Services for Metal Processing Industry by Laser Technology Refined Cutting and ja Systems Supply HT Laser Oy, which was founded 1989, is the leading company in laser and water jet cutting. HT Laser posesses the widest range of equipment and the highest capacity in its business. The fundamental principals of HT Laser are tailored solutions to fit a specific customer need. In one hand, the company acts as a systems supplier for select customers and in the other as service provider supplying wide range of customers with prefabricated parts. The quality of operations is secured by a certified quality system, which is in compliance with ISO 9001- and ISO 14001. 1 Laser processing in industrial business 4.5.2011. Helsinki Laserforum Sheet metal (s< 3 mm): *Combimachine *x/y- lasercutting/ linear motor Nd-YAG-cutting/ Microprocessing: *Ceramic *Thin sheets, s< 1 mm *Microprocessing +- 3 um *Marking Sheet cutting: *2 kW, CO2 *1250x2500, *Fe52 (10 mm) *HST 4.5.2011. Helsinki Laserforum *dmax. n. 140 mm *pipe cutting by laser Sheet cutting: *3 kW, CO2 *1500x3000, *Pipe cutting *Fe52 (15 mm) *Al, Cu Special material Laser cutting *Wood, plastic, fabric, paper, ... 1989 Pipe cutting: *Profile lasercutting Sheet cutting: *4 kW, CO2 *1500x3000, *Power piercing *Fe52 (20 mm) *Automated strored 3-D lasercutting: *deep graw sheet metal metal parts *proto series 1995 1999-2000 Over size sheets/ bevel cutting: *blocks of boats 15 m x 3 *accurate +- 0.3 mm Sheet cutting: *5 kW , CO2 *1500x3000 *Dualfocus, *Focusing mirror, *”Alfa” nozzle *Fe52 (25 mm) *RST (15 mm) Sheet cutting *6 kW , CO2 (Disk- ja kuitu Laser) *2000x6000 *Fe52 (25 mm) *Al (10 mm) *RST (18 mm) Welding/surface treatment: *Special machines for welding and surfacing *Laser cladding and hardening 2002-2003 2004-2005 HT Lasertekniikka Oy Vaasan, Helsingin ja Turun ja Tampereen Iisalmen ja Tornion Järvenpää productive begin operations in Lahden productive productive productive office Keuruulla offices offices offices Environment of the Laser (laser; not end in itself) Marketing Operations management: Skilled staff: LASER • Training • Staff retention • System (ERP) • Co-opeartion with customer 4.5.2011. Helsinki Laserforum Benefits Laser-cut products 4.5.2011. Helsinki Laserforum Complex geometry/Struckture design ”Cell Struckture laserwelding/”manufacturing Production planning (production, steps, clamp…) Formating of the sheet -cutting -machining --…. Clamp Part manufacturing Process management Laser machine Project management -bending -forming -roll forming -…. Preparation work -groove surface -surface of the sheet -positioning -features -tack welding _.... Quality control Product design (design, functions, lightness …) 4.5.2011. Helsinki Laserforum Laser is part of the production Customer production Assemply 2 Assemply 3 Subcontactor Assembly X 4.5.2011. Helsinki Laserforum Final Assemply Client Laser subcontactor • Laser cut/welded parts • Further processed parts Assemply 1 Laser cut parts for the robot (blower) • • Eay to weld on the the top Easy to balancing 4.5.2011. Helsinki Laserforum Laser welding of panel 4.5.2011. Helsinki Laserforum Thank You! 4.5.2011. Helsinki Laserforum Figures 60 50 Geographical Coverage Turnover 40 30 20 10 0 ´98 350 300 ´99 ´00 ´01 ´02 ´03 ´04 ´05 '06 '07 ´08 '09 ´10 Amount of Personnel 250 200 150 100 50 0 ´98 ´99 ´00 ´01 ´02 ´03 ´04 ´05 '06 ´07 ´08 '09 '10 Different forms of service R&D Outsourcing Application of self locating structures in assembly Outsourcing of cutting Thin plate structures by laser welding Outsourcing of production, set deliveries From design co-operation to prototype manufacturing, from prototype to production Outsourcing of production, set deliveries Design of lighter and harder cell- structure into car platform Outsourcing of production Delivery model Set delivery from que list straight to customers production line Production by forecast, delivery by incalling Standard parts by storage service, project works Delivery from storage, 500.000 products per year 2 Available Cutting Technologies 2D-laser cutting devices Assisting lasers Fiber laser 3D-laser cutting devices Water jet cutting devices Water jet cutting robot 3D Plasma cutting devices 3D-laser welding laser Laser marking devices Punch press stations Eccentric presses 15 2 1 1 5 1 4 1 2 2 4 Engineering Center •Engineering Center consists of 8 professionals specializing in the application engineering of laser processed components and laser technology. •HT Laser Oy can provide its Partners with consultancy, engineering (both structural and project engineering) and assistance in technical development through its deep knowledge on sheet metal processing. •Main aim is to create added value for Customers through being a leading company in the most recent laser manufacturing technologies with most up-to-date laser equipment. •Services also include 3D-programming and fixture engineering and manufacturing. 3 Scanning and Measuring Services 3D Measuring with Faro Measuring and controlling dimensions Dimensional control against 3D model Graphical reports Creating drawings throug scanning i Service Concepts Haapamäki site Small, repetitive needs Own production cotrol On-site Large items (e.g. linear guides of machine tools etc.) Other needs which require onsite measuring at Customers’ site Elekmerk Parts Manufacturing and Marking Manager: Jukka Kotamäki Floor Space: 1000 m2 Personnel: 20 Equipment Punch Press Center: Press Breaking: Machining Centers: Laser Marking: 2 pcs, 1250 × 2500 mm 1 pc Amada 80 t, 2,5m 1 pcl CoastOne 900, 22 t, 0,9m 3 pcs, 540 × 500mm Rofin Sinar 90 W, 180 × 180 mm TroTec 25 W, 430 × 730 mm (plastics, board, leather, plywood etc.) Chromium coating line Powder painting chamber Welding Assembly to finished product Core Competence Sheet metal casings, marked front plates etc. for electronics industry. Capability to handle the whole manufacturing chain in house to small sized products. Fast and cost efficient in aluminium profiles and machined aluminium parts. 4 Thank You! 5 17.5.2011 The effects of laser welding speed on stainless steels welds micro structure J. Pekkarinen Introduction – What was studied? Study’s purpose was to determine how welding speed affect on austenitic and duplex steels microstructure From austenitic stainless steels: how solidification mode chances along with welding speed From 254 SMO steel: how welding speed affects on microsegregation From duplex steels: How much welding speed affects on ferrite-austenite ratio 1 17.5.2011 Introduction – Studied materials Studied materials were AISI 201 Austenitic stainless steel AISI 316L Austenitic stainless steel 254 SMO Austenitic stainless steel 2101 LDX Duplex steel 2205 Duplex steel Chemical composition (%) (Cr/Ni)eq Material C N Cr Ni Mo Mn Si P S 201 0,05 0,229 17,4 4,5 - 6,57 0,4 - - 1,65 316L 0,018 0,024 16,78 10,18 2,1 1,12 0,45 - - 1,82 1,11 254 SMO 0,2 0,18 19,5 17,5 6 - - - - 2101 LDX 0,029 0,22 21,4 1,6 0,28 5,02 0,7 0,02 0,001 3,3 2205 0,018 0,163 22,4 5,7 3,21 1,43 0,4 0,02 0,001 3,1 Welding parameters and heat input Q – Heat input A – Absorption P – Laser power v – Welding speed Solidification and cooling rate of the welds is dependent on heat input Solidification / cooling rate decreases when laser power increases Solidification / cooling rate decreases when welding speed increases Q P A v 2 17.5.2011 Solidification of stainless steels Stainless steel can solidify in five different solidification mode Single phase austenite mode (A) Austenitic-ferrite mode (AF) Ferrite-austenite-ferrite mode (FAF) Ferritic-austenitic mode (FA) Single phase ferrite mode (F) Solidification mode depends mainly on: Composition Solidification rate Solidification mode depends on the ratio of chromium and nickel equivalents CREQ/NIEQ values <1,5 (254 SMO) Solidification mode single phase austenite CREQ/NIEQ values between 1,5-2,0 (201 & 316L) Solidification mode ferrite-austenite CREQ/NIEQ values >2,0 (2101 LDX & 2205) Solidification mode single phase ferrite Microstructural selection – Austenitic stainless steels: Changes in solidification mode Increase of welds solidification / cooling mode turns solidification rate towards single phase solidification CREQ/NIEQ values close to 2,0 solidification mode turns towards single phase ferrite solidification CREQ/NIEQ values close to 1.5, solidification turns towards single phase austenite 3 17.5.2011 Microstructural selection In duplex steels In a single-phase ferrite solidification the weld metal solidifies in fully ferritic mode and austenite forms only through solid state transformation Steel composition affects greatly on austenite formation High nickel and nitrogen levels allow austenite to form at higher temperatures • Austenite formation in solid state requires time because it is a diffusion-controlled process Heat input effects straight on the cooling rate of the weld and thereby on ferrite-austenite ratio Cooling rate has a significant factor on ferrite-austenite ratio of weld metal Experimental setup 5kW IPG YLR-5000-S fiber laser with 150 m optical fiber 150 mm focal length collimator 250 mm focal length welding head Welding bead on plate Material thickness 3mm Except 254 SMO 2mm Keyhole welding Keyhole welding Keyhole welding Conduction welding Laser power (kW) Welding speed (m/min) Position of focal point (mm) Heat input [Q] (J/mm) 4,6 1 +15 248 4,6 5 0 49,6 4,6 10 0 24,8 2,3 0,3 +100 207 4 17.5.2011 Solidification rate - austenitic stainless steel keyhole welds Solidification rate R = v cos v = welding speed = angle between weld center line and dendrite growth direction Clear correlation between solidification rate and welding speed 254 SMO 201 316L Results – Changes in solidification mode With 201 and 316L grade stainless steels solidification mode starts to turn from primary ferritic solidification mode to primary austenitic mode when welding speed is increased 254 SMO grade there are no changes in solidification mode Welding method Welding speed Heat input (J/mm) Solidification mode 201 Solidification mode 316L Solidification mode 254 SMO Keyhole 1 m/min 248 FAF FA AF Keyhole 5 m/min 49,6 FA & AF FA & AF AF Keyhole 10 m/min 24,8 AF AF (FA) AF Conduction 0,3 207 FAF FA AF 5 17.5.2011 Results – Microsegregation in 254 SMO stainless steels Primary austenitic solidification leads to microsegration of nickel, chromium and especially molybdenum With high welding speed microsegration decreases Nickel Cromium Molybdenum Weld Highest (%) Lowest (%) Highest (%) Lowest (%) Highest (%) Lowest (%) Keyhole1 m/min 18,3 15,4 24,3 20,0 11,4 4,3 Keyhole 5 m/min 19,2 15,5 23,5 20,0 8,7 4,5 Keyhole 10 m/min 18,9 15,8 23,8 20,1 9 5,25 Conduction 0,3m/min 20 10,9 24,9 19,3 15,5 4,3 Results - Ferrite content of duplex steel welds A noticeable difference in ferrite content of the welds depending on the heat input Also a notable difference in austenite/ferrite- ratio between the two grades Steel grade Welding method Welding speed [v] (m/min) Heat input [Q] (J/mm) Ferrite content (%) 2101 LDX Keyhole 1 248 74 2101 LDX Keyhole 5 49,6 87 2101 LDX Keyhole 10 24,8 89 2101 LDX Conduction 0,3 192 61 2205 Keyhole 1 248 85 2205 Keyhole 5 49,6 96-97* 2205 Keyhole 10 24,8 >98* 2205 Conduction 0,3 242 71 6 17.5.2011 Conclusions – austenitic stainless steels 201 and 316L grade of stainless steel solidification starts to change at welding speeds of 5m/min Complete change in solidification mode happen at welding speeds between 5-10m/min Change in solidification mode can lead to solidification cracking with ridged structures 254 SMO grade stainless steel no changes in solidification mode But fast welding speeds decreases microsegregation Welds resistance against pitting corrosion increases Conclusions – duplex steels Duplex stainless steels microstructure is very much dependent on welding speed and thereby on cooling rate Controlling weld heat input is critical with duplex steels Preferable thermal cycle has a low cooling rate Through laser welding parameters it is possible to create such a thermal cycle that austenite has better conditions to form 7 17.5.2011 Thank you for the attention ! 8 ”The Use of Laser in Manucfacturing” Survey of reasons for decisions of investment and use in manufacturing LaserGruppen inom Svetskommissionen Hans Engström Seminar Helsinki 2011-05-04 Goal Increase the understanding of • Which criteria's are important for making decisions of investment in laser technology/laser welding • Which are the obstacles that slow down the introduction of laser welding in Sweden • Make recommendations to increase the use of laser welding in Sweden Seminar Helsinki 2011-05-04 Hans Engström 1 Vhat have we done ?? • Developed a survey (33 questions) - Try to re-make a German survey - Sent to 230 members in Svetskommisionen and Lasergruppen (both laser users and non laser users) • Evaluation • Interview with selected persons • Report Hans Engström Seminar Helsinki 2011-05-04 Results surwey 64 people have answered 14 have decided not to answer Totalt 50 useful answers Everybody has not answered all the questions Seminar Helsinki 2011-05-04 Hans Engström 2 Är det möjligt att använda laser i er tillverkning för: Skärning Fogning Ytbehandling Rapid Manufacturing Mätteknik/Analys Ja, används/planeras Ej planerat Omöjligt Annat (märkning, borrning) 0 10 20 30 40 50 60 70 80 90 100 Andel av inlämnade enkäter (%) Hans Engström Seminar Helsinki 2011-05-04 Drivkraft att investera i nya teknologier 90 Företag Relativ laserandel 80 70 60 (%) 50 40 30 20 10 rin ise An na t g l er ia to m at N ya m at ve n Fö re n kla d pr Au N y od uk t io ns se k ns tr u kt si ko uk td e pr od N y s io n gn et kv al it d ttr a Fö rb ä d Ö ka Sä nk t a pr od ko uk t ivi st na d er te t 0 Seminar Helsinki 2011-05-04 Hans Engström 3 Kriterier för investeringsbeslut Criteria for decision on investment Kriterier för investeringsbeslut Return on investment Produktivitet Precision Investeringskostnader Styckkostnader Flexibilitet i produktion Användarvänlighet Automatiserbarhet Betydelse Laserbearbetningens betydelse Kostnader för infrastruktur (i företaget) -1,0 0,0 1,0 2,0 3,0 4,0 5,0 6,0 7,0 8,0 9,0 Betydelse (0=betydelselöst, 10=mycket stor betydelse Laserbearbetningens betydelse (-10=synnerligen dåligt, +10=synnerligen bra) Hur ligger laserbearbetning till för resp. kriterium? Hans Engström Seminar Helsinki 2011-05-04 Kriterier investeringsbeslut för laser- och icke laseranvändare Betydelse för laseranvändare Betydelse för icke laseranvändare 6,0 4,0 2,0 Seminar Helsinki 2011-05-04 t n rin g sk os tn a Pr ec isi o uk tiv ite de St r yc kk o st Fl n ex ad ib er ilit et ip ro du kt An io n vä nd ar v än Ko lig st Au na he to de t m rf at ör ise in rb fra ar st he ru t kt ur (i fö re ta ge t) -4,0 In ve st e rn -2,0 Pr od on in ve st m en t 0,0 et u Laserbearbetningens betydelse (-10=synnerligen dåligt, +10=synnerligen bra) R 8,0 Hans Engström 4 Seminar Helsinki 2011-05-04 ne n kn ikn iv if ör et Te ag et kn ån Sv isk år if ör t/d ko et yr m ag ta pe et D tt Sv te et sä ns år sa t ta t/d sa kn s y k as ig rt na at in st s tf it öd D å ek et te in no sa kn te lo kn rn ol gi tf o as n gi ör n ex ut ve te re rif rn dn ie ts i r n a tö ga d d r/v ut er re ifi dn er in i ng ga r/v er ifi er i ng Pr od Ko uk st te na n S d är er Te ie in st kn te or ike an le n pa ka ä r ss D ri et nt ad e fin ti ll til ns lr ä la fö s c er kl rf ig å tt sv illf en ör sk lit lig a le ve ra nt ör er Te O rg an is at io Andel av inlämnade svar (%) Sv år t/d yr ta D Ko s in te rn t er ad gi n d/ ek on om i ex te rn ts tö d d ve rif i lo sa kn as ek no st ö st na et sa kn a it gi n in lo si g ag et if ör et ag et if ör et pe te ns te kn o ta ko m et sa kn as å D tt f tt sä t kn isk Sv år t/d yr ta Te kn ikn iv ån an is at io ne n Te O rg Andel av inlämnade svar (%) Hinder vid beslut om investering i ny teknologi 60,0 Inget hinder Obetydligt hinder 50,0 Ordinärt hinder Stort hinder Mycket stort hinder 40,0 30,0 20,0 10,0 0,0 Seminar Helsinki 2011-05-04 Hans Engström Vilka hinder upplevs vid beslut om investeringar i lasersvetsning/laserteknik 45,0 40,0 Inget hinder Obetydligt hinder Ordinärt hinder Stort hinder Mycket stort hinder 35,0 30,0 25,0 20,0 15,0 10,0 5,0 0,0 Hans Engström 5 Inom vilket område önskas kunskapsstöd i samband med lasersvetsning Material Produktutveckling/konstruktionsutformning Mekaniska produktegenskaper Produktion Tillverkningssystem Tillverkningsprocess 0 10 20 30 40 50 60 Andel av inlämnade enkätsvar (%) Hans Engström Seminar Helsinki 2011-05-04 Vilken typ av stödinstrument önskas tillgängligt? 1=Inget stöd önskas 45,0 2= 3= 40,0 Andel av antalet svar (%) 4= 35,0 5=Starkt stöd önskas 30,0 25,0 20,0 15,0 10,0 5,0 r st å up p m ps ,m ed bl e ro på rp or ks ho nä ng ge no C m w oa ch i (p r n m at io lin g fo r rm ed de av Ku ns ka p sf ö g rin ul e Si m di sk us sio n in g ut ru st n tb ild U in g kt ge o od u Tr än ,f ix tu r et ri m g rin ul e Si m ni ng m m ) ng av ra n åt e fö r ku ns ka p H eg en av in g ise r er al G en Seminar Helsinki 2011-05-04 pr oc es se n vä n dn i m ni ng ts fil he ög h as tig rin g ro r sö ve rfö er dKu Tr ia ns ka p l-a n an d frå n ex pe rim en t ra 0,0 Hans Engström 6 Fråga vad skulle underlätta ert beslut att införa lasersvetsning/laserteknik i ert företag?? What should make it easier to introduce Laserwelding/laser technology in your company • • • • Better knowledge, understanding Reduced investment cost Wrong product, don´t have a product Volumes, • ”Nothing” 23 % 16 % 16 % 10% 10 % Hans Engström Seminar Helsinki 2011-05-04 Conclusions • There is a potential for more laser processing • Driving forces for investment in new technology fits laser (lower cost, higher quality, productivity, product design) • Most important criteria for investment: ROI, productivity, precision, investment cost, • Most important obstacle to introduce laser: cost, difficult/expensive to verify, volumes, lack of competence, difficult/expensive to get introdced in the technology Seminar Helsinki 2011-05-04 Hans Engström 7 What to do??? • Continue the education – renewal – Develop business cases; focus on manufacturing strategy and total economi – Insight seminars for management – Develop more and more varied technical courses/seminars – Extended co-operation with Svetskommissionen – Extended dialogue between companies and schools Seminar Helsinki 2011-05-04 Hans Engström 8 Advanced process gases for laser welding Bo Williamsson Manager laser and oxyfuel processes AGA Gas AB Region Europe North Problems today Helium price Helium supply (supply form, availability) Plasma formation with Argon Optimum gas for different laser sources? Arrangement of gas supply? 26/10/2011 Fußzeile Page 2 Pure gases for laser welding Gas Pros Cons Helium Minimum plasma formation Economy Penetration Welding speed No improvement for Solid state lasers Inert Density Economy Plasma formation Supply form Performance for CO2 lasers Argon Density Solid state lasers Inert Nitrogen Economy Metallurgical aspects Close to inert 26/10/2011 Fußzeile Page 3 Additives Carbon Dioxide Active gas. Affects the surface tension. Interacts with alloying elements. Occasional problems with absorbtion for CO2 lasers. Demand for gas supply from the side Metallurgical effects Oxygen Active gas. Affects the surface tension. Interacts with alloying elements. Metallurgical effects. Hydrogen Reducing gas. Metallurgical aspects 26/10/2011 Fußzeile Page 4 Effect from process gas mixtures and nozzle position 26/10/2011 Fußzeile Page 5 Effect from CO2 addition during Diode laser welding 26/10/2011 Fußzeile Page 6 Melt pool convections, high-speed films T x 26/10/2011 Fußzeile T x Page 7 Melt pool convections, seam patterns T T T x x x Laserline LDL 160-3000 Material: S 235 JR Thickness: 3 mm Beam power: 3000 W Speed: 0,8 m/min Focal length: 150 mm 3 2,5 2 1,5 1 Penetration depth [mm] Seam width [mm] Cross sectional area [mm2] 0,5 0 0 26/10/2011 Fußzeile 2 4 6 8 10 12 14 16 18 20 24 CO2 content [%] Page 8 Welding with active gases, mild steel Penetration depth [mm] Rofin DL 040 S, f = 99 mm, S 235 JR (1.0037), s = 3 mm 3 4 kW 2,5 2 3 kW 1,5 Active gas 1 Argon 0,5 0 0,5 1 1,5 2 Welding speed [m/min] 26/10/2011 Fußzeile Page 9 Inert gases Argon •High density Stabilises gas flow. Effective shielding properties •Forces the particle stream from the keyhole in the desired direction. •Not chemically or physically active in the laser welding process. Helium •Not active in chemical reactions. •Low capacity in terms off energy absorption (dissociation energy, ionization energy or oscillation energy) •Helium is a good energy transfer medium.. Helium has the highest heat transfer coefficient of all gases. •High potential in combination with molecular gases (i.e. O2, H2, and N2). 26/10/2011 Fußzeile Page 10 Active additives O2, H2, and N2 High energy storage capacity (oscillations/vibrations, dissociation). Highly reactive radicals. High penetration capabilities in due to small size. Absorption and emission of electrons emitting of energy. Increases the absorbing, transporting and re- Carbon dioxide Dissociation into oxygen atoms (rapid reaction together to form O2 molecules) and CO starts at 1500 Kelvin. With these reactions, 293 kJ/mol can be absorbed without producing highly chemically reactive radicals. This means that carbon dioxide can absorb the energy from the plasma very effectively and return it to the work piece without causing extreme oxidation or carburization. 26/10/2011 Fußzeile Page 11 Nozzle for lateral process gas supply with the required adjustment features 26/10/2011 Fußzeile Page 12 Process gas supply for remote welding . Each welding seam is supplied with process gas from its own nozzle. 26/10/2011 Fußzeile Page 13 LASGON® Prozessgasgemische für das Laserschweißen Gasart nummer Name Gebinde Druck Art Zusammensetzung Helium Argon CO2 H2 2960152 LASGON® C1 50l 200bar Flasche 35% 50% 15% 2960552 LASGON® C1 12 x 50l 200bar Bündel 35% 50% 15% 3280152 LASGON® H3 50l 200bar Flasche 20% 72% 8% 3280552 LASGON® H3 12 x 50l 200bar Bündel 20% 72% 8% 3290152 LASGON® H4 50l 200bar Flasche 40% 50% 10% 3290552 LASGON® H4 12 x 50l 200bar Bündel 40% 50% 10% O2 Bei Fragen: Johann Herrmann Linde AG Tel 089 / 31001-504 26/10/2011 Fußzeile Page 14 26/10/2011 Fußzeile Page 15 Conclusions •Addition of CO2 compensates for the less performance of Argon enabling admixtures with Argon and Helium. •CO2 is preferred as addition in front of O2 due to better weld appearance and less positioning problems. •In many cases, the mixture must be adapted to each laser and application esp. concerning the CO2 content •The shorter wavelentgh, the less dependance on Helium content. Additions of active components may boost the performance •Metallurgical aspects must be considered •Hydrogen works well for welding of austenitic stainless steel. Boosts the performance of Argon/Helium mixtures. 26/10/2011 Fußzeile Page 16
© Copyright 2024