Services for Metal Processing Industry by Laser Technology

Services for Metal Processing Industry by
Laser Technology
Refined Cutting and ja Systems Supply
HT Laser Oy, which was founded 1989, is the leading
company in laser and water jet cutting. HT Laser
posesses the widest range of equipment and the highest capacity
in its business.
The fundamental principals of HT Laser are tailored
solutions to fit a specific customer need. In one hand, the
company acts as a systems supplier for select customers and in
the other as service provider supplying wide range of customers
with prefabricated parts.
The quality of operations is secured by a certified quality system,
which is in compliance with ISO 9001- and ISO 14001.
1
Laser processing in industrial
business
4.5.2011. Helsinki
Laserforum
Sheet metal (s< 3 mm):
*Combimachine
*x/y- lasercutting/
linear motor
Nd-YAG-cutting/
Microprocessing:
*Ceramic
*Thin sheets,
s< 1 mm
*Microprocessing
+- 3 um
*Marking
Sheet cutting:
*2 kW, CO2
*1250x2500,
*Fe52 (10 mm)
*HST
4.5.2011. Helsinki
Laserforum
*dmax. n. 140 mm
*pipe cutting by laser
Sheet cutting:
*3 kW, CO2
*1500x3000,
*Pipe cutting
*Fe52 (15 mm)
*Al, Cu
Special material
Laser cutting
*Wood, plastic, fabric,
paper, ...
1989
Pipe cutting:
*Profile lasercutting
Sheet cutting:
*4 kW, CO2
*1500x3000,
*Power piercing
*Fe52 (20 mm)
*Automated strored
3-D lasercutting:
*deep graw sheet metal
metal parts
*proto series
1995
1999-2000
Over size sheets/
bevel cutting:
*blocks of boats 15 m x 3
*accurate +- 0.3 mm
Sheet cutting:
*5 kW , CO2
*1500x3000
*Dualfocus,
*Focusing mirror,
*”Alfa” nozzle
*Fe52 (25 mm)
*RST (15 mm)
Sheet cutting
*6 kW , CO2
(Disk- ja kuitu
Laser)
*2000x6000
*Fe52 (25 mm)
*Al (10 mm)
*RST (18 mm)
Welding/surface treatment:
*Special machines for
welding and surfacing
*Laser cladding and
hardening
2002-2003
2004-2005
HT Lasertekniikka Oy Vaasan, Helsingin ja Turun ja Tampereen Iisalmen ja Tornion Järvenpää
productive
begin operations in
Lahden productive
productive
productive
office
Keuruulla
offices
offices
offices
Environment of the Laser
(laser; not end in itself)
Marketing
Operations management:
Skilled staff:
LASER
• Training
• Staff retention
• System (ERP)
• Co-opeartion with customer
4.5.2011. Helsinki
Laserforum
Benefits
Laser-cut products
4.5.2011. Helsinki
Laserforum
Complex geometry/Struckture design
”Cell Struckture laserwelding/”manufacturing
Production planning (production, steps, clamp…)
Formating of
the sheet
-cutting
-machining
--….
Clamp
Part
manufacturing
Process management
Laser machine
Project management
-bending
-forming
-roll forming
-….
Preparation
work
-groove surface
-surface of the
sheet
-positioning
-features
-tack welding
_....
Quality control
Product design (design, functions, lightness …)
4.5.2011. Helsinki
Laserforum
Laser is part of the production
Customer production
Assemply
2
Assemply
3
Subcontactor
Assembly
X
4.5.2011. Helsinki
Laserforum
Final
Assemply
Client
Laser subcontactor
•
Laser cut/welded
parts
•
Further processed
parts
Assemply
1
Laser cut parts for the robot (blower)
•
•
Eay to weld on the the top
Easy to balancing
4.5.2011. Helsinki
Laserforum
Laser welding of panel
4.5.2011. Helsinki
Laserforum
Thank You!
4.5.2011. Helsinki
Laserforum
Figures
60
50
Geographical
Coverage
Turnover
40
30
20
10
0
´98
350
300
´99
´00
´01
´02
´03
´04
´05
'06
'07
´08
'09
´10
Amount of Personnel
250
200
150
100
50
0
´98 ´99 ´00 ´01 ´02 ´03 ´04 ´05 '06 ´07 ´08 '09 '10
Different forms of service
R&D
Outsourcing
Application of self locating structures
in assembly
Outsourcing of cutting
Thin plate structures by laser welding
Outsourcing of production, set deliveries
From design co-operation to
prototype manufacturing,
from prototype to production
Outsourcing of production, set deliveries
Design of lighter and harder
cell- structure into car platform
Outsourcing of production
Delivery model
Set delivery from que list straight to
customers production line
Production by forecast,
delivery by incalling
Standard parts by storage service,
project works
Delivery from storage,
500.000 products per year
2
Available Cutting Technologies
2D-laser cutting devices
Assisting lasers
Fiber laser
3D-laser cutting devices
Water jet cutting devices
Water jet cutting robot 3D
Plasma cutting devices
3D-laser welding laser
Laser marking devices
Punch press stations
Eccentric presses
15
2
1
1
5
1
4
1
2
2
4
Engineering Center
•Engineering Center consists of 8 professionals specializing in the application engineering of laser
processed components and laser technology.
•HT Laser Oy can provide its Partners with consultancy, engineering (both structural and project
engineering) and assistance in technical development through its deep knowledge on sheet metal
processing.
•Main aim is to create added value for Customers through being a leading company in the most recent
laser manufacturing technologies with most up-to-date laser equipment.
•Services also include 3D-programming and fixture engineering and manufacturing.
3
Scanning and Measuring Services
3D Measuring with Faro
Measuring and controlling
dimensions
Dimensional control against
3D model
Graphical reports
Creating drawings throug
scanning i
Service Concepts
Haapamäki site
Small, repetitive needs
Own production cotrol
On-site
Large items (e.g. linear guides
of machine tools etc.)
Other needs which require onsite measuring at Customers’
site
Elekmerk
Parts Manufacturing and Marking
Manager:
Jukka Kotamäki
Floor Space:
1000 m2
Personnel:
20
Equipment
Punch Press Center:
Press Breaking:
Machining Centers:
Laser Marking:
2 pcs, 1250 × 2500 mm
1 pc Amada 80 t, 2,5m
1 pcl CoastOne 900, 22 t, 0,9m
3 pcs, 540 × 500mm
Rofin Sinar 90 W, 180 × 180 mm
TroTec 25 W, 430 × 730 mm (plastics,
board, leather, plywood etc.)
Chromium coating line
Powder painting chamber
Welding
Assembly to finished product
Core Competence
Sheet metal casings, marked front plates etc. for electronics industry.
Capability to handle the whole manufacturing chain in house to small sized
products. Fast and cost efficient in aluminium profiles and machined
aluminium parts.
4
Thank You!
5
17.5.2011
The effects of laser welding speed on
stainless steels welds micro structure
J. Pekkarinen
Introduction –
What was studied?
Study’s purpose was to determine how welding speed affect on austenitic
and duplex steels microstructure
From austenitic stainless steels: how solidification mode chances along with
welding speed
From 254 SMO steel: how welding speed affects on microsegregation
From duplex steels: How much welding speed affects on ferrite-austenite
ratio
1
17.5.2011
Introduction –
Studied materials
Studied materials were
AISI 201 Austenitic stainless steel
AISI 316L Austenitic stainless steel
254 SMO Austenitic stainless steel
2101 LDX Duplex steel
2205 Duplex steel
Chemical composition (%)
(Cr/Ni)eq
Material
C
N
Cr
Ni
Mo
Mn
Si
P
S
201
0,05
0,229
17,4
4,5
-
6,57
0,4
-
-
1,65
316L
0,018
0,024
16,78
10,18
2,1
1,12
0,45
-
-
1,82
1,11
254 SMO
0,2
0,18
19,5
17,5
6
-
-
-
-
2101 LDX
0,029
0,22
21,4
1,6
0,28
5,02
0,7
0,02
0,001
3,3
2205
0,018
0,163
22,4
5,7
3,21
1,43
0,4
0,02
0,001
3,1
Welding parameters and
heat input
Q – Heat input
A – Absorption
P – Laser power
v – Welding speed
Solidification and cooling rate of the welds is
dependent on heat input
Solidification / cooling rate decreases when laser
power increases
Solidification / cooling rate decreases when
welding speed increases
Q
P
A
v
2
17.5.2011
Solidification of stainless
steels
Stainless steel can solidify in five different
solidification mode
Single phase austenite mode (A)
Austenitic-ferrite mode (AF)
Ferrite-austenite-ferrite mode (FAF)
Ferritic-austenitic mode (FA)
Single phase ferrite mode (F)
Solidification mode depends mainly on:
Composition
Solidification rate
Solidification mode depends on the ratio of chromium and nickel equivalents
CREQ/NIEQ values <1,5 (254 SMO)
Solidification mode single phase austenite
CREQ/NIEQ values between 1,5-2,0 (201 & 316L)
Solidification mode ferrite-austenite
CREQ/NIEQ values >2,0 (2101 LDX & 2205)
Solidification mode single phase ferrite
Microstructural selection – Austenitic
stainless steels: Changes in
solidification mode
Increase of welds solidification / cooling mode turns solidification rate
towards single phase solidification
CREQ/NIEQ values close to 2,0 solidification mode turns towards single
phase ferrite solidification
CREQ/NIEQ values close to 1.5, solidification turns towards single
phase austenite
3
17.5.2011
Microstructural selection In duplex steels
In a single-phase ferrite solidification the weld metal solidifies in fully ferritic
mode and austenite forms only through solid state transformation
Steel composition affects greatly on austenite formation
High nickel and nitrogen levels allow austenite to form at higher
temperatures
• Austenite formation in solid state requires time because it is a
diffusion-controlled process
Heat input effects straight on the cooling rate of the weld and thereby on
ferrite-austenite ratio
Cooling rate has a significant factor on ferrite-austenite ratio of weld
metal
Experimental setup
5kW IPG YLR-5000-S fiber laser with
150 m optical fiber
150 mm focal length collimator
250 mm focal length welding head
Welding bead on plate
Material thickness 3mm
Except 254 SMO 2mm
Keyhole
welding
Keyhole
welding
Keyhole
welding
Conduction
welding
Laser power
(kW)
Welding speed
(m/min)
Position of
focal point
(mm)
Heat input
[Q] (J/mm)
4,6
1
+15
248
4,6
5
0
49,6
4,6
10
0
24,8
2,3
0,3
+100
207
4
17.5.2011
Solidification rate - austenitic
stainless steel keyhole welds
Solidification rate
R = v cos
v = welding speed
= angle between weld center line and dendrite growth direction
Clear correlation between solidification rate and welding speed
254 SMO
201
316L
Results –
Changes in solidification mode
With 201 and 316L grade stainless steels solidification mode starts to turn
from primary ferritic solidification mode to primary austenitic mode when
welding speed is increased
254 SMO grade there are no changes in solidification mode
Welding
method
Welding
speed
Heat input
(J/mm)
Solidification
mode 201
Solidification
mode 316L
Solidification
mode 254
SMO
Keyhole
1 m/min
248
FAF
FA
AF
Keyhole
5 m/min
49,6
FA & AF
FA & AF
AF
Keyhole
10 m/min
24,8
AF
AF (FA)
AF
Conduction
0,3
207
FAF
FA
AF
5
17.5.2011
Results – Microsegregation
in 254 SMO stainless steels
Primary austenitic solidification leads to microsegration of nickel, chromium
and especially molybdenum
With high welding speed microsegration decreases
Nickel
Cromium
Molybdenum
Weld
Highest
(%)
Lowest
(%)
Highest
(%)
Lowest
(%)
Highest
(%)
Lowest
(%)
Keyhole1 m/min
18,3
15,4
24,3
20,0
11,4
4,3
Keyhole 5 m/min
19,2
15,5
23,5
20,0
8,7
4,5
Keyhole 10 m/min
18,9
15,8
23,8
20,1
9
5,25
Conduction
0,3m/min
20
10,9
24,9
19,3
15,5
4,3
Results - Ferrite content of
duplex steel welds
A noticeable difference in
ferrite content of the welds
depending on the heat
input
Also a notable difference
in austenite/ferrite- ratio
between the two grades
Steel grade
Welding
method
Welding
speed
[v]
(m/min)
Heat input
[Q]
(J/mm)
Ferrite
content
(%)
2101 LDX
Keyhole
1
248
74
2101 LDX
Keyhole
5
49,6
87
2101 LDX
Keyhole
10
24,8
89
2101 LDX
Conduction
0,3
192
61
2205
Keyhole
1
248
85
2205
Keyhole
5
49,6
96-97*
2205
Keyhole
10
24,8
>98*
2205
Conduction
0,3
242
71
6
17.5.2011
Conclusions –
austenitic stainless steels
201 and 316L grade of stainless steel solidification starts to change at
welding speeds of 5m/min
Complete change in solidification mode happen at welding speeds between
5-10m/min
Change in solidification mode can lead to solidification cracking with
ridged structures
254 SMO grade stainless steel no changes in solidification mode
But fast welding speeds decreases microsegregation
Welds resistance against pitting corrosion increases
Conclusions –
duplex steels
Duplex stainless steels microstructure is very much dependent on welding
speed and thereby on cooling rate
Controlling weld heat input is critical with duplex steels
Preferable thermal cycle has a low cooling rate
Through laser welding parameters it is possible to create such a thermal
cycle that austenite has better conditions to form
7
17.5.2011
Thank you for the attention !
8
”The Use of Laser in
Manucfacturing”
Survey of reasons for decisions of investment
and use in manufacturing
LaserGruppen inom Svetskommissionen
Hans Engström
Seminar Helsinki 2011-05-04
Goal
Increase the understanding of
• Which criteria's are important for making decisions of
investment in laser technology/laser welding
• Which are the obstacles that slow down the introduction
of laser welding in Sweden
• Make recommendations to increase the use of laser
welding in Sweden
Seminar Helsinki 2011-05-04
Hans Engström
1
Vhat have we done ??
• Developed a survey (33 questions)
- Try to re-make a German survey
- Sent to 230 members in
Svetskommisionen and Lasergruppen
(both laser users and non laser users)
• Evaluation
• Interview with selected persons
• Report
Hans Engström
Seminar Helsinki 2011-05-04
Results surwey
64 people have answered
14 have decided not to answer
Totalt 50 useful answers
Everybody has not answered all the questions
Seminar Helsinki 2011-05-04
Hans Engström
2
Är det möjligt att använda laser i er tillverkning för:
Skärning
Fogning
Ytbehandling
Rapid Manufacturing
Mätteknik/Analys
Ja, används/planeras
Ej planerat
Omöjligt
Annat (märkning, borrning)
0
10
20
30
40
50
60
70
80
90
100
Andel av inlämnade enkäter (%)
Hans Engström
Seminar Helsinki 2011-05-04
Drivkraft att investera i nya teknologier
90
Företag
Relativ laserandel
80
70
60
(%)
50
40
30
20
10
rin
ise
An
na
t
g
l
er
ia
to
m
at
N
ya
m
at
ve
n
Fö
re
n
kla
d
pr
Au
N
y
od
uk
t io
ns
se
k
ns
tr u
kt
si
ko
uk
td
e
pr
od
N
y
s
io
n
gn
et
kv
al
it
d
ttr
a
Fö
rb
ä
d
Ö
ka
Sä
nk
t
a
pr
od
ko
uk
t
ivi
st
na
d
er
te
t
0
Seminar Helsinki 2011-05-04
Hans Engström
3
Kriterier för investeringsbeslut
Criteria for decision on investment
Kriterier för investeringsbeslut
Return on investment
Produktivitet
Precision
Investeringskostnader
Styckkostnader
Flexibilitet i produktion
Användarvänlighet
Automatiserbarhet
Betydelse
Laserbearbetningens betydelse
Kostnader för infrastruktur
(i företaget)
-1,0
0,0
1,0
2,0
3,0
4,0
5,0
6,0
7,0
8,0
9,0
Betydelse (0=betydelselöst, 10=mycket stor betydelse
Laserbearbetningens betydelse (-10=synnerligen dåligt, +10=synnerligen bra)
Hur ligger laserbearbetning till för resp. kriterium?
Hans Engström
Seminar Helsinki 2011-05-04
Kriterier investeringsbeslut för laser- och icke laseranvändare
Betydelse för laseranvändare
Betydelse för icke laseranvändare
6,0
4,0
2,0
Seminar Helsinki 2011-05-04
t
n
rin
g
sk
os
tn
a
Pr
ec
isi
o
uk
tiv
ite
de
St
r
yc
kk
o
st
Fl
n
ex
ad
ib
er
ilit
et
ip
ro
du
kt
An
io
n
vä
nd
ar
v
än
Ko
lig
st
Au
na
he
to
de
t
m
rf
at
ör
ise
in
rb
fra
ar
st
he
ru
t
kt
ur
(i
fö
re
ta
ge
t)
-4,0
In
ve
st
e
rn
-2,0
Pr
od
on
in
ve
st
m
en
t
0,0
et
u
Laserbearbetningens betydelse (-10=synnerligen dåligt,
+10=synnerligen bra)
R
8,0
Hans Engström
4
Seminar Helsinki 2011-05-04
ne
n
kn
ikn
iv
if
ör
et
Te
ag
et
kn
ån
Sv
isk
år
if
ör
t/d
ko
et
yr
m
ag
ta
pe
et
D
tt
Sv
te
et
sä
ns
år
sa
t ta
t/d
sa
kn
s
y
k
as
ig
rt
na
at
in
st
s
tf
it
öd
D
å
ek
et
te
in
no
sa
kn
te
lo
kn
rn
ol
gi
tf
o
as
n
gi
ör
n
ex
ut
ve
te
re
rif
rn
dn
ie
ts
i
r
n
a
tö
ga
d
d
r/v
ut
er
re
ifi
dn
er
in
i
ng
ga
r/v
er
ifi
er
i
ng
Pr
od
Ko
uk
st
te
na
n
S
d
är
er
Te
ie
in
st
kn
te
or
ike
an
le
n
pa
ka
ä
r
ss
D
ri
et
nt
ad
e
fin
ti ll
til
ns
lr ä
la
fö
s
c
er
kl
rf
ig
å
tt
sv
illf
en
ör
sk
lit
lig
a
le
ve
ra
nt
ör
er
Te
O
rg
an
is
at
io
Andel av inlämnade svar (%)
Sv
år
t/d
yr
ta
D
Ko
s
in
te
rn
t
er
ad
gi
n
d/
ek
on
om
i
ex
te
rn
ts
tö
d
d
ve
rif
i
lo
sa
kn
as
ek
no
st
ö
st
na
et
sa
kn
a
it
gi
n
in
lo
si
g
ag
et
if
ör
et
ag
et
if
ör
et
pe
te
ns
te
kn
o
ta
ko
m
et
sa
kn
as
å
D
tt
f
tt
sä
t
kn
isk
Sv
år
t/d
yr
ta
Te
kn
ikn
iv
ån
an
is
at
io
ne
n
Te
O
rg
Andel av inlämnade svar (%)
Hinder vid beslut om investering i ny teknologi
60,0
Inget hinder
Obetydligt hinder
50,0
Ordinärt hinder
Stort hinder
Mycket stort hinder
40,0
30,0
20,0
10,0
0,0
Seminar Helsinki 2011-05-04
Hans Engström
Vilka hinder upplevs vid beslut om investeringar i
lasersvetsning/laserteknik
45,0
40,0
Inget hinder
Obetydligt hinder
Ordinärt hinder
Stort hinder
Mycket stort hinder
35,0
30,0
25,0
20,0
15,0
10,0
5,0
0,0
Hans Engström
5
Inom vilket område önskas kunskapsstöd i samband med lasersvetsning
Material
Produktutveckling/konstruktionsutformning
Mekaniska produktegenskaper
Produktion
Tillverkningssystem
Tillverkningsprocess
0
10
20
30
40
50
60
Andel av inlämnade enkätsvar (%)
Hans Engström
Seminar Helsinki 2011-05-04
Vilken typ av stödinstrument önskas tillgängligt?
1=Inget stöd önskas
45,0
2=
3=
40,0
Andel av antalet svar (%)
4=
35,0
5=Starkt stöd önskas
30,0
25,0
20,0
15,0
10,0
5,0
r
st
å
up
p
m
ps
,m
ed
bl
e
ro
på
rp
or
ks
ho
nä
ng
ge
no
C
m
w
oa
ch
i
(p
r
n
m
at
io
lin
g
fo
r
rm
ed
de
av
Ku
ns
ka
p
sf
ö
g
rin
ul
e
Si
m
di
sk
us
sio
n
in
g
ut
ru
st
n
tb
ild
U
in
g
kt
ge
o
od
u
Tr
än
,f
ix
tu
r
et
ri
m
g
rin
ul
e
Si
m
ni
ng
m
m
)
ng
av
ra
n
åt
e
fö
r
ku
ns
ka
p
H
eg
en
av
in
g
ise
r
er
al
G
en
Seminar Helsinki 2011-05-04
pr
oc
es
se
n
vä
n
dn
i
m
ni
ng
ts
fil
he
ög
h
as
tig
rin
g
ro
r
sö
ve
rfö
er
dKu
Tr
ia
ns
ka
p
l-a
n
an
d
frå
n
ex
pe
rim
en
t
ra
0,0
Hans Engström
6
Fråga vad skulle underlätta ert beslut att införa lasersvetsning/laserteknik i ert företag??
What should make it easier to introduce
Laserwelding/laser technology in your company
•
•
•
•
Better knowledge, understanding
Reduced investment cost
Wrong product, don´t have a product
Volumes,
• ”Nothing”
23 %
16 %
16 %
10%
10 %
Hans Engström
Seminar Helsinki 2011-05-04
Conclusions
• There is a potential for more laser processing
• Driving forces for investment in new technology
fits laser (lower cost, higher quality, productivity,
product design)
• Most important criteria for investment: ROI,
productivity, precision, investment cost,
• Most important obstacle to introduce laser: cost,
difficult/expensive to verify, volumes, lack of
competence, difficult/expensive to get introdced
in the technology
Seminar Helsinki 2011-05-04
Hans Engström
7
What to do???
• Continue the education – renewal
– Develop business cases; focus on
manufacturing strategy and total economi
– Insight seminars for management
– Develop more and more varied technical
courses/seminars
– Extended co-operation with
Svetskommissionen
– Extended dialogue between companies and
schools
Seminar Helsinki 2011-05-04
Hans Engström
8
Advanced process gases for laser welding
Bo Williamsson
Manager laser and oxyfuel processes
AGA Gas AB Region Europe North
Problems today
Helium price
Helium supply (supply form, availability)
Plasma formation with Argon
Optimum gas for different laser sources?
Arrangement of gas supply?
26/10/2011 Fußzeile
Page 2
Pure gases for laser welding
Gas
Pros
Cons
Helium
Minimum plasma formation
Economy
Penetration
Welding speed
No improvement for Solid state
lasers
Inert
Density
Economy
Plasma formation
Supply form
Performance for CO2 lasers
Argon
Density
Solid state lasers
Inert
Nitrogen
Economy
Metallurgical aspects
Close to inert
26/10/2011 Fußzeile
Page 3
Additives
Carbon Dioxide
Active gas. Affects the surface tension. Interacts with alloying elements.
Occasional problems with absorbtion for CO2 lasers. Demand for gas supply from the side
Metallurgical effects
Oxygen
Active gas. Affects the surface tension. Interacts with alloying elements.
Metallurgical effects.
Hydrogen
Reducing gas.
Metallurgical aspects
26/10/2011 Fußzeile
Page 4
Effect from process gas mixtures and nozzle position
26/10/2011 Fußzeile
Page 5
Effect from CO2 addition during Diode laser welding
26/10/2011 Fußzeile
Page 6
Melt pool convections, high-speed films
T
x
26/10/2011 Fußzeile
T
x
Page 7
Melt pool convections, seam patterns
T
T
T
x
x
x
Laserline LDL 160-3000
Material:
S 235 JR
Thickness:
3 mm
Beam power: 3000 W
Speed:
0,8 m/min
Focal length: 150 mm
3
2,5
2
1,5
1
Penetration depth [mm]
Seam width [mm]
Cross sectional area [mm2]
0,5
0
0
26/10/2011 Fußzeile
2
4
6
8
10
12
14
16
18
20
24
CO2 content [%]
Page 8
Welding with active gases, mild steel
Penetration depth [mm]
Rofin DL 040 S, f = 99 mm, S 235 JR (1.0037), s = 3 mm
3
4 kW
2,5
2
3 kW
1,5
Active gas
1
Argon
0,5
0
0,5
1
1,5
2
Welding speed [m/min]
26/10/2011 Fußzeile
Page 9
Inert gases
Argon
•High density
Stabilises gas flow. Effective shielding properties
•Forces the particle stream from the keyhole in the desired direction.
•Not chemically or physically active in the laser welding process.
Helium
•Not active in chemical reactions.
•Low capacity in terms off energy absorption (dissociation energy, ionization energy or oscillation
energy)
•Helium is a good energy transfer medium.. Helium has the highest heat transfer coefficient of all
gases.
•High potential in combination with molecular gases (i.e. O2, H2, and N2).
26/10/2011 Fußzeile
Page 10
Active additives
O2, H2, and N2
High energy storage capacity (oscillations/vibrations, dissociation).
Highly reactive radicals. High penetration capabilities in due to small size.
Absorption and emission of electrons
emitting of energy.
Increases the absorbing, transporting and re-
Carbon dioxide
Dissociation into oxygen atoms (rapid reaction together to form O2
molecules) and CO starts at 1500 Kelvin. With these reactions, 293 kJ/mol can be absorbed
without producing highly chemically reactive radicals. This means that carbon dioxide can absorb
the energy from the plasma very effectively and return it to the work piece without causing
extreme oxidation or carburization.
26/10/2011 Fußzeile
Page 11
Nozzle for lateral process gas supply with the required
adjustment features
26/10/2011 Fußzeile
Page 12
Process gas supply for remote welding
. Each welding seam is supplied with process gas from its own nozzle.
26/10/2011 Fußzeile
Page 13
LASGON®
Prozessgasgemische für das Laserschweißen
Gasart
nummer
Name
Gebinde
Druck
Art
Zusammensetzung
Helium
Argon
CO2
H2
2960152
LASGON® C1
50l
200bar
Flasche
35%
50%
15%
2960552
LASGON® C1
12 x 50l
200bar
Bündel
35%
50%
15%
3280152
LASGON® H3
50l
200bar
Flasche
20%
72%
8%
3280552
LASGON® H3
12 x 50l
200bar
Bündel
20%
72%
8%
3290152
LASGON® H4
50l
200bar
Flasche
40%
50%
10%
3290552
LASGON® H4
12 x 50l
200bar
Bündel
40%
50%
10%
O2
Bei Fragen: Johann Herrmann Linde AG Tel 089 / 31001-504
26/10/2011 Fußzeile
Page 14
26/10/2011 Fußzeile
Page 15
Conclusions
•Addition of CO2 compensates for the less performance of Argon enabling admixtures with
Argon and Helium.
•CO2 is preferred as addition in front of O2 due to better weld appearance and less positioning
problems.
•In many cases, the mixture must be adapted to each laser and application esp. concerning the
CO2 content
•The shorter wavelentgh, the less dependance on Helium content. Additions of active
components may boost the performance
•Metallurgical aspects must be considered
•Hydrogen works well for welding of austenitic stainless steel. Boosts the performance of
Argon/Helium mixtures.
26/10/2011 Fußzeile
Page 16