a t e d i n t o t h e system, one p r o v i d i n g a r e s e t d e l a y , one p r o v i d i n g a wash p e r i o d and a n o t h e r t i m i n g the e j e c t i o n o f the analyte. The i n p u t t o t h e r e s e t timer comes f r o m e i t h e r from a system s t a r t up c i r c u i t o r from t h e l o g i c c o n t r o l . The i n p u t s t o b o t h t h e wash and e j e c t timers b o t h o r i g i n a t e from t h e l o g i c c o n t r o l . A l l t i m e r o u t p u t s a r e r e t u r n e d t o t h e l o g i c c o n t r o l system. There i s a l s o a t i m e r to operate circuitry, t h e autosampler and an o u t p u t with going an i n p u t the l o g i c t o the i n t e r f a c e u n i t . p e r i o d o f t h e r e s e t t i m e r was a r b i t r a r i l y was from seconds. The wash p e r i o d seconds, and t h e e j e c t p e r i o d was a d j u s t e d The s e t a t about t e n set t o approximately to twenty approximately t h i r t y seconds, a f t e r measuring t h e t i m e t a k e n f o r t h e system t o empty, and then a l l o w i n g a f u r t h e r 15% f o r e r r o r . Whilst the f i n a l instrument w i l l be under computer c o n t r o l , and w i l l t h e r e f o r e be adapted t o r e c e i v e i t ' s t i m i n g from t h e computer, system. timers were r e q u i r e d The CMOS v e r s i o n f o r t h e development of the ubiquitous 178 of the 555 t i m e r was s e l e c t e d f o r use. The 555 t i m e r s are s i m p l e t o use and v e r y i n e x p e n s i v e - t h e CMOS v e r s i o n used here have are similar b e n e f i t s , and a l s o consume l e s s power, and do n o t s u f f e r from s p i k e problems found i n t h e i r b i p o l a r c o u n t e r p a r t s . Since t h e timers are r e q u i r e d t o be triggered by a positive going t r a n s i t i o n , and t h e IC r e q u i r e s a n e g a t i v e g o i n g s i g n a l , the circuitry The around TRl was designed to achieve this. c i r c u i t r y around TR2 i n v e r t s - t h e o u t p u t s i g n a l from t h e t i m e r , making i t c o m p a t i b l e w i t h t h e r e q u i r e m e n t s o f t h e r e s t o f t h e l o g i c system. 5.2.2.2 S e t t i n g up p r o c e d u r e f o r the analogue system Once system the had been c o n s t r u c t e d as per the circuit diagram, t h e system r e q u i r e d s e t t i n g up. B e f o r e t h e i n t e g r a t e d c i r c u i t s were f i t t e d i n t o t h e i r sockets, i n i t i a l continuity checks were c a r r i e d t o check t h a t t h e pcb l a y o u t was Once these checks had been made, t h e system was correct. powered up, and t h e o p e r a t i o n o f t h e 12 v o l t r e g u l a t o r checked. Then t h e 6.5 v o l t s u p p l y was r e g u l a t o r R2, was e s t a b l i s h e d , by m o n i t o r i n g t h e o u t p u t o f and a d j u s t i n g p o t e n t i o m e t e r P2 u n t i l 6.5 measured r e l a t i v e t o t h e 0 v o l t s r a i l . The volts mains s u p p l y was t h e n d i s c o n n e c t e d , and t h e i n t e g r a t e d c i r c u i t s f i t t e d . One lead to was disconnected effectively remove s e t t i n g up procedure from the buffer i t from the circuit. control The i s g i v e n i n Table 5.2.2. 179 so rest as of the T a b l e 5.2.2 ACTION S e t t i n g up p r o t o c o l CONTROL f o r t h e analogue system MONITOR ADJUST TO READ AICl pin 4 P3 0. OmV P6 O.OmV PANEL METER P9 0.00 AICl pin 4 P4 +516 mV BUFFER 7.00 SETTINGS SHORT INPUT TEMP - 100 SLOPE - MAX w i t h DVM AIC2 p i n 4 w i t h DVM INPUT +37 9inV Refit to lead buffer TEMP - 0 SLOPE - MAX w i t h DVM TEMP - 0 PANEL METER SLOPE - MAX CONTROL control short input INPUT TEMP - 25 -175inV SLOPE - 50% INPUT TEMP - 25 -70mV SLOPE - MAX INPUT TEMP - 25 + 70mV SLOPE - MAX PANEL METER P8 10.50 PANEL METER 13.99 PANEL METER 0.01 180 Once the setting up analogue s e c t i o n was calibrator procedure USA). measured, and 5657-00, that t e m p e r a t u r e . The the b u f f e r display. control was The c a l i b r a t o r was c a l i b r a t o r was control 7, and p a n e l meter d i s p l a y both places measuring of system control adjusted to t h i s on t h e p a n e l meter The calibrator t h e r e a d i n g a g a i n checked. the corresponding noted. was t h e n s e t t o pH 3, and t h e slope t h e n set t o a l l v a l u e s 1,3,5,7,9,11,13, and to Chicago, s e t t o pH 7, i . e . 0 o u t p u t , set -to g i v e 7.00 c a l i b r a t o r was was of the meter the temperature a d j u s t e d t o g i v e a r e a d i n g o f 3.00. calibrator analogue u s i n g a pH Cole-Parmer, r e a d i n g s e t on t h e n r e s e t t o pH correct completed, For t h i s check, t h e ambient temperature o f t h e analogue system. The and been checked f o r accuracy (Model Illinois, had on The i t ' s range i e values shown on pH the I n a l l cases, t h e r e a d i n g s were decimals, was indicating functioning that the correctly and accurately. 5.2.3 The c o n t r o l system The d e s i g n o f t h e l o g i c system was t h e n developed. The system i s shown i n F i g u r e 5.2.6. I n i t i a l l y , initial t h e use of a m i c r o p r o c e s s o r was c o n s i d e r e d as t h e main c o n t r o l d e v i c e , but as w i l l be observed from Table 5.2.1, t h e r e are t e n steps o v e r a l l i n t h e f u l l c y c l e f o r n e u t r a l i z a t i o n o f a sample. This suggested the novel use of a decade 181 counter as the main c o n t r o l l i n g device, are both design very and t h i s was inexpensive p r o b l e m was such a way pursued s i n c e these d e v i c e s (around 50p) and therefore to configure reliable. The the c i r c u i t r y as t o make each stage t r i g g e r t h e decade in counter c l o c k and t h e r e b y advance t h e process t o t h e subsequent stage. The CD 4017 i s a CMOS decade -counter, which has t e n s p i k e - f r e e o u t p u t s , a l l bar one o f which are h e l d low. A p o s i t i v e g o i n g p u l s e on t h e c l o c k i n p u t causes t h e c o u n t e r t o advance, t a k i n g the next output high, and r e t u r n i n g the s t a t e , p r o v i d i n g the master r e s e t and held low. device, I t was therefore 2 - 'set d e s i r e d pH' the low c l o c k enable p i n s are as the and t h e r e s t o f t h e l o g i c b u i l t around S e l e c t o r s w i t c h 31 has of selected former t o t h e pH probe' potentiometer, main c o n t r o l it. t h r e e p o s i t i o n s , 1 - 'probe set and 3 - ' s t a r t ' . D u r i n g and s w i t c h Sic the 'setting causes p i n 15 182 of up', the ' s e t t i n g the desired up pH' ( t h e master r e s e t ) F i g u r e 5.2.6 L o g i c c o n t r o l c i r c u i t diagram .•12 3d II 00 K • A/S MONO LEVEL r-/6 ^ CO V2, V3 WASH V2 .V4 CD 4 0 1 7 iCl = IC2 IC6 j CD !C3 [C8 1 CD 4081 40106 \CA V4 . V5 VI .V4.V5.V6.P EJECT TIMER ICS ) CD 4071 on t h e decade c o u n t e r , t o go h i g h . T h i s causes o u t p u t 0 t o go high, outputs and a l l o t h e r t o go l o w . I n these switch p o s i t i o n s , a c a p a c i t o r i s charged v i a a r e s i s t o r from t h e 12 volt line. allows Moving s e l e c t o r s w i t c h S I t o t h e s t a r t p o s i t i o n this timer's charge t o f l o w t h r o u g h trigger circuit, and a diode i n t o thereby the reset the reset period commences. T h i s p u l s e a l s o d r i v e s p i n 8 on IC5c h i g h , sending t h i s gate's o u t p u t h i g h , which i n i t i a t e s a monostable t i m e r to s i g n a l t h e autosampler t o advance t o t h e f i r s t sample p o s i t i o n . P i n 12 o f IC3d i s h e l d h i g h by t h e h i g h o u t p u t on I C l p i n 3, and a t t h e end o f t h e r e s e t p e r i o d , IC3d p i n 13 a l s o goes h i g h . T h i s causes a h i g h t o t r a n s f e r t h r o u g h three f u r t h e r OR-gates, IC4d, IC4b and IC5b w i t h t h e o u t p u t o f t h e latter gate controller. being This thereby causing The connected t o the clock p o s i t i v e going input of the s i g n a l advances t h e c l o c k , o u t p u t 1 t o go h i g h , and o u t p u t 0 l o w . h i g h on o u t p u t 1 causes a h i g h on IC4a p i n 3, and t h i s s i g n a l i s used t o s w i t c h on v a l v e V2 and t h e pump. I t a l s o a c t s as a g a t i n g s i g n a l on IC3a p i n 2, the o t h e r i n p u t t o t h i s gate b e i n g t h e l e v e l d e t e c t o r o u t p u t . When t h e d e s i r e d of s o l u t i o n i n the r e a c t i o n vessel i s reached, t h i s goes h i g h , sending a p o s i t i v e g o i n g s i g n a l t h r o u g h gates onto the clock i n p u t , thereby advancing level output t h r e e OR- the counter a g a i n . Since o u t p u t 1 now goes low, t h e pump and v a l v e V2 a r e switched o f f . The h i g h l e v e l on o u t p u t 2 s w i t c h e s on v a l v e s V2 and V3 which 184 a l l o w s t h e ammonia l a d e n argon t o e n t e r t h e sample s o l u t i o n , and enables AND-gate IC3c. I t a l s o p u t s a h i g h on p i n 9 o f IC5c, and thence onto t h e i n p u t t o t h e autosampler so t h a t i t i s advanced t o a wash r e s e r v o i r . monostable, The o t h e r i n p u t t o t h i s gate i s r o u t e d from t h e o u t p u t o f t h e pH comparator, and when t h e d e s i r e d sample pH i s achieved t h i s goes h i g h . This p r o v i d e s a h i g h l e v e l on t h e o u t p u t o f IC3c, which then passes t h r o u g h IC4c, IC4b and IC5b, thus advancing t h e c o u n t e r once a g a i n . Since o u t p u t now goes low, t h e ammonia supply ceases. Output 3 now goes h i g h , which p r o v i d e s s w i t c h i n g f o r v a l v e s V I , V4, V5, V6 and t h e pump, and a l s o causes t h e o u t p u t o f gate IC7b t o go h i g h . This initiates the eject t i m e r , and passes t h r o u g h a lOOK r e s i s t o r , v i a a lOOnF c a p a c i t o r t o two i n v e r t e r g a t e s , IC6a and IC6b. The purpose o f t h e r e s i s t o r c a p a c i t o r combination i s t o provide a time delay i n the high level signal r e a c h i n g t h e AND-gate IC8c. T h i s i s necessary because t h e e j e c t t i m e r t a k e s a f i n i t e time t o s w i t c h t o i t ' s low ( t i m e r on) c o n d i t i o n . I f t h e d e l a y were n o t p r e s e n t , t h e gate IC8c would have h i g h l e v e l s on b o t h i n p u t p i n s b e f o r e t h e t i m e r had s t a r t e d , and as a r e s u l t , t h e o u t p u t from gate IC8c would go h i g h i m m e d i a t e l y , i n s t e a d o f a t t h e end o f t h e t i m i n g p e r i o d . ICG and i t s c o u n t e r p a r t IC2 are b o t h CD40106's, and these a r e S c h m i t t i n p u t i n v e r t e r s , which the slowly rising capacitor f i l t e r . IC8c goes h i g h , input signal produced a r e able t o accept by t h e r e s i s t o r - Once t h e e j e c t p e r i o d i s over, p i n 10 o f causing the outputs 185 o f IC7c and IC5b t o f o l l o w , r e s u l t i n g i n t h e advance o f t h e c o u n t e r a g a i n . Output 4 o f I C l now goes h i g h , and s i n c e i t i s one of two o u t p u t s which a l l o w t h e v e s s e l t o f i l l w i t h wash s o l u t i o n , t h e two o u t p u t s are f e d t o t h e OR-gate IC5a. E i t h e r i n p u t t o t h i s gate causes a h i g h on t h e o u t p u t , which t h e n passes t o IC4a, a n o t h e r OR-gate. The h i g h o u t p u t from t h i s gate s w i t c h e s on v a l v e V2 and t h e pump and gates IC3a. This gate a w a i t s a h i g h from t h e l e v e l d e t e c t o r and when t h i s i s r e c e i v e d , sends a s i g n a l t h r o u g h IC4d, IC4b and IC5b t o advance t h e c o u n t e r . The resulting outputs which high level have on output identical 5 i s a g a i n one of two f u n c t i o n s ( e n a b l i n g t h e wash f u n c t i o n ) , and so are f e d t o an OR-gate IC5d. The o u t p u t from t h i s gate t r i g g e r s t h e wash t i m e r and s w i t c h e s on v a l v e s and V4, and a l s o passes t h r o u g h a r e s i s t o r - c a p a c i t o r network b e f o r e e n t e r i n g IC2e and IC2d, i n v e r t i n g Schmitt gates. function t h e same as above. o f these Once t h e devices wash are t i m e r p e r i o d i s over, appears on p i n 5 o f IC3b, which IC4c, IC4b, IC5b and those V2 The described a high i s t r a n s m i t t e d on level through thus t o t h e c l o c k i n p u t o f I C l , thus i n i t i a t i n g a f u r t h e r change i n t h e c o u n t e r o u t p u t . W i t h o u t p u t 6 now high, the e j e c t cycle i s i n i t i a t e d w i t h a h i g h on t h e i n p u t t o IC7a p r o g r e s s i n g t h r o u g h t o s w i t c h on v a l v e s V4 and V5, and thence t h r o u g h IC7b t o s t a r t t h e e j e c t t i m e r . Once t h i s t i m i n g p e r i o d i s over, gate IC8c goes h i g h , and t h i s s i g n a l progresses t h r o u g h IC4c and IC5b t o t r i g g e r 186 a n o t h e r change i n s t a t e o f t h e CD 4017*s o u t p u t . The whole wash c y c l e i s t h e n r e p e a t e d , w i t h o u t p u t s 7, 8 and 9 g o i n g h i g h i n t u r n , these h a v i n g s i m i l a r r e s u l t s t o o u t p u t s 4,5 the and 6 g o i n g h i g h . The e f f e c t s are as d e s c r i b e d above. At end of initiating second wash cycle, t h e r e s e t t i m e r , and Switching forces this selector output 0 and 0 goes t h e whole process s w i t c h SI back high, output from prevents the start the high, repeats. position process from continuing. 5.2.4 The When any interface electronics e l e c t r o - m e c h a n i c a l d e v i c e s are designed, the rated c u r r e n t o f t h e d e v i c e i s a compromise between t h a t r e q u i r e d t o cause t h e d e v i c e t o change s t a t e , and t h e c u r r e n t r e q u i r e d t o h o l d t h a t d e v i c e i n t h e on p o s i t i o n . I n g e n e r a l , t h e h o l d current i s much l e s s t h a n t h e s w i t c h i n g c u r r e n t , so i f t h e device i s d r i v e n continuously w i t h the f u l l s w i t c h i n g current, much energy i s wasted, and premature failure o f the device w i l l occur, due t o t h e e f f e c t s o f h e a t i n g on t h e c o i l and t h e r e s t o f t h e mechanism concerned. W i t h these f a c t s i n mind, t h e s w i t c h i n g v a l v e s were e v a l u a t e d t o d e t e r m i n e t h e h o l d c u r r e n t . The valves used were a l l rated at v o l t a g e passed a p p r o x i m a t e l y 200 mA t h e v o l t a g e , i t was 12 volts, and at this o f c u r r e n t . By l o w e r i n g found t h a t t h e v a l v e s s t i l l held their 'on' p o s i t i o n down t o about 4.5 v o l t s . I t was d e c i d e d t o a l l o w 187 a 50% s a f e t y margin on t h i s f i g u r e , and d e s i g n t h e i n t e r f a c e in such a way t h a t t h e v a l v e r e c e i v e d t h e f u l l a second o r two, so accomplished, that efficient 12 v o l t s f o r switching could be and t h e n t o lower t h e v o l t a g e t o a p p r o x i m a t e l y 6 volts t o provide the hold current. The d e s i g n used i s shown i n F i g u r e 5.2.7. The i n p u t s i g n a l (a +12 a volts) f r o m t h e l o g i c c o n t r o l u n i t f i r s t passes t h r o u g h resistor-capacitor frequency n o i s e which network, which may be p r e s e n t , filters and t h e r e b y f a l s e s w i t c h i n g . The s i g n a l i s t h e n processed inverter gates, r i s e and f a l l which have t h e e f f e c t i n o u t p u t , even though o u t any h i g h prevents by two Schmitt of providing a rapid they receive a slowly changing s i g n a l from t h e r e s i s t o r - c a p a c i t o r network R l - C l . The second i n v e r t e r , G2, s i m p l y a l t e r s t h e s i g n a l back from low to h i g h . T h i s +12 v o l t s i g n a l t h e n feeds two r e s i s t o r s , R3 and R5. R5 i s a c u r r e n t l i m i t e r t o p r o t e c t t h e base o f TRl, and this transistor allowing which i s an NPN c u r r e n t t o pass t h r o u g h power type switches on, t h e l o a d v a l v e 1. A t t h e moment o f ' s w i t c h on', t h e base o f t r a n s i s t o r TR2 i s a t 0 v o l t s , and s i n c e TR2 i s a PNP t r a n s i s t o r , t h i s means t h a t t h i s transistor i s fully conducting. Thus the current flowing t h r o u g h t h e l o a d and TRl f l o w s t h r o u g h TR2 t o 0 v o l t s , and thus t h e l o a d i s s u b j e c t t o t h e f u l l 12 v o l t s (less ^coisat) which i s approximately 1 v o l t ) from G2 causes c u r r e n t t o f l o w t h r o u g h R3, and c a p a c i t o r C2 begins t o charge, . The +12 v o l t s i n p u t s i g n a l c a u s i n g t h e v o l t a g e on t h e base o f TR2 t o r i s e , t h e r e b y s w i t c h i n g t h i s t r a n s i s t o r o f f . The c u r r e n t i s 188 F i g u r e 5.2.7 Interface electronics c i r c u i t diagram I2v D LOAD Gl CO INPUT K FROM l> CONTROLLER I 1 R] G2 R5 L r TRl R3 TR2 CI ZDl RA C2 now volt f o r c e d t o f l o w t h r o u g h t h e zener diode ZDl, which i s a 5.1 device. The combined v o l t a g e drop of ZDl and TRl is t h e r e f o r e a p p r o x i m a t e l y 6 v o l t s , and t h i s i s v o l t a g e used t o h o l d t h e v a l v e i n t h e 'on' s t a t e . Diode Dl p r o v i d e s 'back emf protection' to TRl, this being necessary to due reverse i n d u c e d v o l t a g e s generated by t h e c o l l a p s i n g magnetic field i n the c o i l of the valve. When t h e i n p u t from t h e c o n t r o l l e r r e t u r n s t o 0 v o l t s , l o s e s base d r i v e , immediately and t h e r e f o r e s w i t c h e s o f f , and t h e v a l v e c l o s e s . C2 discharges v o l t a g e on t h e base o f TR2 t a k e s about required to TRl t h r o u g h R4, and thus the r e t u r n s t o 0 v o l t s . This d i s c h a r g e t h r e e seconds, b u t s i n c e none o f t h e v a l v e s are switch off and then turn back on again i m m e d i a t e l y , t h i s i s o f no consequence. Using t h i s i n t e r f a c e , no v a l v e f a i l u r e was encountered d u r i n g t h e months o f development and e v a l u a t i o n o f t h e u n i t . Other u s e r s o f these v a l v e s a t t h i s U n i v e r s i t y r e p o r t t h a t when used a t t h e nominal r a t i n g , t h e v a l v e s are prone t o a h i g h f a i l u r e r a t e , o f t e n w i t h i n weeks o f f i r s t usage. The i n t e r f a c e u n i t a l s o c o n t a i n s two r e l a y s which are used t o s u p p l y s w i t c h i n g f o r t h e autosampler 190 and t h e pump. 5.2.5 The Design of the r e a c t i o n proposed reagent use dictated of gaseous the design vessel ammonia and as the neutralizing construction of a reaction v e s s e l which would p e r m i t t h e d i s s o l u t i o n o f t h e ammonia i n an e f f i c i e n t manner, and which would a v o i d t h e gas coming i n t o d i r e c t c o n t a c t w i t h t h e pH probe. Such c o n t a c t would o b v i o u s l y have unwanted e f f e c t s upon t h e response o f t h e probe. I t was also considered v i t a l t h a t some k i n d o f a g i t a t i o n or s t i r r i n g be i n c o r p o r a t e d , so as t o a s s i s t i n t h e d i s s o l u t i o n o f t h e ammonia, and p r o v i d e a more u n i f o r m s o l u t i o n f o r t h e probe t o measure. A number o f d i f f e r e n t designs were i n i t i a l l y considered, difficult some o f to fabricate, e f f e c t s ' , or simply The which were ruled out likely to suffer had either from very 'memory inefficient. i d e a o f a 'bubble pump' system was clearly as a number o f advantages. An considered, and this i n i t i a l design was f a b r i c a t e d i n house, and e v a l u a t e d . The d e s i g n f o r t h i s u n i t is shown i n F i g u r e 5.2.8. I t worked w e l l when t h e volume o f sample was l a r g e enough t o g i v e a l e v e l above t h e t o p o f t h e bubble t u b e , b u t d i d not p e r f o r m w e l l w i t h s m a l l volumes. I n these cases, t h e gas bubbles went up t h e i n s i d e o f t h e main v e s s e l , i n s t e a d o f f o r c i n g a s l u g o f t h e l i q u i d up t h e bubble t u b e . I t was a l s o r e a l i s e d t h a t t h e d e s i g n d i d s u f f e r from a s m a l l dead volume i n the o u t l e t tube, and a l t h o u g h t h i s f e l t t o be n e g l i g i b l e , t h e m o d i f i e d d e s i g n o b v i a t e d 191 these was F i g u r e 5.2.8 F i r s t bubble-pun?) r e a c t i o n v e s s e l d e s i g n pH PROBE SaUTION VENT < 2«m I.O.—> MAIN V 13M I.D. < — 2 « . I.D. VESSa 3 2 » I.D. 4oi 1.0. Ill ARGOJ 8 AmONIA 2«» I.D. ) OJTUT 192 problems. T h i s i s shown i n F i g u r e 5.2.9. T h i s v e s s e l has no dead voliome, and was found t o capable o f a pumping a c t i o n w i t h e x t r e m e l y s m a l l volumes o f sample. 5.3 The Evaluation complete attached, solution. system and The the was first reservoir analogue system assembled, filled was S e c t i o n 5.2.2.1. Before t h e probe slope and temperature manner. The requirement processing controls d e s i r e d pH was had them, been a one test with s e t up was were t h e argon 0.880 as ammonia described i n fitted, s e t up the b u f f e r , i n t h e noirmal then s e l e c t e d . Since t h e of taking solution of 'real' 1% initial samples nitric employed i n t e s t s t o determine t h e performance supply acid and was o f t h e system. 25ml o f t h i s s o l u t i o n were i n t r o d u c e d t o t h e v e s s e l , and t h e l e v e l d e t e c t o r a d j u s t e d on t h e bubble tube t o t h i s h e i g h t . s o l u t i o n was t h e n emptied The from t h e v e s s e l , and a number o f sample i n t r o d u c t i o n runs c a r r i e d o u t , t o e v a l u a t e t h e accuracy of t h e l e v e l d e t e c t i o n system. The r e s u l t s are shown i n Table 5.2.3. 193 F i g u r e 5.2.9 F i n a l reaction v e s s e l design SAMPLE INLET VENT 2mm I . • . MAIN VESSEL 32mm I.D. ^ 2mm I .• > 4mm I .• ARGON AND AMMONIA INLET 4mm OUTLET 194 I .• T a b l e 5.2.3 E v a l u a t i o n o f t h e r e p r o d u c i b i l i t y of the level d e t e c t i o n system showing mass o f water a d m i t t e d SAMPLE WEIGHT (g) 1 25.01 2 25.14 3 24.96 4 25.31 5 25.17 6 25.22 7 25 .09 8 24 .92 9 25.06 10 24.91 MEAN 25.08 0.1326 195 1 As c a n be s e e n , t h e l e v e l d e t e c t i o n s y s t e m p r o v e d r e p r o d u c i b l e w i t h good The precision. system was neutralizing then tested f o r i t ' s effectiveness i n 25ml s a m p l e s o f 1 % n i t r i c acid. The s y s t e m was s e t i n r u n mode, a n d t h e gas f l o w a d j u s t e d t o p r o v i d e a r a p i d steady stream o f bubbles i n t o t h e bubble t u b e . I n t h i s mode, t h e m e t e r m o n i t o r s t h e pH o f - t h e s o l u t i o n , a n d i t was observed t h a t f o r some m i n u t e s , no change o c c u r r e d i n t h e r e a d i n g . The pH r e m a i n e d b e l o w 1 f o r a b o u t to climb. reached a value times, pH the preset supplying vessel, From 2, four minutes, the readings value increased o f 8.5. A t t h i s t h e ammonia s w i t c h e d before and argon rapidly, point alone process a n d gave r e a d i n g s was r e p e a t e d and the valve entered the a l t h o u g h The pH c o n t i n u e d t o c l i m b , f i n a l l y o f 10.2. T h i s starting reaching a further three i n t h e range 10.1 t o 10.4. C l e a r l y t h e system worked, b u t r e q u i r e d f i n e t u n i n g t o o b t a i n c l o s e r c o n t r o l o f t h e pH o f t h e The resulting solution. n e x t s t e p was t o r e d u c e t h e gas f l o w t h r o u g h t h e s y s t e m , i n t h e hope t h a t t h i s w o u l d p r o v i d e a more m a n a g e a b l e change, whilst time still facilitating neutralization within a p e r i o d . The t i m e t a k e n t o a c h i e v e increased slightly, and a p p r o x i m a t e l y one pH u n i t the final reasonable t h e p r e s e t pH v a l u e pH values were a l l above t h e s e t v a l u e . I t was t h e n f o u n d t h a t b y s e t t i n g t h e d e s i r e d pH t o 7.4, f i v e test solutions a l l ended with 196 pH readings o f 8.5 ± 0.16. Further adjustment of the c a r r i e r f l o w r a t e r e s u l t e d i n c l o s e r a g r e e m e n t b e t w e e n t h e p r e s e t v a l u e and the cost of longer n e u t r a l i z a t i o n times. With a n e u t r a l i z a t i o n t i m e o f a p p r o x i m a t e l y 25 m i n u t e s , was that obtained, but at within 0.1 five test Whilst though were -encouraging, c o n t r o l o f t h e pH the t h e a u t o m a t e d s y s t e m r e q u i r e d no method reduce this approached. of reducing the time flow proportionately to implement further investigate digital - i t was control was above time confirmed pH reached, even taken to would be s t a g e s , and the then d e s i r e d pH is control is difficult decided therefore to ( i . e . valves e i t h e r being 2. that I t was the rate therefore of i n w h i c h t h e pH change decided to increases apply a and time changed, rapidly two pH step 2 sufficient achieve was t h e n more s l o w l y i n t h e f o r m o f s h o r t p u l s e s . interval between these pulses was a l s o used a l l o w f u r t h e r a g i t a t i o n o f t h e s o l u t i o n by t h e a r g o n f l o w , To to One c o n t r o l s y s t e m , a d m i t t i n g t h e ammonia r a p i d l y u n t i l longer taken off). A f t e r f u r t h e r o b s e r v a t i o n s o f t h e way it the operator input. as Unfortunately proportional expensive on o r each o f appeared excessive, i n t r o d u c e t h e ammonia r a p i d l y i n t h e i n i t i a l and o f t h e sample u n i t s o f t h e d e s i r e d v a l u e on results accurate possible to pH solutions. these achieve pH the f i n a l time f o r the probe t o the above the to and respond.. analogue 197 A system was modified slightly, a n d a s i m p l e s t a g e was added t o t h e c o n t r o l system. The m o d i f i c a t i o n s a r e shown i n F i g u r e 5 . 3 . 1 . As may be seen, the alteration additional with analogue i t ' s inverting divider This input inverting the operational amplifier comparator, potential to involves configured t o perform input held b e t w e e n t h e +6.5 v o l t effectively input circuitry an as a a t 200mV v i a a and ' i n l o * rails. r e p r e s e n t s a pH v a l u e o f 2. The n o n - i s f e d from t h e output o f t h e probe signal a m p l i f y i n g a n d p r o c e s s i n g s y s t e m . The p r o b e o u t p u t s y s t e m i s t h e r e f o r e m o n i t o r e d by two l e v e l d e t e c t i n g c i r c u i t s , to trip a t pH 2, a n d t h e o t h e r o p e r a t i n g a t t h e s e t pH. The c o n t r o l circuit timing system which bursts every first one s e t switched 10 s e c o n d s , inverter comparator. was a l s o m o d i f i e d b y t h e a d d i t i o n gate t h e ammonia o n f o r one s e c o n d and a p a i r i s f e d from of inverter the output g a t e s . The o f t h e new When t h e pH o f t h e sample i s l e s s t h a n comparator's output of a i s l o w , and t h u s the output i n v e r t e r i s h i g h . This i s used t o d r i v e t h e i n t e r f a c e 2, this from t h e circuit, so t h a t t h e v a l v e r e m a i n s open, c o n t i n u o u s l y a d m i t t i n g ammonia to t h e bubble output from t u b e . When t h e pH o f t h e s a m p l e r e a c h e s 2, t h e t h e comparator goes high, that of the first i n v e r t e r g a t e goes l o w , a n d t h e v a l v e c l o s e s . The o u t p u t the second gate however i s a l s o i n v e r t e d , signal i s used t o operate the and t h i s timing c i r c u i t . This from positive circuit t u r n s t h e v a l v e o n f o r 1 s e c o n d a n d t h e n o f f f o r 10 s e c o n d s . T h i s t e c h n i q u e p r o v i d e d a much c l o s e r c o n t r o l o f t h e u l t i m a t e pH o f t h e s o l u t i o n , as may be o b s e r v e d 198 i n Table 5 . 3 . 1 . The F i g u r e 5.3.1 Additional c i r c u i t r y t o in5>rove c o n t r o l o f pH and sait?>le throughput 6V5 33a< AlCS ANALOGUE l^*vr o J 7u '*0'15, I [ XHO^T)) 22K 47K IN-UOO 1 V3 DRIVE O- OUTPUT TO VALVE V3 Ot4K7 4K7 1 47K 22K ev 2 PULSE HCOTH 3 5B»< IBu IGBn BV 199 T a b l e 5.3.1 1% n i t r i c a c i d s a n ^ l e s n e u t r a l i z e d to a t a r g e t s e t t i n g of pH 8 FINAL SAMPLE 1 06 2 8. 09 3 8, 11 4 8. 10 5 8. 08 MEAN 8. 08 200 pH modified the system adjustment adjustment also a 1% nitric 8 minutes, 6 samples p e r hour. the a more acceptable o f t h e pH. The a v e r a g e of approximately provided reaction vessel acid giving time solution a throughput time f o r taken for t o pH 8 o f about the was 5 to Further m o d i f i c a t i o n s t o the design o f may be possible to increase this figure. 5.4 Discussion There a r e v e r y many a p p l i c a t i o n s f o r t h i s system since the m a j o r i t y o f aqueous s a m p l e s a r e a c i d i f i e d u p o n c o l l e c t i o n t o p r e v e n t " p l a t e o u t " . F o r many a n a l y t i c a l d e t e r m i n a t i o n s , t h e s e samples r e q u i r e n e u t r a l i z a t i o n b e f o r e a p a r t i c u l a r technique may be e m p l o y e d . In the selenium HPLC column s p e c i a t i o n s y s t e m d e s c r i b e d i n C h a p t e r 3, an i s employed present. Since t o separate t h e column i s unable t h e selenium to tolerate highly species acidic s a m p l e s , t h e pH a d j u s t i n g s y s t e m c o u l d e a s i l y be l i n k e d t o t h e s p e c i a t i o n system t o a d j u s t t h e samples p r i o r t o t h e a n a l y s i s b e i n g made. The atomic f l u o r e s c e n c e cadmium a n a l y s i s s y s t e m d e v e l o p e d t h e U n i v e r s i t y o f Plymouth^^, e m p l o y s s o d i u m t e t r a e t h y l 201 at borate to ethylate the cadmium species present, following the e q u a t i o n shown below^**: Cd^* High a c i d i t y and + 2BEt4" - CdEtj the presence o f decompose t h e e t h y l a t i n g a g e n t ; the f l u o r e s c e n c e s i g n a l . The control of s a m p l e pH. + 2BEt transition tend to w i t h a r e s u l t a n t decrease i n system t h e r e f o r e Such an metals requires close a n a l y t i c a l system i s another o b v i o u s a p p l i c a t i o n f o r t h e n e u t r a l i z i n g u n i t d e s c r i b e d above. 5.5 Summary T h i s s t u d y has r e s u l t e d i n t h e d e v e l o p m e n t o f an a u t o m a t e d line system f o r the adjustment on- o f a s a m p l e ' s pH. The results i n almost negligible c o n t a m i n a t i o n o f t h e sample. C a r e f u l d e s i g n o f t h e electronics a gaseous n e u t r a l i z i n g r e a g e n t use a s s o c i a t e d w i t h t h e measurement and c o n t r o l o f t h e s y s t e m r e s u l t e d i n a s i m p l e , r e l i a b l e , a c c u r a t e and i n e x p e n s i v e of has unit, w h i l s t m a i n t a i n i n g c o m p u t e r c o n t r o l c o m p a t i b i l i t y . The use an interface unit to drive t h e s w i t c h i n g v a l v e s has in a considerable extension i n valve l i f e 202 and of resulted reliability. Chapter 6 Conclusiom and further work 203 Conclusions 6.1 The and f u r t h e r work Conclusions need f o r more a u t o m a t i o n i n analytical laboratories is s e l f - e v i d e n t when t h e number o f s a m p l e s r e q u i r i n g a n a l y s i s i s c o n s i d e r e d . The sources - demand is demands f o r i n c r e a s e d t e s t i n g come f r o m many industry, only governments, likely to hospitals continue etc., increasing. and this Ever more s e n s i t i v e i n s t r u m e n t a t i o n means t h a t c h e m i c a l p r o c e s s e s i n t h e environment detail. As and i n medicine may more i s u n d e r s t o o d p l a y e d elements be studied in ever more o f these processes, the roles and compounds a t t r a c e l e v e l s become a p p a r e n t , and t h u s t h e n e e d t o a n a l y s e f o r t h e s e t r a c e s becomes r o u t i n e . Developments i n t h e r e s e a r c h l a b o r a t o r y pass t o t h e a n a l y t i c a l l a b o r a t o r y w i t h a s t o n i s h i n g speed. W i t h i n t h i s t h e s i s , a number o f d i f f e r i n g t e c h n i q u e s h a v e b e e n s t u d i e d , b u t one u n d e r l y i n g t h r e a d has b e e n common t h r o u g h o u t , that of selenium, automation. and above. E a r l i e r this Much element workers work has been illustrates were content c o n c e n t r a t i o n s o f t h e element well carried out on t h e p o i n t s made t o merely obtain i n a s a m p l e , b u t as total knowledge o f s e l e n i u m c h e m i s t r y has c o n t i n u e d t o i n c r e a s e , i t has become apparent that of c r i t i c a l t h e form o f t h e element i n t h e sample i s a l s o i m p o r t a n c e , and h e n c e t h e n e e d f o r s p e c i a t i o n has emerged. I n a d d i t i o n t h e l e v e l s o f d e t e c t i o n r e q u i r e d b o t h f o r t o t a l c o n c e n t r a t i o n and i n d i v i d u a l s p e c i e s , c o n t i n u e s t o p l a c e 204 f u r t h e r demands on t h e a n a l y s t . Until very r e c e n t l y , i t was o n l y p o s s i b l e i n o r g a n i c species o f selenium t o determine i n a g i v e n s a m p l e by d i f f e r e n c e when u s i n g h y d r i d e g e n e r a t i o n , s i n c e o n l y s e l e n i u m ( I V ) w i t h t h e reductant t o form t h e hydride. Using t h i s the sample is determined. process repeated Selenium(VI) and selenium(VI) t o give i s thus concentration many i n two from years a determined the t o t a l . as t h e most systems d e s c r i b e d i n this T h i s system employed a selenium (IV) selenium with spectroscopy by T h i s m e t h o d has been convenient method The f i r s t thesis relied a a quartz detection system. i n which indirectly, determination employed o f t h e automated upon t h i s technique. m i c r o w a v e p r e - r e d u c t i o n s t e p as p a r t upon way former availablef o r of t o a hydride furnace-atomic Since automation such absorption instruments t h e system may be minimum a d d i t i o n a l c o s t . The d r a w b a c k s o f t h i s the first and t h e subtracting the w i d e l y a v a i l a b l e i n most l a b o r a t o r i e s , that is concentration. o f a computer c o n t r o l l e d o n - l i n e system, coupled represents technique, t o selenium(IV), total t r a c e d e t e r m i n a t i o n s o f selenium. system reacts The o t h e r sample* i s t h e n s u b j e c t e d t o a r e d u c t i o n t o convert analysis for split the selenium(VI) described achieved at technique are is carried and t h a t d e t e c t i o n l i m i t s a r e l i m i t e d ng ml"^ r a n g e due t o t h e l a c k o f s e n s i t i v i t y are out t o t h e low of the detector. These p r o b l e m s were t h e n a d d r e s s e d b y t h e d e v e l o p m e n t o f t h e s e c o n d s y s t e m , w h i c h e m p l o y e d HPLC t o a c h i e v e 205 the separation of the i n o r g a n i c selenium the column e m p l o y e d f o r t h e s t u d y w o u l d be d e s t r o y e d b y a h i g h l y acidic sample, post column by microwave followed unaffected generation but sensitive present. acidification heating reduced techniques hydride being species the then was which Since employed. left the selenium{VI) . followed, with c a r r i e d o u t by atomic d e t e c t i o n s y s t e m was This was selenium(IV) Nomal hydride detection of f l u o r e s c e n c e . T h i s more necessary due t o the limited sample v o l u m e ( 1 m l ) i n j e c t e d o n t o t h e HPLC c o l u m n , w h i c h subsequently limits and diluted o f 0.2 and selenium(VI) by 0.3 the the a d d i t i o n of the acid. was Detection ng ml"^ w e r e o b t a i n e d f o r s e l e n i u m { I V ) respectively. O t h e r w o r k c o n d u c t e d on t h e d e t e r m i n a t i o n o f s e l e n i u m i n c l u d e d the of s t u d y o f s i g n a l enhancement due nitric acid i n the t o the presence o f t r a c e s m a t r i x , when h y d r i d e generation was e m p l o y e d . T h i s enhancement was shown t o be l i n k e d t o t h e t y p e of since pump t u b i n g e m p l o y e d , but the order s a m p l e s w e r e p r e p a r e d a l s o h a d an e f f e c t , i t was i n which the f e l t that the p o s s i b i l i t y o f t h e f o r m a t i o n o f a n i t r o - s e l e n i u m complex c o u l d not be ruled mechanism was out, although outside the further scope o f does i l l u s t r a t e h o w e v e r , j u s t how a l l parameters work this to elucidate thesis. much c a r e has This the study t o be p a i d t o i n o n - l i n e systems, even t h e s e l e c t i o n o f such mundane i t e m s as pump t u b i n g , when c a r r y i n g o u t d e t e r m i n a t i o n s at The t r a c e and u l t r a trace levels. i n v e s t i g a t i o n i n t o the conditioning of hydride generation 206 apparatus also if when determining d e m o n s t r a t e d an automated employed. data important handling Conditioning i n j e c t i o n o f two selenium 1 mg ultra trace aspect of instrument methods in ml'^ at this are case to was be levels design, subsequently achieved by samples o f s e l e n i u m ( I V ) , and the then a l l o w i n g t h e s y s t e m t o run f o r a t l e a s t f i f t e e n m i n u t e s b e f o r e starting to a n a l y s e samples. the a c t i v e sites of t h e d r i f t Clearly, the i n some d e t a i l into T h i s study s i x minutes much l e s s achieve resulted i f optimal with o n - l i n e systems. investigation within and w h i c h had p r e v i o u s l y been selenium(VI). i.e. i n t h e system, the e f f e c t of filling i n the removal observed. f u n d a m e n t a l a s p e c t s of t h e c h e m i s t r y a l s o need t o be considered obtained T h i s had than reduction. the i s to be T h i s i s w e l l demonstrated by kinetics indicated Thus of that a t 70*" C under our the perfoinnance the reduction the process of occured laboratory conditions t h i r t y m i n u t e s commonly employed t o i t was possible to decrease the r e d u c t i o n p e r i o d , m i n i m i s i n g p o s s i b l e l o s s e s , and r e d u c i n g t h e chances of understand contamination. However, it is important to t h a t t h e s o l u t i o n has t o be a t 70°C f o r s i x m i n u t e s - t h e t o t a l h e a t i n g time w i l l be dependant upon the method o f h e a t i n g employed. The a c t i v a t i o n energy f o r t h e r e a c t i o n under our c o n d i t i o n s was found t o be 90.4 k J mol"^. O r g a n o - s e l e n i u m compounds r e p r e s e n t a c h a l l e n g e t o t h e spectroscopist, since i t i s d i f f i c u l t to break their atomic carbon- s e l e n i u m bonds. T h i s i s r e q u i r e d i f h y d r i d e g e n e r a t i o n i s t o 207 be e m p l o y e d i n t h e i r s u b s e q u e n t d e t e r m i n a t i o n , and represents one of the most since s e n s i t i v e techniques this currently a v a i l a b l e , t h e b r e a k i n g o f these bonds i s n e c e s s a r y . Microwave heating of seleno-methionine i n h y d r o c h l o r i c a c i d appeared t o h a v e no e f f e c t . The a c t i o n o f UV discharge lamp was shown t o b r e a k t h e c a r b o n - s e l e n i u m b o n d s , and enable thus the generation coupled the time was excessive, line of taken system, the selenium • t o be determined under the experimental at s i x t y minutes, conditions the distance prevailing distance from were r e d u c e d , and was the the tubes for the been a t e c h n i q u e destruction of w h i c h has organic on- diameter to a capillary t o c a r r y t h e s a m p l e , t h e n o n - l i n e o p e r a t i o n w o u l d be P y r o l y s i s has hydride f o r i n c o r p o r a t i o n i n t o an s a m p l e v o l u m e s were l a r g e , as I f this by mercury t o atomic fluorescence d e t e c t i o n . Although s a m p l e t u b e s and source. from a h i g h i n t e n s i t y the used feasible. g e n e r a l l y been used samples. In this study, p y r o l y s i s has been employed i n t h e d e t e r m i n a t i o n o f mercury. The was of technique dense s u c c e s s f u l l y employed f o r t h e inorganic successful samples however samples. This could employed i n the when be oven accurately weighing such applied as to determination sediments. low I t was density organic due simply to the low sample used i n the study. The difficulty s a m p l e s o f a few milligrams is not volume in obvious, and w h e t h e r s u c h s m a l l s a m p l e s a r e r e p r e s e n t a t i v e o f t h e m a i n batch i s also h i g h l y Finally, questionable. t h e d e v e l o p m e n t o f a pH 208 a d j u s t i n g system which c o u l d be e m p l o y e d on s a m p l e s w h i c h r e q u i r e d determinations t o be subsequently trace carried and u l t r a o u t on trace them was a c h i e v e d . T h i s work r e s u l t e d i n a low c o s t , d e d i c a t e d system which could concerning be easily the overall interfaced to a reliability computer. Problems of the switching valves were o v e r c o m e b y t h e d e s i g n o f a n o v e l i n t e r f a c e w h i c h r e d u c e d the d r i v e v o l t a g e a p p l i e d once t h e v a l v e h a d s w i t c h e d . The use of a b u b b l e pump s y s t e m e n a b l e d t h e ammonia t o be added t o t h e s o l u t i o n away f r o m t h e m a i n b o d y o f t h e l i q u i d , thus c o n t a c t b e t w e e n t h e gas and t h e pH e l e c t r o d e , w h i l s t caused a g i t a t i o n o f t h e sample s o l u t i o n . This avoiding i t also apparatus was e m p l o y e d s u c c e s s f u l l y i n c o n j u n c t i o n w i t h t h e HPLC-microwave s e l e n i u m s p e c i a t i o n s y s t e m d e v e l o p e d as p a r t o f t h i s This thesis therefore describes a range of thesis. techniques employing h y d r i d e g e n e r a t i o n , p h o t o l y s i s , p y r o l y s i s , microwave reduction, of which all have o f w h i c h have been o p e r a t e d o n - l i n e , been, or could easily be and a l l automated. The o p e r a t i o n o f t h e s y s t e m s have a l l b e e n c h e c k e d b y t h e u s e o f r e a l s a m p l e s , as w e l l as p r e p a r e d 7.1 standards. F u r t h e r work A l t h o u g h much w o r k has been c a r r i e d o u t on h y d r i d e g e n e r a t i o n , there are s t i l l many a r e a s i n w h i c h f u r t h e r work b e n e f i c i a l . Any s t u d y o f t h e l i t e r a t u r e on t h i s quickly establish that there i s s t i l l 209 would subject be will d i s a g r e e m e n t upon many fundamental aspects o f t h e t e c h n i q u e . Thus, s i n c e t h e use h y d r i d e g e n e r a t i o n lends i t s e l f t o o n - l i n e systems, s t u d y o f t h e fundamentals of of further would c l e a r l y a i d t h e development such systems. F u r t h e r i n v e s t i g a t i o n o f t h e s i g n a l enhancement e f f e c t due t o the presence selenium, of traces of nitric acid when t o f u l l y e l u c i d a t e * t h e mechanisms i n v o l v e d would be b e n e f i c i a l . W h i l s t t h e n a t u r e o f t h e t u b i n g was a determining major cause variations of the enhancement, the found t o be reasons for the i n t h e enhancements depending upon t h e o r d e r i n which t h e reagents were added s h o u l d be determined. Other work o f i n t e r e s t s t a r t e d i n t h i s s t u d y b u t not r e p o r t e d i n t h i s t h e s i s includes the generation of hydrides from the technique sample would contamination which solution seen of the are c u r r e n t l y to by electrolytic offer sample by added, and the methods. potential impurities directly to i n the This obviate reagents c o u l d p r o v i d e a cheaper and p r o b a b l y a more c o n s i s t e n t method o f h y d r i d e g e n e r a t i o n . Further development system s h o u l d result of the automated HPLC-microwave-HG-AFS i n s h o r t e r a n a l y s i s times, along lower d e t e c t i o n l i m i t s . Other e l u e n t s may s e p a r a t i o n i n t h e HPLC stage, and with provide a quicker f u r t h e r refinement of the r e s t o f t h e system s h o u l d be capable o f i m p r o v i n g t h e o v e r a l l sensitivity. 210 The p h o t o l y t i c b r e a k i n g o f t h e selenium-carbon bond i n selenomethionine simple a was v e r y encouraging, and i t would appear t o be a t a s k t o produce an o n - l i n e system i n c o r p o r a t i n g such step. The production of determining organic becomes a r e a l i t y , a selenium, s p e c i a t i o n system capable selenium(IV) and of selenium(VI) p r o v i d i n g the p h o t o l y s i s step i s able t o d e a l w i t h t h e t r i m e t h y l selonium i o n , which i s more d i f f i c u l t to d e s t r o y than the seleno-methionine Further development of the pH bonds. a d j u s t i n g system c a r r i e d out - no d i f f i c u l t y s h o u l d be encountered the e l e c t r o n i c s to deal with alkaline could be i n modifying samples as well as a c i d i c ones, and so a comprehensive pH a d j u s t i n g system c o u l d be constructed. I t should be the possible neutralizing f o r example agent for to use hydrogen c h l o r i d e as samples. I n s p i t e o f t h e d e s i r e t o d e s i g n t h e e x i s t i n g system u s i n g t h e s i m p l e s t and most i n e x p e n s i v e c i r c u i t r y a new design increased count, flexibility and microprocessor etc., within employing a PIC microprocessor ( i f required), a programmable setting up alkaline available, would reduced offer component procedures. The c o u l d a l s o be used t o p r o v i d e a l o g o f samples which a l t h o u g h the t e x t , not r e q u i r e d f o r t h e system described c o u l d have p o s s i b l e a p p l i c a t i o n s i n o t h e r systems. F i n a l l y , development o f computer s o f t w a r e d e d i c a t e d t o o n - l i n e systems c o u l d be c a r r i e d o u t . A l t h o u g h t h e s o f t w a r e employed throughout t h i s s t u d y has proved 211 reliable, i t was developed as a g e n e r a l system. The problems observed i n t h e d r i f t o f t h e standards when concentrations software. determining could I f such be selenium overcome a programme by at ultra trace s u i t a b l e design allowed the running of of a s t a n d a r d whenever r e q u i r e d by t h e a n a l y s t , and c a l c u l a t e d t h e c o n c e n t r a t i o n s o f samples between standards on t h e b a s i s o f a t i m e r e l a t e d d r i f t , i t c o u l d e f f e c t i v e l y compensate f o r t h e drift. In addition, the - f a c i l i t y to integrate traces c o n t a i n i n g two o r more p l a t e a u t y p e peaks i n d i v i d u a l l y w i t h e i t h e r a computer d e r i v e d b a s e l i n e , o r one s e l e c t e d by t h e analyst would be o f g r e a t value. Such s o f t w a r e facilities e x i s t i n p a r t i n commercially a v a i l a b l e programmes, b u t do n o t appear t o have been g a t h e r e d t o g e t h e r i n t o one programme as yet. 212 REFERENCES 1 L i s k o u s k i J.G., J. Chem. I n f . Comput. S c i . , 1985, 25, 288. 2 Foreman J.K. & Stockwell P.B., Automatic chemical a n a l y s i s , Horwood, C h i c h e s t e r , 1975. 3 Rosenbrock H.H., Trends A n a l . Chem., 1984, 3 , 1. 4) Skeggs L.T., Am. J. C l i n . 5) Nagy G., Feher Z. & Pungor E., A n a l . Chim. Acta, 1970, 52, 6) 47. Stewart K.K., Beecher G.R. & Hare P.E., A n a l . Biochem., 1976, 7) Path., 1957, 2 8 , 311. 70, Ruzicka 167. J . & Hansen E.H., A n a l . Chim. Acta, 1975, 78, 145. 8) Skoog D.A., Principles of instrumental analysis, Saunders, 1985, p 864. 9) Ruzicka J. & Hansen E.H., Flow i n j e c t i o n a n a l y s i s , Wiley, 1981. 10) Stewart K.K., A n a l . Chem., 1983, 5 5 , 931A. 213 11) Holak W., A n a l . Chem., 1969, 4 1 , 1712. 12) Goulden P.D. & Brooksbank P., A n a l . Chem., 1974, 4 6 , 1431. 13) P o l l o c k E.N. & West S.J., A t . A b s o r p t . Newsl., 1972, 1 1 , 104. 14) P o l l a c k E.N. & West S.J., A t . A b s o r p t . Newsl., 1973, 1 2 , 6. 15) Fernandez F.J. & Manning D.C., A t . A b s o r p t . Newsl., 1971, 10, 16) 86. Chu R.C., Barron, G.P. & Baumgarner P.A.W., A n a l . Chem., 1972, 4 4 , 1476. 17) Maruta T. & Sudoh G., A n a l . Chim. A c t a , 1975, 7 7 , 37. 18) Yamamoto Y. & Kumamaru T., Fres. Z. A n a l . Chem., 1976, 281, 19) 353. Sanzolone R.F., Chao T.T. & Welsch E.P., A n a l . Chim. A c t a , 1979, 1 0 8 , 357. 20) Saikh A.U. & Tallman D.E., A n a l . Chem., 1977, 4 9 , 1093. 21) V i j a n P.N. & Wood G.D., T a l a n t a , 1976, 2 3 , 89. 214 22) M u l l i g a n K.J., Hahn M.H., Caruso J.A. & F r i c k e F.L., A n a l . Chem., 1979, 5 1 , 1935. 23) Nakahara T., Progress i n a n a l y t i c a l s p e c t r o s c o p y , 1983, 6, 174. 24) Smith A.E., A n a l y s t , 1975, 1 0 0 , 300. 25) P i e r c e F.D. & Brown H.R., A n a l . Chem., 1977, 4 9 , 1417. 26) Welz B. & Melcher M., A n a l . Chim. A c t a , 1981, 1 3 1 , 17. 27) Welz B. & Melcher M., A n a l y s t , 1984, 1 0 9 , 569. 28) Welz B. & Melcher M., A n a l y s t , 1984, 1 0 9 , 573. 29) Welz B. & Melcher M., A n a l y s t , 1984, 1 0 9 , 577. 30) Dedina J . & T s a l e v D., H y d r i d e g e n e r a t i o n and atomic a b s o r p t i o n s p e c t r o m e t r y , J.Wiley & Sons, 1995. 31) F l o r e n c e T.M., T a l a n t a , 1982, 2 9 , 345. 32) Sinemus H.W., Melcher M. & Welz B., A t . Spectroscopy, 1981, 2 , 8 1 . 33) A g g e t t J . & A s p e l l A.C., A n a l y s t , 1976, 1 0 1 , 3 4 1 . 215 34) Feldman C , A n a l . Chem., 1979, 5 1 , 664. 35) Howard A.G. & Arbab-Zavar M.H., A n a l y s t , 1980, 1 0 6 , 213. 36) C u t t e r G.A., A n a l . Chim. A c t a , 1978, 9 8 , 59. 37) Andreae M.O., A n a l . Chem., 1984, 5 6 , 2064. 38) Zander A.T. e t a l . A n a l . Chem., 1976, 4 8 , 1166 39) H a r n l y J.M. e t a l , A n a l Chem., 1979, 5 1 , 2007 40) Ebdon L.C. An introduction to atomic absorption s p e c t r o s c o p y , Heyden, 1982, 59. 41) Watson C.A., J. A n a l . A t . Spectrom., 1988, 3 , 407. 42) F a s s e l V.A., Science, 43) Skoog D.A., 1978, 2 0 2 , 185. Principles of instrumental analysis, Saunders, 1985, 296. 44) Levander O.A., Trace elements i n human and animal n u t r i t i o n . Academic Press, 1986, 209-279. 45) Abrams M.M. & Burau R.G., Commun. S o i l S c i . P l a n t A n a l . , 1989, 20, 221. 216 46) Cooke T.D. & B r u l a n d K.W., E n v i r o n . S c i , Technol., 1987, 21, 47) 1214. Combs G.F. & Combs S.B., The r o l e o f selenium i n n u t r i t i o n . Academic Press, 1986. 48) P a t a i S., The c h e m i s t r y o f o r g a n i c selenium and t e l l u r i u m compounds, Wiley, 1987, 2 , 377. 49) Combs G.F., J.E., Spallholz Selenium J.E., Levander O.A. & Oldfield i n b i o l o g y and medicine. Van N o s t r a n d - R e i n h o l d , 1987. 50) Robinson M.F., Am. J. C l i n . N u t r . , 1988, 4 8 , 5 2 1 . 51) Whitten K.W., Galley K.D. & Davis R.E., General c h e m i s t r y , Saunders, 1988. 52) B r u l a n d K.W., 53) Merian E.E., Chem. Oceanogr., 1983, 8 , 188. Frey R.W., C a r c i n o g e n i c and mutagenic Hardi W., & Schlatter C, compounds, Gordon & Breach, 1985, 27. 54) P.S. A n a l y t i c a l , 55) Agterdenbos 1992, P r i v a t e communication. J., van Noort J.P.M., P e t e r s F.F. & Bax D., Spectrochim. A c t a , 1986, 4 1 B , 283. 217 56) I r s c h B. & Schaefer K., Fresenius Z. A n a l . Chem., 1985, 320, 57) 37. Zhuang M i a n z h i & Barnes R.M., A p p l . S p e c t r o s c , 1984, 3 8 , 635. 58) Greenwood N.N. & Earnshaw A., Chemistry o f t h e elements, Pergamon, 1984, 884. 59) D'Ulivo A . , T a l a n t a , 1988, 3 5 , 499-501. 60) D'Ulivo A., JAAS, 1989, 4 , 67-70 61) Pahlavanpour B., P u l l e n J.H. and Thompson M. , A n a l y s t , 1980, 1 0 5 , 274-278. 62) Chan C.C.Y., A n a l . Chem., 1985, 5 7 , 1482-1485. 63) Brimmer S.P., Fawcett W.R. and Kulhavy K.A., A n a l . Chem., 1987, 5 9 , 1470-1471. 64) Bye R. and Lund W., F r e s e n i u s Z. A n a l . Chem., 1988, 3 3 2 , 242-244. 65) C u t t e r G.A., A n a l . Chim. A c t a , 1978, 9 8 , 59-66. 66) Sinemus H.W., Melcher M. and Welz B., A t . Spectrosc., 1981, 2 , 81-86. 218 67) Piwonka J., K a i s e r G. and Toelg G., Fresenius Z. A n a l . Chem., 1985, 3 2 1 , 225-234. 68) K r i v a n V., P e t r i c k K., Welz B. and Melcher M., A n a l . Chem., 1985, 5 7 , 1703-1706. 69) Gloria Cobo Fernandez M., P a l a c i o s M.A. & Camara C, A n a l . Chim. A c t a , 1993, 2 8 3 , 386. 70) P e t t e r s o n J. & O l i n A., T a l a n t a , 1991, 3 8 , 413. 71) D'Ulivo A., Lampugnani L., S f e t s i o s I., Zamboni R. & F o r t e C , A n a l y s t , 1994, 1 1 9 , 633. 72) Welz B., Melcher M. & Neve J., A n a l . Chim. A c t a , 1984, 165, 73) 131. D ' U l i v o A., Lampugnani L., S f e t s i o s I . & Zamboni R., Spectrochim. A c t a , 1993, 4 8 B , 387. 74) Chan C.C.Y. & Sadana R.S., A n a l . Chim. A c t a , 1992, 2 7 0 , 231. 75) Yamasuto K., Tetsuya S. & Yoshiba M., J. A g r i c . Food Chem., 1988, 3 6 , 463. 76) Howard A.G. & Hunt L.E., A n a l . Chem., 1993, 6 5 , 2995. 219 77) C u l l e n W.R. & DoddM., A p p l . Organomet. Chem., 1988, 2 , 78) H i l l S.J., 79) Hibbert Ebdon L.C. & Jones P., T a l a n t a , 1991, 3 8 , 607. D.B. & James A.M., Macmillan dictionary of c h e m i s t r y , M a c m i l l a n Press, 1987, 399. 80) C l a r k R.B., Marine p o l l u t i o n , 3 r d . Ed., O x f o r d U n i v e r s i t y Press, 1994. 81) Smith W.E. & Smith A.M., Minamata, R i n e h a r d t & Winston, 1975. 82) P r i v a t e communication, PS A n a l y t i c a l L t d . , 1992. 83) Hahn L.J., K l o i b e r R., L e i n i n g e r R.W., Vimy M.J., & L o r s c h e i d e r F.L., FASEB J o u r n a l , 1990, 4 , 14, 3256 . 84) Friberg L., Nylander M. & Lind B., Swedish Dental J o u r n a l , 1987, 1 1 , 5, 179. 85) Drasch G., Schupp I . , H o f l H., Reinke R. & Roider G., Eur. J . o f P a e d i a t r i c s , 1994, 1 5 3 , 8, 607. 86) EhmanW.D., Wenstrup D. & Marksbery W. D., B r a i n Research, 1990, 5 3 3 , 1, 125. 220 87) Thompson C.N., Mao Y.X., Vance D.E., Markesbery W.R. & EhmannW.D., N e u r o t o x i c o l o g y , 1988, 9 , 1, 1. 88) E g g l e s t o n D.W. & Nylander M., J. o f P r o s t h e t i c D e n t i s t r y , 1987, 89) 6, 704. 58, P o l u e t k o v N.S. & V i r k u n R . A . , Zh. A n a l . Khim., 1963, 1 8 , 37. 90) McKenzie H.A. & Smythe L.E., Quantitative trace analysis o f b i o l o g i c a l m a t e r i a l s , E l s e v i e r , 1988. 91) A l i i A., J a f f e R. & Jones R., J. High Res. 17, Chrom., 1994, 745. 92) White W.W. & Murphy P.J., A n a l . Chem., 1977, 93) Haswell S.J., Atomic a b s o r p t i o n 4 9 , 255. spectrometry, E l s e v i e r , 1991. 94) Jackson, C.J., P o r t e r D.G., Dennis A.L. & S t o c k w e l l Analyst, 95) P.B. 1978, 103, 317-331. McDuell R., Chemistry - A l e v e l course companion, L e t t s , 1988. 96) Goodall P., H i l l S.J., Ebdon L.C., S t o c k w e l l Thompson K.C., J . A n a l . A t . Spectrom., 1993, 221 P.B. & 8 , 723. 97) S t o c k w e l l P.B. & Corns W.T., 98) Joseph von F r a u n h o f e r s A n a l y s t , 1994, 1 1 9 , 1641. gesammelte Schriften, E.C.J. Gommel, Munich, 1888. 99) Walsh A., Spectrochim. A c t a , 1955, 7 , 108. 100) I n t r o d u c t i o n t o microwave sample p r e p a r a t i o n - t h e o r y and practice, K i n g s t o n H.M. & J a s s i e L.B., Am. Chem. Soc., Washington, 1988. 222 Appendix 1 Touchstone Instrument Signal Peak Data Acquisition T h e B o r l a n d P a s c a l c o d e b e l o w is a simplified extract from T o u c h s t o n e , s h o w i n g the a p p r o a c h to p e a k r e a d i n g of A A hydride g e n e r a t o r s i g n a l s . T h e actual program c a t e r s for m a n y other t e c h n i q u e s a n d i n s t r u m e n t s . C o m m e n t s a r e in italics b e t e e n b r a c e s . {Comment} procedure ADPoint;/T/?/s procedure point} is called repeatedly to read and plot each var ADSum,ReadsDone:integer; begin for ReadsDone:=1 to A D R e a d i n g s do {Normally ADReadings=4} ADSum:=ADSum;=ADRead; {ADRead returns a signed integer the mean of 16 12 bit A/D readings} fit also synchronises to the computer clock at 18,2Hz} A D S u m : = A D S u m div A D R e a d i n g s ; ADSum.=fiiter(ADSum);fRtinn/ng Mean Filter, number set in Method-Filter} A b s R e a d : = A D S u m / A D F a c t o r * A6Mu\i',{Convert to Absorbance for this AA} '\nc{x)\{next X axis pixel position} ShowSignal;/P/o/ Point and show actual reading} er\6;{Procedure ADPoint} Procedure P l o t A D ; / R e a d s baseline then peak data using ADPoint to plot on screen} begin XAx\sf\Aax =54S;{Maximum allowed X axis value in pixels} T i m e E n t C a l c ; f S e / up ZeroPlot and ADReadings to Vapour Gen timers} x:=0;pc Pixel Counter} PeakArea:=0; PeakHeight:=-1; W r l t e B a r G R C R E A D I N G B A S E L I N E S I G N A L _Esc-Abort'); O K : = F A L S E ; f S e / TRUE only if a valid result measured} BaseLine:=0; repeat {Get BaseLine during delay} ADPoint; {Read A/D, filter, and plot} BaseLine:=BaseLine+AbsRead; {Add result to BaseLine} until keypressed or (x > ZeroPlot); {Until Delay Time Done} B a s e L i n e : = B a s e L i n e / (ZeroPlot+1); {Calculate Mean} drawstring('BaseLine= '+RealToString(BaseL[ne)+' Abs'); 223 {Valve Switches Here} WriteBarGR('Measuring Signal Peak'); PeakArea:=0; {Set Peak Initial values} PeakHeight:=-1; {Ensure invalid result unless A/D PACount:=0; read} repeat ADPoint; {Read A/D, fiter and plot on screen} A b s R e a d : = A b s R e a d - B a s e L i n e ; {Subtract BaseLine} if A b s R e a d > PeakHeight then PeakHeighl:=AbsRead;{Upcfa^e PkHeight} P e a k A r e a : = P e a k A r e a + A b s R e a d ; {Add to Peak Area running total} Inc(PACount); {Increment count of readings summed in PeakArea} until k e y p r e s s e d or (x > XAxisMax) or (nothydrunning); {Normally stops when vapour generator cycle complete} if P e a k A r e a < 0 then P e a k A r e a : =0; {Negative value meaningless} if not keypressed then begin {Scale and display the peak results} PeakArea:=100 * P e a k A r e a / PACount;f>Ac(/i;s/ to timescale selected} G o t o X Y G R (51.3); DrawStringC P e a k Area: '+RealToString(PeakArea)); G o t o X Y G R (51.3); DrawStringC Peak Height: •+RealToString(PeakHeight)+'Abs'); ok:=TRUE; en6,fif not keypressed} en6:{Procedure PlotAD} Copyright Spinoff 1 9 8 7 - 9 4 . T o u c h s t o n e is distributed by P S Analytical Ltd. 224 CONFERENCES AND COURSES ATTENDED Sixth Biennial National Atomic Spectroscopy Symposium, U n i v e r s i t y o f Plymouth, J u l y , 1992. X X V I I I C o l l o q u i u m Spectroscopicum I n t e r n a t i o n a l e , U n i v e r s i t y o f York, June, 1993. Research and Development T o p i c s , U n i v e r s i t y o f B r a d f o r d , J u l y , 1993. Seventh Biennial National Atomic Spectroscopy Symposiiam, U n i v e r s i t y o f H u l l , J u l y , 1994. Research and Development Topics, U n i v e r s i t y o f H e r t f o r d s h i r e , J u l y , 1994. Atomic S p e c t r o m e t r y Updates - Atomic Spectroscopy Group, U n i v e r s i t y o f B r i s t o l , March, 1995. Erasmus Eurocourse - F r o n t i e r s i n A n a l y t i c a l Chemistry : Trace Environmental Analysis, University 225 o f Plymouth, September, 1995. Royal Society o f Chemistry lectures speakers a t t h e U n i v e r s i t y o f and lectures by invited Plymouth V a r i o u s weekly r e s e a r c h l e c t u r e s a t t h e U n i v e r s i t y o f Plymouth 226 PUBLICATIONS S e l e n i u m s p e c i a t i o n - a flow i n j e c t i o n approach en?>loying l i n e microwave r e d u c t i o n f o l l o w e d by h y d r i d e f u r n a c e atomic a b s o r p t i o n spectrometry P i t t s L.J., &-Hill Analyst, W o r s f o l d P.J. 1994, Investigation 119, into S.J., the S.J. kinetics P i t t s L.J. of seleni\im{VI) reduction atomic f l u o r e s c e n c e d e t e c t i o n & Worsfold Journal o f A n a l y t i c a l Atomic Selenium generation-quartz 2785. using hydride generation Hill on- speciation P.J. Spectrometry, using high 1995, 10, performance 409. liquid chromatography-hydride g e n e r a t i o n atomic f l u o r e s c e n c e w i t h onl i n e microwave P i t t s L.J., reduction F i s h e r A., W o r s f o l d P.J. J o u r n a l o f A n a l y t i c a l Atomic & Hill Spectrometry, 227 S.J. 1995, 10, 519. PRESENTATIONS An investigation of s i g n a l enhancement e f f e c t s due t o t h e p r e s e n c e o f n i t r i c a c i d on t h e d e t e r m i n a t i o n o f selenixim u s i n g hydride generation X X V I I I C o l l o q u i u m S p e c t r o s c o p i c u m I n t e r n a t i o n a l e , Y o r k , June 1993. The d e t e r m i n a t i o n o f seleni\im u s i n g h y d r i d e g e n e r a t i o n - an investigation of presence of n i t r i c Research signal enhancement effects due to the acid & D e v e l o p m e n t T o p i c s , B r a d f o r d , J u l y , 1993. Selenium s p e c i a t i o n i n aqueous san5>les - an o n - l i n e t e c h n i q u e en5>loying microwave pre-treatment followed g e n e r a t i o n - q u a r t z f u r n a c e atomic a b s o r p t i o n 7th. Biennial N a t i o n a l Atomic by hydride spectrometry S p e c t r o s c o p y Symposium, Hull, J u l y , 1994. The determination o f mercury i n sediments using on-line p y r o l y s i s , p r e - c o n c e n t r a t i o n and atomic f l u o r e s c e n c e d e t e c t i o n 228 7th. B i e n n i a l N a t i o n a l Atomic S p e c t r o s c o p y July, The Symposium, H u l l , 1994. development of an on-line system en5)loying microwave reduction f o r seleniiun s p e c i a t i o n Research & Development T o p i c s , Watford, J u l y , 1994. Selenixun s p e c i a t i o n - a flow i n j e c t i o n approach e n ^ l o y i n g l i n e microwave r e d u c t i o n f o l l o w e d by h y d r i d e furnace atomic absorption FACSS XXI, The S t . L o u i s , USA, determination of on- generation-quartz spectroscopy October, mercury in 1994. sediments using on-line p y r o l y s i s , p r e - c o n c e n t r a t i o n and atomic f l u o r e s c e n c e d e t e c t i o n FACSS XXI, S t . L o u i s , USA, October, 229 1994.
© Copyright 2024