MANUAL SummerschoolWorkshops May‐June2014 April3,2014 PhDprogramme2013‐2014 GraduateSchoolofSocialSciences VUUniversityAmsterdam Contents Collecting,AnalyzingwithAtlas.TI,andPublishingQualitativeData.....................................2 Set‐theoreticalcomparativemethodsandfuzzysetQCAanalysis...........................................6 ProgrammingandAnalyzinginR.............................................................................................................11 SocialNetworkAnalysis...................................................................................................................................18 VUGraduateSchoolofSocialSciences 1 Collecting,AnalyzingwithAtlas.TI,andPublishingQualitativeData PhDprogrammeGraduateSchoolofSocialSciences,2013‐2014 VUUniversityAmsterdam Period: 5(May2014) CourseCredits: 3ECTS Lecturer: Prof.BarbaraRisman([email protected]) Fee(externalparticipants):€300,‐ Maximumparticipants: 15 Sign‐up/inquiries: SaskiaJans([email protected]) Schedule: Date Time Location 1Tuesday,May20 9.00‐16.30 HG‐1G28 2Wednesday,May21 9.00‐16.30 HG‐1G28 3Thursday,May22 9.00‐16.30 HG‐1G28 Courseobjectives Qualitativeresearchinvolvesavarietyofdatacollectiontechniques,andmultipletypesofsources. Researchersobserve,makenotesoftheirobservations,interviewpeople,sometimestakepictures, usewrittenandelectronicarchivesanddoethnography.Thefirstobjectiveforthiscourseisto assessthevarietyofwaystocollectqualitativedataandtoactuallyexperimentwithcollecting someandassessingit’sreliability.Thesecondobjectiveofthiscourseistostructureandanalyze thequalitativedatawithoutlosingsightofyourresearchproblem.Thiswillbetheheartofthis workshop.Theworkshopisdesignedtoequipparticipantswithconceptualtoolsforanalyzing interviewdata.Participantswilldevelophandsonskillswithhowtoanalyzequalitativedatausing AtlasTibycompletingin‐classexerciseswithdataprovided.Finally,thethirdobjectiveofthis workshopistoprovideskillstosuccessfullyturnqualitativeanalysisintomanuscriptsthatcanbe submittedtojournalsforreview. Coursecontent Onthefirstdaywewillfocusonunderstandingthedifferences,prosandcons,todifferent typesofqualitativedatacollection.Participantswillbeexposedtointerviewtechniquesand practiceinterviewingskills.Afieldexercisewillinvolvesomeobservations,writingfieldnotes,and comparingthemforreliability. OntheseconddayoftheworkshopwewillmeetinacomputerlaboratorywithAtlasTi installedonthemachines.Thishands‐onexperientiallearningwillbedesignedtotakethenovice fromunderstandingtheconceptualbackgroundofcomputerassistedqualitativeanalysisthru codingdataandanalysis.Theinstructorwillprovidedatafortheexercises.Theparticipantswill learntocodedatausingbothopencodingstrategiesandtheoreticalones.Theywillalsolearnto analyzedatausingqueries.Participantswillleavewiththeabilitytoorganize,code,andanalyze datawithAtlasTi. VUGraduateSchoolofSocialSciences 2 Thethirdandfinaldayoftheworkshopisdedicatedtopublishingqualitativeresearch.The daybeginswithdiscussionsonthewritingprocessitself.Participantsareexpectedtobringsome writingprojectwiththemtoworkonfortheexercisesgiventhisday.Informationwillbeshared abouthowtoorganizeaqualitativejournalarticle,includingcreatinganinfrastructure.Finallytips forthepublicationprocessaregiven. Courseaudience Thiscourseisopentoboth‘regular’andexternalPh.D.candidates(‘buitenpromovendi’)whoare linkedtothevariousdepartmentsoftheVUFacultyofSocialSciencesandmemberoftheGSSS.The courseisadvisedforadvancedPhDcandidates2nd,3rd(and4th)years.Onlyminimalknowledgeof thecomputerprogramAtlastTiisrequired,butmoreadvancedstudentsarealsowelcome.PhD candidatesfromrelevantotherVUfaculties(i.e.,psychology,economicsandmanagementscience) andotheruniversitiesarewelcome.Theseexternalparticipantsarechargedafee(seeabove). Generalknowledgeaboutresearchdesignandsomeknowledgeonhowtoconductqualitative scientificresearchisrequired. Registration PleaseregisterforthiscoursebeforeMay1st2014throughsendinganemailtoSaskiaJans ([email protected]).ShewilladdyournametotheBlackboardpageofthiscoursesoyougetaccesstoall necessarydocumentsandupdates.ParticipantsmustalsosubmitanabstractoftheirPhDprojectat thebeginningofthecourse(onepagemax).Sendyourabstracttothecourselecturerultimately oneweekbeforethestartofthecourse. ImportantNote ParticipantsarerequiredtobringaworkingdocumentabouttheirPhDprojectoranotherresearch manuscriptforthein‐classexercisesonDay3. Assessment ToobtainECTScreditsforthecourseparticipantsarerequiredto(1)bepresentinallsessions;(2) activelyparticipateduringthelectures;(3)Completethefieldexperienceindatacollectionand submittranscriptionsfromit;(4)Completethecomputerassignments;(5)submitafinalpaper discussingifandhowcomputerassistedqualitativeanalysiswillbeusefulfortheirresearch.The gradeforthiscourseis25%activeparticipationintheworkshop;25%completionofthecomputer assignment;25%completionofthefieldexperienceandtranscripts;and25%reflectionpaperat theendoftheworkshop.Allassignmentsneedtobegradedassufficientinorderforstudentsto passthiscourse. Schedule&Readings Session Topics Readings 1(tue) VarietiesofQualitativeData Weiss:Chapter1‐4 InterviewTechniquesandChallenges 2(wed) ConceptualFrameworksforQualitative Weiss:Chapter5‐6 VUGraduateSchoolofSocialSciences 3 3(thu) WorkshopActivity Assignment:AnalysisandCodinginAtlasti. FromAnalysistoWriting WorkshopActivity: WritingAnalyticMemos&ReiterativeCoding AtlasTimanual(skim) RismanandMartin(2012) White(2005) RequiredReadings(allwillbeavailableonline): Thefollowingliteraturearethemainrequiredreadingsofthecourse,whichyouneedtoreadin advanceoftheworkshopsessions. Weiss,Robert.1994.LearningfromStrangers:TheArtandMethodofQualitativeInterviewStudies. NewYork:Simon&Schuster. AtlasTiInstructionManual White,Lynn.2005.“WritinganEmpiricalArticle.”JournalofMarriageandtheFamily,Vol.67:791‐ 798. Risman,BarbaraandPatriciaYanceMartin.2012.“GuidetoPublishingArticles”. Assignments Thefieldworkexperienceassignmentwillbecompletedduringclasstimeasanactivelearning project.ThecomputerdataanalysisassignmentwillbecompletedduringDay2inthecomputer laboratory.Thefinalreflectionpaperassignmentforeachstudentwilldependuponthestageof theirownresearchproject.Forstudentswhoareyettogointothefield,thefinalassignmentwill bearesearchdesignproposal.Forstudentscurrentlyinthefield,thefinalassignmentwillbea codingscheme,andananalyticmemo;forstudentswhohavecompletedtheirdatacollection,an analyticmemowhichprovidesanoutlineofthemajorfindingstodate. BioProf.Dr.BarbaraRisman BarbaraRismanisProfessorandHeadoftheDepartmentofSociologyattheUniversityofIllinoisat Chicago.ShewaspreviouslyAlumniDistinguishedResearchProfessor,aswellastheFounding DirectoroftheGenderandWomen’sStudiesProgramatNorthCarolinaStateUniversity.Barbara RismanistheauthorofGenderVertigo:AmericanFamiliesinTransition(Yale,1998),FamiliesAs TheyReallyAre(Norton,2010),andovertwodozenjournalarticlesinvenuesincludingAmerican SociologicalReview,Gender&Society,andJournalofMarriageandtheFamily.Shehasbeeneditor ofthejournal,ContemporarySociology,andiscurrentlyoneoftheeditorsofabookseries,The GenderLens,afeministtransformationprojectforthedisciplineofsociology.SheisalsoPresident oftheBoardofDirectorsofTheCouncilonContemporaryFamilies,anationalorganizationwhose missionistobringnewresearchfindingsandclinicalexpertisetopublicattention VUGraduateSchoolofSocialSciences 4 (www.contemporaryfamilies.org).Sheisthein‐comingPresidentoftheSouthernSociological Association.ProfessorRismanisabloggeronHuffingtonPost,andwritesop‐edsforcnn.com. In2005,Dr.RismanwashonoredwiththeKatherineJocherBelleBooneAwardfromthe SouthernSociologicalSocietyforlifetimecontributionstothestudyofgender.Shewasalsonamed asthe2003FeministLecturerbytheSociologistsforWomeninSociety.In2011,Dr.Rismanwas honoredwiththeAmericanSociologicalAssociation’sAwardforthePublicUnderstandingof Sociology.ProfessorRismanhasacurrentresearchprojectfocusingonthedevelopmentofgender andsexualidentitiesamongwhiteandblackmiddle‐schoolchildren.Asecondprojectin collaborationwithgraduateandundergraduatestudentsisastudyofdatingandsexualityon collegecampuses.IncollaborationwithShannonDavis,sheistestingtheoriesaboutwhether hormonalexposureinuteroinfluencesgenderedselvesinadulthood.ProfessorRismanhasabook undercontractforOxfordUniversitypresstitled,GenderasaSocialStructure:TowardaUtopian VisionforaPost‐GenderSociety.ProfessorRismanstronglybelievesthatsociologistshavea responsibilitytobothdogoodresearchandteachaboutit,insidetheclassroomandtothepublicat large.TolearnmoreaboutProfessorRisman,gotowww.barbararisman.com. VUGraduateSchoolofSocialSciences 5 Set‐theoreticalcomparativemethodsandfuzzysetQCAanalysis PhDprogrammeGraduateSchoolofSocialSciences,2013‐2014 VUUniversityAmsterdam Period: 5(May2014) CourseCredits: 3ECTS Lecturer: Prof.dr.BarbaraVis([email protected]) Fee(externalparticipants):€300,‐ Maximumparticipants: 15 Sign‐up/inquiries: SaskiaJans([email protected]) Schedule: Date Time Location 1Wednesday,May21 9.30‐15.30 HG‐1G11 2Thursday,May22 9.30‐15.30 HG‐1G11 3Friday,May23 9.30‐15.30 HG‐1G11 Courseobjectives Comparativeanalysesarecentraltothesocialsciences,makingknowledgeofcomparativemethods crucialforallgraduate(MSRandPhD)studentsinthefield.InthisGSSSworkshop,youare introducedto,discuss,andpracticecomparativemethodsthatarebasedonsettheoryandformal logicandwhichhavebecomeknownundertheacronymQCA(QualitativeComparativeAnalysis), configurationalcomparativemethods(Rihoux&Ragin2009),orset‐theoreticalmethods (Schneider&Wagemann2012).Thesetechniqueshavebeenintroducedtothesocialsciencesby CharlesRagininthelate1980s(Ragin1989)andhavebeenimprovedsince(e.g.Ragin2000,2008). Overthelastyears,thescholarlyinterestforanduseofconfigurationalmethodsisincreasing,asa risingnumberofpublicationsusingthesetechniquessignifies(seewww.compasss.orgforauseful bibliographicaloverview). Thisworkshopprovidesyouwithasolidunderstandingoftheset‐theoreticalunderpinningsof configurationalmethodsandofthepracticalresearchskillsneededtoperformacomparative configurationalanalysis,especiallyofthefuzzy‐settype.Aftertheworkshop,youwillbeableto identifyanddealwiththeissues,problemsandstrategiesof‘smallandmediumsized’(Nbetween around5to50)research,projectsforwhichthesetechniquesaremostsuited.Thisknowledgeof systematiccomparativeresearchisalsohighlyrelevantforthosegraduatestudentswhodonot intendtouseaconfigurationalmethod,butwhoareconductingacomparativestudy(suchasa comparativecasestudydesign). Coursecontent Theworkshopisstructuredasfollows.Thefirstdaystartsbyrefreshingorintroducingyour knowledgeofcomparativemethodsbydiscussingamongotherstheworkofJ.S.Mill,onwhich configurationalmethodsarebased,andbyintroducingconfigurationalthinking.Wewillespecially focusonkeyconceptsoftheapproach,suchascausalcomplexity,necessity,andsufficiency. VUGraduateSchoolofSocialSciences 6 Moreover,wewilldiscusshownecessityandsufficiencycanbeusedtoidentifysubset relationships.Inthefollowingdays,youwillputthisknowledgetopracticebyanalyzingsubset relationshipsbymeansoftruthtables.Youwilllearntoworkwiththemostwidelyusedthe available(opensource)software:Tosmana(http://www.tosmana.net/)andfsQCA2.5 (http://www.u.arizona.edu/~cragin/fsQCA/software.shtml).Weendbydiscussinghowtomixa configurationalapproachwith(an)otherapproach. Throughouttheworkshop,youractiveparticipationisrequired,bothinthediscussionsandinthe exercisesandre‐analyses.Datasetsforthere‐analysiswillbecirculatedpriortothecourse.Ifyou alreadyhaveaconfigurationaldataset,therewillbeampleopportunitythroughouttheworkshop toaskquestionshowtoworkwiththesedata. Classroomassignmentsinclude,amongotherthings,discussingissuesrelatingtotheapproachin smallgroupsandconductingre‐analyses. Courseaudience Thiscourseisopentoboth‘regular’andexternalPh.D.candidates(‘buitenpromovendi’)whoare linkedtothevariousdepartmentsoftheVUFacultyofSocialSciencesandmemberoftheGSSS.The courseisbothusefulforPh.D.candidatesintheir1styearandinlateryears.Ph.D.candidatesfrom relevantotherVUfaculties(i.e.,psychology,economics,andmanagementscience)andother universitiesarewelcome.Theseexternalparticipantsarechargedafee(seeabove).Abasiclevelof priorknowledgeonQCAissufficienttoenterthisworkshop. Registration PleaseregisterforthiscoursebeforeMay1st2014bysendinganemailtoSaskiaJans ([email protected]).ShewilladdyournametotheBlackboardpageofthiscoursesoyougetaccessto thenecessarydocumentsandupdates.Participantsmustalsodoapreparatoryassignment,see below,whichtheyneedtosendtothecourselecturerultimatelyoneweekbeforethestartofthe course. Importantnote Youneedtobringyourlaptoptoclassforlearninghowtoworkwiththesoftwareandfor conductingthere‐analyses.Pleasemakesuretoinstallthe(opensource)softwarethatwe’lluse priortotheworkshop: Tosmana(http://www.tosmana.net/) FsQCA2.5(http://www.u.arizona.edu/~cragin/fsQCA/software.shtml). Assessment ToobtainECTScreditsforthecourseparticipantsarerequiredto(1)bepresentinallsessions;(2) activelyparticipateduringtheclasses,(3)submitthepreparatoryassignment(seebelow),and(4) submitareflectionpaper(seebelow). VUGraduateSchoolofSocialSciences 7 Thegradeforthiscourseis70%reflectionpaper;20%classparticipation;10%preparatory assignment.Allassignmentsneedtobegradedassufficientinorderforstudentstopassthis course. RequiredReadings: Thefollowingbooksarethemainrequiredreadingsofthecourse,whichyouneedtopurchaseand readinadvanceofthecourse: •Rihoux,B.&Ragin,C.C.(2009).ConfigurationalComparativeMethods:Qualitative ComparativeAnalysis(QCA)andRelatedTechniques.LosAngelesetc.:Sage(Indicatedas Rihoux&Ragininthedetailedschedulebelow). •Ragin,C.C.(2008).RedesigningSocialInquiry:FuzzySetsandBeyond.ChicagoandLondon: UniversityofChicagoPress(Ragininthedetailedschedulebelow). Inaddition,Irecommendyoutoreadsomepartsofthefollowingbook: •Schneider,C.Q.andC.Wagemann(2012).Set‐TheoreticMethodsfortheSocialSciences:A GuidetoQualitativeComparativeAnalysis.Cambridge:CambridgeUniversityPress. The2012bookbySchneiderandWagemannisanexcellent,up‐to‐dateadvancedtextbookforthe differentset‐theoreticalapproaches.Itisamust‐readforresearchersintendingtouseaset‐ theoreticalapproachintheirresearch. Inadditiontothesebooks,wereadanddiscussaseriesofarticles.Youwillreceivean overviewwhenyousignupforthecourse.Itisexpectedthatyouhavereadtherelevantchapters andarticlesinadvanceoftheworkshop. Ifyouwanttoreadevenmoreonthelogicofcomparativeconfigurationalmethodsor consultsomeofthemanyexamplesofempiricalapplicationsofthesemethods,seetheextensive bibliographyavailableontheresourcewebsitewww.compasss.org.Alsotherecentlypublished mini‐symposiumonconfigurationalapproachesinPoliticalResearchQuarterly(2013,vol.66,issue 1,167‐235)isapossiblyusefulread. Detailedschedule Day1(morning)ComparativeResearchintheSocialSciences&Configurationalthinking, partI Thefirstdayofthisworkshopbeginsbyrefreshing,orintroducing,thebasicsofcomparative research.Youwillreflectonsomekeyquestionsrelatedtothecomparativemethod.Why,for example,isthismethodsocentralinthesocialsciencesingeneral?Whatareitsstrengthsandwhat areitspitfalls?Bydiscussingtheseandrelatedquestionsyouwillbothlearnwhatthecomparative methodhastoofferfortheirownresearchandwillarriveattheappropriatelevelfortherestofthe course. Day1(afternoon)ConfigurationalThinking,partII Intheafternoonofthefirstday,wecontinuediscussingset‐theoreticthinking,whichisattheheart ofconfigurationalapproaches.Becauseoftheircentralityintheseapproaches,youwillamong otherthingsbemade(more)familiarwithnecessaryandsufficientconditions.Itisinterestingto notethat–althoughoftennotusingthisvocabulary–‘traditional’casestudiesalsotypicallyfocus onnecessaryand/orsufficient(combinationsof)conditions. VUGraduateSchoolofSocialSciences 8 Day2CsQCA:Booleanalgebra,truthtables,applicationsandre‐analysis&FsQCA:the basics Arrivedattheseconddayoftheworkshop,youhavegatheredenoughtheoreticalbaggagetoturn tothefirstconfigurationalapproach:crisp‐setQCA.IwillintroduceBooleanalgebraandshowhow toapplyminimizationrulestoBooleantruth‐tables.BymeansofsomerecentapplicationsofcsQCA, youwillbothlearnhowtoworkwiththesoftwarepackagesandobtainbetterinsightintohow Booleananalysisworksandwhetherthismethodcanbeofusetoyourownresearch. Day3(morning)FsQCA:Calibration,coverage,consistency,applications&re‐analysis Onthefinaldayoftheworkshop,wecontinuewithfuzzy‐setQCA(fsQCA).Againwere‐analyze somerecentworktodemonstratehowtoconductafsQCAanalysiswiththesoftware(fsQCA2.5) andmakeclearhowthisapproachcanbeofuse(ornot)inyourownresearch. Day3(afternoon)Mixingmethods Weconcludetheworkshopwithadiscussionofmixingmethods,especiallyfocusingontowhat extentaconfigurationalapproachcanbemixedwithamore“traditional”quantitativeapproach. Whataretheadvantagesofmixing?Andwhatarethedisadvantages?Whataretheimplications hereofforyourownresearch?Mixingconfigurationalcomparativeapproaches,likefsQCA,with casestudiesmakesalotofsense,asyouwillalreadyhaveseenintheearliersessionsofthe workshop.Ofcourse,thereisalsoroomtodiscussanyquestionsyoumayhaveinthisregard. Assignments Forthisworkshop,youneedtodotwoassignments:a(short)preparatoryassignmentanda reflectionpaper. Assignment1:Preparatoryassignment Pleaseprepareadocumentinwhichyouanswerthefollowingquestions. 1. WhatistheresearchquestionofyourPhDprojectorResmathesis?Pleasewritedownboth theresearchquestionandashortdescriptionofthetopicofyourproject.Ifyouhaveno researchquestionyet,pleasedescribewhattheprojectwillbeaboutandwhatpossible questionsyouarethinkingabout. 2. Whatisthemethodologicalapproachofyourproject?Thatistosay,whichmethodor methodsareyouplanningtouse?Whyhaveyoumadethischoice?Whenansweringthis latterquestion,youcandiscussissuessuchasthenumberofcasesinyourstudy,your researchquestionorotherissuesyoufindpertinent.Ifyouhavenomethodological approachyet,pleasediscusstheapproachesyouareconsideringusing(andwhy). 3. Howmuchdoyoualreadyknowaboutcomparativeresearchingeneralandabout configurationalapproaches(QCA,and/orfsQCA)inparticular?Ifyouareplanningto includeaconfigurationalapproachinyourproject:haveyoualreadycollecteddata? Feelfreetouseasmuchspaceasyouneedwhenansweringthesequestions.However,inmost cases1to1.5pageswillprobablybeenoughtoanswerthemall. Thegoalofthisassignmentistwofold.First,itpreparesyouforthiscourse.Second,itprovides therelevantbackgroundinformationformeasinstructorandforyourfellowworkshop participants.Thelatterwillfacilitatethediscussionandgroupworkthroughouttheworkshop. Pleaseemailyourassignmenttome([email protected])andtotheotherparticipants(emaillistwill beprovidedinduecourse)1weekpriortothecourse(i.e.,May14,2014),atthelatest. VUGraduateSchoolofSocialSciences 9 Assignment2:Reflectionpaper Inassignment2,youneedtoreflectonwhatyouhavelearntintheworkshop,inparticularwhether configurationalcomparativeapproaches(likefsQCA)havesomethingtoofferforyourownproject andwhy(not). Thereisnorequiredstructureforthereflectionpaper,butyoumaywanttoaddressthefollowing points: Istheargumentthatyouwanttomakeinyourstudyaset‐theoreticalargument?Ifyes, whatistheargumentexactlyandhowcanaconfigurationalcomparativeapproachhelpyou totestit?Ifnot,woulditmakesensetotryandturnitintoaset‐theoreticalargument?Why (not)? Whatareyourmainconceptsandhowwouldyoucalibratethese?(ifapplicable) Doyouwanttocombineaconfigurationalcomparativeapproachwithanotherapproach and,ifso,whichone?Doesthisposeepistemologicaland/orontologicalproblemsand,if yes,howareyouplanningtoaddressthese? Irrespectiveofwhetheryou’llusetheapproachforyourownresearchprojectornot,what arethestrengths,weaknesses,opportunitiesandthreatsofconfigurationalcomparative approaches? Theapproximatelengthoftheassignmentis2,000words(incl.references),butyouarefreeto writealongerpaperifthisisrelevantforyourproject.Pleaseemailyourreflectionpaperto BarbaraVis([email protected])onJune27,2014atthelatest. BioProf.Dr.BarbaraVis Prof.dr.BarbaraVisisfullProfessorofPoliticalDecision‐MakingonaFennaDiemerLindeboom ChairattheDepartmentofPoliticalScienceandPublicAdministrationoftheVUUniversity Amsterdam,theNetherlands.Herresearchandteachinginterestslieincomparativepolitical economy,politicaldecision‐making,andpoliticalmethodology.Herresearchlargelytakesplacein thecontextoftheVIDIproject'HIGH‐RISKPOLITICS:ExplainingandImprovingPoliticalActors' Decision‐MakingonElectorallyRiskyIssues'thatsheisdirecting(2012‐2017).Thisproject,funded bytheNetherlandsOrganisationforScientificResearch(NWO),studiesriskydecision‐makingof differentpoliticalactors(politicians,politicalparties,governments)onsalientissues(welfarestate reformandmilitaryintervention).Seealsotheproject'swebsitewww.highriskpolitics.org.Prof.dr. BarbaraVisisalsoinvolvedintwoother,related,researchprojectsatVUUniversityAmsterdam: NEUJOBS,anFP7fundedprojectthatexaminesthefuturedevelopmentsofEuropeanlabor markets,andInSearchofaNewWelfareState,aprojectfundedbyStichtingInstituteGak.Youcan readmoreaboutherworkonherpersonalwebsite:www.barbaravis.nl. VUGraduateSchoolofSocialSciences 10 ProgrammingandAnalyzinginR PhDprogrammeGraduateSchoolofSocialSciences,2013‐2014 VUUniversityAmsterdam Period: 5(May2014) CourseCredits: 3ECTS Lecturer: Dr.WoutervanAtteveldt([email protected]) Fee(externalparticipants):€300,‐ Maximumparticipants: 15 Sign‐up/inquiries: SaskiaJans([email protected]) Schedule: Date Time Location 1Monday,June2 9.00‐15.30 BV‐1H24 2Tuesday,June3 9.00‐15.30 IN‐3B50 3Wednesday,June4 9.00‐15.30 BV‐0H20 4Friday,June6 9.00‐15.30 HG‐14A36 Courseobjectives Risastatisticaltoolkitthatisbecomingincreasinglypopularformoreadvancedanalysesinthe socialsciences.RhasanumberofadvantagesoverothertoolkitssuchasSPSSandSTATA.Itisfree ofchargeandopensource,anditisveryeasytowriteadditionalpackagestoaddfunctionality.The centralRpackagerepositoryCRANhasover5,000packagesthatarefreelyavailableandinstalled withasingleclick,thatprovidestatisticalanalysessuchastimeseriesandmultilevelmodels,data visualization,anddataprocessingtools. GettingstartedwithusingR,however,canbequitechallenging.Thereisnonicevisualmenu structurelikewithSPSS,andalthoughthesyntaxmodeismuchmorepowerful,itisalsoquite complicatedtolearn.Moreover,becausethepackagesarenotcentrallycontrolled,itisoften necessarytotransformyourdataintothestructurethatthespecificpackageyouareusingwants. Thegoodnewsis,onceyou'velearnedtouseR,youhaveaccesstoavastarrayofstatistical methodsandvisualizationtechniquesandtoextremelyversatiledataprocessingandvisualization techniques. Thepresentworkshopisaimedatbeginnerswhohaveageneralknowledgeofconducting quantitativeanalyses,butwhowanttolearnhowtoconducttheirstatisticalanalysesinR.This intensivehands‐onworkshopwillgetyoustartedusingRonyourowndataset. Coursecontent Theworkshopconsistsoffourconsecutivefulldaymeetings.Eachmeetingconsistsofan instructionpartinwhichthelecturerexplainstheparticulartopicathand,andapracticalpartin whichyouwillgethands‐onexperienceusingRonbothprovideddataandonyourowndata. PriortothefirstmeetingyouarerequiredtoobtainageneralstartingknowledgeofRbasics,by performinganumberofintroductorytutorials.Thefirstmeetingcontinuesfromthisbasiclevel withageneralintroductiontoR,includingthestructureofRcodeandreadingandexploringdata. VUGraduateSchoolofSocialSciences 11 Theseconddayisfocusedonvisualizingdataandperformingthe'everyday'statisticssuchas ANOVAandregression.Thethirddaytouchesonmoreadvancedtopics,includingmoreadvanced statisticalanalyses(timeseries,multilevel)andtextanalysis. Besidesin‐classinstructionandexercises,studentswillworkonadataprojectfrom,orinspired by,theirownresearch.Onthefourthday,studentswillpresenttheprogressoftheiranalysesand visualizationsinR.ThisgivesthemanopportunitytoseethepossibilitiesinRandlearnfromeach other’ssourcecodeandtoreceivefeedbackontheworkfromeachotherandfromtheinstructor. Afterthis,studentswillwriteuptheseanalysesinabrieftechnicalpaperwhichformstheend productofthiscourse. Courseaudience ThiscourseisopentobothinternalandexternalPh.D.candidates(‘buitenpromovendi’)whoare linkedtothevariousdepartmentsoftheVUFacultyofSocialSciences.PhDcandidatesfrom relevantotherVUfaculties(i.e.,psychology,economicsandmanagementscience)andother universitiesarewelcomeprovidingspace.Theseexternalparticipantsarechargedafee(see above).Participantarerequiredtobringtheirownlaptopanddatasettotheworkshoponwhichto performRanalyses. Registration PleaseregisterforthiscoursenolaterthanMay26st2014viaemailtoSaskiaJans([email protected]). ShewilladdyournametotheBlackboardpageofthiscoursesoyougetaccesstoallnecessary documentsandupdates.ParticipantsmustalsosubmitanabstractoftheirPhDprojectatthe beginningofthecourse,andadescriptionofwhatyouaimtolearnduringthiscourse(see assignment0below).PleasedescribeindetailwhatyouwanttobeabletodoinRonyourown databytheendofthisworkshop.Sendyourabstractandlearninggoalstothecourselecturer ultimatelyoneweekbeforethefirstmeeting. Importantnote PleasebringalaptoptothecoursewithRStudioinstalled(canbeobtainedhere https://www.rstudio.com).AsaplayfulwaytogetfamiliarwithRsyntaxbeforethemeetingsstart, havealookathttp://tryr.codeschool.com/levels/1/challenges/1 Assessment ToobtainECTScreditsforthecourseparticipantsarerequiredto(1)bepresentinallsessionsand activelyparticipateduringthelecturesandpracticalsessions,(2)presenttheirownresearch exercise,and(3)completeandsubmitallassignmentssufficientlyincludingafinalpaperand sourcecode.Thegradeforthiscourseisbasedonthefinalpaper(includingsourcecode).Judgment criteriaarecorrectnessandcomplexityoftheanalysis;clarityofwriting;andstructure,clarityand eleganceofthesourcecode. Readings: Thereadingforthecourseis"DiscoveringStatisticsusingR",byField,Miles,andField(Sage2012). VUGraduateSchoolofSocialSciences 12 Suggestedotherbooksare“RforSPSSusers”(byRobertA.Muenchen,Springer2009)and“theR book”(byMichaelJ.Crawley,Wiley2012). Detailedschedule Day1:Rbasicsanddatamanipulation TheaimofthefirstdayistogetacquaintedwithRandtheRenvironment;togetstartedon reading,manipulating,andanalyzingdata;andtogetstartedwithdescriptiveanalyses. Topics: Gettingstarted ◦ PrinciplesofR ◦ Rstudio,knitr,scripts,projects ◦ Howtogethelp? YourdatainR ◦ Datatypes:dataframes,vectors,lists,… ◦ Readingandwritingdata:CSV,SPSSandothersources ◦ Simpledescriptives:summary,table,… ◦ Selecting,sorting,andcalculatingdata Duringtheinstructionpart,practicalassignmentswillbegiventoattainproficiencywiththe studiedtechniquesandcommands.Aftertheinstructionpart,participantswhotakethecoursefor creditshouldworkontheresearchprojectsandcompleteassignment1(seebelow). Day2:StatisticsandvisualizationsinR Theaimoftheseconddayistobecomecomfortablewithgettingthedataintheshapeyouwantitto be;todotraditionalinferentialstatisticsonthesedata;andtogetstartedwithmakingplotsand chartsinR. Topics: Combiningandtransformingdata ◦ ◦ Transformingdata:aggregateandreshape SimplestatisticsinR ◦ Combiningdata:cbind,rbind,mergeandmatch Tabulatingdata ◦ correlation,t‐tests,anova,regression Visualizingdata: ◦ plot,barplot,hist ◦ Customizingplotsonelineatatime ◦ Multipleplots VUGraduateSchoolofSocialSciences 13 Asonday1,practicalassignmentswillbegivenduringtheinstructionparttoattainproficiency withthestudiedtechniquesandcommands.Aftertheinstructionpart,participantswhotakethe courseforcreditshouldworkontheresearchprojectsandcompleteassignment2(seebelow) Day3:AdvancedtopicsinR Thegoalofthethirddayisfirsttoansweranyremainingquestionsaboutthefirsttwodays;and thentogiveasamplingofsomemoreadvancedtechniquesthatarepossiblewithvariouspackages inR. Topics(dependingontimeandinterestsofparticipants,sometopicsmaybedroppedinfavorof morein‐depthdiscussionoftheothertopics): Advancedstatistics ◦ Multilevelmodeling ◦ Logisticregression ◦ VARandARIMAmodels Advancedlanguagefeatures ◦ Functionsandloops ◦ DealingwithDatesanddates Dealingwithtextvariables:paste,grep,split,... AdvancedTextAnalysisinR ◦ tm,rtexttools ◦ amcat ◦ lda Asontheotherdays,practicalassignmentswillbegivenduringtheinstructionparttoattain proficiencywiththestudiedtechniquesandcommands.Aftertheinstructionpart,participantswho takethecourseforcreditshouldworkontheresearchprojectstoworktowardstheirfinalpaper andpresentation(seeassignment3,below). Day4:Discussionandpresentations Day4isthelastdayofinstructionandwillbeproblem‐driven.Eachparticipantisrequiredtogivea presentationofthedata,analyses,outcomesandvisualizationsmadesofar.Participantsare requestedtohighlightthethingsthatgowellorareniceandeasyinR,butespeciallyalsowhatthey arestrugglingwith. Assignments Toobtaincreditsforthisworkshop,youneedtocompletethefollowingassignments.Onlythefinal paperwillbegraded,theotherassignmentsaremarkedpass/fail. Assignment0:Preparatoryassignment Pleaseprepareadocumentinwhichyouanswerthefollowingquestions. VUGraduateSchoolofSocialSciences 14 1. WhatistheresearchquestionofyourPhDprojectorResmathesis?Pleasewritedownboth theresearchquestionandashortdescriptionofthetopicofyourproject.Ifyouhaveno researchquestionyet,pleasedescribewhattheprojectwillbeaboutandwhatpossible questionsyouarethinkingabout. 2. Whatisthemethodologicalapproachofyourproject?Thatistosay,whichmethodor methodsareyouplanningtouse?Whyhaveyoumadethischoice?Whenansweringthis latterquestion,youcandiscussissuessuchasthenumberofcasesinyourstudy,your researchquestionorotherissuesyoufindpertinent.Ifyouhavenomethodological approachyet,pleasediscusstheapproachesyouareconsideringusing(andwhy). 3. Whatdoyouintendtolearninthepresentworkshop;describeindetailwhatyouwantto beabletodoinRonyourowndatabytheendofthisworkshop. Feelfreetouseasmuchspaceasyouneedwhenansweringthesequestions.However,inmost cases1to1.5pageswillprobablybeenoughtoanswerthemall.Thegoalofthisassignmentis twofold.First,itpreparesyouforthiscourse.Second,itprovidestherelevantbackground informationformeasinstructorandforyourfellowworkshopparticipants.Thelatterwillfacilitate thediscussionandgroupworkthroughouttheworkshop.Pleaseemailyourassignmentnolater than1weekpriortothecourse(i.e.,May26),totheinstructor’semailaddressindicatedabove. Importantnoteforallassignments:TheRcodeyouareaskedtowriteneedstobeexecutablein onegofromtoptobottom.Thatis,thecodeshouldstartwithreadingandshapingthedataandend withtheanalysesorvisualizationyoureport.IneedtobeabletoloadtheRscript(s),selectall,and pressrun.Thisisnotjustformygrading,butyoushouldlearntoworkthiswayaswell:allfiles exceptfortherawdataaretemporary,thesourcecodeiswhatcounts.Thatway,youneverhaveto fretaboutwheretodataisorwhetheryouneedtosaveit,sinceallyouneedtodoisrunthescript andyouhavethedata.Makesuretonameyourvariablesinformativelyandinsertcommentsin yoursourcecodesoyouunderstandwhatyoudidwhenyouhavetowritetherevision2years later! Assignment1: ThegoalofthefirstsubstantiveassignmentistogetstartedonusingRforyourownresearch. 1. Chooseatopicorproblemthatyouarecurrentlyworkingonorthatyoupreviouslysolved usingadifferentstatisticspackage. 2. Writedownwhatthedatais;whatquestionyouwantto“ask”thedata(hypotheses, researchquestions,etc);andwhatanalysesyouwillneedtogettheanswers. 3. WriteanRscripttoreadyourdataintoR.Exploretheshapeandcontentsofyourdata.Is thereaninternalstructure?Howmanydataframesdoyouhave?Whatdatatypesdothe columnshave? 4. Makeanumberoftablestoshowyourdataandexplainwhattheymean. Assignment2: Thegoalofthesecondassignmentistogetyourdataintherequiredshapeanddoinferential statisticsandvisualization. VUGraduateSchoolofSocialSciences 15 1. Writedownananalysisplan:whichanalyseswillyouconduct,whatquestionswillthey answer,andwhatkindofdatadoyouneed 2. Extract,reorder,recode,filter,merge,melt,andcastyourdatatogetitintheshape required. 3. Visualizethedatausingplotsthatareinformativetoexplorethequestionsyouwantto answer. 4. Conductinferentialstatisticsasappropriate.Feelfreetotrydifferentalternativeanalysesto answerthesamequestion. 5. Whenpossible,visualizetheresultsoftheanalysis,e.g.giveaplotwiththeregressionline orvisualizetheresidualsofyouranalysis. Assignment3: Worktowardsthefinalgoalofyourprojectandprepareapresentation: 1. Makeclearwhatthequestionsare,whatdataandanalysesyouneedtoanswerthem,and howthisdataneedstobeshaped. 2. WriteanRscripttoreadthedata,shapeitcorrectly,dotheanalyses,andvisualizethe resultsasneeded. 3. Useanytechniquesfromthecourseasneeded,feelfreetodoasmanyexplorations, alternativeanalyses,orassumptiontestsasyouthinkmightbeinformative. 4. Preparea15minutepresentationwhereyou(1)showyourquestionandanalysisplan,(2) showtheresults,andmostimportantly(3)showyourproblems,questions,decisionsetc. Thefeedbackyouwillgetfrom(andgiveto!)yourpeerswillhelpyouimprovetheanalysis morethananyinstructionyoucanget. Finalassignment: Thefinalassignmentconsistsofanimprovedandextended(andwherenecessary,abridged) versionofyourresearchproject.Theassignmentconsistsoftwoparts:awrittenscientificreport whichcouldfunctionasamethods,results,and/orconclusionsectioninascientificpaper;andthe Rsourcecodethatproducesallthenumbers,tables,andfiguresinthereport.Thereportshould include: 1. Whatarethequestionsyouaretryingtoanswer? 2. Adescriptionandexplorationofthedata,withvisualizationsasappropriate 3. Adescriptionoftheanalysesconducted 4. Theresultsoftheanalysis,withvisualizationsasappropriate PleaseemailyourfinalpapertotheinstructoronJune28,2014atthelatest. BioDr.WoutervanAtteveldt WoutervanAtteveldtisassistantprofessorinCommunicationScience.Hehasastrongbackground incomputing,gettinghisMaScinArtificialIntelligencefromtheUniversityofEdinburghandhis Ph.D.fromtheVUUniversity,whichwasinajointprogramwiththeArtificialIntelligenceand CommunicationSciencegroup.BeforestartingonhisPh.D.program,heco‐foundedacompanyin VUGraduateSchoolofSocialSciences 16 softwaredevelopmentandgaveanumberofprofessionalcoursesinprogrammingandcomputing forvariousITcompanies.Inhiscurrentresearch,heisinterestedintextanalysismethodologyand politicalcommunication. VUGraduateSchoolofSocialSciences 17 SocialNetworkAnalysis PhDprogrammeGraduateSchoolofSocialSciences,2013‐2014 VUUniversityAmsterdam Period: 6(June2014) CourseCredits: 3ECTS Lecturers: Prof.PeterGroenewegen,Dr.GerhardvandeBunt,Dr.Christine Moser,andothers Fee(externalparticipants):€300,‐ Maximumparticipants: 20 Sign‐up/inquiries: SaskiaJans([email protected]) Schedule: Date Time Location 1Monday,June23 9.30–17.00 tba 2Tuesday,June24 9.30–17.00 tba 3Wednesday,June25 9.30–17.00 tba Courseobjectives Capturingandinterpretingnetworkdynamicscontinuestoappealtoawiderangeofscientific fields.Inthisworkshopboththetheoryandmethodsofsocialnetworkanalysisareintroduced.The mainconceptsofsocialnetworktheoryarediscussedandtheuseofUCINETsoftwareis introduced.Theseconceptsfocusondetectingandanalyzinggroupprocessesandroles,centrality innetworks,andsocialcapital. Coursecontent Inthreefulldaysthisworkshopprovidesanintroductionandoverviewofsocialnetworkresearch andsocialnetworkmeasures.ThepossibilitiesofUCINETforscientificresearchareintroducedand practiced.Furthermore,sometimeisdevotedtodatacollectionmethodsandhypothesistesting. PhDsareencouragedtoconsidertousetheirowndataset.Importantissomepreparationby advancereadinganddescribingbeforehandwhatsocialnetworkquestionsarepartof,orcanbe collectedin,yourPhDproject.Thefinalassignmentconsistsofashortpaperaboutasocialnetwork approachinrelationtoone’sownresearch,includingtheoreticallyarguedhypotheses,a descriptionofempiricaldata,andadescriptionandinterpretationofsomeresultsobtainedby meansofasimplenetworkanalysis. Courseaudience ThiscourseisopentobothinternalandexternalPh.D.candidates(‘buitenpromovendi’)whoare linkedtothevariousdepartmentsoftheVUFacultyofSocialSciences.PhDcandidatesfrom relevantotherVUfaculties(i.e.,psychology,economicsandmanagementscience)andother universitiesarewelcomeprovidingspace.Theseexternalparticipantsarechargedafee(see above). VUGraduateSchoolofSocialSciences 18 Registration PleaseregisterforthiscoursenolaterthanJune20,2014viaemailtoSaskiaJans([email protected]). ShewilladdyournametotheBlackboardpageofthiscoursesoyougetaccesstoallnecessary documentsandupdates.ParticipantsmustalsosubmitanabstractoftheirPhDprojectatthe beginningofthecourse.PleasesendyourabstracttothecourselecturerPeterGroenewegenno laterthanoneweekbeforethefirstmeeting. Assessment ToobtainECTScreditsforthecourseparticipantsarerequiredto(1)bepresentactively participateinallsessions,and(2)completeandsubmitasufficientthefinalassignment.Thegrade forthiscourseisbasedonthefinalpaper.Thefinalpaperdescribesasocialnetworkapproachin relationtoone’sownresearch,andincludestheoreticallyarguedhypotheses,adescriptionof empiricaldata,andadescriptionandinterpretationofsomeresultsobtainedbymeansofasimple networkanalysis. Readings: ThereadingforthecourseisSocialNetworkAnalysis:AHandbook,editedbyJohnScott(Sage, 2009),andyouwillstudytheUCINETuser’sguidehttp://www.analytictech.com/ucinet/help.htm FurtherreadingswillbeannouncedviaBlackboard. Detailedschedule Day1: 9.30‐12.00IntroductiontosocialnetworkanalysisandUCINET (GvdB) 12.30‐14.30Specificcharacterofsocialnetworkanalysis (PG) 15.00‐17.00InstructionandintroductionUCINET (GvdBMJ) Day2: 9.30–12.00Socialcohesions:groupsandroles (GvdB) 12.30‐14.30Centrality (PG) 15.00‐17.00ApplyingUCINETondatasetswithcohesionandcentrality(PG,MJ) Day3: 9.30‐12.00Socialcapitalorsocialnetworksonelectronicplatforms (CM) 12.30–14.00Collectingandtestingsocialnetworkdatasurveyorelectronicdata(CM) 14.30‐17.00UCINETanddataprovidedbyparticipants VUGraduateSchoolofSocialSciences 19 Bio’s Thecombinedexpertiseofthelecturersofthisworkshopensurethatparticipantsarefamiliarized withthecuttingedgeofcurrentsocialnetworkanalysisresearch. PeterGroenewegenisasociologistandProfessorofOrganizationSciencesattheVUUniversity Amsterdam.HeisafoundingmemberoftheNetworkInstituteattheVUUniversityAmsterdam. Currentresearchtopicsincludescientificandonlinecommunities,healthcareandemergency managementorganizations.Hisfirstfocusisonthenetworkedcharacteroforganizingwithan interestintheconnectionbetweensemanticnetworksandsocialnetworksaswellasonthe dynamicsofsocialnetworks.Asecondareaofinterestconcernstheuseofnetworktoolsin institutionaltheory.Thirdlyheisinterestedinthemethodologicalchallengesfornetworkresearch throughtheapplicationofnewweb‐basedandmobileinformationandcommunicationtools.Inthe departmentoforganizationscienceshealsoisleadingprojectsthatinvolveresearchinclose operationbetweencompaniesandpublicorganizationsmainlyontensionsinorganizing. GerhardvandeBuntisanassociateprofessorattheDepartmentofSociologyattheVUUniversity Amsterdam.Hismaininterestsareintra‐andinter‐organizationalandstudent/pupilsnetwork dynamics.HehastaughtSocialNetworkAnalysisonalllevels,andcontributedtothedevelopment andresearchapplicationofSIENAforlongitudinalanalysisofnetworks. ChristineMoserisaPostdoctoralResearcherattheVUUniversityAmsterdam.SheholdsaPhD fromVUUniversityAmsterdam,aswellasaMSc(VUUniversityAmsterdam)andaBAMusic (ConservatoryofAmsterdam).HerresearchinterestsareintheareaofInformationSystemsand SocialSciences,inparticularOrganizationSciences.Sheisinterestedinknowledgecollaboration andsocialsystemsthatemergeinonlineprofessionalcommunities. VUGraduateSchoolofSocialSciences 20
© Copyright 2024