INSTRUCTION MANUAL HIGH-IMPEDANCE DIFFERENTIAL RELAY GRB150 - D

6 F 2 S 0 9 0 0
INSTRUCTION MANUAL
HIGH-IMPEDANCE DIFFERENTIAL RELAY
GRB150 - ∗∗∗D
© TOSHIBA Corporation 2010
All Rights Reserved.
( Ver. 3.0)
6 F 2 S 0 9 0 0
Safety Precautions
Before using this product, please read this chapter carefully.
This chapter describes the safety precautions recommended when using the GRB150. Before
installing and using the equipment, this chapter must be thoroughly read and understood.
Explanation of symbols used
Signal words such as DANGER, WARNING and two kinds of CAUTION, will be followed by
important safety information that must be carefully reviewed.
DANGER
Indicates an imminently hazardous situation which will result in death or
serious injury if you do not follow the instructions.
WARNING
Indicates a potentially hazardous situation which could result in death or
serious injury if you do not follow the instructions.
CAUTION
CAUTION
Indicates a potentially hazardous situation which if not avoided, may result in
minor injury or moderate injury.
Indicates a potentially hazardous situation which if not avoided, may result in
property damage.
⎯1⎯
6 F 2 S 0 9 0 0
DANGER
• Current transformer circuit
Never allow the current transformer (CT) secondary circuit connected to this equipment to be
opened while the primary system is live. Opening the CT circuit will produce a dangerously high
voltage.
WARNING
• Exposed terminals
Do not touch the terminals of this equipment while the power is on, as the high voltage generated
is dangerous.
• Residual voltage
Hazardous voltage can be present in the DC circuit just after switching off the DC power supply.
It takes approximately 30 seconds for the voltage to discharge.
• Fiber optic
When connecting this equipment via an optical fibre, do not look directly at the optical signal.
CAUTION
• Earth
The earthing terminal of the equipment must be securely earthed.
CAUTION
• Operating environment
The equipment must only used within the range of ambient temperature, humidity and dust
detailed in the specification and in an environment free of abnormal vibration.
• Ratings
Before applying AC voltage and current or the DC power supply to the equipment, check that
they conform to the equipment ratings.
• Printed circuit board
Do not attach and remove printed circuit boards when the DC power to the equipment is on, as
this may cause the equipment to malfunction.
• External circuit
When connecting the output contacts of the equipment to an external circuit, carefully check the
supply voltage used in order to prevent the connected circuit from overheating.
• Connection cable
Carefully handle the connection cable without applying excessive force.
• Modification
Do not modify this equipment, as this may cause the equipment to malfunction.
• Disposal
This product does not contain expendable supplies nor parts that can be recycled. When disposing
of this equipment, do so in a safe manner according to local regulations as an industrial waste. If
⎯2⎯
6 F 2 S 0 9 0 0
any points are unclear, please contact our sales representatives.
•
Plastics material
This product contains the following plastics material.
- ABS, Polycarbonate, Acrylic resins
⎯3⎯
6 F 2 S 0 9 0 0
Contents
Safety Precautions
1
1.
Introduction
8
2.
Application Notes
10
2.1
10
10
10
12
12
13
13
14
14
14
16
16
2.2
2.3
2.4
3.
Technical Description
17
3.1
3.2
17
22
22
22
23
25
26
26
26
27
27
28
28
28
30
30
31
31
32
32
33
3.3
3.4
3.5
4.
High-impedance Differential Protection
2.1.1 Principle of operation
2.1.2 Through Fault Stability
2.1.3 Current Transformer Requirements
2.1.4 Fault Setting or Primary Operating Current
2.1.5 Peak Voltage Developed under Internal Fault Conditions
2.1.6 CT Supervision
Scheme Logic
2.2.1 High-impedance Differential Protection
2.2.2 Cold Load Protection
Setting
Tripping Output
Hardware Description
Input and Output Signals
3.2.1 Input Signals
3.2.2 Binary Input Signals
3.2.3 Binary Output Signals
3.2.4 PLC (Programmable Logic Controller) Function
Automatic Supervision
3.3.1 Basic Concept of Supervision
3.3.2 Relay Monitoring
3.3.3 Trip Circuit Supervision
3.3.4 Circuit Breaker Monitoring
3.3.5 PLC Data and IEC61850 Mapping Data Monitoring
3.3.6 IEC61850 Communication Monitoring
3.3.7 Failure Alarms
3.3.8 Trip Blocking
3.3.9 Setting
Recording Function
3.4.1 Fault Recording
3.4.2 Event Recording
3.4.3 Disturbance Recording
Metering Function
User Interface
34
4.1
34
Outline of User Interface
⎯4⎯
6 F 2 S 0 9 0 0
4.2
4.3
4.4
4.5
4.6
4.7
5.
6.
4.1.1 Front Panel
4.1.2 Communication Ports
Operation of the User Interface
4.2.1 LCD and LED Displays
4.2.2 Relay Menu
4.2.3 Displaying Records
4.2.4 Displaying the Status Information
4.2.5 Viewing the Settings
4.2.6 Changing the Settings
4.2.7 Testing
Personal Computer Interface
Relay Setting and Monitoring System
IEC 60870-5-103 Interface
IEC 61850 Communication
Clock Function
34
36
37
37
40
42
45
48
50
68
71
71
72
72
73
Installation
74
5.1
5.2
5.3
5.4
5.5
Receipt of Relays
Relay Mounting
Electrostatic Discharge
Handling Precautions
External Connections
74
74
74
74
75
Commissioning and Maintenance
76
6.1
6.2
76
77
77
77
78
79
79
80
80
81
83
83
86
86
87
87
87
88
88
88
89
6.3
6.4
6.5
6.6
6.7
Outline of Commissioning Tests
Cautions
6.2.1 Safety Precautions
6.2.2 Precautions for Testing
Preparations
Hardware Tests
6.4.1 User Interfaces
6.4.2 Binary Input Circuit
6.4.3 Binary Output Circuit
6.4.4 AC Input Circuits
Function Test
6.5.1 Measuring Element
6.5.2 Protection Scheme
6.5.3 Metering and Recording
Conjunctive Tests
6.6.1 On Load Test
6.6.2 Tripping Circuit Test
Maintenance
6.7.1 Regular Testing
6.7.2 Failure Tracing and Repair
6.7.3 Replacing a Failed Relay Unit
⎯5⎯
6 F 2 S 0 9 0 0
6.7.4 Resumption of Service
6.7.5 Storage
7.
Putting Relay into Service
90
90
91
⎯6⎯
6 F 2 S 0 9 0 0
Appendix A Block Diagram
93
Appendix B Signal List
95
Appendix C Binary Output Default Setting List
123
Appendix D Details of Relay Menu and LCD & Button Operation Instruction
127
Appendix E Outline of GRB150 and EB-101, -102
137
Appendix F External Connection
141
Appendix G Relay Setting Sheet
145
Appendix H Commissioning Test Sheet (sample)
175
Appendix I
179
Return Repair Form
Appendix J Technical Data
183
Appendix K Symbols Used in Scheme Logic
189
Appendix L Setting Calculation
193
Appendix M IEC60870-5-103: Interoperability and Troubleshooting
197
Appendix N Timing Chart of Cold Load Condition Judgment
209
Appendix O IEC61850: MICS & PICS
211
Appendix P Ordering
243
„ The data given in this manual are subject to change without notice. (Ver. 3.0)
⎯7⎯
6 F 2 S 0 9 0 0
1. Introduction
The GRB150 provides high-impedance differential protection scheme and is applied for the
following protections:
• Restricted earth fault protection
• Single or one-and-a-half busbar protection
• T zone protection of one-and-a-half busbar arrangement
• Short line cable protection
The high-impedance differential protection detects a fault even if the CT is saturated by fault current.
A user-friendly HMI is provided through a backlit LCD, programmable LEDs, keypad and
menu-based operating system. PC access is also provided, either for local connection via a
front-mounted RS232 port, or for remote connection via a rear-mounted RS485, fibre optic port
or Ethernet LAN port. The communication system allows the user to read and modify the relay
settings, and to access data gathered by the relay’s metering and recording functions. Further,
data communication with substation control and automation systems is supported according to
the IEC 61850 and IEC 60870-5-103 standards.
Data available either via the relay HMI or communications ports includes the following
functions.
The GRB150 provides the following metering and recording functions.
• Metering
• Fault records
• Event records
• Disturbance recording (available via communications ports)
The GRB150 has two models, model 101 and model 201. The model 101 is used for single-phase
applications and for restricted earth fault protection. The model 201 is used for three-phase
applications and for three-phase busbar, T zone and short line cable protection.
Table 1.1.1 shows the members of the GRB150 series and identifies the functions to be provided
by each member.
⎯8⎯
6 F 2 S 0 9 0 0
Table 1.1.1
Series Members and Functions
GRB150 -
Model Number
101D
High-impedance differential (DIF: single-phase)
201D
9
High-impedance differential (DIF: three-phase)
9
Cold Load Protection
9
9
CT Supervision (DIFSV)
9
9
Self supervision
9
9
Trip circuit supervision
9
9
CB State Monitoring
9
9
Eight settings groups
9
9
Metering
9
9
Fault records
9
9
Event records
9
9
Disturbance records
9
9
IEC60870-5-103 Communication
9
9
IEC61850 communication
9
9
⎯9⎯
6 F 2 S 0 9 0 0
2. Application Notes
2.1
High-impedance Differential Protection
2.1.1 Principle of operation
The operating principle of high-impedance differential protection is depicted in Figure 2.1.1.
Under normal operating conditions or in the event of an external fault the primary currents
entering and leaving the protected zone will summate to zero. The current transformers are
connected in parallel hence if their ratios are the same the secondary currents will also sum to
zero. According to the direction of the respective secondary current for each current transformer
their driving voltages are in opposition and hence a low voltage is generated in the differential
circuit such that under ideal conditions the voltage across the relay is zero.
Busbar
Busbar
EB-101 or
Resistor
EB102
EB-101 or
Resistor
EB102
GRB150
Varistor
GRB150
Varistor
Figure 2.1.1 High-Impedance Differential Protection
In the case of an internal fault the current transformer secondary currents will be in the same
direction and their sum will correspond to the total primary fault current. The corresponding
driving voltages will be in the same direction and a high voltage will be developed in the
differential circuit as it attempts to drive the secondary current through the burden presented by
the high-impedance relay. Dependent upon its setting the voltage relay will operate.
Note that in Figure 2.1.1 an external unit, either type EB-101 for single-phase protection or
EB-102 for three-phase protection has been shown. These include a varistor to limit the high
voltage developed in the differential circuit during internal faults and a series resistor to fix the
relay input impedance at 667ohms. Refer to Sections, 2.1.4 “Fault Setting or Primary Operating
Current” and 2.1.5 “Peak Voltage Developed under Internal Fault Conditions”.
2.1.2 Through Fault Stability
The stability of a current differential system using a high-impedance relay and low reactance
current transformers is determined by means of calculation. If the relay setting voltage is made
equal to or greater than the maximum voltage that can appear across the relay circuit for a given
value of through fault current the current differential system will be stable. In calculating the
required setting voltage for the relay it is assumed that one current transformer will become fully
saturated and that the remaining current transformers will maintain their ratio. An example to
illustrate this point is shown in Figure 2.1.2 for a current differential system for a busbar with
several feeders.
⎯ 10 ⎯
6 F 2 S 0 9 0 0
Busbar
EB-101 or
EB102
Resistor
GRB150
Varistor
Figure 2.1.2 External Fault – Busbar with Several Feeders
In this example an external fault is fed through a single circuit with the fault current being
supplied through all of the other circuits connected to the busbar. Since the total busbar current
has to be transformed by the current transformer on the faulted feeder there is a high probability
of this current transformer saturating whilst the current transformers on the other more lightly
loaded circuits remain unsaturated. Under these conditions a secondary current will flow in the
differential circuit that is equivalent to the primary fault current. The voltage drop caused by the
secondary current that flows in the differential circuit therefore determines the voltage input at the
relay.
In the equivalent circuit the shunt impedance for the fully saturated CT is negligible and the CT
will not produce an output, this is shown as a short circuit across the excitation impedance in
Figure 2.1.3.
Busbar
RS1
RL1
RL2
GRB150 +
ZR EB-101/
EB-102
CT1 ZE1
Figure 2.1.3
RS2
ZE2
CT2
Equivalent Circuit of the Differential Circuit for an External Fault
The total voltage drop is therefore due to the secondary fault current through the secondary
winding resistance of the saturated CT together with the wiring connecting it to the relay circuit
terminals. Provided that the relay setting voltage exceeds the value of VR in Equation (1) the
scheme will remain stable.
⎯ 11 ⎯
6 F 2 S 0 9 0 0
VR ≥ K1 (RS2 + RL2) IFmax/N
(1)
where,
VR : maximum voltage developed across the relay circuit
K1 : safety factor – for the GRB150, K1=1.2
RS : resistance of current transformer secondary winding
RL : resistance of secondary wiring for CT connecting lead loop –
most onerous case
IFmax : maximum through fault current
N
: CT ratio
Factor K1 is associated with the design of the GRB150 relay and directly relates to its inherent
capability to block the unidirectional transient component of the fault current. This is based on
previous service experience and extensive laboratory tests.
In addition to K1 an inherent safety factor exists because the basic assumption of complete
saturation of one current transformer with no ratio error of the complementary one is an extreme
case of unbalance. In practice it is unlikely to occur as when one current transformer begins to
saturate its burden is transferred to the other current transformer(s) due to the fact that they are of
the same construction and experience the same secondary voltage.
2.1.3 Current Transformer Requirements
•
All current transformers used in the scheme shall have the same turns ratio
•
All current transformers shall be of the low reactance type class X as specified in B.S.3938 in
terms of turns ratio, knee point voltage, secondary winding resistance and secondary exciting
current
•
Bushing or toroidal current transformers with fully distributed windings and low leakage flux
shall be used.
•
The secondary winding resistance must be kept to a minimum
•
It is preferable that the current transformers are of similar design
•
Other devices must not be connected to the same CT core
•
CT knee-point voltage, Vk ≥ 2×VR
For an internal fault it is essential that the current transformer(s) produce sufficient output to
operate the relay. In order to achieve this, cater for any current transformer ratio errors and ensure
a high speed of operation the current transformers should have a VK of at least twice that of the
relay setting voltage as stated above.
A setting example is provided in Appendix L.
2.1.4 Fault Setting or Primary Operating Current
During an internal fault, the fault current must provide the exciting current for all of the connected
current transformers as well as the relay circuit current. To ensure positive operation, the current
requirement of the relay and the magnetising current requirement of all of the connected current
transformers at the relay setting voltage must be less than the minimum fault current that the relay
⎯ 12 ⎯
6 F 2 S 0 9 0 0
is required to detect. Therefore the secondary effective setting is the sum of the relay minimum
operating current and the excitation losses in all parallel connected current transformers. The
currents are not in-phase and hence the summation should be vectorial. However, an arithmetic
addition is acceptable resulting in the calculated setting being slightly higher than the actual
setting.
Imin = (n.Ie + Ir + I)N
(2)
where,
Imin : minimum primary operating current
n
: number of current transformers connected to the GRB150 relay
Ie
: value of current transformer secondary exciting current at GRB150 setting voltage
I
: relay current at setting voltage
where, I = VR /ZR and ZR is the GRB150 input impedance of 667 ohms with varistor unit
EB-101 for single-phase protection or EB-102 for three-phase protection
Ir
: varistor current at GRB150 setting voltage, this is obtained from the varistor V-I
characteristic
N
: CT ratio
If the value calculated for Imin is too low the sensitivity can be reduced by the use of a shunt
resistor connected across the relay/varistor unit input.
A setting example is provided in Appendix L.
2.1.5 Peak Voltage Developed under Internal Fault Conditions
Under internal fault conditions a high voltage is developed in the differential circuit by the current
transformer so a varistor, (non-linear resistor) is connected in parallel to the relay to limit the
overvoltage. A varistor unit EB-101 is provided for single-phase protection and the EB-102 unit
for three-phase protection.
Note: It is our standard practice to use the EB-101 and EB-102 varistor units when applying
the GRB150. For those who prefer the more traditional approach of using externally
mounted components in place of the EB-101 and EB-102 units the GRB150 can be
applied with externally mounted suitably rated, linear and non-linear devices
provided that the input impedance is maintained at 667 ohms.
2.1.6 CT Supervision
The DIFSV element provides CT supervision to detect any unbalance in the CT secondary circuit
in the event of a fault in the wiring or the CT itself. The voltage setting of this element must be
greater than any erroneous voltage that can be developed under normal service conditions. The
two main sources of error are: • CT turns ratio error
• Differences in the respective lengths of the CT secondary connecting leads to the
paralleling point of the differential circuit
The setting of the DIFSV element is best illustrated with an example which is given in Appendix
L.
⎯ 13 ⎯
6 F 2 S 0 9 0 0
2.2
Scheme Logic
2.2.1
High-impedance Differential Protection
Figure 2.2.1 shows the scheme logic for the high-impedance differential protection type
GRB150. The differential protection operates on a per phase basis, although output signals of the
high-impedance differential element DIF can perform instantaneous three-phase tripping of the
circuit breaker. The supervisory element DIFSV will detect any erroneous differential voltage
appearing as a result of CT circuit failure. The tripping output signal of the DIF elements can be
blocked when the DIFSV element output is maintained for the setting time of TVDSV. To block
the tripping output with DIFSV operation, set scheme switch [VDCHK] to “ON” and set
[SVCNT] to “ALM&BLK”.
The output signal VD ERR of DIFSV element is used for alarm purposes.
The DIF and DIFSV can be disabled by the PLC signals DIF_BLOCK and DIFSV_BLOCK
respectively.
Model 101
DIF-OR
11
≥1
A
DIF
447
≥1
DIF
21
&
12
B
&
13
C
DIF TRIP-A
22
DIF TRIP-B
23
DIF TRIP-C
&
Model 201
1
1536 DIF_BLOCK
+
COLD LOAD
from Figure 2.2.2.
&
"ALM&BLK"
Model 101
≥1
DIFSV
448
TVDSV
24
t
0
&
15
DIFSV B
16
C
Model 201
1
&
t
0
&
t
0
≥1
VD ERR
25
26
0.10 - 60.00s
[VDCHK]
"ON"
1537 DIFSV_BLOCK
1
Figure 2.2.1 Scheme Logic of High-impedance Differential Protection
2.2.2
Cold Load Protection
Cold load protection provides the following functions:
• Cold load status judgment
• DIF characteristic modification during cold load status
2.2.2.1
DIF
TRIP
27
A.M.F ON
+
28
DIFSV-OR
14
≥1
A
≥1
[SVCNT]
Cold-load status judgment
Figure 2.2.2 shows the cold load status judgment logic.
⎯ 14 ⎯
6 F 2 S 0 9 0 0
Function 1
1538 CB_FOR_CLP
10
TCLP
&
≧1
&
COLD LOAD
0.01–100.00s
By PLC
Function 2
769
BI2 COMMAND
1
[CLEN]
F1
F2
Off
&
TCLE
t 0
TCLR
0
t
0.00–100.00s 0.00–100.00s
[CLPTST]
Off
CL
N-CL
1
1
Figure 2.2.2 Cold Load Status Judgment Logic
Two separate operational functions are available and they depend on the status of the PLC signal
CB_FOR_CLP. (Refer to Appendix N.)
- Function 1: used when ‘CB closing command’ is allocated to the PLC signal
CB_FOR_CLP”.
- Function 2: used when ‘CB contact’ is allocated to the PLC signal CB_FOR_CLP.
These functions are selected by the scheme switch [CLEN].
When using the ’CB close command’ function, set [CLEN] to “F1”.
When using the ’CB contact’, set [CLEN] to “F2”.
If the cold load protection is disabled, set [CLEN] to “OFF”.
The [CLPTST] switch is used for testing purposes – please refer to Section 4.2.7.1.
The timing chart of cold load status judgment is shown in Appendix N.
2.2.2.2
DIF characteristic modification during cold load status
If cold load status has been determined, then the operation sensitivity of DIF is modified from
([DIF] setting value) to ([DIF] setting × [DIFCC] setting value).
⎯ 15 ⎯
6 F 2 S 0 9 0 0
2.3
Setting
The following list shows the setting elements for the high-impedance differential protection and
their setting ranges.
Element
Range
Step
Default
Off / On
-
On
[CLEN]
Off / F1 / F2
-
Off
[SVCNT]
ALM&BLK / ALM
-
ALM&BLK
DIF
10 - 600V
1V
100 V
DIFSV
5 - 100V
1V
50 V
TVDSV
0.10 - 60.00s
0.01s
0.50 s
DIFCC
1.00 – 10.00
0.01
1.00
TCLP
0.01 – 100.00s
0.01s
0.01 s
TCLE
0.00 – 100.00s
0.01s
0.00 s
TCLR
0.00 – 100.00s
0.01s
0.00 s
[VDCHK]
2.4
Tripping Output
GRB150 provides 6 auxiliary relays and 4 high-speed auxiliary relays for alarm and trip as
described in Section 3.2.7. These auxiliary relays can be assigned to any protection or alarm
outputs by setting.
After the trip signal disappears by clearing the fault, the reset time of the tripping output relay can
be programmed by PLC function. The setting is respective for each output relay.
When the relay is latched, it can be reset with the RESET key on the relay front panel or a binary
input by PLC signal. This resetting resets all the output relays collectively.
For the tripping output relay, a check must be made to ensure that the tripping circuit is open by
monitoring the` status of a circuit breaker auxiliary contact prior to the tripping output relay
resetting, in order to prevent the tripping output relay from directly interrupting the circuit
breaker tripping coil current.
⎯ 16 ⎯
6 F 2 S 0 9 0 0
3. Technical Description
3.1
Hardware Description
Case outlines of GRB150, EB-101 and EB-102 are shown in Appendix E.
The hardware structure of GRB150 is shown in Figure 3.1.1.
The GRB150 relay unit consists of the following hardware modules. These modules are fixed to
the front panel and cannot be taken off individually. The human machine interface module is
provided with the front panel.
• Power module (POWD)
• Signal processing module (SPMD)
• Human machine interface module (HMI)
The hardware block diagram of GRB150 is shown in Figure 3.1.2.
SPMD
POWD
HMI
IN SERVI CE
TR IP
ALARM
VIEW
RESET
A
Handle for relay
withdrawal
B
0V CAN
CEL ENTER
END
Figure 3.1.1 Hardware Structure without Case
⎯ 17 ⎯
6 F 2 S 0 9 0 0
DC
supply
Binary
input
AC input
POWD
ETH
Ethernet LAN I/F
×1
SPMD
DC/DC
Converter
Photo-coupler
×8
CT × 1
or 3
Analogue
filter
Multiplexer
A/D
converter
MPU
RAM
ROM
Remote PC
RS485 or
Optical fibre
port × 1
Remote PC
Auxiliary relay
× 11
Binary output
(Trip
command etc.)
IRIG-B port
External
clock
Human machine
Interface (HMI)
Liquid crystal display
16 characters × 2 lines
LEDs
Local
personal
computer
RS232C
I/F
Operation keys
Monitoring
jacks
Figure 3.1.2 Hardware Block Diagram
POWD Module
The POWD module insulates between the internal and external circuits through an auxiliary
transformer and transforms the magnitude of AC input signals to suit the electronic circuits. The
AC input signals may be one to three phase currents and a residual current depending on the relay
model.
This module incorporates 1 or 2 auxiliary CTs depending on the relay model, DC/DC converter
and 8 photo-coupler circuits for binary input signals.
The available input voltage ratings of the DC/DC converter are, 48V, 110V/125V or 220/250V.
The normal range of input voltage is −20% to +20%.
SPMD Module
The SPMD module consists of analogue filter, multiplexer, analogue to digital (A/D) converter,
main processing unit (MPU), random access memory (RAM) and read only memory (ROM) and
executes all kinds of processing such as protection, measurement, recording and display.
The analogue filter performs low-pass filtering for the corresponding current signals.
The A/D converter has a resolution of 12 bits and samples input signals at sampling frequencies
of 2400 Hz (at 50 Hz) and 2880 Hz (at 60 Hz).
⎯ 18 ⎯
6 F 2 S 0 9 0 0
The SPMD module also incorporates 7 auxiliary relays (BO1-BO6 and FAIL) and 4 high-speed
auxiliary relays (HBO1- HBO4) for binary output signals. BO1 to BO6 and HBO1 to HBO4 are
user configurable output signals and have one normally open contact.
The auxiliary relay FAIL has one normally open and one normally closed contacts, and operates
when a relay failure or abnormality in the DC circuit is detected.
RS485, fibre optic and/or Ethernet LAN serial ports are provided for communication to a remote
PC, and IRIG-B port also can be provided for external clock. Ethernet LAN ports are mounted on
ETH sub-module.
Human Machine Interface (HMI) Module
The operator can access the GRB150 via the human machine interface (HMI) module. As shown
in Figure 3.1.3, the HMI panel has a liquid crystal display (LCD), light emitting diodes (LED),
view and reset keys, operation keys, monitoring jacks and an RS232C connector on the front
panel.
The LCD consists of 16 columns by 2 rows with a back-light and displays recording, status and
setting data.
There are a total of 9 LED indicators and their signal labels and LED colors are defined as
follows:
Label
Color
Remarks
IN SERVICE
Green
Lit when the relay is in service and flickered when the relay is in “Test” menu.
TRIP
Red
Lit when a trip command is issued.
ALARM
Red
Lit when a failure is detected.
(LED1)
Yellow
(LED2)
Yellow
(LED3)
Yellow
(LED4)
Yellow
(LED5)
Yellow
(LED6)
Yellow
LED1 to LED6 are user-configurable. Each is driven via a logic gate which can be programmed
for OR gate or AND gate operation. Further, each LED has a programmable reset characteristic,
settable for instantaneous drop-off, or for latching operation. A configurable LED can be
programmed to indicate the OR combination of a maximum of 4 elements, the individual statuses
of which can be viewed on the LCD screen as “Virtual LEDs.” For the setting, see Section
4.2.6.10. For the operation, see Section 4.2.1.
The TRIP LED and an operated LED if latching operation is selected, must be reset by user, either
by pressing the RESET key, by energising a binary input which has been programmed for
‘Remote Reset’ operation, or by a communications command. Other LEDs operate as long as a
signal is present. The RESET key is ineffective for these LEDs. Further, the TRIP LED is
controlled with the scheme switch [AOLED] whether it is lit or not by an output of alarm element
such as OC4 ALARM, EF4 ALARM, etc..
The VIEW key starts the LCD indication and switches between windows. The RESET key
clears the LCD indication and turns off the LCD back-light.
The operation keys are used to display the record, status and setting data on the LCD, input the
⎯ 19 ⎯
6 F 2 S 0 9 0 0
settings or change the settings.
The monitoring jacks and two pairs of LEDs, A and B, on top of the jacks can be used while the
test mode is selected in the LCD window. Signals can be displayed on LED A or LED B by
selecting the signal to be observed from the "Signal List" and setting it in the window and the
signals can be transmitted to an oscilloscope via the monitoring jacks. (For the "Signal List", see
Appendix C.)
The RS232C connector is a 9-way D-type connector for serial RS232C connection. This
connector is used for connection with a local personal computer.
Screw for cover
Liquid crystal
display
IN SERVICE
TRIP
ALARM
Light emitting
diodes (LED)
VIEW
RESET
Operation keys
Ligh
emitting diodes
Monitoring Jacks
A
B
RS232C connector
0V CAN
CEL ENTER
END
Screw for handle
To a local PC
Screw for cover
Figure 3.1.3 Front Panel
⎯ 20 ⎯
6 F 2 S 0 9 0 0
EB-101 and EB-102
Varistor unit EB101 or 102 is connected in parallel to the GRB150 to prevent an overvoltage
generated at the differential circuit during a fault. Figure 3.1.4 shows an internal circuit of the
varistor unit.
The EB-101 is coupled with the GRB150 model 101 for single-phase protection, and the EB-102
is coupled with the GRB150 model 201 for three-phase protection.
2 kΩ
TB1-1
2 kΩ
TB1-4
2 kΩ
11Ω
Varistor
TB1-2
TB1-8
TB1-5
Earth
(a) EB-101
2 kΩ
TB1-1
2 kΩ
TB2-1
2 kΩ
11Ω
Varistor
TB1-2
A phase
TB22 kΩ
TB1-3
2 kΩ
TB2-3
2 kΩ
11Ω
TB2-
Varistor
TB1-4
B phase
2 kΩ
2 kΩ
TB1-5
TB2-5
2 kΩ
11Ω
Varistor
TB1-6
C phase
TB2-
TB1-8 Earth
(b) EB-102
Figure 3.1.4 Internal Circuit of Varistor Unit
⎯ 21 ⎯
6 F 2 S 0 9 0 0
3.2
Input and Output Signals
3.2.1
Input Signals
AC input signals
Table 3.2.1 shows the AC input signals necessary for each of the GRB150 models and their
respective input terminal numbers.
Table 3.2.1 AC Input Signals
3.2.2
Terminal No. of TB1
GRB150-101
GRB150-201
1-2
3-4
5-6
Current
A phase current
B phase current
C phase current
-
-
Binary Input Signals
The GRB150 provides eight programmable binary input circuits. Each binary input circuit is
programmable by PLC function, and provided with the function of Logic level inversion.
The binary input circuit of the GRB150 is provided with a logic level inversion function and a
pick-up and drop-off delay timer function as shown in Figure 3.2.1. Each input circuit has a
binary switch BISNS which can be used to select either normal or inverted operation. This allows
the inputs to be driven either by normally open or normally closed contacts. Where the driving
contact meets the contact conditions then the BISNS can be set to “Norm” (normal). If not, then
“Inv” (inverted) should be selected. The pick-up and drop-off delay times can be set 0.0 to
300.00s respectively.
Logic level inversion function, and pick-up and drop-off delay timer settings are as follow:
Element
Contents
Range
Step
Default
BI1SNS - BI8SNS
Binary switch
Norm/ Inv
BI1PUD - BI8PUD
Delayed pick-up timer
0.00 - 300.00s
0.01s
0.00
BI1DOD - BI8DOD
Delayed drop-off timer
0.00 - 300.00s
0.01s
0.00
Norm
The operating voltage of binary input signal is typical 74V DC at 110V/125V DC rating and
138V DC at 220/250V DC. The minimum operating voltage is 70V DC at 110/125V DC rating
and 125V DC at 220/250V DC.
The binary input signals can be programmed to switch between eight settings groups. Change of
active setting group is performed by PLC (Signal No. 2640 to 2647).
Four alarm messages (Alarm1 to Alarm4) can be set. The user can define a text message within 16
characters for each alarm. The messages are valid for any of the input signals BI1 to BI8 by
setting. Then when inputs associated with that alarm are raised, the defined text is displayed on
the LCD. These alarm output signals are signal Nos. 2560 to 2563.
⎯ 22 ⎯
6 F 2 S 0 9 0 0
(+) (−)
BI1
1284
BI1PUD
BI1DOD
t
0
0
[BI1SNS]
t
768
BI1
"Norm"
1
"Inv"
BI2
1285
BI2PUD
BI2DOD
t
0
0
t
BI2
[BI2SNS]
769
"Norm"
1
"Inv"
BI8
1291
BI8PUD
BI8DOD
t
0
0
[BI8SNS]
t
775
BI8
"Norm"
1
"Inv"
1
0V
Figure 3.2.1 Logic Level Inversion
3.2.3
Binary Output Signals
The number of binary output signals and their output terminals are as shown in Appendix F. All
outputs, except the relay failure signal, can be configured.
GRB150 provides 4 high-speed auxiliary relays HBO1 to HBO4 and provides 6 auxiliary relays
which is composed of one auxiliary relay FAIL for relay fail output and seven programmable
auxiliary relays BO1 to BO6. HBO1 to HBO4 and BO1 to BO6 can be programmed.
The reset time of the tripping output relay following fault clearance can be programmed. The
setting is respective for each output relay.
The signals shown in the signal list in Appendix B can be assigned to the 11 output relays above
individually or in arbitrary combinations. Signals can be combined using either an AND circuit or
OR circuit with 6 gates each as shown in Figure 3.2.2. The output circuit can be configured
according to the setting menu. Appendix H shows the factory default settings.
Further, each BO has a programmable reset characteristic, settable for instantaneous drop-off
“Inst”, for delayed drop-off “Dl”, for dwell operation “Dw” or for latching operation “Latch” by
the scheme switch [RESET]. The time of the delayed drop-off “Dl” or dwell operation “Dw” can
be set by TBO. When “Dw” selected, the BO outputs for the TBO set time if the input signal does
not continue on the TBO set time. If the input signal continues more, the BO output is continuous
for the input signal time.
When the relay is latched, it can be reset with the RESET key on the relay front panel or a binary
input. This resetting resets all the output relays collectively.
The relay failure contact closes when a relay defect or abnormality in the DC power supply circuit
is detected.
⎯ 23 ⎯
6 F 2 S 0 9 0 0
Signal List
&
Appendix B
Auxiliary relay
6 GATES
≥1
or
≥1
6 GATES
&
TBO
&
[RESET]
+
"Dw"
0
t
0.00 – 10.00s
"Dl"
&
S
F/F
"Lat"
R
Reset button
+
≥
By PLC
768
1639 IND.RESET
BI1_COMMAND
Figure 3.2.3 Configurable Output
Settings
The setting elements necessary for binary output relays and their setting ranges are as follows:
Element
[RESET]
Range
Inst / Dl / Dw / Lat
Step
Default
See Appendix C
TBO
0.00 – 10.00s
0.01s
See Appendix C
⎯ 24 ⎯
Remarks
Output relay reset time. Instantaneous,
delayed, dwell or latched.
6 F 2 S 0 9 0 0
3.2.4
PLC (Programmable Logic Controller) Function
GRB150 is provided with a PLC function allowing user-configurable sequence logic on binary
signals. The sequence logic with timers, flip-flops, AND, OR, XOR, NOT logic, etc. can be
produced by using the PC software “PLC tool” and linked to signals corresponding to relay
elements or binary circuits.
Configurable binary inputs and the initiation trigger of fault records and disturbance records are
programmed using the PLC function. Temporary signals are provided for complicated logic or for
using a user-configured signal in many logic sequences.
PLC logic is assigned to protection signals by using the PLC tool. For PLC tool, refer to the PLC
tool instruction manual.
Figure 3.2.4
Sample Screen for PLC Tool
⎯ 25 ⎯
6 F 2 S 0 9 0 0
3.3
Automatic Supervision
3.3.1
Basic Concept of Supervision
Though the protection system is in a non-operating state under normal conditions, it is waiting for
a power system fault to occur at any time and must operate without fail when it occurs. Therefore,
the automatic supervision function, which checks the health of the protection system during
normal operation, plays an important role. A numerical relay based on the microprocessor
operations is suitable for implementing this automatic supervision function of the protection
system. The GRB150 implements the automatic supervision function taking advantage of this
feature based on the following concept:
• The supervising function should not affect the protection performance.
• Perform supervision with no omissions wherever possible.
• When a relay failure occurs, it should be able to easily identify the location of the failure.
3.3.2
Relay Monitoring
The relay is supervised with the following items.
Differential voltage monitoring
The supervisory element DIFSV is provided to check the health of CT circuits. The DIFSV
element detects the erroneous differential voltage that appears under a CT circuit failure.
A/D accuracy checking
An analogue reference voltage is input to a prescribed channel in the analogue-to-digital (A/D)
converter, and it is checked that the data after A/D conversion is within a prescribed range and
that the A/D conversion characteristics are correct.
Memory monitoring
The memories are monitored as follows depending on the type of memory, and checked that the
memory circuits are healthy:
• Random access memory monitoring:
Writes/reads prescribed data and checks the storage function.
• Program memory monitoring: Checks the checksum value of the written data.
• Setting value monitoring:
Checks the discrepancy between the setting values stored in
duplicate.
Watchdog timer
A hardware timer which is cleared periodically by software is provided and it is checked that the
software is running normally.
DC Supply Monitoring
The secondary voltage level of the built-in DC/DC converter is monitored and checks that the DC
voltage is within a prescribed range.
⎯ 26 ⎯
6 F 2 S 0 9 0 0
3.3.3
Trip Circuit Supervision
The circuit breaker tripping control circuit can be monitored by a binary input. Figure 3.3.1 shows
a typical scheme. A binary input BIn is assigned to No.1632:TC_FAIL signal by PLC. When the
trip circuit is complete, a small current flows through the binary input and the trip circuit. Then
logic signal of the binary input circuit BIn is "1".
If the trip supply is lost or if a connection becomes an open circuit, then the binary input resets
and the BIn output is "0". A trip circuit fail alarm TCSV is output when the BIn output is "0".
If the trip circuit failure is detected, then “ALARM” LED is lit and “Err: TC” is displayed in LCD
message.
The monitoring is enabled by setting the scheme switch [TCSPEN] to "ON" or "OPT-ON". When
"OPT-ON" is selected, the monitoring is enabled only while CB is closed.
(+)
Trip circuit supervision
BIn
Trip
output
1632 TC_FAIL
Figure 3.3.1
3.3.4
&
"OPT-ON"
1270
TCSV
≥1
"ON"
+
CB trip coil
0
&
0.4s
CB CLOSE
[TCSPEN]
t
1
Trip Circuit Supervision Scheme Logic
Circuit Breaker Monitoring
The relay provides the following circuit breaker monitoring functions.
Circuit Breaker State Monitoring
Circuit breaker state monitoring is provided for checking the health of circuit breaker (CB). If two
binary inputs are programmed to the functions ‘CB_N/O_CONT’ and ‘CB_N/C_CONT’, then
the CB state monitoring function becomes active. In normal circumstances these inputs are in
opposite states. Figure 3.3.2 shows the scheme logic. If both show the same state during five
seconds, then a CB state alarm CBSV operates and “Err:CB” and “CB err” are displayed in LCD
message and event record message respectively.
The monitoring can be enabled or disabled by setting the scheme switch [CBSMEN].
1633 CB_N/O_CONT
=1
1
t
0
&
1271
CBSV
5.0s
1634 CB_N/C_CONT
[CBSMEN]
+
"ON"
Figure 3.3.2 CB State Monitoring Scheme Logic
Normally open and normally closed contacts of the CB are connected to binary inputs BIm and
BIn respectively, and functions of BIm and BIn are assigned to “CB_N/O_CONT” and
“CB_N/C_CONT” by PLC.
⎯ 27 ⎯
6 F 2 S 0 9 0 0
Circuit Breaker Condition Monitoring
Periodic maintenance of CB is required for checking of the trip circuit and the operation
mechanism. Generally, maintenance is based on a time interval or a number of fault current
interruptions.
The following CB condition monitoring functions are provided to determine the time for
maintenance of CB:
• Trip is counted for maintenance of the trip circuit and CB operation mechanism. The trip
counter increments the number of tripping operations performed. An alarm is issued and
informs user of time for maintenance when the count exceeds a user-defined setting TCALM.
The trip count alarm can be enabled or disabled by setting the scheme switch [TCAEN].
The counter can be initiated by PLC signals TP_COUNT. The default setting is the
TP_COUNT is assigned to the DIF_TRIP signal.
3.3.5
PLC Data and IEC61850 Mapping Data Monitoring
If there is a failure in PLC data or IEC61850 mapping data, the function may be prevented.
Therefore, PLC data and IEC61850 mapping data are monitored and the respective alarms "PLC
stop" and "MAP stop" are issued if a failure is detected.
3.3.6
IEC61850 Communication Monitoring
The sending and receiving functions on the Ethernet LAN communication are monitored. The
receiving function is executed by checking GOOSE message receiving status, and the sending
function is executed by checking a “Ping” response to the other party. If a failure is detected, an
alarm of "GOOSE stop" or "Ping err" is issued.
These functions are disabled by setting the scheme switches [GSECHK] and [PINGCHK].
3.3.7
Failure Alarms
When a failure is detected by the automatic supervision, it is followed with an LCD message,
“ALARM” LED indication, external alarm and event recording. Table 3.3.1 summarises the
supervision items and alarms.
The alarms are retained until the failure is recovered.
The alarms can be disabled collectively by setting the scheme switch [AMF] (Automatic
Monitoring Function) to OFF. The setting is used to block unnecessary alarms during
commissioning, testing or maintenance.
When the watchdog timer detects that the software is not running normally, the LCD display and
event recording of the failure may not function normally.
⎯ 28 ⎯
6 F 2 S 0 9 0 0
Table 3.3.1 Supervision Items and Alarms
LED
"IN SERVICE"
LED
"ALARM"
Off
On
On
On
(1)
Off
Watchdog Timer
----
DC supply monitoring
Supervision Item
[SVCNT]
switch*
Differential
voltage monitoring
ALM & BLK
LCD Message
Event record Message
(2)
Vd err
On
(3)
Relay fail
Off
On
(3)
----
----
Off
(4)
(3)
----
Trip circuit supervision
Err:TC
On
On
Off
TC err, Relay fail-A
CB state monitoring
Err:CB
On
On
Off
CB err, Relay fail-A
ALM:TP COUNT
On
On
Off
TP COUNT ALM,
Relay fail-A
Err: PLC, Err: MAP
On
On
(4)
Relay fail-A
Err: GOOSE
On
On
(4)
Relay fail-A
Err: Ping
On
On
(4)
Relay fail-A
ALM
A/D accuracy check
Memory monitoring
Trip count alarm
PLC data or IEC61850 mapping
data monitoring
GOOSE message check
Ping response check
(1)
Ext.
alarm
*: For [SVCNT] (supervision control) switch, see Appendix G and for its scheme logic, see
Appendix A.
(1) Diverse messages are provided as expressed with " Err:---" in the table in Section 6.7.2.
(2) The configurable signal “VD ERR” operates. (See Appendix B.)
(3) The binary output relay "FAIL" operates.
(4) Whether the LED is lit or not depends on the degree of the voltage drop.
⎯ 29 ⎯
6 F 2 S 0 9 0 0
3.3.8
Trip Blocking
When a failure is detected by the following supervision items, the trip function is blocked for as
long as the failure exists and is restored when the failure is removed.
• Differential voltage monitoring (selectable)
• A/D accuracy check
• Memory monitoring
• Watchdog Timer
• DC supply monitoring
When a failure is detected by the differential voltage monitoring, the scheme switch [SVCNT]
setting can be used to determine if both tripping is blocked and an alarm is initiated, or, if only an
alarm is initiated. (For the setting, see Section 4.2.6.7)
3.3.9
Setting
The setting elements necessary for the automatic supervision and their setting range are shown in
the table below.
Element
Range
[SVCNT]
ALM&BLK/ALM
Step
Default
Remarks
ALM&BLK
Alarming and/or blocking selection
⎯ 30 ⎯
6 F 2 S 0 9 0 0
3.4
Recording Function
The GRB150 is provided with the following recording functions:
Fault recording
Event recording
Disturbance recording
These records are displayed on the LCD of the relay front panel or on the local or remote PC.
3.4.1
Fault Recording
Fault recording is started by a tripping command of the GRB150 and the following items are
recorded for one fault:
Date and time
Trip mode
Operating phase
Relevant events
Power system quantities
User configurable initiation
User can configure four fault record triggers (Signal No.:2624 to 2627) by PLC. Any of input
signals as shown in Appendix B is assigned to these fault record trigger signals.
Up to 8 most-recent faults are stored as fault records. If a new fault occurs when 8 faults have
been stored, the record of the oldest fault is deleted and the latest fault one is then stored.
Date and time of fault occurrence
The time resolution is 1 ms using the relay internal clock.
To be precise, this is the time at which a tripping command has been initiated, and thus it is
approximately 10ms after the occurrence of the fault.
Operating phase (for Model 201)
The phase is indicated by differential element (DIF) operating phase(s).
Relevant events
Such events as for evolving faults are recorded with time-tags.
Power system quantities
The differential voltages in pre-faults and post-faults are recorded. The following power system
quantities are not recorded during evolving faults.
- Magnitude of differential voltage (Vd) for model 101 or phase differential voltage (Vda,
Vdb, Vdc) for model 201
⎯ 31 ⎯
6 F 2 S 0 9 0 0
3.4.2
Event Recording
The events shown are recorded with a 1 ms resolution time-tag when the status changes. Up to
1024 records can be stored. If an additional event occurs when 1024 records have been stored, the
oldest event record is deleted and the latest event record is then stored.
The user can set a maximum of 128 recording items, and their status change mode. The event
items can be assigned to a signal number in the signal list. The status change mode is set to “On”
(only recording On transitions) or “On/Off”(recording both On and Off transitions) mode by
setting. The “On/Off” mode events are specified by “Bi-trigger events” setting. If the “Bi-trigger
events” is set to “100”, No.1 to 100 events are “On/Off” mode and No.101 to 128 events are “On”
mode.
The name of an event can be set by RSM100. Maximum 22 characters can be set, but the LCD
displays only 11 characters. Therefore, it is recommended the maximum 11 characters are set.
The set name can be viewed on the Set.(view) screen.
The elements necessary for event recording and their setting ranges are shown in the table below.
The default setting of event record is shown in Appendix G.
3.4.3
Element
Range
Step
Default
Remarks
BITRN
0 - 128
1
100
Number of bi-trigger(on/off) events
EV1 – EV128
0 - 3071
Assign the signal number
Disturbance Recording
Disturbance recording is started when the supervisory element DIFSV operates or a tripping
command is initiated. Further, disturbance recording is started when a start command by the PLC
is initiated. The user can configure four disturbance record triggers (Signal No.:2632 to 2635) by
PLC.
The records include maximum 3 analogue signals as shown in Table 3.4.1, 32 binary signals and
the dates and times at which recording started. Any binary signal shown in Appendix G can be
assigned by the binary signal setting of disturbance record.
Table 3.4.1 Analog Signals for Disturbance Recording
Model
101D
201D
Analog signal
Vd
Vda, Vdb, Vdc
The LCD display only shows the dates and times of the disturbance records stored. Details can be
displayed on a PC. For how to obtain disturbance records on the PC, see the “Instruction Manual
PC Interface, RSM100”.
The pre-fault recording time is fixed at 0.3s and post-fault recording time can be set between 0.1
and 5.0s.
The number of records stored depends on the post-fault recording time. The approximate
relationship between the post-fault recording time and the number of records stored is shown in
Table 3.4.2.
Note: If the recording time setting is changed, the records stored so far are deleted.
⎯ 32 ⎯
6 F 2 S 0 9 0 0
Table 3.4.2 Post Fault Recording Time and Number of Disturbance Records Stored
Recording time
0.1s
0.5s
1.0s
1.5s
2.0s
2.5s
3.0s
3.5s
4.0s
4.5s
5.0s
50Hz
50
25
15
11
8
7
6
5
4
4
3
60Hz
42
21
13
9
7
6
5
4
3
3
3
Settings
The elements necessary for initiating a disturbance recording and their setting ranges are shown
in the table below.
Element
Range
Step
Default
Remarks
Timer
0.1-5.0 s
0.1 s
2.0 s
Post-fault recording time
Starting the disturbance recording by a tripping command or the starter element listed above is
enabled or disabled by setting the following scheme switches.
3.5
Element
Range
[Trip]
[Vd err]
Step
Default
Remarks
OFF/ON
ON
Start by tripping command
OFF/ON
ON
Start by Binary Input signal
Metering Function
The GRB150 performs continuous measurement of the analogue input quantities. The
magnitudes of the phase differential voltage (Vda, Vdb, Vdc) or differential voltage (Vd) are
renewed every second and displayed on the LCD of the relay front panel or on the local or remote
PC. The model 101 series measures a single phase quantity only.
⎯ 33 ⎯
6 F 2 S 0 9 0 0
4. User Interface
4.1
Outline of User Interface
The user can access the relay from the front panel.
Local communication with the relay is also possible using a personal computer (PC) via an
RS232C port. Furthermore, remote communication is also possible using RSM (Relay Setting
and Monitoring), IEC61850 communication or IEC60870-5-103 communication via Ethernet
LAN port or RS485 port.
This section describes the front panel configuration and the basic configuration of the menu tree
of the local human machine communication ports and HMI (Human Machine Interface).
4.1.1
Front Panel
As shown in Figure 3.1.3, the front panel is provided with a liquid crystal display (LCD), light
emitting diodes (LED), operation keys, VIEW and RESET keys, monitoring jacks and an
RS232C connector.
LCD
The LCD screen, provided with a 2-line, 16-character display and back-light, provides the user
with information such as records, statuses and settings. The LCD screen is normally unlit, but
pressing the VIEW key will display the digest screen and pressing any key other than VIEW
and RESET will display the menu screen.
These screens are turned off by pressing the RESET key or END key. If any display is left for
5 minutes or longer without operation, the back-light will go off.
LED
There are 9 LED displays. The signal labels and LED colors are defined as follows:
Label
Color
Remarks
IN SERVICE
Green
Lit when the relay is in service and flickered when the relay is in “Test” menu.
TRIP
ALARM
(LED1)
(LED2)
(LED3)
(LED4)
(LED5)
(LED6)
Red
Red
Yellow
Yellow
Yellow
Yellow
Yellow
Yellow
Lit when a trip command is issued.
Lit when a failure is detected.
Configurable LED to assign signals with or without latch when relay operates.
Configurable LED to assign signals with or without latch when relay operates.
Configurable LED to assign signals with or without latch when relay operates.
Configurable LED to assign signals with or without latch when relay operates.
Configurable LED to assign signals with or without latch when relay operates.
Configurable LED to assign signals with or without latch when relay operates.
LED1 to LED6 are configurable. For the setting, see Section 4.2.6.10.
The TRIP LED lights up once the relay is operating and remains lit even after the trip command
goes off. The TRIP LED can be turned off by pressing the RESET key. Other LEDs are lit as
long as a signal is present and the RESET key is invalid while the signal is being maintained.
⎯ 34 ⎯
6 F 2 S 0 9 0 0
Operation keys
The operation keys are used to display records, statuses, and setting values on the LCD, as well as
to input or change setting values. The functions of each operation key are as follows:
c
,
,
, : Used to move lines displayed on an LCD screen. Keys
used to enter numerical values.
and
are also
d CANCEL :
Used to cancel entries or return to the upper (previous) screen.
e END :
Used to end entering operation, or return to the upper (previous) screen or
turn off the display.
f ENTER :
Used to store or establish entries.
VIEW and RESET keys
Pressing VIEW key displays digest screens such as "Metering", "Latest fault" and
"Auto-supervision", "Alarm display" and "Indication"
Pressing RESET key turns off the display.
Monitoring jacks
The two monitoring jacks A and B and their respective LEDs can be used when the test mode is
selected on the LCD screen. By selecting the signal to be observed from the "Signal List" (See
Appendix B) and setting it on the screen, the signal can be displayed on LED A or LED B, or
transmitted to an oscilloscope via the monitoring jacks.
RS232C connector
The RS232C connector is a 9-way D-type connector for serial RS232C connection with a local
personal computer.
⎯ 35 ⎯
6 F 2 S 0 9 0 0
4.1.2
Communication Ports
The following two interfaces are mounted as communication ports:
• RS232C port
• RS485, Fibre optic or Ethernet LAN port for serial communication
• IRIG-B port
RS232C port
This connector is a standard 9-way D-type connector for serial port RS232C transmission and is
mounted on the front panel. By connecting a personal computer to this connector, setting
operation and display functions can be performed. (See Figure 3.1.3.)
RS485, Fibre optic or Ethernet LAN port
The RS485 port or the fibre optic port is connected to the IEC60870-5-103 communication via
BCU/RTU (Bay Control Unit / Remote Terminal Unit) to connect between relays and to construct
a network communication system. (See Figure 4.4.1 in Section 4.4.) The RS485 port is a screw
terminal and the fibre optic port is the ST connector.
Ethernet LAN port is connected to the substation automation system via Ethernet communication
networks using IEC 61850 protocol. This port can also be connected to the RSM. 100Base-TX
(T1: RJ-45 connector) or 100Base-FX (F1: SC connector) for Ethernet LAN is provided on the
back of the relay as shown in Figure 4.1.1.
IRIG-B port
The IRIG-B port collects serial IRIG-B format data from the external clock to synchronize the
relay calendar clock. The IRIG-B port is isolated from the external circuit by a photo-coupler.
This port is on the back of the relay, as shown in Figure 4.1.1.
RS485 connection
terminal
TB3
TB1
Fibre Optic
(ST)
IRIG-B
TB2
OPT
T
TB1
R
TB3
IRIG-B
TB2
T1
F1
R
T
E
E
Rear view
(a) RS485 + 100BASE-TX
Rear view
(b) Fibre optic port + 100BASE-FX
Figure 4.1.1 Location of Communication Port
⎯ 36 ⎯
6 F 2 S 0 9 0 0
4.2
Operation of the User Interface
The user can access such functions as recording, measurement, relay setting and testing with the
LCD display and operation keys.
Note: LCD screens depend on the relay model and the scheme switch setting. Therefore,
LCD screens described in this section are samples of typical model.
4.2.1
LCD and LED Displays
Displays during normal operation
When the GRB150 is operating normally, the green "IN SERVICE" LED is lit and the LCD is off.
Press the VIEW key when the LCD is off to display the digest screens which are "Indication",
"Metering1", "Metering2", "Metering3", "Latest fault", "Auto-supervision" and "Alarm Display"
screens in turn. "Latest fault", "Auto-supervision" and "Alarm Display" screens are displayed
only when there is some data. The following are the digest screens and can be displayed without
entering the menu screens.
Indication
I N D 1 [ 0 0 0 0
I N D 2 [ 0 0 0 1
0 0 0 0 ]
0 0 0 0 ]
Metering 1
V d
∗ ∗ ∗ . ∗
V
For Model 101
V d a
∗ ∗ ∗ . ∗
V
For Model 201
V d b
∗ ∗ ∗ . ∗
V
For Model 201
V d c
∗ ∗ ∗ . ∗
V
For Model 201
Metering 2
Metering 3
To clear the latched indications (latched LEDs, LCD screen of Latest fault), press RESET key
for 3 seconds or more.
For any display, the back-light is automatically turned off after five minutes.
Indication
This screen shows the status of elements assigned as a virtual LED.
I N D 1 [ 0 0 0 0
I N D 2 [ 0 0 0 1
0 0 0 0 ]
0 0 0 0 ]
Status of element,
Elements depend on user setting. 1: Operate, 0: Not operate (Reset)
⎯ 37 ⎯
6 F 2 S 0 9 0 0
Displays in tripping
Latest fault
T r i p
For Model 101
D I F - A B C
T r i p
For Model 201
If a fault occurs and a tripping command is output when the LCD is off, the red "TRIP" LED and
other configurable LED if signals assigned to trigger by tripping
Press the VIEW key to scroll the LCD screen to read the rest of messages.
Press the RESET key to turn off the LEDs and LCD display.
Notes:
1) When configurable LEDs (LED1 through LED6) are assigned to latch signals by trigger of
tripping, press the RESET key more than 3s until the LCD screens relight. Confirm turning
off the configurable LEDs. Refer to Table 4.2.1 Step 1.
2) Then, press the RESET key again on the "Latest fault" screen in short period, confirm turning
off the "TRIP" LED. Refer to Table 4.2.1 Step 2.
3) When only the "TRIP" LED is go off by pressing the RESET key in short period, press the
RESET key again to reset remained LEDs in the manner 1) on the "Latest fault" screen or
other digest screens. LED1 through LED6 will remain lit in case the assigned signals are still
active state.
Table 4.2.1 Turning off latch LED operation
LED lighting status
Operation
Step 1
"TRIP" LED
Press the RESET key more than 3s on
the "Latest fault" screen
continue to lit
Step 2
Configurable LED
(LED1 - LED6)
turn off
Then, press the RESET key in short
period on the "Latest fault" screen
turn off
When any of the menu screens is displayed, the VIEW and RESET keys do not function.
To return from menu screen to the digest "Latest fault" screen, do the following:
• Return to the top screen of the menu by repeatedly pressing the END key.
• Press the END key to turn off the LCD.
⎯ 38 ⎯
6 F 2 S 0 9 0 0
• Press the VIEW key to display the digest "Latest fault" screen.
Auto-supervision
E r r : R OM , A / D
If the automatic supervision function detects a failure while the LCD is off, the
"Auto-supervision" screen is displayed automatically, showing the location of the failure, and the
"ALARM" LED lights.
Press the VIEW key to display other digest screens in turn including the "Metering" and "Latest
fault" screens.
Press the RESET key to turn off the LEDs and LCD display. However, if the failure continues,
the "ALARM" LED remains lit.
After recovery from a failure, the "ALARM" LED and "Auto-supervision" display turn off
automatically.
If a failure is detected while any of the screens is displayed, the current screen remains displayed
and the "ALARM" LED lights.
Notes:
1) When configurable LEDs (LED1 through LED6) are assigned to latch signals by issuing an
alarm, press the RESET key more than 3s until all LEDs reset except "IN SERVICE" LED.
2) When configurable LED is still lit by pressing RESET key in short period, press RESET
key again to reset remained LED in the above manner.
3) LED1 through LED6 will remain lit in case the assigned signals are still active state.
While any of the menu screens is displayed, the VIEW and RESET keys do not function. To
return to the digest "Auto-supervision" screen, do the following:
• Return to the top screen of the menu by repeatedly pressing the END key.
• Press the END key to turn off the LCD.
• Press the VIEW key to display the digest screen.
Alarm Display
Alarm Display (ALM1 to ALM4)
∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗
: A L M 1
∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗
The four alarm screens can be provided, and their text messages are defined by user. (For setting,
see Section 4.2.6.8) These alarms are raised by associated binary inputs.
Press the VIEW key to display other digest screens in turn including the "Metering" and "Latest
fault" screens.
To clear the Alarm Display, press RESET key. The clearing is available after displaying up to
ALM4.
⎯ 39 ⎯
6 F 2 S 0 9 0 0
4.2.2
Relay Menu
Figure 4.2.1 shows the menu hierarchy in the GRB150. The menu has five sub-menus, "Record",
"Status", "Set. (view)", "Set. (change)", and "Test". For details of the menu hierarchy, see
Appendix D.
Menu
Record
F. record
E. record
D. record
Status
Metering
Binary I/O
Ry element
Time synch.
Clock adjust.
LCD contrast
Set. (view)
Version
Description
Comms
Record
Status
Protection
Binary I/P
Binary O/P
LED
Set. (change)
Password
Description
Comms
Record
Status
Protection (Protected by password)
Binary I/P
Binary O/P
LED
Test
Switch
Binary O/P
Logic circuit
Figure 4.2.1 Relay Menu
⎯ 40 ⎯
6 F 2 S 0 9 0 0
Record
In the "Record" menu, the fault record, event record and disturbance record can be displayed or
erased.
Status
The "Status" menu displays the power system quantities, binary input and output status, relay
measuring element status, signal source for time synchronisation (BI, RSM, IEC60870-5-103 or
SNTP), clock adjustment and LCD contrast.
Set. (view)
The "Set. (view)" menu displays the relay version, plant name and the current settings of relay
address, IP address and RS232C baud rate in communication, record, status, protection,
configurable binary inputs, configurable binary outputs and configurable LEDs.
Set. (change)
The "Set. (change)" menu is used to set or change the settings of password, plant name, relay
address, IP address and RS232C baud rate in communication, record, status, protection,
configurable binary inputs, configurable binary outputs and configurable LEDs.
Since this is an important menu and is used to set or change settings related to relay tripping, it has
password security protection.
Test
The "Test" menu is used to set testing switches and to forcibly operate binary output relays.
The "Test" menu also has password security protection.
When the LCD is off, press any key other than the VIEW and RESET keys to display the top
"MENU" screen and then proceed to the relay menus.
•
•
•
•
•
R
S
S
S
T
e
t
e
e
e
M
c
a
t
t
s
E N U
o r d
t u s
.
( v i e w )
.
( c h a n g e )
t
To display the "MENU" screen when the digest screen is displayed, press the RESET key to
turn off the LCD, then press any key other than the VIEW and RESET keys.
Press the END key when the top screen is displayed to turn off the LCD.
An example of the sub-menu screen is shown below. The top line shows the hierarchical layer.
The last item is not displayed for all the screens. "/4" displayed on the far left means that the
screen is in the fourth hierarchical layer, while " " or " " displayed on the far right shows that
upper or lower lines exist.
To move the cursor downward or upward for setting or for viewing other lines not displayed on
or
key.
the window, use
/ 4
S c h e m e
⎯ 41 ⎯
s w
6 F 2 S 0 9 0 0
T
O
V
O
r i p
f f / O n
d
e r r
f f / O n
1
_
1
_
To return to the higher screen or move from the right side screen to the left side screen in
Appendix D, press the END key.
The CANCEL key can also be used to return to the higher screen but it must be used carefully
because it may cancel entries made so far.
To move between screens of the same hierarchical depth, first return to the higher screen and then
move to the lower screen.
4.2.3
Displaying Records
The sub-menu of "Record" is used to display fault records, event records, disturbance records and
counts such as trip count, ΣIy count and reclose count.
4.2.3.1
Displaying Fault Records
To display fault records, do the following:
• Open the top "MENU" screen by pressing any keys other than the VIEW and RESET
keys.
• Select "Record" to display the "Record" sub-menu.
/
•
•
•
•
1
F
E
D
C
.
.
.
o
R
r
r
r
u
e
e
e
e
n
c
c
c
c
t
o
o
o
o
e
d
r d
r d
r d
r
• Select "F. record" to display the "Fault record" screen.
/ 2
F . r e c o r d
• D i s p l a y
• C l e a r
• Select "Display" to display the dates and times of fault records stored in the relay from the
top in new-to-old sequence.
/ 3
F . r e c o r d
# 1
1
1
2
1
0
1
2
0
# 2
# 3
# 4
6
8
0
5
4
1
8
7
/
:
/
:
/
:
/
:
O
1
S
2
J
5
F
3
c
3
e
9
u
4
e
0
t
:
p
:
l
:
b
:
/
5
/
2
/
5
/
1
1
7
1
2
1
3
1
8
9
.
9
.
9
.
9
.
9
0
9
1
9
2
9
4
7
3
7
0
7
9
7
1
1
1
9
2
• Move the cursor to the fault record line to be displayed using the
the ENTER key to display the details of the fault record.
⎯ 42 ⎯
and
keys and press
6 F 2 S 0 9 0 0
/
1
1
D
T
P
V
V
V
F
V
V
V
3
6
8
I
r
r
d
d
d
a
d
d
d
/
:
F
i
e
a
b
c
u
a
b
c
F
O
1
p
f
.
c
3
A
r
t
:
B
a
∗
∗
∗
l t
∗
∗
∗
u
∗
∗
∗
e c o r d
# 1
/ 1 9 9 7
5 7 . 0 3 1
C
l
∗
∗
∗
v
∗ ∗
∗ ∗
∗ ∗
t
.
.
.
a
.
.
.
v a l u e s
V
∗
V
∗
V
∗
l u e s
V
∗
V
∗
V
∗
The lines which are not displayed in the window can be displayed by pressing the
and
keys.
To clear fault records, do the following:
• Open the "Record" sub-menu.
• Select "F. record" to display the "Fault record" screen.
• Select "Clear" to display the following confirmation screen.
C l e a r
E N D = Y
r e c o r d ?
C A N C E L = N
• Press the END (= Y) key to clear all the fault records stored in non-volatile memory.
If all fault records have been cleared, the "Latest fault" screen of the digest screens is not
displayed.
4.2.3.2
Displaying Event Records
To display event records, do the following:
• Open the top "MENU" screen by pressing any keys other than the VIEW and RESET
keys.
• Select "Record" to display the "Record" sub-menu.
• Select "E. record" to display the "Event record" screen.
/ 2
E . r e c o r d
• D i s p l a y
• C l e a r
• Select "Display" to display the events with date from the top in new-to-old sequence.
/ 3
1
T
1
V
1
R
6
r
6
d
6
l
E . r e c o r d
/ O c
i p
/ O c
e r
/ O c
y .
t / 1 9 9 7
O n
t / 1 9 9 7
r
t / 1 9 9 7
c h a n g e
The time is displayed by pressing the
key.
⎯ 43 ⎯
O n
6 F 2 S 0 9 0 0
/ 3
1
T
1
V
1
R
Press the
8
r
8
d
8
l
E . r e c o r d
: 1 3
i p
: 1 3
e r
: 1 3
y .
: 5 8 . 2 5 5
O n
: 5 8 . 0 2 8
r
O n
: 5 8 . 5 2 8
c h a n g e
key to return the screen with date.
The lines which are not displayed in the window can be displayed by pressing the
and
keys.
To clear event records, do the following:
• Open the "Record" sub-menu.
• Select "E. record" to display the "Event record" screen.
• Select "Clear" to display the following confirmation screen.
C l e a r
E N D = Y
r e c o r d ?
C A N C E L = N
• Press the END (= Y) key to clear all the event records stored in non-volatile memory.
4.2.3.3
Displaying Disturbance Records
Details of disturbance records can be displayed on the PC screen only (*); the LCD displays only
the recorded date and time for all disturbances stored in the relay. They are displayed in the
following sequence.
(*) For the display on the PC screen, refer to the RSM100 manual.
• Open the top "MENU" screen by pressing any keys other than the VIEW and RESET
keys.
• Select "Record" to display the "Record" sub-menu.
• Select "D. record" to display the "Disturbance record" screen.
/ 2
D . r e c o r d
• D i s p l a y
• C l e a r
• Select "Display" to display the date and time of the disturbance records from the top in
new-to-old sequence.
/ 3
D . r e c o r d
# 1
1
1
2
1
0
1
2
0
# 2
# 3
# 4
6
8
0
5
4
1
8
7
/
:
/
:
/
:
/
:
O
1
S
2
J
5
F
3
c
3
e
9
u
4
e
0
t
:
p
:
l
:
b
:
/
5
/
2
/
5
/
1
1
7
1
2
1
3
1
8
9
.
9
.
9
.
9
.
9
4
9
3
9
4
9
8
7
0
7
8
7
4
7
7
1
8
4
6
The lines which are not displayed in the window can be displayed by pressing the
⎯ 44 ⎯
and
6 F 2 S 0 9 0 0
keys.
To clear disturbance records, do the following:
• Open the "Record" sub-menu.
• Select "D. record" to display the "Disturbance record" screen.
• Select "Clear" to display the following confirmation screen.
C l e a r
E N D = Y
r e c o r d ?
C A N C E L = N
• Press the END (= Y) key to clear all the disturbance records stored in non-volatile
memory.
4.2.3.4
Displaying Counter
• Open the top "MENU" screen by pressing any keys other than the VIEW and RESET
keys.
• Select "Record" to display the "Record" sub-menu.
• Select "Counter" to display the "Counter" screen.
/ 2
C o u n t e r
• D i s p l a y
T r i p s
• C l e a r
• Select "Display" to display the counts stored in the relay.
/ 3
C o u n t e r
T r i p s
∗ ∗ ∗ ∗ ∗
The lines which are not displayed in the window can be displayed by pressing the
keys.
and
To clear each count, do the following:
• Open the "Record" sub-menu.
• Select "Counter" to display the "Counter" screen.
• Select "Clear Trips" to display the following confirmation screen.
C l e a r
E N D = Y
T r i p s ?
C A N C E L = N
• Press the END (= Y) key to clear the count stored in non-volatile memory.
4.2.4
Displaying the Status Information
From the sub-menu of "Status", the following status condition can be displayed on the LCD and is
updated every second:
Metering data of the protected line
Status of binary inputs and outputs
Status of relay elements
⎯ 45 ⎯
6 F 2 S 0 9 0 0
Status of time synchronisation source
The user can also adjust the time of the internal clock and the LCD contrast in this sub-menu.
4.2.4.1
Displaying Metering Data
To display metering data on the LCD, do the following:
• Select "Status" on the top "MENU" screen to display the "Status" screen.
/
•
•
•
•
•
•
1
M
B
R
T
C
L
e
i
e
i
l
C
S
t
n
l
m
o
D
t
e
a
a
e
c
a t u s
r i n g
r y
I /
y
e l e
s y n
k
a d j
c o n t r
O
m
c
u
a
e n t
.
s t .
s t
• Select "Metering" to display the "Metering" screen.
/ 2
V d
M e t e r i n g
V
∗ ∗ ∗ . ∗
(Model 101)
/ 2
M e
V d a
∗
V d b
∗
V d c
∗
(Model 201)
4.2.4.2
t
∗
∗
∗
e
∗
∗
∗
r
.
.
.
i n g
V
∗
V
∗
V
∗
Displaying the Status of Binary Inputs and Outputs
To display the binary input and output status, do the following:
• Select "Status" on the top "MENU" screen to display the "Status" screen.
• Select "Binary I/O" to display the binary inputs and outputs status.
/
I
O
O
2
P
P
P 2
B
[
[
[
i
0
0
0
n
0
0
0
a
0
0
0
r y
I / O
0
0 0 0 0 ]
0
0 0 0
]
0
]
The display format is shown below.
[„
„
„
„
„
„
„
„]
Input (IP)
BI1
BI2
BI3
BI4
BI5
BI6
BI7
BI8
Output (OP)
BO1
BO2
BO3
BO4
BO5
BO6
FAIL
—
Output (OP2)
HBO1
HBO2
HBO3
HBO4
—
—
—
—
Line 1 shows the binary input status. BI1 to BI8 correspond to a binary input signal. For the
binary input signal, see Appendix F. The status is expressed with logical level "1" or "0" at the
photo-coupler output circuit.
Lines 2 and 3 show the binary output statuses. BO1 to BO6 of line 2 corresponding to the binary
outputs are a normal auxiliary relay, which are configurable. FAIL of line 3 corresponds to the
relay failure output. HBO1 to HBO4 of line 3 are a high-speed auxiliary relay, which are
configurable. The status of these outputs is expressed with logical level "1" or "0" at the input
⎯ 46 ⎯
6 F 2 S 0 9 0 0
circuit of the output relay driver. That is, the output relay is energised when the status is "1".
and
To display all the lines, press the
4.2.4.3
keys.
Displaying the Status of Relay Elements
To display the status of measuring elements on the LCD, do the following:
• Select "Status" on the top "MENU" screen to display the "Status" screen.
• Select "Relay element" to display the status of the relay elements.
Model 101:
/ 2
R y
e l e m e n t
0
0
[
]
R y
e l e m e n t
0 0 0
[ 0 0 0
]
Model 201:
/ 2
The display format is as shown below.
Model 101:
DIF, DIFSV
[„
DIF
„
DIFSV
„
[„
„
„
„
„
„
A
B
DIF
C
A
B
DIFSV
C
„
„
„
„
„]
„
„]
Model 201:
DIF, DIFSV
This shows the operation status of differential elements and the supervisory element.
The status of each element is expressed with logical level "1" or "0". Status "1" means the element
is in operation.
4.2.4.4
Displaying the Status of the Time Synchronisation Source
The internal clock of the GRB150 can be synchronised with external clocks such as the binary
input signal clock, IEC60870-5-103 or SNTP server. To display on the LCD whether these clocks
are active (=Act.) or inactive (=Inact.) and which clock the relay is synchronised with, do the
following:
• Select "Status" on the top "MENU" screen to display the "Status" screen.
• Select "Time sync." to display the status of time synchronisation sources.
/ 2
B
I
I
∗ S
T i
I
R I G
E C
N T P
m
:
:
:
:
e
I
I
I
A
n
n
n
c
s
a
a
a
t
y
c
c
c
.
n c .
t
.
t
.
t
.
( S r v 1 )
The asterisk on the far left shows that the internal clock is synchronised with the marked source
clock. If the marked source clock is inactive, the internal clock runs locally.
⎯ 47 ⎯
6 F 2 S 0 9 0 0
Note: If the Binary input signal has not been detected for one hour or more after the last detection, the
status becomes "inactive".
For details of the setting time synchronisation, see Section 4.2.6.6.
4.2.4.5
Clock Adjustment
To adjust the clock when the internal clock is running locally, do the following:
• Select "Status" on the top "MENU" screen to display the "Status" screen.
• Select "Clock adjust." to display the setting screen.
/ 2
M i
H o
D a
M o
Y e
1 2 / N o v / 2 0 0 1
2 2 : 5 6 : 1 9
L o c
n u t e
5 6
_
u r
2 2
y
1 2
n t h
1 1
a r
2 0 0 1
Loc:Local, BI:BI, IRI:IRIG-B, IEC:IEC103, SNT:SNTP
Line 1 and 2 show the current date and time. The time can be adjusted only when the clock is
running locally. When [BI], [IEC] or [RSM] is active, the adjustment is invalid.
• Enter a numerical value for each item and press the ENTER key. For details to enter a
numerical value, see 4.2.6.1.
• Press the END key to adjust the internal clock to the set hours without fractions and
return to the previous screen.
If a date which does not exist in the calendar is set and END is pressed, "**** Error ****" is
displayed on the top line and the adjustment is discarded. Return to the normal screen by pressing
the CANCEL key and adjust again.
4.2.4.6
LCD Contrast
To adjust the contrast of LCD screen, do the following:
• Select "Status" on the top "MENU" screen to display the "Status" screen.
• Select "LCD contrast" to display the setting screen.
L C D
c o n t r a s t
• Press the or key to adjust the contrast. The screen becomes dark by pressing the
key and light by pressing the key.
4.2.5
Viewing the Settings
The sub-menu "Set. (view)" is used to view the settings set in the sub-menu "Set. (change)".
The following items are displayed:
⎯ 48 ⎯
6 F 2 S 0 9 0 0
Relay version
Description
Communication (Relay address, IP address and baud rate in the RSM or IEC60870-5-103)
Record setting
Status setting
Protection setting
Binary input setting
Binary output setting
LED setting
Enter an item on the LCD to display each item as described in the previous sections.
4.2.5.1 Relay Version
To view the relay version, do the following.
• Select the "Set.(view)" on the main menu.
/
•
•
•
•
•
•
•
•
•
1
V
D
C
R
S
P
B
B
L
e
e
o
e
t
r
i
i
E
S
r
s
m
c
a
o
n
n
D
e
s
c
m
o
t
t
a
a
t
i
r
s
r
u
e
r
r
. ( v i e w )
o n
i p t i o n
d
s
c t i o n
y
I / P
y
O / P
• Select "Version" to display the relay version screen.
/ 2
V e r s i o n
t y p e
• R e l a y
N o .
• S e r i a l
• S o f t w a r e
• Select "Relay type" to display the relay type form and model number.
G R B 1 5 0 - 1 0 1 D - 1 0
- A 0
• Select "Serial number" to display the relay manufacturing number.
• Select "Software" to display the relay software type form.
• M
G
• I
∗
• P
∗
(
• I
∗
a
S
E
∗
L
∗
∗
E
∗
i
P
C
∗
C
∗
∗
C
∗
n
s o
∗ ∗ ∗ 6 1 8 5
∗ ∗ ∗ d a t
∗ ∗ ∗ ∗
∗ ∗ ∗ ∗
1 0 3
∗ ∗ ∗ ∗
f
∗
0
∗
a
∗
∗
d
∗
t w a r e
∗ - ∗
e n g .
∗ - ∗
∗
∗
a
∗
⎯ 49 ⎯
∗ ∗ ∗
)
t a
∗ ∗ ∗
6 F 2 S 0 9 0 0
(
• I
∗
(
G
•
∗
(
4.2.5.2
∗
E
∗
∗
O
∗
∗
∗
C
∗
∗
O
∗
∗
∗
6
∗
∗
S
∗
∗
∗
1
∗
∗
E
∗
∗
∗
8
∗
∗
∗
5
∗
∗
s
∗ ∗
∗ ∗
∗
0
∗
∗
u
∗
∗
∗ )
d
∗ ∗
∗ )
b s
∗ ∗
∗ )
a t a
∗ ∗
c .
∗ ∗
Settings
The "Description", "Comms", "Record", "Status", "Protection", "Binary I/P", "Binary O/P" and
"LED" screens display the current settings input using the "Set. (change)" sub-menu.
4.2.6
Changing the Settings
The "Set. (change)" sub-menu is used to make or change settings for the following items:
Password
Description
Communication (Relay address, IP address and baud rate in the RSM or IEC60870-5-103)
Recording setting
Status setting
Protection setting
Binary input setting
Binary output setting
LED setting
All of the above settings except the password can be seen using the "Set. (view)" sub-menu.
CAUTION
Care should be taken when modifying settings for "active group",
Modification of settings :
"scheme switch" and "protection element" in the "Protection" menu. Dependencies exist between
the settings in the various menus, with settings in one menu becoming active (or inactive)
depending on the selection made in another menu. Therefore, it is recommended that all
necessary settings changes be made while the circuit breaker tripping circuit is disconnected.
Alternatively, if it is necessary to make settings changes with the tripping circuit active, then it is
recommended to enter the new settings into a different settings group, and then change the "active
group" setting, thus ensuring that all new settings become valid simultaneously.
4.2.6.1
Setting Method
There are three setting methods to enter as follows:
- A selective item
- A text string
- Numerical values
To enter a selected item
If a screen below is displayed, perform the settings as follows.
⎯ 50 ⎯
6 F 2 S 0 9 0 0
The cursor can be moved to upper or lower lines within the screen by pressing the
keys. If a setting (change) is not required, skip the line with the
and
keys.
/
•
•
•
•
•
•
•
•
•
1
P
D
C
R
S
P
B
B
L
a
e
o
e
t
r
i
i
E
S
s
s
m
c
a
o
n
n
D
e
s
c
m
o
t
t
a
a
t
w
r
s
r
u
e
r
r
and
. ( c h a n g e)
o r d
i p t i o n
d
s
c t i o n
y
I / P
y
O / P
• Move the cursor to a setting item.
• Press the ENTER key.
To enter a text string
Text strings are entered under "Plant name" or "Description" screen.
/ 2
D e s c r i p t i o n
n a m e
• P l a n t
• D e s c r i p t i o n
To select a character, use keys , , and to move the blinking cursor down, left, up and
right. "→" and "←" on each of lines 4, 8 and 10 indicate a space and backspace, respectively. A
maximum of 22 characters can be entered within the brackets.
A B C D E F G
H
O
V
a
h
o
v
0
7
(
}
>
‘
I
P
W
b
i
p
w
1
8
)
∗
!
:
L
Q
X
c
j
q
x
2
9
[
/
“
;
K
R
Y
d
k
r
y
3
]
+
#
,
L
S
Z
e
l
s
z
4
M N
T U
←→
f g
m n
t u
←→
5 6
←→
@_ {
− < =
$ %&
. ˆ `
• Set the cursor position in the bracket by selecting "→" or "←" and pressing the ENTER
key.
• Move the blinking cursor to a selecting character.
• Press the ENTER key to enter the blinking character at the cursor position in the
brackets.
• Press the END key to confirm the entry and return to the upper screen.
⎯ 51 ⎯
6 F 2 S 0 9 0 0
To correct the entered character, do either of the following:
• Discard the character by selecting "←" and pressing the ENTER key and enter the new
character.
• Discard the whole entry by pressing the CANCEL key and restart the entry from the first
step.
To enter numerical values
When a screen shown below is displayed, perform the settings as follows:
The number to the left of the cursor shows the current setting or default setting set at shipment.
The cursor can be moved to the upper or lower lines within the screen by pressing the
and
keys. If a setting (change) is not required, skip the line with the
and
keys.
/ 6
P r o t . e l e m e n t
D I F
D I F
T V D
0
D I F
1
T C L
0
T C L
0
T C L
0
V
1 0
S V
5
S V
. 5 0
C C
. 0 0
P
. 0 1
E
. 0 0
R
. 0 0
_
V
_
s
_
_
s
_
s
_
s
_
• Move the cursor to a setting line.
• Press the
key.
or
key to set a desired value. The value is up or down by pressing the
or
• Press the ENTER key to confirm the entry.
• After completing the setting on the screen, press the END key to return to the upper
screen.
To correct the entered numerical value, do the following.
• If it is before pressing the ENTER key, press the CANCEL key and enter the new
numerical value.
• If it is after pressing the ENTER key, move the cursor to the correcting line by pressing
the
and
keys and enter the new numerical value.
Note: If the CANCEL key is pressed after any of the entry is confirmed by pressing the ENTER
key, all the entries made so far on the screen concerned are canceled and screen returns to the
upper one.
To complete the setting
After making entries on each setting screen by pressing the ENTER key, the new settings are
⎯ 52 ⎯
6 F 2 S 0 9 0 0
not yet used for operation, though stored in the memory. To validate the new settings, take the
following steps.
• Press the END key to return to the upper screen. Repeat this until the confirmation screen
shown below is displayed. The confirmation screen is displayed just before returning to
the "Set. (change)" sub-menu.
C h a n g e
s e t t i n g s ?
E N T E R = Y
C A N C E L = N
• When the screen is displayed, press the ENTER key to start operation using the new
settings, or press the CANCEL key to correct or cancel the entries. In the latter case, the
screen turns back to the setting screen to enable re-entries. Press the CANCEL key to
cancel entries made so far and to turn to the "Set. (change)" sub-menu.
4.2.6.2
Password
For the sake of security of Setting changes and Testing, password protection can be set as follows:
• Select "Set. (change)" on the main "MENU" screen to display the "Setting change" screen.
• Select "Password" to display the "Password" screen.
/ 2
P a s s w o r d
• S e t t i n g
• T e s t
• Select "Setting" to set the password for the setting change.
• Enter a 4-digit number within the brackets after "Input" and press the ENTER key.
I n p u t
[ _
0 1 2 3 4 5 6 7 8 9 ←
]
• For confirmation, enter the same 4-digit number in the brackets after "Retype".
R e t y p e
[ _
0 1 2 3 4 5 6 7 8 9 ←
]
• Press the END key to display the confirmation screen. If the retyped number is different
from that first entered, the following message is displayed on the bottom of the "Password"
screen before returning to the upper screen.
"Unmatch password!"
Re-entry is then requested.
• Select "Test" to set the password for the test.
Set the password the same manner as that of the "Setting" above.
Password trap
After the password has been set, the password must be entered in order to enter the setting change
screens.
If "Set. (change)" is entered on the top "MENU" screen, the password trap screen "Password" is
displayed. If the password is not entered correctly, it is not possible to move to the "Set. (change)"
sub-menu screens.
⎯ 53 ⎯
6 F 2 S 0 9 0 0
P a s s w o r d
[ _
0 1 2 3 4 5 6 7 8 9 ←
]
Canceling or changing the password
To cancel the password protection, enter "0000" in the two brackets on the "Password" screen.
The "Set. (change)" screen is then displayed without having to enter a password.
The password can be changed by entering a new 4-digit number on the "Password" screen in the
same way as the first password setting.
If you forget the password
Press CANCEL and RESET keys together for one second on the top "MENU" screen. The
screen goes off, and the password protection of the GRB150 is canceled. Set the password again.
4.2.6.3
Description
To enter the plant name and other data, do the following. These data are attached to records.
• Select "Set. (change)" on the main "MENU" screen to display the "Set. (change)" screen.
• Select "Description" to display the "Description" screen.
/ 2
D e s c r i p t i o n
n a m e
• P l a n t
•
•
•
•
•
D
A
A
A
A
e
l
l
l
l
s
a
a
a
a
c
r
r
r
r
r
m
m
m
m
i p t i o n
1
T e x t
2
T e x t
3
T e x t
4
T e x t
• To enter the plant name, select "Plant name" on the "Description" screen.
• To enter special items, select "Description" on the "Description" screen.
• To enter the name for Alarm∗, select "Alarm∗" on the "Description" screen.
_
A
H
O
V
a
h
o
v
0
7
(
}
>
‘
B
I
P
W
b
i
p
w
1
8
)
∗
!
:
C
J
Q
X
c
j
q
x
2
9
[
/
“
;
D
K
R
Y
d
k
r
y
3
]
+
#
,
E
L
S
Z
e
l
s
z
4
F G
M N
T U
←→
f g
m n
t u
←→
5 6
←→
@_ {
− < =
$ %&
. ˆ `
• Enter the text string (up to 22 characters) according to the text setting method
The plant name and special items entered are viewed with the "Set.(view)" sub-menu and
attached to disturbance records when they are displayed on a local or a remote PC.
⎯ 54 ⎯
6 F 2 S 0 9 0 0
4.2.6.4
Communication
If the relay is linked with RSM (relay setting and monitoring system) or IEC60870-5-103
communication, the relay address must be set. Do this as follows:
Note: The settings related to IEC60870-5-103 communication are available for the relay with dual
RS485 port.
• Select "Set. (change)" on the main "MENU" screen to display the " Set. (change)" screen.
• Select "Comms" to display the "Comms" screen.
/ 2
C o m m s
• A d d r . / P a r a m .
• S w i t c h
• Select "Addr./Param." on the "Comms" screen to enter the relay address number.
/ 3
A d d r . / P a r a m
I E C
2
_
S Y A D J
0
I P 1 1
I P 1 1
I P 1 I P 1 1
S M 1 2
S M 1 2
S M 1 2
S M 1 -
1
9
2
6
3
1
4
7
1
5
2
5
3
5
4
2
8
9
2
5
5
5
0
1
9 2
2
6 8
3
1 9
1 - 4
1
:
:
4 - 1
0
4 - 2
0
4 - 3
0
4 - 4
0
O D E
G W1 1
G W1 1
G W1 G W
S I
S I
S I
S I
S M
⎯ 55 ⎯
6 F 2 S 0 9 0 0
0
D E A D T
1 2 0
G O I N T
6 0
P G 1 - 1
0
P G 1 - 2
0
P G 1 - 3
0
P G 1 - 4
0
P G 2 - 1
0
P G 2 - 2
0
P G 2 - 3
0
P G 2 - 4
0
m i n
s
• Enter the address number on "IEC" column for IEC60870-5-103 and the compensation
value on "SYADJ" column for adjustment of time synchronization of protocol used (−:
lags the time, +: leads the time).
Enter IP address for IP1-1 to IP1-4, Subnet mask for SM1-1 to SM1-4, Default gateway for
GW1-1 to GW1-4, and SNTP server address for SI1-1 to SI4-4. Four SNTP servers are
available.
Enter "0" or "1" on "SMODE" column to set the standard time synchronized mode for
SNTP server. Using low accuracy level of time server, synchronized compensation to
maintain synchronization accuracy may not be done automatically. Therefore enter "1",
and synchronized compensation is done forcibly. The default setting is "0".
Enter the time on "GOINT" to set the maximum GOOSE message publishing term if
GOOSE message receive checked. Enter the time on "DEADT" to set the Keep Alive time.
Enter the IP address of the device for PG1-1 to PG1-4 if Ping response is checked.
IP address:
∗∗∗, ∗∗∗, ∗∗∗, ∗∗∗
IP1-1 IP1-2 IP1-3 IP1-4
SM1-1 to SM1-4, GW1-1 to GW1-4, SI1-1 to SI4-4, PG1-1 to PG1-4: same as above.
• Press the ENTER key.
CAUTION Do not overlap the relay address number.
• Select "Switch" on the "Comms" screen to select the protocol and transmission speed
(baud rate), etc., of the RSM or IEC60870-5-103 or IEC61850.
/ 3
2
9
I
9
I
N
8
3
.
E
.
E
o
5
S w i t c h
2
6
C
6
C
r
0
C
/
B
/
B
m
B
1
R
1
L
a
L
.
0
9 . 2 / 5 7 . 6
1
9 . 2
K
0
l / B l o c k e d
K
0
⎯ 56 ⎯
6 F 2 S 0 9 0 0
N
8
O
T
O
G
O
P
O
o
5
f
S
f
S
f
I
f
r
0
f
T
f
E
f
N
f
m
A
/
M
/
C
/
G
/
a
U
O
O
O
H
O
C
O
l / B l o c k e d
T
0
n
D
0
n
K
n
H K
n
• Select the number and press the ENTER key.
<232C>
This line is to select the RS-232C baud rate when the RSM system applied.
Note: default setting of the 232C is 9.6kbps. The 57.6kbps setting, if possible, is recommended to
serve user for comfortable operation. The setting of RSM100 is also set to the same baud rate.
<IECBR>
This line is to select the baud rate when the IEC60870-5-103 system applied.
<IECBLK>
Select 2 (=Blocked) to block the monitor direction for IEC60870-5-103 communication.
<850BLK>
Select 2 (=Blocked) to block the monitor direction for IEC61850 communication.
<850AUT>
With IEC61850 communication, GRB150 provides access restriction which permits a client
access only if an authentication parameter matches with a valid parameter (password). The
password is a 4-digit number shared with RSM100.
Select 1 (=On) to use the authentication function.
<TSTMOD>
Select 1 (=On) to set the test mode in IEC61850 communication.
<GSECHK>
This function is to alarm if any one of the GOOSE messages written in a GOOSE subscribe file
cannot be received.
Select 1 (=On) to execute a GOOSE receive check for IEC61850 communication.
<PINGCHK>
This function is to check the health of the network by regularly sending a ‘Ping’ to IP address
which is set on PG∗-∗.
Select 1 (=On) to execute a ‘Ping’ response check.
4.2.6.5
Setting the Recording function
To set the recording function as described in Section 4.2.3, do the following:
• Select "Set. (change)" on the main "MENU" screen to display the "Set. (change)" screen.
• Select "Record" to display the "Record" screen.
/ 2
R e c o r d
⎯ 57 ⎯
6 F 2 S 0 9 0 0
• E . r e c o r d
• D . r e c o r d
• C o u n t e r
Setting the event recording
• Select "E. record" to display the "Event record" screen.
/ 3
E . r e c o r d
B I T R
1
E V 1
3 0
E V 2
3 0
E V 3
3 0
:
:
E V 1 2
3 1
E V 1 2
3 1
N
0 0
_
0 1
_
0 2
_
0 3
_
7
2 7
8
2 8
_
_
<BITRN>
Enter the number of event to record the status change both to "On" and "Off". If 20 is entered,
both status change is recorded for EV1 to EV20 events and only the status change to "On" is
recorded for EV21 to EV128 events.
<EV∗>
Enter the signal number in Appendix C to record as the event. It is recommended that this setting
can be performed by RSM100 because the signal name cannot be entered by LCD screen. (Refer
to Section 3.4.2.)
Setting the disturbance recording
• Select "D. record" to display the "Disturbance record" screen.
/
•
•
•
3
D .
T i m e
S c h e
B i n a
r
/
m
r
e c o r d
s t a r t e r
e
s w
y
s i g .
• Select "Time/starter" to display the "Time/starter" screen.
/ 4
T i m e / s t a r t e r
T i m e
2 . 0
s
_
• Enter the recording time setting.
To set each starter to use or not to use, do the following:
• Select "Scheme sw" on the "Disturbance record" screen to display the "Scheme switch"
screen.
⎯ 58 ⎯
6 F 2 S 0 9 0 0
/ 4
T
O
V
O
S c h e m e
s w
R I P
f f / O n
d
e r r
f f / O n
1
_
1
_
• Enter 1 to use as a starter.
• If the selected switch is not used as a starter, enter 0.
To set each signal number to record binary signals, do the following:
• Select "Binary sig." on the "D. record" screen to display the "Binary sig." screen.
/ 4
B i n a r y
S I G
3
S I G
3
S I G
3
1
0 0 1
2
0 0 2
3
0 0 3
s i g .
_
S I G 3 2
3 0 3 2
• Enter the signal number to record binary signals in Appendix C.
Setting the counter
• Select "Counter" to display the "Counter" screen.
/ 3
C o u n t e r
s w
• S c h e m e
• A l a r m s e t
To set each counter to use or not to use, do the following:
• Select "Scheme sw" on the "Counter" screen to display the "Scheme sw" screen.
/ 4
T
O
C
O
T
O
C
f
B
f
C
f
S c h e m e
S
f
S
f
A
f
P
/
M
/
E
/
E
O
E
O
N
O
s w
N
0
_
n / O p t - O n
N
0
n
0
n
• Enter 1 to use as a counter. If not to be used as a counter, enter 0.
To set threshold setting, do the following:
• Select "Alarm set" on the "Counter" screen to display the "Alarm set" screen.
/ 4
A l a r m
T C A L M
1 0 0 0 0
s e t
_
• Enter the threshold settings.
⎯ 59 ⎯
6 F 2 S 0 9 0 0
4.2.6.6
Status
To set the status display described in Section 4.2.4, do the following:
Select "Status" on the "Set. (change)" sub-menu to display the "Status setting" screen.
/ 2
S t a t u s
s y n c
• T i m e
z o n e
• T i m e
Setting the time synchronisation
The calendar clock can run locally or be synchronised with the external IRIG-B time standard
signal, RSM clock, or by an IEC60870-5-103. This is selected by setting as follows.
• Select "Time sync" to display the "Time synchronisation" screen.
/ 3
T i m e
s y n c .
T i m e
s y n c
0
_
O f / B I / I R I / I E C / S N
• Enter 0 or 1 or 2 and press the ENTER key.
Enter 0 (=of) not to be synchronised with any external signals.
Enter 1(=BI) to be synchronised with the binary input signal.
Enter 2(=IRI) to be synchronised with IRIG-B time signal.
Enter 3(=IEC) to be synchronised with IEC60870-5-103.
Enter 4(=SN) to be synchronised with SNTP.
Note: When selecting BI, IRIG-B, IEC60870-5-103 or SNTP, check that they are active on the
"Status" screen in "Status" sub-menu.
If BI is selected, the BI command trigger setting should be “None” because event records will
become full soon. (See Section 4.2.6.5.)
If it is set to an inactive BI, IRIG-B, IEC60870-5-103 or SNTP, the calendar clock runs
locally.
Setting the time zone
When the calendar clock is synchronised with the IRIG-B time standard, it is possible to
transform GMT to the local time.
• Select "Time zone" to display the "Time zone" screen.
/ 3
T i m e
z o n e
G M T
h r s
+ 9
_
G M T m
M i n
+ 0
• Enter the difference between GMT and local time. Enter numerical values to GMT (hrs)
and GMTm (min), and press the ENTER key.
4.2.6.7
Protection
The GRB150 can have 4 setting groups for protection in order to accommodate changes in the
⎯ 60 ⎯
6 F 2 S 0 9 0 0
operation of the power system, one setting group is assigned active. To set protection, do the
following:
• Select "Protection" on the "Set. (change)" screen to display the "Protection" screen.
/
•
•
•
2
P r o t e
C h a n g e
C h a n g e
C o p y
g p
c t i o n
a c t . g p .
s e t
.
Changing the active group
• Select "Change act. gp." to display the "Change active group" screen.
/ 3
C h a n g e
a c t .
g p .
A c t i v e
g p .
1
_
• Enter the group number and press the ENTER key.
Changing the settings
All the setting items have default values that are set when the product was shipped except names
and descriptions specified by the user. For the default values, see Appendix C and G.
To change the settings, do the following:
• Select "Change set." to display the "Change setting" screen.
/
•
•
•
•
•
•
•
•
3
G
G
G
G
G
G
G
G
r
r
r
r
r
r
r
r
A
o
o
o
o
o
o
o
o
c
u
u
u
u
u
u
u
u
t
p
p
p
p
p
p
p
p
g p . = ∗
1
2
3
4
5
6
7
8
• Select the group number to change the settings and press the ENTER key.
/ 4
G r o u p ∗
P
a
r a m e t e r
•
• T r i p
Setting the parameter
Enter the line name as follows:
• Select "Parameter" on the "Group ∗" screen to display the "Parameter" screen.
/ 5
P a r a m e t e r
n a m e
• L i n e
• Select "Line name" to display the "Line name" screen.
• Enter the line name as a text string and press the END key.
⎯ 61 ⎯
6 F 2 S 0 9 0 0
Setting the trip function
To set the scheme switches and protection elements, do the following.
• Select "Trip" on the "Group ∗" screen to display the "Trip" screen.
/ 5
T r i p
s w
• S c h e m e
• P r o t . e l e m e n t
Setting the scheme switch
• Select "Scheme sw" to display the "Scheme switch" screen.
/ 6
V
O
S
A
C
O
D
f
V
L
L
f
S c h e m e
C
f
C
M
E
f
H
/
N
&
N
/
s w
K
1
O n
T
0
B L K / A L M
0
F 1 / F 2
_
<VDCHK>
• Enter 1 to perform the differential voltage supervision or enter 0 if you do not need to
perform it, and press the ENTER key.
<SVCNT>
• Enter 0 (= ALM&BLK) to output an alarm and to block the trip function by the differential
voltage monitoring.
<CLEN>
• Enter 1 (= F1) to use BI1 for the function 1 of the cold load protection.
• Enter 2 (= F2) to use BI1 for the function 2 of the cold load protection.
• Enter 0 (= Off) not to use BI1 for the cold load protection.
• Press the END key to return to the "Trip" screen.
Setting the protection elements
• Select "Prot. element" to display the "Protection element" screen.
/ 6
P r o t . e l e m e n t
D I F
D I F
T V D
0
D I F
1
T C L
0
V
1 0
S V
5
S V
. 5 0
C C
. 0 0
P
. 0 1
_
V
_
s
_
s
⎯ 62 ⎯
6 F 2 S 0 9 0 0
T C L
0
T C L
0
E
. 0 0
R
. 0 0
s
s
• Enter the numerical value and press the ENTER key.
• After setting, press the END key to display the following confirmation screen.
C h a n g e
s e t t i n g s ?
E N T E R = Y
C A N C E L = N
• Press the ENTER (=Y) key to change settings and return to the "Trip" screen.
Setting group copy
To copy the settings of one group and overwrite them to another group, do the following:
• Select "Copy gp" on the "Protection" screen to display the "Copy A to B" screen.
/ 3
C o p y
A
t o
A
B
B
_
_
• Enter the group number to be copied in line A and press the ENTER key.
• Enter the group number to be overwritten by the copy in line B and press the ENTER
key.
4.2.6.8
Binary Input
The logic level of binary input signals can be inverted by setting before entering the scheme logic.
Inversion is used when the input contact cannot meet the requirements described in Table 3.2.2.
• Select "Binary I/P" on the "Set. (change)" sub-menu to display the "Binary I/P" screen.
/
.
.
.
.
.
.
.
.
2
B
B
B
B
B
B
B
B
I
I
I
I
I
I
I
I
B i n a r y
1
2
3
4
5
6
7
8
I / P
Selection of Binary Input
• Select the input number (BI number) on the "Binary I/P" screen.
After setting, press the ENTER key to display the "BI∗" screen.
/ 3
B I ∗
• T i m e r s
• F u n c t i o n s
⎯ 63 ⎯
6 F 2 S 0 9 0 0
Setting timers
• Select "Timers" on the "BI" screen to display the "Timers" screen.
/ 4
T i m e r s
P U D
0 . 0 0
D O D
0 . 0 0
s
Pick-up delay setting
s
Drop-off delay setting
_
• Enter the numerical value and press the ENTER key.
• After setting, press the END key to return to the "BI∗" screen.
Setting Functions
• Select "Functions" on the "BI" screen to display the "Functions" screen.
/ 4
F u n c t i o n s
S N S
N o r m / I n v
1
_
• To set the Binary Input Sense, enter 0(=Normal) or 1(=Inverted) and press the ENTER
key.
• After setting, press the END key to return to the "BI∗" screen.
4.2.6.9
Binary Output
All the binary outputs of the GRB150 except the relay failure signal are user-configurable. It is
possible to assign one signal or up to four ANDing or ORing signals to one output relay.
Available signals are listed in Appendix B.
It is also possible to attach Instantaneous or delayed or latched reset timing to these signals.
Appendix H shows the factory default settings.
CAUTION
When having changed the binary output settings, release the latch state on a digest screen by
pressing the RESET key for more than 3 seconds.
To configure the binary output signals, do the following:
Selection of output relay
• Select "Binary O/P" on the "Set. (change)" screen to display the "Binary O/P" screen.
/
•
•
•
•
•
•
•
2
B
B
B
B
B
B
H
O
O
O
O
O
O
B
B i n a r y
1
2
3
4
5
6
O 1
⎯ 64 ⎯
O / P
6 F 2 S 0 9 0 0
• H B O 2
• H B O 3
• H B O 4
Note: The setting is required for all the binary outputs. If any of the binary outputs are not used, enter
0 to logic gates #1 to #6 in assigning signals.
• Select the output relay number (BO number) and press the ENTER key to display the
"BO∗" screen.
/ 3
B O ∗
• L o g i c / R e s e t
• F u n c t i o n s
Setting the logic gate type and timer
• Select "Logic/Reset" to display the "Logic/Reset" screen.
/ 4
L
O
R
I
o
R
e
n
L o g i c / R e s e t
g
/
s
s
i
A
e
/
c
0
_
N D
t
0
D l / D w / L a t
• Enter 0(=OR) or 1(=AND) to use an OR gate or AND gate and press the ENTER key.
• Enter 0(=Instantaneous) or 1(=Delayed) or 2(=Dwell) or 3(=Latched) to select the reset
timing and press the ENTER key.
• Press the END key to return to the "BO∗" screen.
Note: To release the latch state, push the [RESET] key for more than 3 seconds.
Assigning signals
• Select "Functions" on the "BO∗" screen to display the "Functions" screen.
/ 4
I n
I n
I n
I n
I n
I n
T B
F u n c t i o n s
#
1 0
#
1 0
#
1 0
#
1 0
#
1 0
#
1 0
O
0 .
1
0
2
0
3
0
4
0
5
0
6
0
0
_
1
2
3
4
5
s
2 0
• Assign signals to gates (In #1 to #6) by entering the number corresponding to each signal
referring to Appendix C. Do not assign the signal numbers 471 to 476 and 487 to 490
(signal names: "BO1_OP" to "BO6_OP" and "HBO1_OP" to "HBO4_OP"). And set the
⎯ 65 ⎯
6 F 2 S 0 9 0 0
delay time of timer TBO.
Note: If signals are not assigned to all the gates #1 to #6, enter 0 for the unassigned gate(s).
Repeat this process for the outputs to be configured.
4.2.6.10 LEDs
Six LEDs of the GRB150 are user-configurable. A configurable LED can be programmed to
indicate the OR combination of a maximum of 4 elements, the individual statuses of which can be
viewed on the LED screen as “Virtual LEDs.” The signals listed in Appendix B can be assigned to
each LED as follows.
CAUTION
When having changed the LED settings, must release the latch state on a digest screen by
pressing the RESET key for more than 3 seconds.
Selection of LEDs
• Select "LED" on the "Set. (change)" screen to display the "LED" screen.
/ 2
L E D
• L E D
• V i r t u a l
L E D
Selection of real LEDs
• Select "LED" on the "/2 LED" screen to display the "/3 LED" screen.
/
•
•
•
•
•
•
3
L
L
L
L
L
L
E
E
E
E
E
E
L
D
D
D
D
D
D
E D
1
2
3
4
5
6
• Select the LED number and press the ENTER key to display the "LED∗" screen.
/ 4
L E D ∗
• L o g i c / R e s e t
• F u n c t i o n s
Setting the logic gate type and reset type
• Select "Logic/Reset" to display the "Logic/Reset" screen.
/ 5
L
O
R
I
o
R
e
n
L o g i c / R e s e t
g
/
s
s
i
A
e
t
c
N D
t
/ L a t c h
0
_
0
• Enter 0(=OR) or 1(=AND) to use an OR gate or AND gate and press the ENTER key.
• Enter 0(=Instantaneous) or 1(=Latched) to select the reset timing and press the ENTER
key.
⎯ 66 ⎯
6 F 2 S 0 9 0 0
• Press the END key to return to the "LED∗" screen.
Note: To release the latch state, refer to Section 4.2.1.
Assigning signals
• Select "Functions" on the "LED∗" screen to display the "Functions" screen.
/ 5
I n
F u n c t i o n s
#
1 0
I n
#
1 0
I n
#
1 0
I n
#
1 0
1
0
2
0
3
0
4
0
0
_
1
2
3
• Assign signals to gates (In #1 to #4) by entering the number corresponding to each signal
referring to Appendix C.
Note: If signals are not assigned to all the gates #1 to #4, enter 0 for the unassigned gate(s).
• Press the END key to return to the "LED∗" screen.
Repeat this process for the outputs to be configured.
Selection of virtual LEDs
• Select "Virtual LED" on the "/2 LED" screen to display the "Virtual LED" screen.
/ 3
V i r t u a l
• I N D 1
• I N D 2
L E D
• Select the IND number and press the ENTER key to display the "IND∗" screen.
/ 4
I N D ∗
• R e s e t
• F u n c t i o n s
Setting the reset timing
• Select "Reset" to display the "Reset" screen.
/ 5
R e s e t
R e s e t
I n s t / L a t c h
0
_
• Enter 0(=Instantaneous) or 1(=Latched) to select the reset timing and press the ENTER
key.
• Press the END key to return to the "IND∗" screen.
Note: To release the latch state, push the [RESET] key for more than 3 seconds.
⎯ 67 ⎯
6 F 2 S 0 9 0 0
Assigning signals
• Select "Functions" on the "IND∗" screen to display the "Functions" screen.
/ 5
F u n c t i o n s
B I T
1
B I T
1
1
0 0 0
2
0 0 1
_
B I T 8
1 0 0 7
• Assign signals to bits (1 to 8) by entering the number corresponding to each signal
referring to Appendix C.
Note: If signals are not assigned to all the bits 1 to 8, enter 0 for the unassigned bit(s).
• Press the END key to return to the "IND∗" screen.
Repeat this process for the outputs to be configured.
4.2.7
Testing
The sub-menu "Test" provides such functions as disabling the automatic monitoring function and
forced operation of binary outputs. The password, if set, must be entered in order to enter the test
screens because the "Test" menu has password security protection. (See the section 4.2.6.2.) If the
password trap ser, enter the password in the following screen.
P a s s w o r d
[ _
1 2 3 4 5 6 7 8 9 0 ←
]
Note: When operating the "Test" menu, the "IN SERVICE" LED is flickering. But if an alarm occurs
during the test, the flickering stops. The "IN SERVICE" LED flickers only in a lighting state.
4.2.7.1
Scheme switch
The automatic monitoring function (A.M.F.) can be disabled by setting the switch [A.M.F] to
"OFF".
Disabling the A.M.F. inhibits trip blocking even in the event of a failure in the items being
monitored by this function. It also prevents failures from being displayed on the "ALARM" LED
and LCD described in Section 4.2.1. No events related to A.M.F. are recorded, either.
Disabling the A.M.F. is useful for blocking the output of unnecessary alarms during testing.
• Select "Test" on the top "MENU" screen to display the "Test" screen.
/
•
•
•
1
T e
S w i t
B i n a
L o g i
s t
c h
r y
O / P
c
c i r c u i t
• Select "Switch" to display the "Switch" screen.
/ 2
S w i t c h
A . M . F .
O f f / O n
1
⎯ 68 ⎯
_
6 F 2 S 0 9 0 0
C
O
I
O
L
f
E
f
P
f
C
f
T
/
T
/
S
N
S
O
T
- C L / C L
T
n
0
• Enter 0 or 1 to disable the A.M.F. or not and press the ENTER key for each switch.
• Enter 0(=Off) to disable the cold load protection, or enter 1(=N-CL) forcibly to set to
“No-cold load condition” or enter 2(=CL) forcibly to set to “Cold load condition”. And
press the ENTER key.
• Enter 1(=On) for IECTST to transmit ‘test mode’ to the control system by
IEC60870-5-103 communication when testing the local relay, and press the ENTER key.
• Press the END key to return to the "Test" screen.
4.2.7.2
Binary Output Relay
It is possible to forcibly operate all binary output relays for checking connections with the
external devices. Forced operation can be performed on one or more binary outputs at a time.
• Select "Binary O/P" on the "Test" screen to display the "Binary O/P" screen. Then the
LCD displays the name of the output relay.
/ 2
B
D
B
D
B
D
B
D
B
D
B
D
H
D
H
D
H
D
H
D
F
D
O
i
O
i
O
i
O
i
O
i
O
i
B
i
B
i
B
i
B
i
A
i
B i n a r y
1
s
2
s
3
s
4
s
5
s
6
s
O
s
O
s
O
s
O
s
I
s
O / P
0
a b l e / E n a b
0
a b l e / E n a b
0
a b l e / E n a b
0
a b l e / E n a b
0
a b l e / E n a b
0
a b l e / E n a b
1
0
a b l e / E n a b
2
0
a b l e / E n a b
3
0
a b l e / E n a b
4
0
a b l e / E n a b
L
0
a b l e / E n a b
_
l e
_
l e
_
l e
_
l e
_
l e
_
l e
_
l e
_
l e
_
l e
_
l e
_
l e
• Enter 1 and press the ENTER key to operate the output relay(s) forcibly.
• After completing the entries, press the END key. Then the LCD displays the screen
shown below.
O p e r a t e ?
E N T E R = Y
C A N C E L = N
• Keep pressing the ENTER key to operate the assigned output relay(s).
⎯ 69 ⎯
6 F 2 S 0 9 0 0
• Release pressing the ENTER key to reset the operation.
• Press the CANCEL key to return to the upper "Binary O/P" screen.
4.2.7.3
Logic Circuit
It is possible to observe the binary signal level on the signals listed in Appendix B with
monitoring jacks A and B.
• Select "Logic circuit" on the "Test" screen to display the "Logic circuit" screen.
/ 2
L o g i c
c i r c u i t
T e r m A
1
_
T e r m B
4 8
_
• Enter a signal number to be observed at monitoring jack A and press the ENTER key.
• Enter the other signal number to be observed at monitoring jack B and press the ENTER
key.
After completing the setting, the signals can be observed by the binary logic level at monitoring
jacks A and B or by the LEDs above the jacks.
On screens other than the above screen, observation with the monitoring jacks is disabled.
⎯ 70 ⎯
6 F 2 S 0 9 0 0
4.3
Personal Computer Interface
The relay can be operated from a personal computer using an RS232C port on the front panel.
On the personal computer, the following analysis and display of the differential voltage are
available in addition to the items available on the LCD screen.
• Display of differential voltage waveform:
Oscillograph, vector display
• Harmonic analysis:
On arbitrary time span
For the details, see the separate instruction manual "PC INTERFACE RSM100".
4.4
Relay Setting and Monitoring System
The Relay Setting and Monitoring (RSM) system is a system that retrieves and analyses the data
on power system quantities, fault and event records and views or changes settings in individual
relays via Ethernet LAN networks using a remote PC as shown in Figure 4.4.1.
TCP/IP
(LAN cable)
HUB
Figure 4.4.1 Relay Setting and Monitoring System
⎯ 71 ⎯
6 F 2 S 0 9 0 0
4.5
IEC 60870-5-103 Interface
The GRB150 supports the IEC60870-5-103 communication protocol. This protocol is mainly
used when the relay communicates with a control system and is used to transfer the following
measurand and status data from the relay to the control system. (For details, see Appendix M.)
• Measurand data: differential voltage
• Status data:
events, fault indications, etc.
The protocol can be used through the RS485 port or the Fibre optic port on the relay rear panel.
The relay supports two baud-rates 9.6kbps and 19.2kbps, and supports two normalizing factors
1.2 and 2.4 for measurand. These are selected by setting. See Section 4.2.6.4.
The data transfer from the relay can be blocked by the setting.
For the settings, see the Section 4.2.6.
4.6
IEC 61850 Communication
GRB150 can also support data communication according to the IEC 61850 standard. Station bus
communication as specified in IEC 61850-8-1 facilitates integration of the relays within
substation control and automation systems via Ethernet LAN.
Figure 4.6.1 shows an example of a substation automation system using Ethernet-based IEC
61850 communication.
Figure 4.6.1 IEC 61850 Communication Network
⎯ 72 ⎯
6 F 2 S 0 9 0 0
4.7
Clock Function
The clock function (Calendar clock) is used for time-tagging for the following purposes:
• Event records
• Disturbance records
• Fault records
The calendar clock can run locally or be synchronised with an external clock such as the binary
time standard input signal, RSM clock or IEC60870-5-103. This can be selected by setting.
The “clock synchronise” function synchronises the relay internal clock to the BI (connected to
PLC input No.2576 SYNC_CLOCK) by the following method. Since the BI signal is an “ON” or
“OFF” signal which cannot express year-month-day and hour-minute-second etc, synchronising
is achieved by setting the number of milliseconds to zero. This method will give accurate timing
if the synchronising BI signal is input every second.
Synchronisation is triggered by an “OFF” to “ON” (rising edge) transition of the BI signal. When
the trigger is detected, the millisecond value of the internal clock is checked, and if the value is
between 0~500ms then it is rounded down. If it is between 500~999ms then it is rounded up (ie
the number of seconds is incremented).
n sec
(n+1) sec
500ms
corrected to (n+1) sec
corrected to n sec
t
When the relays are connected with the RSM system as shown in Figure 4.4.1 and selected
"RSM" in the time synchronisation setting, the calendar clock of each relay is synchronised with
the RSM clock. If the RSM clock is synchronised with the external time standard, then all the
relay clocks are synchronised with the external time standard.
⎯ 73 ⎯
6 F 2 S 0 9 0 0
5. Installation
5.1
Receipt of Relays
When relays are received, carry out the acceptance inspection immediately. In particular, check
for damage during transportation, and if any damage is found, contact the vendor.
Check that the following accessories are attached.
• 3 pins for the monitoring jack, packed in a plastic bag.
Always store the relays in a clean, dry environment.
5.2
Relay Mounting
A flush mounting relay is delivered. Appendix E shows the case outlines.
For details of relay withdrawal and insertion, see Section 6.7.3.
5.3
Electrostatic Discharge
CAUTION
Do not take out the relay unit outside the relay case since electronic components on the modules
are very sensitive to electrostatic discharge. If it is absolutely essential to take the modules out of
the case, do not touch the electronic components and terminals with your bare hands.
Additionally, always put the module in a conductive anti-static bag when storing it.
5.4
Handling Precautions
A person's normal movements can easily generate electrostatic potentials of several thousand
volts. Discharge of these voltages into semiconductor devices when handling electronic circuits
can cause serious damage, which often may not be immediately apparent but the reliability of the
circuit will have been reduced.
The electronic circuits are completely safe from electrostatic discharge when housed in the case.
Do not expose them to risk of damage by withdrawing relay unit unnecessarily.
The relay unit incorporates the highest practicable protection for its semiconductor devices.
However, if it becomes necessary to withdraw the relay unit, the precautions should be taken to
preserve the high reliability and long life for which the equipment has been designed and
manufactured.
CAUTION
• Before removing the relay unit, ensure that you are at the same electrostatic potential as the
equipment by touching the case.
• Use the handle to draw out the relay unit. Avoid touching the electronic components,
printed circuit board or connectors.
• Do not pass the relay unit to another person without first ensuring you are both at the same
electrostatic potential. Shaking hands achieves equipotential.
⎯ 74 ⎯
6 F 2 S 0 9 0 0
• Place the relay unit on an anti-static surface, or on a conducting surface which is at the
same potential as yourself.
• Do not place the relay unit in polystyrene trays.
It is strongly recommended that detailed investigations on electronic circuitry should be carried
out in a Special Handling Area.
5.5
External Connections
External connections for each relay model are shown in Appendix F.
⎯ 75 ⎯
6 F 2 S 0 9 0 0
6. Commissioning and Maintenance
6.1
Outline of Commissioning Tests
The GRB150 is fully numerical and the hardware is continuously monitored.
Commissioning tests can be kept to a minimum and need only include hardware tests and the
conjunctive tests. The function tests are at the user’s discretion.
In these tests, user interfaces on the front panel of the relay or a local PC can be fully applied.
Test personnel must be familiar with general relay testing practices and safety precautions to
avoid personal injuries or equipment damage.
Hardware tests
These tests are performed for the following hardware to ensure that there is no hardware defect.
Defects of hardware circuits other than the following can be detected by monitoring which
circuits function when the DC power is supplied.
User interfaces
Binary input circuits and output circuits
AC input circuits
Function tests
These tests are performed for the following functions that are fully software-based.
Measuring elements
Metering and recording
Human interface
Conjunctive tests
The tests are performed after the relay is connected with the primary equipment and other external
equipment.
The following tests are included:
On load test: phase sequence check and polarity check
Tripping circuit test
⎯ 76 ⎯
6 F 2 S 0 9 0 0
6.2
Cautions
6.2.1
Safety Precautions
CAUTION
• The relay rack is provided with an earthing terminal.
Before starting the work, always make sure the relay rack is earthed.
• When connecting the cable to the back of the relay, firmly fix it to the terminal block and
attach the cover provided on top of it.
• Before checking the interior of the relay, be sure to turn off the power.
Failure to observe any of the precautions above may cause electric shock or malfunction.
6.2.2
Precautions for Testing
CAUTION
• When testing the relay, house it in the case and test it.
• While the power is on, do not draw out/insert the relay unit.
• Before turning on the power, check the followings:
- Make sure the polarity and voltage of the power supply are correct.
- Make sure the CT circuit is not open.
• If dc power has not been supplied to the relay for two days or more, then it is recommended
that all fault records, event records and disturbance records be cleared soon after restoring
the power. This is because the back-up RAM may have discharged and may contain
uncertain data.
• Be careful that the relay is not damaged due to an overcurrent or overvoltage.
• If settings are changed for testing, remember to reset them to the original settings.
Failure to observe any of the precautions above may cause damage or malfunction of the relay.
⎯ 77 ⎯
6 F 2 S 0 9 0 0
6.3
Preparations
Test equipment
The following test equipment is required for the commissioning tests.
1 Single-phase voltage source
1 DC power supply
1 AC voltmeter
1 DC voltmeter
1 Time counter, precision timer
1 PC (not essential)
Relay settings
Before starting the tests, it must be specified whether the tests will use the user’s settings or the
default settings.
For the default settings, see the following appendixes:
Appendix C Binary Output Default Setting List
Appendix G Relay Setting Sheet
Visual inspection
After unpacking the product, check for any damage to the relay case. If there is any damage, the
internal module might also have been affected. Contact the vendor.
Relay ratings
Check that the items described on the nameplate on the front of the relay conform to the user’s
specification. The items are: relay type and model, AC voltage, current and frequency ratings, and
auxiliary DC supply voltage rating.
Local PC
When using a local PC, connect it with the relay via the RS232C port on the front of the relay.
RSM100 software is required to run the PC.
For details, see separate volume "PC INTERFACE RSM100".
⎯ 78 ⎯
6 F 2 S 0 9 0 0
6.4
Hardware Tests
The tests can be performed without external wiring, but a DC power supply and AC voltage
source are required.
6.4.1
User Interfaces
This test ensures that the LCD, LEDs and keys function correctly.
LCD display
• Apply the rated DC voltage and check that the LCD is off.
Note: If there is a failure, the LCD will display the "Err: " screen when the DC voltage is applied.
• Press the RESET key and check that black dots appear on the whole screen.
LED display
• Apply the rated DC voltage and check that the "IN SERVICE" LED is lit in green.
• Press the RESET key for one second or more and check that remaining five LEDs are lit
in red or yellow. (Programmable LEDs are yellow.)
VIEW and RESET keys
• Press the VIEW key when the LCD is off and check that the "Virtual LED" and
"Metering" screens are sequentially displayed on the LCD.
• Press the RESET key and check that the LCD turns off.
Other operation keys
• Press any key when the LCD is off and check that the LCD displays the "MENU" screen.
Press the END key to turn off the LCD.
• Repeat this for all keys.
⎯ 79 ⎯
6 F 2 S 0 9 0 0
6.4.2
Binary Input Circuit
The testing circuit is shown in Figure 6.4.1.
GRB150
TB2
-A1
BI1
-B1
DC
power
supply
+
TB2 -A9
−
-B9
E
Figure 6.4.1 Testing Binary Input Circuit
• Display the "Binary I/O" screen from the "Status" sub-menu.
/
I
O
O
2
P
P
P 2
B
[
[
[
i
0
0
0
n
0
0
0
a
0
0
0
r y
I / O
0
0 0 0 0 ]
0
0 0 0
]
0
]
• Apply the rated DC voltage to terminal A1-B1, A2-B2, ..., A8-B8 of terminal block TB2.
Check that the status display corresponding to the input signal (IP) changes from 0 to 1. (For
details of the binary input status display, see Section 4.2.4.2.)
The user will be able to perform this test for one terminal to another or for all the terminals at
once.
6.4.3
Binary Output Circuit
This test can be performed by using the "Test" sub-menu and forcibly operating the relay drivers
and output relays. Operation of the output contacts is monitored at the output terminal. The output
contact and corresponding terminal number are shown in Appendix F.
• Select "Binary O/P" on the "Test" screen to display the "Binary O/P" screen. The LCD will
display the name of the output relay.
/ 2
B
D
B
D
B
D
B
D
B
D
O
i
O
i
O
i
O
i
O
i
B i n a r y
1
s
2
s
3
s
4
s
5
s
O / P
0
a b l e / E n a b
0
a b l e / E n a b
0
a b l e / E n a b
0
a b l e / E n a b
0
a b l e / E n a b
⎯ 80 ⎯
_
l e
_
l e
_
l e
_
l e
_
l e
6 F 2 S 0 9 0 0
B
D
H
D
H
D
H
D
H
D
F
D
O
i
B
i
B
i
B
i
B
i
A
i
6
s
O
s
O
s
O
s
O
s
I
s
a
1
a
2
a
3
a
4
a
L
a
0
b l e / E n a b
0
b l e / E n a b
0
b l e / E n a b
0
b l e / E n a b
0
b l e / E n a b
0
b l e / E n a b
_
l e
_
l e
_
l e
_
l e
_
l e
_
l e
• Enter 1 at any B/O(s) tested and press the ENTER key.
• After completing the entries, press the END key. The LCD will display the screen shown
below. If 1 is entered for all the output relays, the following forcible operation can be
performed collectively.
O p e r a t e ?
E N T E R = Y
C A N C E L = N
• Keep pressing the ENTER key to operate the output relays forcibly.
• Check that the output contacts operate at the terminal.
• Stop pressing the ENTER key to reset the operation.
6.4.4
AC Input Circuits
This test can be performed by applying the checking voltages to the AC input circuits and
verifying that the values applied coincide with the values displayed on the LCD screen.
The testing circuit is shown in Figure 6.4.2. A single-phase voltage source is required.
GRB150
EB-10∗
V
Single-phase
voltage
source
TB1-1
-2
TB2-1
Va
-3
-4
-5
-6
Vb
Vc
-2
TB1 -1
-2
-3
-4
-5
-6
-3
-4
-5
-6
-8
DC
power
supply
Va
+
TB2 -A9
−
-B9
Vb
Vc
E
*(Note) EB-101: single-phase, EB-102: three-phase
Figure 6.4.2 Testing AC Input Circuit
• Check the metering data on the "Metering" screen.
"Setting (view)" sub-menu → "Status" setting screen → "Metering" screen
⎯ 81 ⎯
6 F 2 S 0 9 0 0
• Open the Metering screen in the Status sub-menu.
"Status" sub-menu → "Metering" screen
• Apply AC voltages and check that the displayed values are within ±5% of the input values.
⎯ 82 ⎯
6 F 2 S 0 9 0 0
6.5
Function Test
6.5.1
Measuring Element
Measuring element characteristics are realised by software, so it is possible to verify the overall
characteristics by checking representative points.
Operation of the element under test is observed by the binary output signal at monitoring jacks A
or B or by the LED indications above the jacks. In any case, the signal number corresponding to
each element output must be set on the "Logic circuit" screen of the "Test" sub-menu.
/ 2
L o g i c
c i r c u i t
T e r m A
1
_
T e r m B
4 8
_
When a signal number is entered for the Term A line, the signal is observed at monitoring jack A
and when entered for the Term B line, it is observed at monitoring jack B.
Note:
The voltage level at the monitoring jacks is +5V for logic level "1" and less than 0.1V for
logic level "0".
CAUTION
• Use test equipment with more than 1 kΩ of internal impedance when observing the output
signal at the monitoring jacks.
• Do not apply an external voltage to the monitoring jacks.
• Do not leave the A or B terminal shorted to 0V terminal for a long time.
In case of a three-phase element, it is sufficient to test for a representative phase. The A-phase
element is selected hereafter.
⎯ 83 ⎯
6 F 2 S 0 9 0 0
6.5.1.1
Differential element DIF
The differential element is checked for the following:
• Operating voltage value
• Operating time
Operating voltage value
Figure 6.5.1 shows a testing circuit. The minimum operating voltage value is checked by
increasing the magnitude of the voltage applied.
GRB150
V
EB-10∗
TB1-1(TB1-1)
+
Single-phase
voltage
source
−
TB1-4(TB2-1)
TB1 -1
TB1-5(TB2-2)
-2
Va
TB1-2(TB1-2)
-3
-4
-5
-8
Monitoring
jack
A
0V
-6
DC
power
supply
+
TB3 -A5
−
-B5
E
DC
voltmeter
+
−
*(Note) EB-101: single-phase, EB-102: three-phase. The terminal No. shown in the parentheses are in the case of EB-102.
Figure 6.5.1 Operating Voltage Value Test Circuit
The output signal numbers of the DIF elements are as follows:
Element
Signal number
DIF-A (DIF)
11
DIF-B
12
DIF-C
13
Remarks
• Select "Logic circuit" on the "Test" sub-menu screen to display the "Logic circuit" screen.
• Enter signal number 11 to observe the DIF-A operation at monitoring jack A and press the
ENTER key.
• Apply a test voltage and change the magnitude of the voltage applied and measure the
value at which the element operates.
Check that the measured value is within 10% of the setting value.
⎯ 84 ⎯
6 F 2 S 0 9 0 0
Operating time
The testing circuit is shown in Figure 6.5.2.
V
TB1-1
(TB1-1)
Single-phase
voltage
source
GRB150
EB-10∗
Va
TB1-2
(TB1-2)
TB1-4 TB1 -1
(TB2-1)
TB1-5
(TB2-2)
-2
Monitoring
jack
0V
-8
DC
power
supply
A
+
TB3 -A5
−
-B5
E
Start
Time
counter
Stop
0V
*(Note) EB-101: single-phase, EB-102: three-phase. The terminal No. shown in the parentheses are in the case of EB-102.
Figure 6.5.2 Operating Time Test
• Set the test current to 2 times the DIF setting value.
• Apply the test voltage and measure the operating time.
• Check that the operating time is 20 ms or less.
6.5.1.2
Supervisory element DIFSV
The supervisory element is checked for the operating voltage value.
Operating voltage value
Figure 6.5.1 shows a testing circuit. The minimum operating voltage value is checked by
increasing the magnitude of the voltage applied.
The output signal numbers of the DIF elements are as follows:
Element
Signal number
DIFSV-A (DIFSV)
14
DIFSV-B
15
DIFSV-C
16
Remarks
• Select "Logic circuit" on the "Test" sub-menu screen to display the "Logic circuit" screen.
• Enter signal number 14 to observe the DIFSV-A operation at monitoring jack A and press
⎯ 85 ⎯
6 F 2 S 0 9 0 0
the ENTER key.
• Apply a test voltage and change the magnitude of the voltage applied and measure the
value at which the element operates.
Check that the measured value is within 10% of the setting value.
6.5.2
Protection Scheme
In the protection scheme tests, a dynamic test set is required to simulate power system pre-fault,
fault and post-fault conditions.
Tripping is observed with the tripping command output relay HBO∗ assigned.
Differential tripping
The tripping should be checked for the voltage which is two times or larger than the minimum
operating voltage DIF. Operating time is measured by the operating time of the tripping
command output relay. It is usually 20ms.
Check that the indications and recordings are correct.
6.5.3
Metering and Recording
The metering function can be checked while testing the AC input circuit. See Section 6.4.4.
Fault recording can be checked while testing the protection schemes. Open the "Fault records"
screen and check that the descriptions are correct for the fault concerned.
Recording events are listed in Table 3.4.1. The top event is an external event and others are
internal events. Event recording on the external event can be checked by changing the status of
binary input signals. Change the status in the same way as the binary input circuit test (see Section
6.4.2) and check that the description displayed on the "Event Records" screen is correct.
Note: Whether to record or not can be set for each event. Change the status of the binary input signal
after confirming that the related event is set to record. (The default setting enables all the
events to be recorded.)
Some of the internal events can be checked in the protection scheme tests.
Disturbance recording can be checked while testing the protection schemes. The LCD display
only shows the date and time when a disturbance is recorded. Open the "Disturbance records"
screen and check that the descriptions are correct.
Details can be displayed on the PC with the RSM100 software. Check that the descriptions on the
PC are correct. For details on how to obtain disturbance records on the PC, see the RSM100
Manual.
⎯ 86 ⎯
6 F 2 S 0 9 0 0
6.6
Conjunctive Tests
6.6.1
On Load Test
With the relay connected to the line which is carrying a load current, it is possible to check the
polarity of the current transformer with the metering displays on the LCD screen.
• Open the following "Metering" screen from the "Status" sub-menu.
/ 2
V d
M e t e r i n g
V
∗ ∗ ∗ . ∗
(Model 101)
/ 2
M e
V d a
∗
V d b
∗
V d c
∗
(Model 201)
t
∗
∗
∗
e
∗
∗
∗
r
.
.
.
i n g
V
∗
V
∗
V
∗
• Check that the differential voltage Vd or Vda, Vdb and Vdc are sufficiently smaller than
the DIF and DIFSV setting values.
6.6.2
Tripping Circuit Test
The tripping circuit including the circuit breaker is checked by forcibly operating the output relay
and monitoring the circuit breaker to confirm that it is tripped. Forcible operation of the output
relay is performed on the "Binary O/P" screen of the "Test" sub-menu as described in Section
6.4.3.
Tripping circuit
• Set the breaker to be closed.
• Select "Binary O/P" on the "Test" sub-menu screen to display the "Binary O/P" screen.
HBO1 is a tripping command output relay with one normally open contact.
• Enter 1 for HBO1 and press the ENTER key.
• Press the END key. Then the LCD displays the screen shown below.
O p e r a t e ?
E N T E R = Y
C A N C E L = N
• Keep pressing the ENTER key to operate the output relay HBO1 and check that the No.1
breaker is tripped.
• Stop pressing the ENTER key to reset the operation.
• Repeat the above for other HBOs.
⎯ 87 ⎯
6 F 2 S 0 9 0 0
6.7
Maintenance
6.7.1
Regular Testing
The relay is almost completely self-supervised. The circuits that can not be supervised are binary
input and output circuits and human interfaces.
Therefore, regular testing is minimised to checking the unsupervised circuits. The test procedures
are the same as described in Sections 6.4.1, 6.4.2 and 6.4.3.
6.7.2
Failure Tracing and Repair
Failures will be detected by automatic supervision or regular testing.
When a failure is detected by supervision, a remote alarm is issued with the binary output relay of
FAIL and the failure is indicated on the front panel with LED indicators or LCD display. It is also
recorded in the event record.
Failures detected by supervision are traced by checking the "Err: " screen on the LCD. Table 6.7.1
shows LCD messages and failure locations.
The locations marked with (1) have a higher probability than locations marked with (2).
Table 6.7.1 LCD Message and Failure Location
Message
Relay Unit
Err: SUM
Err: ROM
Err: RAM
Err: CPU
Err: Invalid
Err: NMI
Err: BRAM
Err: EEP
Err: A/D
Err: SP
Err: PCI
Err: DC
Err: TC
×(Flash memory)
×(ROM data)
×(SRAM)
×(CPU)
×
×
×(Backup RAM)
×(EEPROM)
×(A/D converter)
×(Sampling)
×
×(DC power supply circuit)
×(Tripping circuit)(1)
Err: CB
Err: Vd
Err: PLC
× (Circuit breaker)(1)
× (1)
Failure location
CB or
AC cable
cable
PLC, IEC61850 data
× (2)
× (2)
× (2)
×(PLC data)
Err: MAP
×(IEC61850 mapping data)
Err: RTC
×(SNTP setting)
Err: LAN
×(Ethernet LAN)
Err: GOOSE
×(GOOSE subscribe)
Err: Ping
×(Ping response)
( ): Probable failure location in the relay unit including its peripheral circuits.
If no message is shown on the LCD, this means that the failure location is either in the DC power
⎯ 88 ⎯
6 F 2 S 0 9 0 0
supply circuit or in the microprocessors. If the "ALARM" LED is off, the failure is in the DC
power supply circuit. If the LED is lit, the failure is in the microprocessors. Replace the relay unit
in both cases after checking if the correct DC voltage is applied to the relay.
If a failure is detected by automatic supervision or regular testing, replace the failed relay unit.
Note: When a failure or an abnormality is detected during the regular test, confirm the following
first:
- Test circuit connections are correct.
- Modules are securely inserted in position.
- Correct DC power voltage is applied.
- Correct AC inputs are applied.
- Test procedures comply with those stated in the manual.
6.7.3
Replacing a Failed Relay Unit
If a failure is identified in the relay unit and the user has a spare relay unit, the user can recover the
protection by replacing the failed relay unit.
Repair at the site should be limited to relay unit replacement. Maintenance at the component level
is not recommended.
Check that the replacement relay unit has an identical Model No. and relay version (software type
form) as the removed relay.
The Model No. is indicated on the front of the relay. For the relay version, see Section 4.2.5.1
Replacing the relay unit
CAUTION
After replacing the relay unit, check the settings.
The procedure of relay withdrawal and insertion is as follows:
• Switch off the DC power supply.
WARNING Hazardous voltage may remain in the DC circuit just after switching off the
DC power supply. It takes approximately 30 seconds for the voltage to
discharge.
•
•
•
•
•
Disconnect the trip outputs.
Short-circuit all AC current inputs.
Unscrew the relay front cover.
Unscrew the binding screw on the handle.
To remove the relay unit from its case, pull up the handle and pull the handle towards you.
(See Figure 6.7.1.)
• Insert the (spare) relay unit in the reverse procedure.
CAUTION To avoid risk of damage:
• Keep the handle up when inserting the relay unit into the case.
• Do not catch the handle when carrying the relay unit.
⎯ 89 ⎯
6 F 2 S 0 9 0 0
A
IN SERVICE
VIEW
TRIP
ALARM
IN SERVICE
VIEW
TRIP
ALARM
RESET
RESET
B
0V CAN ENTER
CEL
A
B
END
0V CAN ENTER
CEL
END
Handle
Pull up handle
Bind screw
Figure 6.7.1 Handle of Relay Unit
6.7.4
Resumption of Service
After replacing the failed relay unit or repairing failed external circuits, take the following
procedures to put the relay into service.
• Switch on the DC power supply and confirm that the "IN SERVICE" green LED is lit and
the "ALARM" red LED is not lit.
• Supply the AC inputs and reconnect the trip outputs.
6.7.5
Storage
The spare relay should be stored in a dry and clean room. Based on IEC Standard 60255-6 the
storage temperature should be between −25°C and +70°C, but the temperature of 0°C to +40°C is
recommended for long-term storage.
⎯ 90 ⎯
6 F 2 S 0 9 0 0
7. Putting Relay into Service
The following procedure must be adhered to when putting the relay into service after finishing the
commissioning tests or maintenance tests.
• Check that all external connections are correct.
• Check the settings of all measuring elements, timers, scheme switches, recordings and
clock are correct.
In particular, when settings are changed temporarily for testing, be sure to restore them.
• Clear any unnecessary records on faults, events and disturbances which are recorded
during the tests.
CAUTION:
If dc power has not been supplied to the relay for two days or more, then it is
recommended that all fault records, event records and disturbance records be
cleared soon after restoring the power. This is because the back-up RAM may
have discharged and may contain uncertain data.
• Press the VIEW key and check that no failure message is displayed on the
"Auto-supervision" screen.
• Check that the green "IN SERVICE" LED is lit and no other LEDs are lit on the front
panel.
⎯ 91 ⎯
6 F 2 S 0 9 0 0
⎯ 92 ⎯
6 F 2 S 0 9 0 0
Appendix A
Block Diagram
⎯ 93 ⎯
6 F 2 S 0 9 0 0
Model 101
≥1
A
DIF
447
≥1
DIF
DIF-OR
11
&
12
B
&
13
C
21
DIF TRIP-A
22
DIF TRIP-B
23
DIF TRIP-C
&
Model 201
1
1536 DIF_BLOCK
+
COLD LOAD
from Figure 2.2.2.
"ALM&BLK"
Model 101
≥1
DIFSV
≥1
A
[SVCNT]
&
16
C
Model 201
&
1
TVDSV
24
t
0
&
t
0
&
t
0
27
≥1
25
26
0.10 - 60.00s
A.M.F ON
+
[VDCHK]
"ON"
1537 DIFSV_BLOCK
28
DIF
TRIP
DIFSV-OR
14
15
DIFSV B
448
≥1
1
Block Diagram of GRB150-101, -201
DIF: Differential element
DIFSV: Supervisory element of DIF
VDCHK: Vd check
SVCNT: Supervision control switch
VD ERR: Voltage differential error
⎯ 94 ⎯
VD ERR
6 F 2 S 0 9 0 0
Appendix B
Signal List
⎯ 95 ⎯
6 F 2 S 0 9 0 0
No.
0
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
:
:
349
350
Signal Name
CONSTANT_0
CONSTANT_1
Contents
constant 0
constant 1
COLD_LOAD
DIF-A
DIF-B
DIF-C
DIFSV-A
DIFSV-B
DIFSV-C
COLD LOAD relay element output
DIF-A relay element output
DIF-B relay element output
DIF-C relay element output
DIFSV-A relay element output
DIFSV-B relay element output
DIFSV-C relay element output
DIF_TRIP-A
DIF_TRIP-B
DIF_TRIP-C
VD_ERR-A
VD_ERR-B
VD_ERR-C
VD_ERR
DIF_TRIP
DIF trip command (A Phase)
DIF trip command (B Phase)
DIF trip command (C Phase)
VD_ERR command (A Phase)
VD_ERR command (B Phase)
VD_ERR command (C Phase)
VD_ERR command
DIF trip command
DIF-AT
DIF-BT
DIF-CT
FAULT RECORD DATA
ditto
ditto
⎯ 96 ⎯
6 F 2 S 0 9 0 0
No.
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
:
:
439
440
Signal Name
Contents
CB_CLOSE
CB_OPEN
CB closed status
CB opened status
⎯ 97 ⎯
6 F 2 S 0 9 0 0
No.
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
:
:
759
760
Signal Name
Contents
DIF-OR
DIFSV-OR
DIF relay (3PHASE OR)
DIFSV relay (3PHASE OR)
BO1_OP
BO2_OP
BO3_OP
BO4_OP
BO5_OP
BO6_OP
Binary output 1
Binary output 2
Binary output 3
Binary output 4
Binary output 5
Binary output 6
HBO1_OP
HBO2_OP
HBO3_OP
HBO4_OP
High speed binary output 1
High speed binary output 2
High speed binary output 3
High speed binary output 4
⎯ 98 ⎯
6 F 2 S 0 9 0 0
No.
761
762
763
764
765
766
767
Signal Name
Contents
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
:
:
998
999
1000
BI1_COMMAND
BI2_COMMAND
BI3_COMMAND
BI4_COMMAND
BI5_COMMAND
BI6_COMMAND
BI7_COMMAND
BI8_COMMAND
Binary input signal BI1
Binary input signal BI2
Binary input signal BI3
Binary input signal BI4
Binary input signal BI5
Binary input signal BI6
Binary input signal BI7
Binary input signal BI8
⎯ 99 ⎯
6 F 2 S 0 9 0 0
No.
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
:
:
1239
1240
Signal Name
Contents
FAULT_PHA_A
FAULT_PHA_B
FAULT_PHA_C
fault_phase_A
fault_phase_B
fault_phase_C
⎯ 100 ⎯
6 F 2 S 0 9 0 0
No.
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
Signal Name
IEC_MDBLK
IEC_TESTMODE
GROUP1_ACTIVE
GROUP2_ACTIVE
GROUP3_ACTIVE
GROUP4_ACTIVE
GROUP5_ACTIVE
GROUP6_ACTIVE
GROUP7_ACTIVE
GROUP8_ACTIVE
RLY_FAIL
RLY_OP_BLK
AMF_OFF
Contents
monitor direction blocked
IEC61870-5-103 testmode
group1 active
group2 active
group3 active
group4 active
group5 active
group6 active
group7 active
group8 active
RELAY FAILURE
RELAY OUTPUT BLOCK
SV BLOCK
RELAY_FAIL-A
TRIP-H
Trip signal hold
TCSV
CBSV
TC_ALARM
Trip circuit supervision failure
Circuit breaker status monitoring failure
Trip counter alarm
GEN_PICKUP
General start/pick-up
BI1_COM_UF
BI2_COM_UF
BI3_COM_UF
BI4_COM_UF
BI5_COM_UF
BI6_COM_UF
BI7_COM_UF
BI8_COM_UF
Binary input signal BI1 (unfiltered)
Binary input signal BI2 (unfiltered)
Binary input signal BI3 (unfiltered)
Binary input signal BI4 (unfiltered)
Binary input signal BI5 (unfiltered)
Binary input signal BI6 (unfiltered)
Binary input signal BI7 (unfiltered)
Binary input signal BI8 (unfiltered)
⎯ 101 ⎯
6 F 2 S 0 9 0 0
No.
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
Signal Name
Contents
GOOSE_IN_Q1
GOOSE_IN_Q2
GOOSE_IN_Q3
GOOSE_IN_Q4
GOOSE_IN_Q5
GOOSE_IN_Q6
GOOSE_IN_Q7
GOOSE_IN_Q8
GOOSE_IN_Q9
GOOSE_IN_Q10
GOOSE_IN_Q11
GOOSE_IN_Q12
GOOSE_IN_Q13
GOOSE_IN_Q14
GOOSE_IN_Q15
GOOSE_IN_Q16
GOOSE_IN_Q17
GOOSE_IN_Q18
GOOSE_IN_Q19
GOOSE_IN_Q20
GOOSE_IN_Q21
GOOSE_IN_Q22
GOOSE_IN_Q23
GOOSE_IN_Q24
GOOSE_IN_Q25
GOOSE_IN_Q26
GOOSE_IN_Q27
GOOSE_IN_Q28
GOOSE_IN_Q29
GOOSE_IN_Q30
GOOSE_IN_Q31
GOOSE_IN_Q32
GOOSE_IN_1
GOOSE_IN_2
GOOSE_IN_3
GOOSE_IN_4
GOOSE_IN_5
GOOSE_IN_6
GOOSE_IN_7
GOOSE_IN_8
GOOSE_IN_9
GOOSE_IN_10
GOOSE_IN_11
GOOSE_IN_12
GOOSE_IN_13
GOOSE_IN_14
GOOSE_IN_15
GOOSE_IN_16
GOOSE_IN_17
GOOSE_IN_18
GOOSE_IN_19
GOOSE_IN_20
GOOSE_IN_21
Goose Input Quality #1
Goose Input Quality #2
Goose Input Quality #3
Goose Input Quality #4
Goose Input Quality #5
Goose Input Quality #6
Goose Input Quality #7
Goose Input Quality #8
Goose Input Quality #9
Goose Input Quality #10
Goose Input Quality #11
Goose Input Quality #12
Goose Input Quality #13
Goose Input Quality #14
Goose Input Quality #15
Goose Input Quality #16
Goose Input Quality #17
Goose Input Quality #18
Goose Input Quality #19
Goose Input Quality #20
Goose Input Quality #21
Goose Input Quality #22
Goose Input Quality #23
Goose Input Quality #24
Goose Input Quality #25
Goose Input Quality #26
Goose Input Quality #27
Goose Input Quality #28
Goose Input Quality #29
Goose Input Quality #30
Goose Input Quality #31
Goose Input Quality #32
Goose Input #1
Goose Input #2
Goose Input #3
Goose Input #4
Goose Input #5
Goose Input #6
Goose Input #7
Goose Input #8
Goose Input #9
Goose Input #10
Goose Input #11
Goose Input #12
Goose Input #13
Goose Input #14
Goose Input #15
Goose Input #16
Goose Input #17
Goose Input #18
Goose Input #19
Goose Input #20
Goose Input #21
⎯ 102 ⎯
6 F 2 S 0 9 0 0
No.
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
Signal Name
GOOSE_IN_22
GOOSE_IN_23
GOOSE_IN_24
GOOSE_IN_25
GOOSE_IN_26
GOOSE_IN_27
GOOSE_IN_28
GOOSE_IN_29
GOOSE_IN_30
GOOSE_IN_31
GOOSE_IN_32
Contents
Goose Input #22
Goose Input #23
Goose Input #24
Goose Input #25
Goose Input #26
Goose Input #27
Goose Input #28
Goose Input #29
Goose Input #30
Goose Input #31
Goose Input #32
LOCAL_OP_ACT
REMOTE_OP_ACT
NORM_LED_ON
ALM_LED_ON
TRIP_LED_ON
TEST_LED_ON
local operation active
remote operation active
IN-SERVICE LED ON
ALARM LED ON
TRIP LED ON
TEST LED ON
PRG_LED_RESET
LED_RESET
Latched programmable LED RESET
TRIP LED RESET
PROT_COM_ON
PRG_LED1_ON
PRG_LED2_ON
PRG_LED3_ON
PRG_LED4_ON
PRG_LED5_ON
PRG_LED6_ON
IEC103 communication command
PROGRAMMABLE LED1 ON
PROGRAMMABLE LED2 ON
PROGRAMMABLE LED3 ON
PROGRAMMABLE LED4 ON
PROGRAMMABLE LED5 ON
PROGRAMMABLE LED6 ON
LCD_IND.
LCD_IND1.
LCD_IND2.
VirLCD indication(Virtual LED) command
LCD indication1(Virtual LED) command
LCD indication2(Virtual LED) command
F.Record_CLR
E.Record_CLR
D.Record_CLR
Data_Lost
TP_COUNT_CLR
Fault record clear
Event record clear
Disturbance record clear
Data clear by BU-RAM memory monitoring error
Trip counter cleared
PLC_data_CHG
IEC103_data_CHG
IEC850_data_CHG
Sys.set_change
Rly.set_change
Grp.set_change
PLC data change
IEC-103 data change
IEC-850 data change
System setting change
Relay setting change
Group setting change
⎯ 103 ⎯
6 F 2 S 0 9 0 0
No.
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
Signal Name
Contents
KEY-VIEW
KEY-RESET
KEY-ENTER
KEY-END
KEY-CANCEL
VIEW key status (1:pressed)
RESET key status (2:pressed)
ENTER key status (3:pressed)
END key status (4:pressed)
CANCEL key status (5:pressed)
DC_supply_err
RTC_err
DC supply error
RTC stopped
GOOSE_stop
Ping_err
PLC_err
61850_err
SUM_err
ROM_RAM_err
SRAM_err
BU_RAM_err
GOOSE stopped
Ping no anwer
PLC stopeed
61850 stopped
Program ROM checksum error
Rom - Ram mismatch error
SRAM memory monitoring error
BU-RAM memory monitoring error
EEPROM_err
EEPROM memory monitoring error
A/D_err
CPU_err
Invalid
NMI
Sampling_err
DIO_err
LAN_err
LCD_err
ROM_data_err
A/D accuracy checking error
Program error
Invalid error
NMI
Sampling error
DIO card connection error
LAN error
LCD panel connection error
8M Romdata error
⎯ 104 ⎯
6 F 2 S 0 9 0 0
No. Signal Name
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
Contents
⎯ 105 ⎯
6 F 2 S 0 9 0 0
No.
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
Signal Name
DIF_BLOCK
DIFSV_BLOCK
CB_FOR_CLP
Contents
DIF trip block command
DIFSV trip block command
CLP command
⎯ 106 ⎯
6 F 2 S 0 9 0 0
No.
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
:
:
2558
2559
Signal Name
Contents
TC_FAIL
CB_N/O_CONT
CB_N/C_CONT
Trip circuit Fail Alarm commamd
CB N/O contact commamd
CB N/C contact commamd
IND.RESET
Indication reset command
TP_COUNT
Trip counter count up command
⎯ 107 ⎯
6 F 2 S 0 9 0 0
No.
2560
2561
2562
2563
2564
2565
2566
2567
2568
2569
2570
2571
2572
2573
2574
2575
2576
2577
2578
2579
2580
2581
2582
2583
2584
2585
2586
2587
2588
2589
2590
2591
2592
2593
2594
2595
2596
2597
2598
2599
2600
2601
2602
2603
2604
2605
2606
2607
2608
2609
2610
2611
2612
2613
2614
2615
2616
2617
2618
2619
2620
2621
2622
2623
2624
2625
2626
2627
2628
2629
Signal Name
Contents
DISP.ALARM1
DISP.ALARM2
DISP.ALARM3
DISP.ALARM4
Indicate the alarm display
ditto
ditto
ditto
SYNC_CLOCK
Synchronise clock commamd
ALARM_LED_SET
Alarm LED set
F.RECORD1
F.RECORD2
F.RECORD3
F.RECORD4
Fault record stored command 1
2
3
4
⎯ 108 ⎯
6 F 2 S 0 9 0 0
No.
2630
2631
2632
2633
2634
2635
2636
2637
2638
2639
2640
2641
2642
2643
2644
2645
2646
2647
2648
2649
2650
2651
2652
2653
2654
2655
2656
2657
2658
2659
2660
2661
2662
2663
2664
2665
2666
2667
2668
2669
2670
2671
2672
2673
2674
2675
2676
2677
2678
2679
2680
2681
2682
2683
2684
2685
2686
2687
2688
2689
2690
2691
2692
2693
2694
2695
:
:
2799
2800
Signal Name
Contents
D.RECORD1
D.RECORD2
D.RECORD3
D.RECORD4
Disturbance record stored command 1
2
3
4
SET.GROUP1
SET.GROUP2
SET.GROUP3
SET.GROUP4
SET.GROUP5
SET.GROUP6
SET.GROUP7
SET.GROUP8
Active setting group changed command (Change to group1)
2
3
4
5
6
7
8
CON_TPMD1
CON_TPMD2
CON_TPMD3
CON_TPMD4
CON_TPMD5
CON_TPMD6
CON_TPMD7
CON_TPMD8
User configurable trip mode in fault record
ditto
ditto
ditto
ditto
ditto
ditto
ditto
PROT_COM_RECV
protection inactivate command received
TPLED_RST_RCV
TRIP LED RESET command received
⎯ 109 ⎯
6 F 2 S 0 9 0 0
No.
Signal Name
Contents
2801
2802
2803
2804
2805
2806
2807
2808
2809
2810
2811
2812
2813
2814
2815
2816
2817
2818
2819
2820
2821
2822
2823
2824
2825
2826
2827
2828
2829
2830
2831
2832
2833
2834
2835
2836
2837
2838
2839
2840
2841
2842
2843
2844
2845
2846
2847
2848
2849
2850
2851
2852
2853
2854
2855
2856
2857
2858
2859
2860
2861
2862
2863
2864
2865
2866
2867
2868
2869
2870
TEMP001
TEMP002
TEMP003
TEMP004
TEMP005
TEMP006
TEMP007
TEMP008
TEMP009
TEMP010
TEMP011
TEMP012
TEMP013
TEMP014
TEMP015
TEMP016
TEMP017
TEMP018
TEMP019
TEMP020
TEMP021
TEMP022
TEMP023
TEMP024
TEMP025
TEMP026
TEMP027
TEMP028
TEMP029
TEMP030
TEMP031
TEMP032
TEMP033
TEMP034
TEMP035
TEMP036
TEMP037
TEMP038
TEMP039
TEMP040
TEMP041
TEMP042
TEMP043
TEMP044
TEMP045
TEMP046
TEMP047
TEMP048
TEMP049
TEMP050
TEMP051
TEMP052
TEMP053
TEMP054
TEMP055
⎯ 110 ⎯
6 F 2 S 0 9 0 0
No.
2871
2872
2873
2874
2875
2876
2877
2878
2879
2880
2881
2882
2883
2884
2885
2886
2887
2888
2889
2890
2891
2892
2893
2894
2895
2896
2897
2898
2899
2900
2901
2902
2903
2904
2905
2906
2907
2908
2909
2910
2911
2912
2913
2914
2915
2916
2917
2918
2919
2920
2921
2922
2923
2924
2925
2926
2927
2928
2929
2930
2931
2932
2933
2934
2935
2936
2937
2938
2939
2940
Signal Name
Contents
TEMP056
TEMP057
TEMP058
TEMP059
TEMP060
TEMP061
TEMP062
TEMP063
TEMP064
TEMP065
TEMP066
TEMP067
TEMP068
TEMP069
TEMP070
TEMP071
TEMP072
TEMP073
TEMP074
TEMP075
TEMP076
TEMP077
TEMP078
TEMP079
TEMP080
TEMP081
TEMP082
TEMP083
TEMP084
TEMP085
TEMP086
TEMP087
TEMP088
TEMP089
TEMP090
TEMP091
TEMP092
TEMP093
TEMP094
TEMP095
TEMP096
TEMP097
TEMP098
TEMP099
TEMP100
TEMP101
TEMP102
TEMP103
TEMP104
TEMP105
TEMP106
TEMP107
TEMP108
TEMP109
TEMP110
TEMP111
TEMP112
TEMP113
TEMP114
TEMP115
TEMP116
TEMP117
TEMP118
TEMP119
TEMP120
TEMP121
TEMP122
TEMP123
TEMP124
TEMP125
⎯ 111 ⎯
6 F 2 S 0 9 0 0
No.
2941
2942
2943
2944
2945
2946
2947
2948
2949
2950
2951
2952
2953
2954
2955
2956
2957
2958
2959
2960
2961
2962
2963
2964
2965
2966
2967
2968
2969
2970
2971
2972
2973
2974
2975
2976
2977
2978
2979
2980
2981
2982
2983
2984
2985
2986
2987
2988
2989
2990
2991
2992
2993
2994
2995
2996
2997
2998
2999
3000
3001
3002
3003
3004
3005
3006
3007
3008
3009
3010
Signal Name
Contents
TEMP126
TEMP127
TEMP128
TEMP129
TEMP130
TEMP131
TEMP132
TEMP133
TEMP134
TEMP135
TEMP136
TEMP137
TEMP138
TEMP139
TEMP140
TEMP141
TEMP142
TEMP143
TEMP144
TEMP145
TEMP146
TEMP147
TEMP148
TEMP149
TEMP150
TEMP151
TEMP152
TEMP153
TEMP154
TEMP155
TEMP156
TEMP157
TEMP158
TEMP159
TEMP160
TEMP161
TEMP162
TEMP163
TEMP164
TEMP165
TEMP166
TEMP167
TEMP168
TEMP169
TEMP170
TEMP171
TEMP172
TEMP173
TEMP174
TEMP175
TEMP176
TEMP177
TEMP178
TEMP179
TEMP180
TEMP181
TEMP182
TEMP183
TEMP184
TEMP185
TEMP186
TEMP187
TEMP188
TEMP189
TEMP190
TEMP191
TEMP192
TEMP193
TEMP194
TEMP195
⎯ 112 ⎯
6 F 2 S 0 9 0 0
No.
3011
3012
3013
3014
3015
3016
3017
3018
3019
3020
3021
3022
3023
3024
3025
3026
3027
3028
3029
3030
3031
3032
3033
3034
3035
3036
3037
3038
3039
3040
3041
3042
3043
3044
3045
3046
3047
3048
3049
3050
3051
3052
3053
3054
3055
3056
3057
3058
3059
3060
3061
3062
3063
3064
3065
3066
3067
3068
3069
3070
3071
Signal Name
TEMP196
TEMP197
TEMP198
TEMP199
TEMP200
TEMP201
TEMP202
TEMP203
TEMP204
TEMP205
TEMP206
TEMP207
TEMP208
TEMP209
TEMP210
TEMP211
TEMP212
TEMP213
TEMP214
TEMP215
TEMP216
TEMP217
TEMP218
TEMP219
TEMP220
TEMP221
TEMP222
TEMP223
TEMP224
TEMP225
TEMP226
TEMP227
TEMP228
TEMP229
TEMP230
TEMP231
TEMP232
TEMP233
TEMP234
TEMP235
TEMP236
TEMP237
TEMP238
TEMP239
TEMP240
TEMP241
TEMP242
TEMP243
TEMP244
TEMP245
TEMP246
TEMP247
TEMP248
TEMP249
TEMP250
TEMP251
TEMP252
TEMP253
TEMP254
TEMP255
TEMP256
Contents
⎯ 113 ⎯
6 F 2 S 0 9 0 0
For IEC61850
Measure Table
NO
SIGNAL NAME
0 Vda_mag
1 Vdb_mag
2 Vdc_mag
CONTENTS
Vda magnitude
Vdb magnitude
Vdc magnitude
⎯ 114 ⎯
6 F 2 S 0 9 0 0
Setting Table
NO
0
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
SIGNAL NAME
CONTENTS
GROUP_NO
ACT_GROUP
EDIT_GROUP
CHG_GROUP
number of groups
active group number
edit group number
change active group
⎯ 115 ⎯
NO
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
SIGNAL NAME
CONTENTS
1A2_5A1
1A1_5A2
1A1_5A0
1A0_5A1
1A3_5A2
1A:2 5A:1
1A:1 5A:2
1A:1 5A:0
1A:0 5A:1
1A:3 5A:2
SoftType
MappingName
Vendor
Software type
Mapping info
venfor name
Const0
Const1
Const2
Const3
Always 0
Always 1
Always 2
Always 3
6 F 2 S 0 9 0 0
Status Table
NO
SIGNAL NAME
CONTENTS
NO
SIGNAL NAME
CONTENTS
0 GOOSE_V_001
GOOSE_Value_001
51 GOOSE_V_052
GOOSE_Value_052
1 GOOSE_V_002
GOOSE_Value_002
52 GOOSE_V_053
GOOSE_Value_053
2 GOOSE_V_003
GOOSE_Value_003
53 GOOSE_V_054
GOOSE_Value_054
3 GOOSE_V_004
4 GOOSE_V_005
GOOSE_Value_004
GOOSE_Value_005
54 GOOSE_V_055
55 GOOSE_V_056
GOOSE_Value_055
GOOSE_Value_056
5 GOOSE_V_006
GOOSE_Value_006
56 GOOSE_V_057
GOOSE_Value_057
6 GOOSE_V_007
GOOSE_Value_007
57 GOOSE_V_058
GOOSE_Value_058
7 GOOSE_V_008
8 GOOSE_V_009
GOOSE_Value_008
GOOSE_Value_009
58 GOOSE_V_059
59 GOOSE_V_060
GOOSE_Value_059
GOOSE_Value_060
9 GOOSE_V_010
GOOSE_Value_010
60 GOOSE_V_061
GOOSE_Value_061
10 GOOSE_V_011
GOOSE_Value_011
61 GOOSE_V_062
GOOSE_Value_062
11 GOOSE_V_012
12 GOOSE_V_013
GOOSE_Value_012
GOOSE_Value_013
62 GOOSE_V_063
63 GOOSE_V_064
GOOSE_Value_063
GOOSE_Value_064
13 GOOSE_V_014
GOOSE_Value_014
64 GOOSE_V_065
GOOSE_Value_065
14 GOOSE_V_015
GOOSE_Value_015
65 GOOSE_V_066
GOOSE_Value_066
15 GOOSE_V_016
16 GOOSE_V_017
GOOSE_Value_016
GOOSE_Value_017
66 GOOSE_V_067
67 GOOSE_V_068
GOOSE_Value_067
GOOSE_Value_068
17 GOOSE_V_018
GOOSE_Value_018
68 GOOSE_V_069
GOOSE_Value_069
18 GOOSE_V_019
GOOSE_Value_019
69 GOOSE_V_070
GOOSE_Value_070
19 GOOSE_V_020
20 GOOSE_V_021
GOOSE_Value_020
GOOSE_Value_021
70 GOOSE_V_071
71 GOOSE_V_072
GOOSE_Value_071
GOOSE_Value_072
21 GOOSE_V_022
GOOSE_Value_022
72 GOOSE_V_073
GOOSE_Value_073
22 GOOSE_V_023
GOOSE_Value_023
73 GOOSE_V_074
GOOSE_Value_074
23 GOOSE_V_024
24 GOOSE_V_025
GOOSE_Value_024
GOOSE_Value_025
74 GOOSE_V_075
75 GOOSE_V_076
GOOSE_Value_075
GOOSE_Value_076
25 GOOSE_V_026
GOOSE_Value_026
76 GOOSE_V_077
GOOSE_Value_077
26 GOOSE_V_027
GOOSE_Value_027
77 GOOSE_V_078
GOOSE_Value_078
27 GOOSE_V_028
28 GOOSE_V_029
GOOSE_Value_028
GOOSE_Value_029
78 GOOSE_V_079
79 GOOSE_V_080
GOOSE_Value_079
GOOSE_Value_080
29 GOOSE_V_030
GOOSE_Value_030
80 GOOSE_V_081
GOOSE_Value_081
30 GOOSE_V_031
GOOSE_Value_031
81 GOOSE_V_082
GOOSE_Value_082
31 GOOSE_V_032
32 GOOSE_V_033
GOOSE_Value_032
GOOSE_Value_033
82 GOOSE_V_083
83 GOOSE_V_084
GOOSE_Value_083
GOOSE_Value_084
33 GOOSE_V_034
GOOSE_Value_034
84 GOOSE_V_085
GOOSE_Value_085
34 GOOSE_V_035
GOOSE_Value_035
85 GOOSE_V_086
GOOSE_Value_086
35 GOOSE_V_036
36 GOOSE_V_037
GOOSE_Value_036
GOOSE_Value_037
86 GOOSE_V_087
87 GOOSE_V_088
GOOSE_Value_087
GOOSE_Value_088
37 GOOSE_V_038
GOOSE_Value_038
88 GOOSE_V_089
GOOSE_Value_089
38 GOOSE_V_039
GOOSE_Value_039
89 GOOSE_V_090
GOOSE_Value_090
39 GOOSE_V_040
40 GOOSE_V_041
GOOSE_Value_040
GOOSE_Value_041
90 GOOSE_V_091
91 GOOSE_V_092
GOOSE_Value_091
GOOSE_Value_092
41 GOOSE_V_042
GOOSE_Value_042
92 GOOSE_V_093
GOOSE_Value_093
42 GOOSE_V_043
GOOSE_Value_043
93 GOOSE_V_094
GOOSE_Value_094
43 GOOSE_V_044
44 GOOSE_V_045
GOOSE_Value_044
GOOSE_Value_045
94 GOOSE_V_095
95 GOOSE_V_096
GOOSE_Value_095
GOOSE_Value_096
45 GOOSE_V_046
GOOSE_Value_046
96 GOOSE_V_097
GOOSE_Value_097
46 GOOSE_V_047
GOOSE_Value_047
97 GOOSE_V_098
GOOSE_Value_098
47 GOOSE_V_048
48 GOOSE_V_049
GOOSE_Value_048
GOOSE_Value_049
98 GOOSE_V_099
99 GOOSE_V_100
GOOSE_Value_099
GOOSE_Value_100
49 GOOSE_V_050
GOOSE_Value_050
100 GOOSE_V_101
GOOSE_Value_101
50 GOOSE_V_051
GOOSE_Value_051
101 GOOSE_V_102
GOOSE_Value_102
⎯ 116 ⎯
6 F 2 S 0 9 0 0
NO
SIGNAL NAME
101 GOOSE_V_102
102 GOOSE_V_103
CONTENTS
GOOSE_Value_102
GOOSE_Value_103
103 GOOSE_V_104
104 GOOSE_V_105
105 GOOSE_V_106
GOOSE_Value_104
GOOSE_Value_105
GOOSE_Value_106
153
154
155
106 GOOSE_V_107
107 GOOSE_V_108
108 GOOSE_V_109
GOOSE_Value_107
GOOSE_Value_108
GOOSE_Value_109
156
157
158
109 GOOSE_V_110
110 GOOSE_V_111
111 GOOSE_V_112
GOOSE_Value_110
GOOSE_Value_111
GOOSE_Value_112
159
160
161
112
113
114
115
GOOSE_V_113
GOOSE_V_114
GOOSE_V_115
GOOSE_V_116
GOOSE_Value_113
GOOSE_Value_114
GOOSE_Value_115
GOOSE_Value_116
162
163
164
165
116 GOOSE_V_117
117 GOOSE_V_118
118 GOOSE_V_119
GOOSE_Value_117
GOOSE_Value_118
GOOSE_Value_119
166
167
168
119 GOOSE_V_120
120 GOOSE_V_121
121 GOOSE_V_122
GOOSE_Value_120
GOOSE_Value_121
GOOSE_Value_122
169
170
171
122 GOOSE_V_123
123 GOOSE_V_124
124 GOOSE_V_125
GOOSE_Value_123
GOOSE_Value_124
GOOSE_Value_125
172
173
174
125 GOOSE_V_126
126 GOOSE_V_127
127 GOOSE_V_128
GOOSE_Value_126
GOOSE_Value_127
GOOSE_Value_128
175
176
177
128 XCBR_POS0
129
130
XCBR_POS0
178
179
180
131
132
133
134
135 LEDRST_EXEC
136
137
138
139 XCBR_OPCNT0
140
NO
SIGNAL NAME
181
182
183
184
LEDRST_EXEC
XCBR_OPCNT0
185
186
187
188
189
190
141
142
143
191
192
193
144
145
146
194
195
196
147
148
149
197
198
199
150 HEALTH
CONTENTS
151
152
HEALTH
200 MOD_001
⎯ 117 ⎯
IEC-MODE_001
6 F 2 S 0 9 0 0
NO
SIGNAL NAME
201 MOD_002
202 MOD_003
CONTENTS
IEC-MODE_002
IEC-MODE_003
203 MOD_004
204 MOD_005
205 MOD_006
NO
SIGNAL NAME
251 MOD_052
252 MOD_053
CONTENTS
IEC-MODE_052
IEC-MODE_053
IEC-MODE_004
IEC-MODE_005
IEC-MODE_006
253 MOD_054
254 MOD_055
255 MOD_056
IEC-MODE_054
IEC-MODE_055
IEC-MODE_056
206 MOD_007
207 MOD_008
208 MOD_009
IEC-MODE_007
IEC-MODE_008
IEC-MODE_009
256 MOD_057
257 MOD_058
258 MOD_059
IEC-MODE_057
IEC-MODE_058
IEC-MODE_059
209 MOD_010
210 MOD_011
211 MOD_012
IEC-MODE_010
IEC-MODE_011
IEC-MODE_012
259 MOD_060
260 MOD_061
261 MOD_062
IEC-MODE_060
IEC-MODE_061
IEC-MODE_062
212
213
214
215
MOD_013
MOD_014
MOD_015
MOD_016
IEC-MODE_013
IEC-MODE_014
IEC-MODE_015
IEC-MODE_016
262
263
264
265
MOD_063
MOD_064
MOD_065
MOD_066
IEC-MODE_063
IEC-MODE_064
IEC-MODE_065
IEC-MODE_066
216 MOD_017
217 MOD_018
218 MOD_019
IEC-MODE_017
IEC-MODE_018
IEC-MODE_019
266 MOD_067
267 MOD_068
268 MOD_069
IEC-MODE_067
IEC-MODE_068
IEC-MODE_069
219 MOD_020
220 MOD_021
221 MOD_022
IEC-MODE_020
IEC-MODE_021
IEC-MODE_022
269 MOD_070
270 MOD_071
271 MOD_072
IEC-MODE_070
IEC-MODE_071
IEC-MODE_072
222 MOD_023
223 MOD_024
224 MOD_025
IEC-MODE_023
IEC-MODE_024
IEC-MODE_025
272 MOD_073
273 MOD_074
274 MOD_075
IEC-MODE_073
IEC-MODE_074
IEC-MODE_075
225 MOD_026
226 MOD_027
227 MOD_028
IEC-MODE_026
IEC-MODE_027
IEC-MODE_028
275 MOD_076
276 MOD_077
277 MOD_078
IEC-MODE_076
IEC-MODE_077
IEC-MODE_078
228 MOD_029
229 MOD_030
230 MOD_031
IEC-MODE_029
IEC-MODE_030
IEC-MODE_031
278 MOD_079
279 MOD_080
280 MOD_081
IEC-MODE_079
IEC-MODE_080
IEC-MODE_081
231
232
233
234
MOD_032
MOD_033
MOD_034
MOD_035
IEC-MODE_032
IEC-MODE_033
IEC-MODE_034
IEC-MODE_035
281
282
283
284
MOD_082
MOD_083
MOD_084
MOD_085
IEC-MODE_082
IEC-MODE_083
IEC-MODE_084
IEC-MODE_085
235 MOD_036
236 MOD_037
237 MOD_038
IEC-MODE_036
IEC-MODE_037
IEC-MODE_038
285 MOD_086
286 MOD_087
287 MOD_088
IEC-MODE_086
IEC-MODE_087
IEC-MODE_088
238 MOD_039
239 MOD_040
240 MOD_041
IEC-MODE_039
IEC-MODE_040
IEC-MODE_041
288 MOD_089
289 MOD_090
290 MOD_091
IEC-MODE_089
IEC-MODE_090
IEC-MODE_091
241 MOD_042
242 MOD_043
243 MOD_044
IEC-MODE_042
IEC-MODE_043
IEC-MODE_044
291 MOD_092
292 MOD_093
293 MOD_094
IEC-MODE_092
IEC-MODE_093
IEC-MODE_094
244 MOD_045
245 MOD_046
246 MOD_047
IEC-MODE_045
IEC-MODE_046
IEC-MODE_047
294 MOD_095
295 MOD_096
296 MOD_097
IEC-MODE_095
IEC-MODE_096
IEC-MODE_097
247 MOD_048
248 MOD_049
249 MOD_050
IEC-MODE_048
IEC-MODE_049
IEC-MODE_050
297 MOD_098
298 MOD_099
299 MOD_100
IEC-MODE_098
IEC-MODE_099
IEC-MODE_100
250 MOD_051
IEC-MODE_051
300 BEH_001
IEC-Behavier_001
⎯ 118 ⎯
6 F 2 S 0 9 0 0
NO
SIGNAL NAME
301 BEH_002
302 BEH_003
CONTENTS
IEC-Behavier_002
IEC-Behavier_003
303 BEH_004
304 BEH_005
305 BEH_006
NO
SIGNAL NAME
351 BEH_052
352 BEH_053
CONTENTS
IEC-Behavier_052
IEC-Behavier_053
IEC-Behavier_004
IEC-Behavier_005
IEC-Behavier_006
353 BEH_054
354 BEH_055
355 BEH_056
IEC-Behavier_054
IEC-Behavier_055
IEC-Behavier_056
306 BEH_007
307 BEH_008
308 BEH_009
IEC-Behavier_007
IEC-Behavier_008
IEC-Behavier_009
356 BEH_057
357 BEH_058
358 BEH_059
IEC-Behavier_057
IEC-Behavier_058
IEC-Behavier_059
309 BEH_010
310 BEH_011
311 BEH_012
IEC-Behavier_010
IEC-Behavier_011
IEC-Behavier_012
359 BEH_060
360 BEH_061
361 BEH_062
IEC-Behavier_060
IEC-Behavier_061
IEC-Behavier_062
312
313
314
315
BEH_013
BEH_014
BEH_015
BEH_016
IEC-Behavier_013
IEC-Behavier_014
IEC-Behavier_015
IEC-Behavier_016
362
363
364
365
BEH_063
BEH_064
BEH_065
BEH_066
IEC-Behavier_063
IEC-Behavier_064
IEC-Behavier_065
IEC-Behavier_066
316 BEH_017
317 BEH_018
318 BEH_019
IEC-Behavier_017
IEC-Behavier_018
IEC-Behavier_019
366 BEH_067
367 BEH_068
368 BEH_069
IEC-Behavier_067
IEC-Behavier_068
IEC-Behavier_069
319 BEH_020
320 BEH_021
321 BEH_022
IEC-Behavier_020
IEC-Behavier_021
IEC-Behavier_022
369 BEH_070
370 BEH_071
371 BEH_072
IEC-Behavier_070
IEC-Behavier_071
IEC-Behavier_072
322 BEH_023
323 BEH_024
324 BEH_025
IEC-Behavier_023
IEC-Behavier_024
IEC-Behavier_025
372 BEH_073
373 BEH_074
374 BEH_075
IEC-Behavier_073
IEC-Behavier_074
IEC-Behavier_075
325 BEH_026
326 BEH_027
327 BEH_028
IEC-Behavier_026
IEC-Behavier_027
IEC-Behavier_028
375 BEH_076
376 BEH_077
377 BEH_078
IEC-Behavier_076
IEC-Behavier_077
IEC-Behavier_078
328 BEH_029
329 BEH_030
330 BEH_031
IEC-Behavier_029
IEC-Behavier_030
IEC-Behavier_031
378 BEH_079
379 BEH_080
380 BEH_081
IEC-Behavier_079
IEC-Behavier_080
IEC-Behavier_081
331
332
333
334
BEH_032
BEH_033
BEH_034
BEH_035
IEC-Behavier_032
IEC-Behavier_033
IEC-Behavier_034
IEC-Behavier_035
381
382
383
384
BEH_082
BEH_083
BEH_084
BEH_085
IEC-Behavier_082
IEC-Behavier_083
IEC-Behavier_084
IEC-Behavier_085
335 BEH_036
336 BEH_037
337 BEH_038
IEC-Behavier_036
IEC-Behavier_037
IEC-Behavier_038
385 BEH_086
386 BEH_087
387 BEH_088
IEC-Behavier_086
IEC-Behavier_087
IEC-Behavier_088
338 BEH_039
339 BEH_040
340 BEH_041
IEC-Behavier_039
IEC-Behavier_040
IEC-Behavier_041
388 BEH_089
389 BEH_090
390 BEH_091
IEC-Behavier_089
IEC-Behavier_090
IEC-Behavier_091
341 BEH_042
342 BEH_043
343 BEH_044
IEC-Behavier_042
IEC-Behavier_043
IEC-Behavier_044
391 BEH_092
392 BEH_093
393 BEH_094
IEC-Behavier_092
IEC-Behavier_093
IEC-Behavier_094
344 BEH_045
345 BEH_046
346 BEH_047
IEC-Behavier_045
IEC-Behavier_046
IEC-Behavier_047
394 BEH_095
395 BEH_096
396 BEH_097
IEC-Behavier_095
IEC-Behavier_096
IEC-Behavier_097
347 BEH_048
348 BEH_049
349 BEH_050
IEC-Behavier_048
IEC-Behavier_049
IEC-Behavier_050
397 BEH_098
398 BEH_099
399 BEH_100
IEC-Behavier_098
IEC-Behavier_099
IEC-Behavier_100
350 BEH_051
IEC-Behavier_051
400 Const0
Const0
⎯ 119 ⎯
6 F 2 S 0 9 0 0
NO
SIGNAL NAME
401 Const1
402 Const2
CONTENTS
Const1
Const2
403 Const3
404 Const4
405 Const5
Const3
Const4
Const5
NO
SIGNAL NAME
451
452
453
454
455
406
407
408
456
457
458
409
410
411
459
460
461
412
413
414
462
463
464
415
416
417
465
466
467
418
419
420
468
469
470
421
422
423
471
472
473
424
425
426
474
475
476
477
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
450
⎯ 120 ⎯
CONTENTS
6 F 2 S 0 9 0 0
Control Table
NO
SIGNAL NAME
0 LEDRST_SIG
1 LEDRST_ORCAT
CONTENTS
LED Reset
Control - LED Reset Originator category
2 LEDRST_ORID
Control - LED Reset Originator category
3 LEDRST_ORCAT_ST
Status - LED Rst Originator category
4 LEDRST_ORID_ST
Status - LED Rst Originator category
5 RESERVE
Reserve
6 RESERVE
Reserve
7 RESERVE
Reserve
8 RESERVE
Reserve
9 RESERVE
Reserve
10 MOD_CHECK
MOD_CHECK
11 MOD_CTLNUM
MOD_CTLNUM
12 MOD_CTLVAL
MOD_CTLVAL
13 MOD_ORCAT
MOD_ORCAT
14 MOD_ORIDENT
MOD_ORIDENT
15 MOD_TEST
MOD_TEST
16 MOD_CTLMDL
MOD_CTLMDL
17 MOD_ST_ORCAT
MOD_ST_ORCAT
18 MOD_ST_ORIDENT
MOD_ST_ORIDENT
19 MOD_SELECT
MOD_SELECT
20 MOD_SBOTIMEOUT
MOD_SBOTIMEOUT
21 MOD_SBOCLASS
MOD_SBOCLASS
⎯ 121 ⎯
6 F 2 S 0 9 0 0
⎯ 122 ⎯
6 F 2 S 0 9 0 0
Appendix C
Binary Output Default Setting List
⎯ 123 ⎯
6 F 2 S 0 9 0 0
BO1
BO2
BO3
BO4
BO5
BO6
Setting
Device
Name
Logic
Reset
In #1
In #2
In #3
In #4
In #5
In #6
TBO
Logic
Reset
In #1
In #2
In #3
In #4
In #5
In #6
TBO
Logic
Reset
In #1
In #2
In #3
In #4
In #5
In #6
TBO
Logic
Reset
In #1
In #2
In #3
In #4
In #5
In #6
TBO
Logic
Reset
In #1
In #2
In #3
In #4
In #5
In #6
TBO
Logic
Reset
In #1
In #2
In #3
In #4
In #5
In #6
TBO
Range
Unit
OR - AND
Ins - Dl - Dw - Lat
0 - 3071
0 - 3071
0 - 3071
0 - 3071
0 - 3071
0 - 3071
0.00 - 10.00
OR - AND
Ins - Dl - Dw - Lat
0 - 3071
0 - 3071
0 - 3071
0 - 3071
0 - 3071
0 - 3071
0.00 - 10.00
OR - AND
Ins - Dl - Dw - Lat
0 - 3071
0 - 3071
0 - 3071
0 - 3071
0 - 3071
0 - 3071
0.00 - 10.00
OR - AND
Ins - Dl - Dw - Lat
0 - 3071
0 - 3071
0 - 3071
0 - 3071
0 - 3071
0 - 3071
0.00 - 10.00
OR - AND
Ins - Dl - Dw - Lat
0 - 3071
0 - 3071
0 - 3071
0 - 3071
0 - 3071
0 - 3071
0.00 - 10.00
OR - AND
Ins - Dl - Dw - Lat
0 - 3071
0 - 3071
0 - 3071
0 - 3071
0 - 3071
0 - 3071
0.00 - 10.00
-
-
-
-
-
-
-
-
s
-
-
-
-
-
-
-
-
s
-
-
-
-
-
-
-
-
s
-
-
-
-
-
-
-
-
s
-
-
-
-
-
-
-
-
s
-
-
-
-
-
-
-
-
s
Contents
Logic gate
Reset application
Output signal
ditto
ditto
ditto
ditto
ditto
Dl/Dw timer
Logic gate
Reset application
Output signal
ditto
ditto
ditto
ditto
ditto
Dl/Dw timer
Logic gate
Reset application
Output signal
ditto
ditto
ditto
ditto
ditto
Dl/Dw timer
Logic gate
Reset application
Output signal
ditto
ditto
ditto
ditto
ditto
Dl/Dw timer
Logic gate
Reset application
Output signal
ditto
ditto
ditto
ditto
ditto
Dl/Dw timer
Logic gate
Reset application
Output signal
ditto
ditto
ditto
ditto
ditto
Dl/Dw timer
⎯ 124 ⎯
Default Setting
101
Setting Signal Name Setting
OR
-OR
Dl
-Dl
27
VD_ERR
24
0
0
0
0
0
0
0
0
0
0
0.20
-0.20
OR
-OR
Dl
-Dl
27
VD_ERR
25
0
0
0
0
0
0
0
0
0
0
0.20
-0.20
OR
-OR
Dl
-Dl
27
VD_ERR
26
0
0
0
0
0
0
0
0
0
0
0.20
-0.20
OR
-OR
Dl
-Dl
28
DIF_TRIP
21
0
0
0
0
0
0
0
0
0
0
0.20
-0.20
OR
-OR
Dl
-Dl
28
DIF_TRIP
22
0
0
0
0
0
0
0
0
0
0
0.20
-0.20
OR
-OR
Dl
-Dl
28
DIF_TRIP
23
0
0
0
0
0
0
0
0
0
0
0.20
-0.20
201
Signal Name
--VD_ERR-A
---VD_ERR-B
---VD_ERR-C
---DIF_TRIP-A
---DIF_TRIP-B
---DIF_TRIP-C
--
6 F 2 S 0 9 0 0
HBO1
HBO2
HBO3
HBO4
Setting
Dev ice
Name
Range
Logic
Reset
In #1
In #2
In #3
In #4
In #5
In #6
TBO
Logic
Reset
In #1
In #2
In #3
In #4
In #5
In #6
TBO
Logic
Reset
In #1
In #2
In #3
In #4
In #5
In #6
TBO
Logic
Reset
In #1
In #2
In #3
In #4
In #5
In #6
TBO
OR - AND
Ins - Dl - Dw - Lat
0 - 3071
0 - 3071
0 - 3071
0 - 3071
0 - 3071
0 - 3071
0.00 - 10.00
OR - AND
Ins - Dl - Dw - Lat
0 - 3071
0 - 3071
0 - 3071
0 - 3071
0 - 3071
0 - 3071
0.00 - 10.00
OR - AND
Ins - Dl - Dw - Lat
0 - 3071
0 - 3071
0 - 3071
0 - 3071
0 - 3071
0 - 3071
0.00 - 10.00
OR - AND
Ins - Dl - Dw - Lat
0 - 3071
0 - 3071
0 - 3071
0 - 3071
0 - 3071
0 - 3071
0.00 - 10.00
Unit
-
-
-
-
-
-
-
-
s
-
-
-
-
-
-
-
-
s
-
-
-
-
-
-
-
-
s
-
-
-
-
-
-
-
-
s
Contents
Logic gate
Reset application
Output signal
ditto
ditto
ditto
ditto
ditto
Dl/Dw timer
Logic gate
Reset application
Output signal
ditto
ditto
ditto
ditto
ditto
Dl/Dw timer
Logic gate
Reset application
Output signal
ditto
ditto
ditto
ditto
ditto
Dl/Dw timer
Logic gate
Reset application
Output signal
ditto
ditto
ditto
ditto
ditto
Dl/Dw timer
⎯ 125 ⎯
Setting
OR
Dl
28
0
0
0
0
0
0.20
OR
Dl
28
0
0
0
0
0
0.20
OR
Dl
28
0
0
0
0
0
0.20
OR
Dl
28
0
0
0
0
0
0.20
Def ault Setting
101
Signal Name Setting
-OR
-Dl
DIF_TRIP
28
0
0
0
0
0
-0.20
-OR
-Dl
DIF_TRIP
28
0
0
0
0
0
-0.20
-OR
-Dl
DIF_TRIP
28
0
0
0
0
0
-0.20
-OR
-Dl
DIF_TRIP
28
0
0
0
0
0
-0.20
201
Signal Name
--DIF_TRIP
---DIF_TRIP
---DIF_TRIP
---DIF_TRIP
--
6 F 2 S 0 9 0 0
⎯ 126 ⎯
6 F 2 S 0 9 0 0
Appendix D
Details of Relay Menu and
LCD & Button Operation Instruction
⎯ 127 ⎯
6 F 2 S 0 9 0 0
MENU
xRecord
xStatus
xSet. (view)
xSet. (change)
xTest
/1 Record
xF. record
xE. record
xD. record
xCounter
/2 F.record
xDisplay
/3 F.record
xClear
#1 16/Oct/1997
18:13:57.031
Refer to Section
4.2.3.1.
/4 F.record #1
16/Oct/1997
Clear records?
END=Y
CANCEL=N
/2 E.record
xDisplay
/3 E.record
xClear
16/Oct/1997
Ext. trip A
Refer to Section
4.2.3.2.
On
Clear records?
END=Y
CANCEL=N
/2 D.record
xDisplay
/3 D.record
xClear
#1 16/Oct/1997
18:13:57.401
Refer to Section
4.2.3.3.
Clear records?
END=Y
CANCEL=N
/2 Counter
xDisplay
xClear Trips
Refer to Section
4.2.3.3.
/3 D.record
Clear Trips?
END=Y
CANCEL=N
a-1
⎯ 128 ⎯
6 F 2 S 0 9 0 0
a-1
/1 Status
xMetering
xBinary I/O
xRelay element
xTime sync.
xClock adjust.
xLCD contrast
/2 Metering
Vda ***.* V
/2 Binary I/O
IP [00000000
]
/2 Ry element
[000 000
]
Refer to Section 4.2.4.
/2 Time sync.
*BI: Inact
/2 12/Nov/1999
22:56:19 [L]
/2 LCD contrast
/1 Set. (view)
xVersion
xDescription
xComms
xRecord
xStatus
xProtection
xBinary I/P
xBinary O/P
xLED
/2 Version
xRelay type
xSerial No.
xSoftware
/2 Description
xPlant name
Refer to Section 4.2.5
GRB150-201D-20
-B0
∗∗∗∗∗∗∗∗∗∗∗∗∗∗
∗∗∗∗∗∗
G*****-**-*
xDescription
xAlarm1 Text
:
/3 Addr./Param.
/2 Comms
xAddr./Param.
/3 Switch
xSwitch
a-1, b-1
⎯ 129 ⎯
6 F 2 S 0 9 0 0
a-1 b-1
/2 Record
xE.record
/3 E.record
xSignal No.
/4 Signal No.
xD.record
xCounter
xEvent name
/4 Event name
/3 D.record
xTime/starter
/4 Time/starter
Time
2.0s
xScheme sw
xBinary sig.
xSignal name
/4 Signal name
/3 Counter
xScheme sw
xAlarm set
/2 Status
xTime sync.
/4 Scheme sw
/4 Alarm set
/3 Time sync.
xTime zone
/2 Act. gp. =*
xGroup1
/3 Time zone
GMT
+9hrs
xGroup2
:
xGroup8
/3 Group1
xParameter
xTrip
/4 Parameter
xLine name
∗∗∗∗∗∗∗∗∗∗∗∗∗∗
∗∗∗∗∗∗
/4 Trip
xScheme sw
/5 Scheme sw
xProt.element
/3 Group2
xParameter
/5 Prot.element
DIF
10V
/3 Group4
xParameter
a-1 b-1
⎯ 130 ⎯
6 F 2 S 0 9 0 0
a-1
b-1
/2 Binary I/P
xTimers
/3 Timers
xFunctions
/3 Functions
/2 Binary O/P
BO1 AND, I
1000, 1001, 1002,
1003, 1004, 1005
HBO4TBO 0.20s
/3 LED
LED1 AND, I
/2 LED
xLED
xVirtual LED
/3 Virtual LED
xIND1
/4 IND*
BIT1
I, 1000
xIND2
/1 Set.(change)
xPassword
xDescription
xComms
xRecord
xStatus
xProtection
xBinary I/O
xBinary O/P
xLED
Input
[_
1234567890←
: Password trap
Password [_
1234567890←
]
: Confirmation trap
Change settings?
ENTER=Y CANCEL=N
]
Retype
[_
1234567890←
]
Refer to Section
4.2.6.2.
/2 Description
xPlant name
xDescription
xAlarm1 Text
:
a-1
b-2
_
ABCDEFG
_
ABCDEFG
Refer to Section
4.2.6.3.
⎯ 131 ⎯
6 F 2 S 0 9 0 0
a-1
b-2
/2 Comms
xAddr./Param.
xSwitch
/3 Addr./Param.
/3 Switch
Refer to Section
4.2.6.4.
/2 Record
xE.record
/3 E.record
xD.record
xCounter
BITRN
100 _
Refer to Section
4.2.6.5.
EV128
3128 _
/4 Time/Starter
/3 D.record
xTime/Starter
xScheme sw
xBinary sig.
/4 Scheme sw
/3 Counter
xScheme sw
/4 Scheme sw
xAlarm set
/2 Status
xTime sync.
xTime zone
/3 Time sync.
/3 Time zone
Refer to Section
4.2.6.6.
/2 Protection
xChange act. gp.
xChange set.
xCopy gp.
Refer to Section
4.2.6.7.
/3 Change act.
gp.
/3 Act gp.=1
xGroup1
xGroup2
:
xGroup8
a-1
b-2
c-1
d-1
⎯ 132 ⎯
/4 Alarm set
6 F 2 S 0 9 0 0
a-1
b-2
c-1
d-1
/4 Group*
xParameter
xTrip
/5 Parameter
xLine name
_
/5 Trip
xScheme sw
xProt.element
/6 Scheme sw
ABCDEFG
VDCHK
Off/On
SVCNT
ALM&BLK/ALM
IND.R
Off/On
CLEN
Off/N-CL/CL
1 _
0 _
1 _
0 _
/6 Prot.element
DIF
V
10 _
DIFSV
/4 Group2
xParameter
5 _
/4 Group4
xParameter
/3 Copy A to B
A
B
/2 Binary I/P
xBI1
:
xBI8
V
_
_
TVDSV
0.50
DIFCC
1.00
TCLP
0.01
TCLE
0.00
TCLR
0.00
/3 BI∗
xTimers
xFunctions
Refer to Section
4.2.6.8.
a-1, b-2
⎯ 133 ⎯
s
_
_
s
_
s
_
s
_
/4 Timers
/4 Functions
6 F 2 S 0 9 0 0
a-1, b-2
/4 Logic/Reset
/2 Binary O/P
xBO1
xBO2
:
xHBO4
/3 BO∗
xLogic/Reset
xFunctions
Refer to Section
4.2.6.9.
/4 Functions
In #1
1000 _
:
TBO
0.20 _
/2 LED
xLED
xVirtual LED
Refer to Section
4.2.6.10.
/3 LED
xLED1
xLED2
:
xLED6
Logic
0 _
OR/AND
Reset
0 _
Ins/Dl/Dw/Lat
/4 LED∗
xLogic/Reset
xFunctions
s
/5 Logic/Reset
Logic
OR/AND
Reset
Ins/Lat
0 _
0 _
/5 Functions
In #1
1000 _
:
In #4
1003 _
/3 Virtual LED
xIND1
xIND2
/4 LED∗
xLogic/Reset
xFunctions
/5 Logic/Reset
Reset
Ins/Lat
0 _
/5 Functions
BIT1
1000 _
:
BIT8
1007_
a-1,
⎯ 134 ⎯
6 F 2 S 0 9 0 0
a-1,
/1 Test
xSwitch
/2 Switch
xBinary O/P
xLogic circuit
A.M.F.
Off/On
CLPTST
Off/N-CL/CL
IECTST
Off/On
Refer to Section 4.2.7.
: Password trap
Password [_
1234567890←
]
1 _
0
0
/2 Binary O/P
BO1
0 _
Disable/Enable
FAIL
0 _
Disable/Enable
/2 Logic
circuit
TermA
1 _
TermB
100
⎯ 135 ⎯
Operate?
ENTER=Y CANCEL=N
6 F 2 S 0 9 0 0
LCD AND BUTTON OPERATION INSTRUCTION
1. PRESS ARROW KEY TO MOVE TO EACH DISPLAYED
ITEMS
2. PRESS "END" KEY TO BACK TO PREVIOUS SCREEN
MANUAL
MODE
1=RECORD
1=FAULT RECORD
2=EVENT RECORD
3=DISTURBANCE RECORD
NORMAL
(DISPLAY OFF)
VIEW
PRESS ANY
BUTTON
EXCEPT FOR
"VIEW" AND
"RESET"
MENU
( DISPLAY ON )
2=STATUS
1=METERING
2=BINARY INPUT&OUPUT
METERING
(DISPLAY ON)
AUTOMODE 1
3=RELAY ELELMENT
4=TIME SYNC SOURCE
5=CLOCK ADJUSTMENT
TRIP OUTPUT
ISSUED !
VIEW
RESET
TRIP
( LED ON )
3=SETTING
(VIEW)
1=RELAY VERSION
LATEST FAULT *
(DISPLAY ON)
2=DESCRIPTION
AUTOMODE 2
3=RSM COMMUNICATION
4=RECORD
RELAY
FAILED !
VIEW
5=STATUS
RESET
ALARM
( LED ON )
6=PROTECTION
7=BINARY INPUT
8=BINARY OUTPUT
AUTO SUPERVISION *
(DISPLAY ON)
9=LED
*. "LATEST FAULT" AND "AUTO
SUPERVISION" SCREEN IS
DISPLAYED ONLY IF DATA
IS STORED
VIEW
RESET
4=SETTING
(CHANGE)
Same as SETTING (VIEW) menu
5=TEST
1=SWITCH
2=BINARY
O
3=LOGIC CIRCUIT
⎯ 136 ⎯
6 F 2 S 0 9 0 0
Appendix E
Outline of GRB150 and EB-101, -102
• Case Type of GRB150: Flush Mount Type
• EB-101 and EB-102
⎯ 137 ⎯
6 F 2 S 0 9 0 0
IN SER VIC E
R ESET
A
B
25 8
VIEW
TRIP
ALARM
0V CAN
CEL ENTER
END
15.6
104
185.2
32
Side view
Front view
4 holes-φ5.5
4 holes-φ4.5
OPT
T
TB1
TB3
TB1
TB2
R
TB3
F1
R
T
E
E
56
Rear view for
Fibre optic port + 100BASE-FX
Rear view for
RS485 + 100BASE-TX
102
Panel cut-out
TB3
TB1
1
3
5
7
A1
A1
2
4
6
8
TB2
B1
B1
Terminal
Application
TB3: A1 – A3
RS485 I/F
TB3: B1 – B2
IRIG-B
OPT
Fibre optic for IEC 60870-5-103
T1
100BASE-TX
F1
100BASE-FX
TB1,TB2,TB3: Screw terminal (M3.5 Ring)
T1: RJ45
A10
OPT: ST connector
B10
F1: SC connector
A18
B18
Terminal block
Case Outline of GRB150-xxxD: Flush Mount Type
⎯ 138 ⎯
24 9
T1
239
TB2
6 F 2 S 0 9 0 0
M4 Ring
terminal
TB1
1
205
226.5
8
Terminal block
Top view
6-φ5.5 for mounting
TB1
70
225
70
42.5
214.4
234
252
Side view
Front view
(a) EB-101
M4 Ring
terminal
M4 Ring
terminal
TB2
TB1
1
1
205 226.5
8
12
Terminal block
Top view
6-φ5.5 for mounting
TB2
TB1
70
225
70
42.5
362.4
382
400
Front view
Side view
(b) EB-102
Note: When mounting varistor units longitudinally, the TB1 should be located in the down side.
Outline of varistor unit
⎯ 139 ⎯
6 F 2 S 0 9 0 0
⎯ 140 ⎯
6 F 2 S 0 9 0 0
Appendix F
External Connection
⎯ 141 ⎯
6 F 2 S 0 9 0 0
GRB150-101D
EB-101
TB1 -1 TB1 -4
TB3A4
TB1 -1
(∗1) HBO1
-2
(+)
B4
TB1 -2 TB1 -5
A5
TB1 -8
(∗1) HBO2
(+)
B5
A6
FRAME EARTH
(∗1) HBO3
(+)
B6
A8
(∗1) HBO4
(+)
B8
TB3A10
BO1
B10
A11
BO2
B11
A12
(P)
TB2A1
BI1 COMMAND
B1
A2
B2
A3
B3
A4
B4
A5
B5
A6
B6
A7
B7
A8
B8
BI2 COMMAND
BI3 COMMAND
BI4 COMMAND
BI5 COMMAND
BI6 COMMAND
BI7 COMMAND
BI8 COMMAND
BO3
B12
BI1
A13
BI2
BO4
B13
BI3
A14
BO5
BI4
B14
A15
BI5
BO6
B15
BI6
B17
BI7
A17
A18
B18
FAIL
BI8
(N)
RELAY FAIL.
≥1
COM-A
TB3-A2
DD FAIL.
DC
TB2- A9
(+)
+5Vdc
B9
(-)
RS485 I/F for IEC60870-5-103 - option (Sheathed cable)
0V
A3
COM-0V
A10
OPT
B10
(∗2)
A1
COM-B
DC-DC
T
R
Opt. I/F for IEC60870-5-103 (option)
FRAME EARTH
E
CASE EARTH
TX
FX
TB3-B2
B1
Ethernet LAN I/F for IEC61850 or RSM100 (100Base-TX:option)
Ethernet LAN I/F for IEC61850 or RSM100 (100Base-FX:option)
IRIG-B
(∗1) HBO1 to HBO4: High-speed relay
(∗2) These connections are connected by
short-bars before shipment.
Note: In AC circuit wiring, the wires of the relay side should be separated from these of the CT side to
avoid the influence of noise.
External connection of Model 101
⎯ 142 ⎯
6 F 2 S 0 9 0 0
GRB150-201D
TB3A4
BUSBAR
A-phase
TB1-1
TB1-2
B-phase
TB1-3
TB1-4
EB-102
TB2-1
TB2-2
FAn
FA1
A5
(∗1) HBO2
2
(∗1) HBO3
A8
6
(+)
B6
5
TB2-5
TB2-6
(+)
B5
A6
4
(+)
B4
3
TB2-3
TB2-4
C-phase
TB1-5
TB1-6
(∗1) HBO1
TB11
(∗1) HBO4
(+)
B8
TB1-8
TB3A10
FRAME EARTH
BO1
B10
A11
BO2
B11
A12
(P)
TB2A1
BI1 COMMAND
B1
A2
B2
A3
B3
A4
B4
A5
B5
A6
B6
A7
B7
A8
B8
BI2 COMMAND
BI3 COMMAND
BI4 COMMAND
BI5 COMMAND
BI6 COMMAND
BI7 COMMAND
BI8 COMMAND
BO3
B12
BI1
A13
BI2
BO4
B13
BI3
A14
BO5
BI4
B14
A15
BI5
BO6
B15
BI6
B17
BI7
A17
A18
B18
FAIL
BI8
(N)
RELAY FAIL.
≥1
DD FAIL.
DC
COM-A
TB2- A9
(+)
B9
(-)
DC-DC
RS485 I/F for IEC60870-5-103 - option (Sheathed cable)
A3
COM-0V
A10
FRAME EARTH
E
A1
COM-B
0V
B10
(∗2)
TB3-A2
+5Vdc
CASE EARTH
OPT
T
R
TX
FX
TB3-B2
B1
Opt. I/F for IEC60870-5-103 (option)
Ethernet LAN I/F for IEC61850 or RSM100 (100Base-TX:option)
Ethernet LAN I/F for IEC61850 or RSM100 (100Base-FX:option)
IRIG-B
(∗1) HBO1 to HBO4: High-speed relay
(∗2) These connections are connected by
short-bars before shipment.
Note: In AC circuit wiring, the wires of the relay side should be separated from these of the CT side to
avoid the influence of noise.
External connection of Model 201
⎯ 143 ⎯
6 F 2 S 0 9 0 0
⎯ 144 ⎯
6 F 2 S 0 9 0 0
Appendix G
Relay Setting Sheet
1. Relay Identification
2. Busbar parameters
3. Contacts setting
4. Relay setting sheet
⎯ 145 ⎯
6 F 2 S 0 9 0 0
Relay Setting Sheets
1. Relay Identification
Date:
Relay type
Serial Number
Frequency
AC voltage
DC supply voltage
Password
Active setting group
2. Busbar parameters
CT ratio
3. Contacts setting
(1)
BO1
BO2
BO3
BO4
BO5
BO6
HBO1
HBO2
HBO3
HBO4
⎯ 146 ⎯
6 F 2 S 0 9 0 0
4. Relay setting sheet
№
Setting Dev ice Name
Range
Def ault Setting of Relay Series
Units
Contents
World wide
101
201
1
Activ e group
1-8
-
Activ e setting group
2
Line name
Specif ied by user
-
Line name
3
VDCHK
Of f - On
-
Vd check use or not
On
4
5
SVCNT
CLEN
ALM&BLK - ALM
Of f - F1 - F2
Superv isor control
Cold Load Protection
ALM&BLK
Of f
6
DIF
10 - 600
-
-
V
Dif f erential relay
100
7
8
9
10
11
12
DIFSV
TVDSV
DIFCC
TCLP
TCLE
TCLR
5 - 100
0.10 - 60.00
1.00 - 10.00
0.01 - 100.00
0.00 - 100.00
0.00 - 100.00
V
s
Dif f erential relay f or superv isor
VD err timer
DIF setting coef f icient in CLP mode.
Cold load duration timer.
Cold load enable timer.
Cold load reset timer.
50
0.50
1.00
0.01
0.00
0.00
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
BI1
BI2
BI3
BI4
BI5
BI6
BI7
BI8
LED1
LED2
LED3
LED4
LED5
LED6
-
s
s
s
1
no-name
PUD
0.00 - 300.00
s
Binary Input Pick-up delay
0.00
DOD
SNS
PUD
DOD
SNS
PUD
DOD
SNS
PUD
DOD
SNS
PUD
DOD
SNS
PUD
DOD
SNS
PUD
DOD
SNS
PUD
DOD
SNS
0.00 - 300.00
Norm - Inv
0.00 - 300.00
0.00 - 300.00
Norm - Inv
0.00 - 300.00
0.00 - 300.00
Norm - Inv
0.00 - 300.00
0.00 - 300.00
Norm - Inv
0.00 - 300.00
0.00 - 300.00
Norm - Inv
0.00 - 300.00
0.00 - 300.00
Norm - Inv
0.00 - 300.00
0.00 - 300.00
Norm - Inv
0.00 - 300.00
0.00 - 300.00
Norm - Inv
s
-
Binary
Binary
Binary
Binary
Binary
Binary
Binary
Binary
Binary
Binary
Binary
Binary
Binary
Binary
Binary
Binary
Binary
Binary
Binary
Binary
Binary
Binary
Binary
0.00
Norm
0.00
0.00
Norm
0.00
0.00
Norm
0.00
0.00
Norm
0.00
0.00
Norm
0.00
0.00
Norm
0.00
0.00
Norm
0.00
0.00
Norm
Logic
OR - AND
-
LED1 Logic Gate Ty pe
OR
Reset
In #1
In #2
In #3
In #4
Logic
Reset
In #1
In #2
In #3
In #4
Logic
Reset
In #1
In #2
In #3
In #4
Logic
Reset
In #1
In #2
In #3
In #4
Logic
Reset
In #1
In #2
In #3
In #4
Logic
Reset
In #1
In #2
In #3
In #4
Inst - Latch
0 - 3071
0 - 3071
0 - 3071
0 - 3071
OR - AND
Inst - Latch
0 - 3071
0 - 3071
0 - 3071
0 - 3071
OR - AND
Inst - Latch
0 - 3071
0 - 3071
0 - 3071
0 - 3071
OR - AND
Inst - Latch
0 - 3071
0 - 3071
0 - 3071
0 - 3071
OR - AND
Inst - Latch
0 - 3071
0 - 3071
0 - 3071
0 - 3071
OR - AND
Inst - Latch
0 - 3071
0 - 3071
0 - 3071
0 - 3071
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
LED1
LED1
ditto
ditto
ditto
LED2
LED2
LED2
ditto
ditto
ditto
LED3
LED3
LED3
ditto
ditto
ditto
LED4
LED4
LED4
ditto
ditto
ditto
LED5
LED5
LED5
ditto
ditto
ditto
LED6
LED6
LED6
ditto
ditto
ditto
Inst
0
0
0
0
OR
Inst
0
0
0
0
OR
Inst
0
0
0
0
OR
Inst
0
0
0
0
OR
Inst
0
0
0
0
OR
Inst
0
0
0
0
-
s
s
-
s
s
-
s
s
-
s
s
-
s
s
-
s
s
-
s
s
⎯ 147 ⎯
Input
Input
Input
Input
Input
Input
Input
Input
Input
Input
Input
Input
Input
Input
Input
Input
Input
Input
Input
Input
Input
Input
Input
Drop-of f delay
Sense
Pick-up delay
Drop-of f delay
Sense
Pick-up delay
Drop-of f delay
Sense
Pick-up delay
Drop-of f delay
Sense
Pick-up delay
Drop-of f delay
Sense
Pick-up delay
Drop-of f delay
Sense
Pick-up delay
Drop-of f delay
Sense
Pick-up delay
Drop-of f delay
Sense
Reset operation
Functions
Logic Gate Ty pe
Reset operation
Functions
Logic Gate Ty pe
Reset operation
Functions
Logic Gate Ty pe
Reset operation
Functions
Logic Gate Ty pe
Reset operation
Functions
Logic Gate Ty pe
Reset operation
Functions
6 F 2 S 0 9 0 0
№
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
Setting Device Name
IND1
Reset
BIT1
BIT2
BIT3
BIT4
BIT5
BIT6
BIT7
BIT8
IND2
Reset
BIT1
BIT2
BIT3
BIT4
BIT5
BIT6
BIT7
BIT8
Plant name
Description
Alarm1 Text
Alarm2 Text
Alarm3 Text
Alarm4 Text
IEC(注)
SYADJ
IP1-1
IP1-2
IP1-3
IP1-4
SM1-1
SM1-2
SM1-3
SM1-4
GW1-1
GW1-2
GW1-3
GW1-4
IP2-1
IP2-2
IP2-3
IP2-4
SM2-1
SM2-2
SM2-3
SM2-4
GW2-1
GW2-2
GW2-3
GW2-4
SI1-1
SI1-2
SI1-3
SI1-4
SI2-1
SI2-2
SI2-3
SI2-4
SI3-1
SI3-2
SI3-3
SI3-4
SI4-1
SI4-2
SI4-3
SI4-4
SMODE
DEADT
GOINT
Range
Inst - Latch
0 - 3071
0 - 3071
0 - 3071
0 - 3071
0 - 3071
0 - 3071
0 - 3071
0 - 3071
Inst - Latch
0 - 3071
0 - 3071
0 - 3071
0 - 3071
0 - 3071
0 - 3071
0 - 3071
0 - 3071
Specified by user
ditto
Specified by user
Specified by user
Specified by user
Specified by user
0 - 254
-9999 - 9999
0 - 254
0 - 254
0 - 254
0 - 254
0 - 255
0 - 255
0 - 255
0 - 255
0 - 254
0 - 254
0 - 254
0 - 254
0 - 254
0 - 254
0 - 254
0 - 254
0 - 255
0 - 255
0 - 255
0 - 255
0 - 254
0 - 254
0 - 254
0 - 254
0 - 254
0 - 254
0 - 254
0 - 254
0 - 254
0 - 254
0 - 254
0 - 254
0 - 254
0 - 254
0 - 254
0 - 254
0 - 254
0 - 254
0 - 254
0 - 254
0-1
1 - 120
1 - 60
Units
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
ms
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
min
s
Contents
Virtual LED1 Reset operation
Virtual LED1 Functions
ditto
ditto
ditto
ditto
ditto
ditto
ditto
Virtual LED2 Reset operation
Virtual LED2 Functions
ditto
ditto
ditto
ditto
ditto
ditto
ditto
Plant name
Memorandum for user
Alarm1 Text
Alarm2 Text
Alarm3 Text
Alarm4 Text
Station address for IEC103
Time sync. Compensation
CH1 IP address
CH1 Subnet mask
CH1 Gateway
IP Address of CH#2
Subnet Mask of CH#2
Gateway Address of CH#2
SNTP Server1 Address
SNTP Server2 Address
SNTP Server3 Address
SNTP Server4 Address
TCP KeepAlive Time
⎯ 148 ⎯
Default Setting of Relay Series
World wide
101
201
Inst
0
0
0
0
0
0
0
0
Inst
0
0
0
0
0
0
0
0
no-name
no-data
ALARM1
ALARM2
ALARM3
ALARM4
2
0
192
168
19
172
255
255
255
0
192
168
19
1
192
168
19
173
255
255
255
0
192
168
19
1
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
120
60
6 F 2 S 0 9 0 0
№
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
Setting Device Name
PG1-1
PG1-2
PG1-3
PG1-4
PG2-1
PG2-2
PG2-3
PG2-4
232C
IECBR
IECBLK
850BLK
850AUT
TSTMOD
GSECHK
PINGCHK
BITRN
Time
TRIP
Vd err
TCSPEN
CBSMEN
TCAEN
TCALM
Time sync
GMT
GMTm
Range
0 - 254
0 - 254
0 - 254
0 - 254
0 - 254
0 - 254
0 - 254
0 - 254
9.6 - 19.2 - 57.6
9.6 - 19.2
Normal - Blocked
Normal - Blocked
Off - On
Off - On
Off - On
Off - On
0 - 128
0.1 - 5.0
Off - On
Off - On
Off - On - Opt-On
Off - On
Off - On
1 - 10000
Of - BI - IRI - IEC - SN
-12 - +12
-59 - +59
Units
Contents
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
s
-
-
-
-
-
-
-
hrs
min
Ping check addrs port#1
Ping check addrs port#2
RS-232C baud rate
IEC103 baud rate
Monitor direction blocked
IEC61850 Block
IEC61850 Authorize
IEC61850 Test mode
GOOSE receive check
Ping check
Number of bi-trigger (on/off) events
Disturbance record
Disturbance record trigger use or not
ditto
Trip Circuit Supervision Enable
CB condition super visor enable
Trip CounterAlarm Enable
Trip Count Alarm Threshold
Time sync.
Time
Time
⎯ 149 ⎯
Default Setting of Relay Series
World wide
101
201
0
0
0
0
0
0
0
0
9.6
19.2
Normal
Normal
Off
Off
Off
Off
100
2.0
On
On
Off
Off
Off
10000
Of
0
0
6 F 2 S 0 9 0 0
5. PLC default setting
Output
№
Signal
1536 DIF_BLOCK
1537 DIFSV_BLOCK
1538 CB_FOR_CLP
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
Timing
Cycle
30
X
90
User
Logic expression
Turn
--
Delay Time / Flip Flop
Back
Norm
Up
[769]BI2_COMMAND
⎯ 150 ⎯
Flip Flop
Release
Signal
Timer
Off On One
Time Value
Delay Delay Shot
None
X
6 F 2 S 0 9 0 0
Output
№
Signal
1611
1612
1613
1614
1615
1616
1617
1618
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632 TC_FAIL
1633 CB_N/O_CONT
1634 CB_N/C_CONT
1635
1636
1637
1638
1639 IND.RESET
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667 TP_COUNT
1668
1669
1670
1671
1672
1673
1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
Timing
Cycle
30
90
User
Logic expression
Turn
Delay Time / Flip Flop
Flip Flop
Back
Release
Norm
Signal
Up
--
Timer
Off On One
Time Value
Delay Delay Shot
None
X
[768]BI1_COMMAND
X
X
[28]DIF_TRIP
X
⎯ 151 ⎯
6 F 2 S 0 9 0 0
Output
№
Signal
Timing
Cycle
30
90
User
Logic expression
Turn
Delay Time / Flip Flop
Flip Flop
Back
Release
Norm
Signal
Up
--
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727
1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
1760
⎯ 152 ⎯
Timer
Off On One
Time Value
Delay Delay Shot
None
6 F 2 S 0 9 0 0
Output
№
Signal
Timing
Cycle
30
90
User
Logic expression
Turn
Delay Time / Flip Flop
Flip Flop
Back
Release
Norm
Signal
Up
--
1761
1762
1763
1764
1765
1766
1767
1768
1769
1770
1771
1772
1773
1774
1775
1776
1777
1778
1779
1780
1781
1782
1783
1784
1785
1786
1787
1788
1789
1790
1791
1792
1793
1794
1795
1796
1797
1798
1799
1800
1801
1802
1803
1804
1805
1806
1807
1808
1809
1810
1811
1812
1813
1814
1815
1816
1817
1818
1819
1820
1821
1822
1823
1824
1825
1826
1827
1828
1829
1830
1831
1832
1833
1834
1835
⎯ 153 ⎯
Timer
Off On One
Time Value
Delay Delay Shot
None
6 F 2 S 0 9 0 0
Output
№
Signal
Timing
Cycle
30
90
User
Logic expression
Turn
Delay Time / Flip Flop
Flip Flop
Back
Release
Norm
Signal
Up
--
1836
1837
1838
1839
1840
1841
1842
1843
1844
1845
1846
1847
1848
1849
1850
1851
1852
1853
1854
1855
1856
1857
1858
1859
1860
1861
1862
1863
1864
1865
1866
1867
1868
1869
1870
1871
1872
1873
1874
1875
1876
1877
1878
1879
1880
1881
1882
1883
1884
1885
1886
1887
1888
1889
1890
1891
1892
1893
1894
1895
1896
1897
1898
1899
1900
1901
1902
1903
1904
1905
1906
1907
1908
1909
1910
⎯ 154 ⎯
Timer
Off On One
Time Value
Delay Delay Shot
None
6 F 2 S 0 9 0 0
Output
№
Signal
Timing
Cycle
30
90
User
Logic expression
Turn
Delay Time / Flip Flop
Flip Flop
Back
Release
Norm
Signal
Up
--
1911
1912
1913
1914
1915
1916
1917
1918
1919
1920
1921
1922
1923
1924
1925
1926
1927
1928
1929
1930
1931
1932
1933
1934
1935
1936
1937
1938
1939
1940
1941
1942
1943
1944
1945
1946
1947
1948
1949
1950
1951
1952
1953
1954
1955
1956
1957
1958
1959
1960
1961
1962
1963
1964
1965
1966
1967
1968
1969
1970
1971
1972
1973
1974
1975
1976
1977
1978
1979
1980
1981
1982
1983
1984
1985
⎯ 155 ⎯
Timer
Off On One
Time Value
Delay Delay Shot
None
6 F 2 S 0 9 0 0
Output
№
Signal
Timing
Cycle
30
90
User
Logic expression
Turn
Delay Time / Flip Flop
Flip Flop
Back
Release
Norm
Signal
Up
--
1986
1987
1988
1989
1990
1991
1992
1993
1994
1995
1996
1997
1998
1999
2000
2001
2002
2003
2004
2005
2006
2007
2008
2009
2010
2011
2012
2013
2014
2015
2016
2017
2018
2019
2020
2021
2022
2023
2024
2025
2026
2027
2028
2029
2030
2031
2032
2033
2034
2035
2036
2037
2038
2039
2040
2041
2042
2043
2044
2045
2046
2047
2048
2049
2050
2051
2052
2053
2054
2055
2056
2057
2058
2059
2060
⎯ 156 ⎯
Timer
Off On One
Time Value
Delay Delay Shot
None
6 F 2 S 0 9 0 0
Output
№
Signal
Timing
Cycle
30
90
User
Logic expression
Turn
Delay Time / Flip Flop
Flip Flop
Back
Release
Norm
Signal
Up
--
2061
2062
2063
2064
2065
2066
2067
2068
2069
2070
2071
2072
2073
2074
2075
2076
2077
2078
2079
2080
2081
2082
2083
2084
2085
2086
2087
2088
2089
2090
2091
2092
2093
2094
2095
2096
2097
2098
2099
2100
2101
2102
2103
2104
2105
2106
2107
2108
2109
2110
2111
2112
2113
2114
2115
2116
2117
2118
2119
2120
2121
2122
2123
2124
2125
2126
2127
2128
2129
2130
2131
2132
2133
2134
2135
⎯ 157 ⎯
Timer
Off On One
Time Value
Delay Delay Shot
None
6 F 2 S 0 9 0 0
Output
№
Signal
Timing
Cycle
30
90
User
Logic expression
Turn
Delay Time / Flip Flop
Flip Flop
Back
Release
Norm
Signal
Up
--
2136
2137
2138
2139
2140
2141
2142
2143
2144
2145
2146
2147
2148
2149
2150
2151
2152
2153
2154
2155
2156
2157
2158
2159
2160
2161
2162
2163
2164
2165
2166
2167
2168
2169
2170
2171
2172
2173
2174
2175
2176
2177
2178
2179
2180
2181
2182
2183
2184
2185
2186
2187
2188
2189
2190
2191
2192
2193
2194
2195
2196
2197
2198
2199
2200
2201
2202
2203
2204
2205
2206
2207
2208
2209
2210
⎯ 158 ⎯
Timer
Off On One
Time Value
Delay Delay Shot
None
6 F 2 S 0 9 0 0
Output
№
Signal
Timing
Cycle
30
90
User
Logic expression
Turn
Delay Time / Flip Flop
Flip Flop
Back
Release
Norm
Signal
Up
--
2211
2212
2213
2214
2215
2216
2217
2218
2219
2220
2221
2222
2223
2224
2225
2226
2227
2228
2229
2230
2231
2232
2233
2234
2235
2236
2237
2238
2239
2240
2241
2242
2243
2244
2245
2246
2247
2248
2249
2250
2251
2252
2253
2254
2255
2256
2257
2258
2259
2260
2261
2262
2263
2264
2265
2266
2267
2268
2269
2270
2271
2272
2273
2274
2275
2276
2277
2278
2279
2280
2281
2282
2283
2284
2285
⎯ 159 ⎯
Timer
Off On One
Time Value
Delay Delay Shot
None
6 F 2 S 0 9 0 0
Output
№
Signal
Timing
Cycle
30
90
User
Logic expression
Turn
Delay Time / Flip Flop
Flip Flop
Back
Release
Norm
Signal
Up
--
2286
2287
2288
2289
2290
2291
2292
2293
2294
2295
2296
2297
2298
2299
2300
2301
2302
2303
2304
2305
2306
2307
2308
2309
2310
2311
2312
2313
2314
2315
2316
2317
2318
2319
2320
2321
2322
2323
2324
2325
2326
2327
2328
2329
2330
2331
2332
2333
2334
2335
2336
2337
2338
2339
2340
2341
2342
2343
2344
2345
2346
2347
2348
2349
2350
2351
2352
2353
2354
2355
2356
2357
2358
2359
2360
⎯ 160 ⎯
Timer
Off On One
Time Value
Delay Delay Shot
None
6 F 2 S 0 9 0 0
Output
№
Signal
Timing
Cycle
30
90
User
Logic expression
Turn
Delay Time / Flip Flop
Flip Flop
Back
Release
Norm
Signal
Up
--
2361
2362
2363
2364
2365
2366
2367
2368
2369
2370
2371
2372
2373
2374
2375
2376
2377
2378
2379
2380
2381
2382
2383
2384
2385
2386
2387
2388
2389
2390
2391
2392
2393
2394
2395
2396
2397
2398
2399
2400
2401
2402
2403
2404
2405
2406
2407
2408
2409
2410
2411
2412
2413
2414
2415
2416
2417
2418
2419
2420
2421
2422
2423
2424
2425
2426
2427
2428
2429
2430
2431
2432
2433
2434
2435
⎯ 161 ⎯
Timer
Off On One
Time Value
Delay Delay Shot
None
6 F 2 S 0 9 0 0
Output
№
Signal
Timing
Cycle
30
90
User
Logic expression
Turn
Delay Time / Flip Flop
Flip Flop
Back
Release
Norm
Signal
Up
--
2436
2437
2438
2439
2440
2441
2442
2443
2444
2445
2446
2447
2448
2449
2450
2451
2452
2453
2454
2455
2456
2457
2458
2459
2460
2461
2462
2463
2464
2465
2466
2467
2468
2469
2470
2471
2472
2473
2474
2475
2476
2477
2478
2479
2480
2481
2482
2483
2484
2485
2486
2487
2488
2489
2490
2491
2492
2493
2494
2495
2496
2497
2498
2499
2500
2501
2502
2503
2504
2505
2506
2507
2508
2509
2510
⎯ 162 ⎯
Timer
Off On One
Time Value
Delay Delay Shot
None
6 F 2 S 0 9 0 0
Output
№
Signal
Timing
Cycle
30
90
User
Logic expression
Turn
Delay Time / Flip Flop
Flip Flop
Back
Release
Norm
Signal
Up
--
2511
2512
2513
2514
2515
2516
2517
2518
2519
2520
2521
2522
2523
2524
2525
2526
2527
2528
2529
2530
2531
2532
2533
2534
2535
2536
2537
2538
2539
2540
2541
2542
2543
2544
2545
2546
2547
2548
2549
2550
2551
2552
2553
2554
2555
2556
2557
2558
2559
2560 DISP.ALARM1
2561 DISP.ALARM2
2562 DISP.ALARM3
2563 DISP.ALARM4
2564
2565
2566
2567
2568
2569
2570
2571
2572
2573
2574
2575
2576 SYNC_CLOCK
2577
2578
2579
2580
2581
2582
2583
2584
2585
⎯ 163 ⎯
Timer
Off On One
Time Value
Delay Delay Shot
None
6 F 2 S 0 9 0 0
Output
№
Signal
Timing
Cycle
30
90
User
Logic expression
Turn
Delay Time / Flip Flop
Flip Flop
Back
Release
Norm
Signal
Up
--
2586
2587
2588
2589
2590
2591
2592
2593
2594
2595
2596
2597
2598
2599
2600
2601
2602
2603
2604
2605
2606
2607
2608
2609
2610 ALARM_LED_SET
2611
2612
2613
2614
2615
2616
2617
2618
2619
2620
2621
2622
2623
2624 F.RECORD1
2625 F.RECORD2
2626 F.RECORD3
2627 F.RECORD4
2628
2629
2630
2631
2632 D.RECORD1
2633 D.RECORD2
2634 D.RECORD3
2635 D.RECORD4
2636
2637
2638
2639
2640 SET.GROUP1
2641 SET.GROUP2
2642 SET.GROUP3
2643 SET.GROUP4
2644 SET.GROUP5
2645 SET.GROUP6
2646 SET.GROUP7
2647 SET.GROUP8
2648
2649
2650
2651
2652
2653
2654
2655
2656 CON_TPMD1
2657 CON_TPMD2
2658 CON_TPMD3
2659 CON_TPMD4
2660 CON_TPMD5
⎯ 164 ⎯
Timer
Off On One
Time Value
Delay Delay Shot
None
6 F 2 S 0 9 0 0
Output
№
Signal
Timing
Cycle
30
90
User
Logic expression
Turn
Delay Time / Flip Flop
Flip Flop
Back
Release
Norm
Signal
Up
--
2661 CON_TPMD6
2662 CON_TPMD7
2663 CON_TPMD8
2664
2665
2666
2667
2668
2669
2670
2671
2672
2673
2674
2675
2676
2677
2678
2679
2680
2681
2682
2683
2684
2685
2686 PROT_COM_RECV
2687
2688 TPLED_RST_RCV
2689
2690
2691
2692
2693
2694
2695
2696
2697
2698
2699
2700
2701
2702
2703
2704
2705
2706
2707
2708
2709
2710
2711
2712
2713
2714
2715
2716
2717
2718
2719
2720
2721
2722
2723
2724
2725
2726
2727
2728
2729
2730
2731
2732
2733
2734
2735
⎯ 165 ⎯
Timer
Off On One
Time Value
Delay Delay Shot
None
6 F 2 S 0 9 0 0
Output
№
Signal
Timing
Cycle
30
90
User
Logic expression
Turn
Delay Time / Flip Flop
Flip Flop
Back
Release
Norm
Signal
Up
--
2736
2737
2738
2739
2740
2741
2742
2743
2744
2745
2746
2747
2748
2749
2750
2751
2752
2753
2754
2755
2756
2757
2758
2759
2760
2761
2762
2763
2764
2765
2766
2767
2768
2769
2770
2771
2772
2773
2774
2775
2776
2777
2778
2779
2780
2781
2782
2783
2784
2785
2786
2787
2788
2789
2790
2791
2792
2793
2794
2795
2796
2797
2798
2799
2800
2801
2802
2803
2804
2805
2806
2807
2808
2809
2810
⎯ 166 ⎯
Timer
Off On One
Time Value
Delay Delay Shot
None
6 F 2 S 0 9 0 0
Output
№
Signal
Timing
Cycle
30
90
User
Logic expression
Turn
Delay Time / Flip Flop
Flip Flop
Back
Release
Norm
Signal
Up
--
2811
2812
2813
2814
2815
2816 TEMP001
2817 TEMP002
2818 TEMP003
2819 TEMP004
2820 TEMP005
2821 TEMP006
2822 TEMP007
2823 TEMP008
2824 TEMP009
2825 TEMP010
2826 TEMP011
2827 TEMP012
2828 TEMP013
2829 TEMP014
2830 TEMP015
2831 TEMP016
2832 TEMP017
2833 TEMP018
2834 TEMP019
2835 TEMP020
2836 TEMP021
2837 TEMP022
2838 TEMP023
2839 TEMP024
2840 TEMP025
2841 TEMP026
2842 TEMP027
2843 TEMP028
2844 TEMP029
2845 TEMP030
2846 TEMP031
2847 TEMP032
2848 TEMP033
2849 TEMP034
2850 TEMP035
2851 TEMP036
2852 TEMP037
2853 TEMP038
2854 TEMP039
2855 TEMP040
2856 TEMP041
2857 TEMP042
2858 TEMP043
2859 TEMP044
2860 TEMP045
2861 TEMP046
2862 TEMP047
2863 TEMP048
2864 TEMP049
2865 TEMP050
2866 TEMP051
2867 TEMP052
2868 TEMP053
2869 TEMP054
2870 TEMP055
2871 TEMP056
2872 TEMP057
2873 TEMP058
2874 TEMP059
2875 TEMP060
2876 TEMP061
2877 TEMP062
2878 TEMP063
2879 TEMP064
2880 TEMP065
2881 TEMP066
2882 TEMP067
2883 TEMP068
2884 TEMP069
2885 TEMP070
⎯ 167 ⎯
Timer
Off On One
Time Value
Delay Delay Shot
None
6 F 2 S 0 9 0 0
Output
№
Signal
Timing
Cycle
30
90
User
Logic expression
Turn
Delay Time / Flip Flop
Flip Flop
Back
Release
Norm
Signal
Up
--
2886 TEMP071
2887 TEMP072
2888 TEMP073
2889 TEMP074
2890 TEMP075
2891 TEMP076
2892 TEMP077
2893 TEMP078
2894 TEMP079
2895 TEMP080
2896 TEMP081
2897 TEMP082
2898 TEMP083
2899 TEMP084
2900 TEMP085
2901 TEMP086
2902 TEMP087
2903 TEMP088
2904 TEMP089
2905 TEMP090
2906 TEMP091
2907 TEMP092
2908 TEMP093
2909 TEMP094
2910 TEMP095
2911 TEMP096
2912 TEMP097
2913 TEMP098
2914 TEMP099
2915 TEMP100
2916 TEMP101
2917 TEMP102
2918 TEMP103
2919 TEMP104
2920 TEMP105
2921 TEMP106
2922 TEMP107
2923 TEMP108
2924 TEMP109
2925 TEMP110
2926 TEMP111
2927 TEMP112
2928 TEMP113
2929 TEMP114
2930 TEMP115
2931 TEMP116
2932 TEMP117
2933 TEMP118
2934 TEMP119
2935 TEMP120
2936 TEMP121
2937 TEMP122
2938 TEMP123
2939 TEMP124
2940 TEMP125
2941 TEMP126
2942 TEMP127
2943 TEMP128
2944 TEMP129
2945 TEMP130
2946 TEMP131
2947 TEMP132
2948 TEMP133
2949 TEMP134
2950 TEMP135
2951 TEMP136
2952 TEMP137
2953 TEMP138
2954 TEMP139
2955 TEMP140
2956 TEMP141
2957 TEMP142
2958 TEMP143
2959 TEMP144
2960 TEMP145
⎯ 168 ⎯
Timer
Off On One
Time Value
Delay Delay Shot
None
6 F 2 S 0 9 0 0
Output
№
Signal
Timing
Cycle
30
90
User
Logic expression
Turn
Delay Time / Flip Flop
Flip Flop
Back
Release
Norm
Signal
Up
--
2961 TEMP146
2962 TEMP147
2963 TEMP148
2964 TEMP149
2965 TEMP150
2966 TEMP151
2967 TEMP152
2968 TEMP153
2969 TEMP154
2970 TEMP155
2971 TEMP156
2972 TEMP157
2973 TEMP158
2974 TEMP159
2975 TEMP160
2976 TEMP161
2977 TEMP162
2978 TEMP163
2979 TEMP164
2980 TEMP165
2981 TEMP166
2982 TEMP167
2983 TEMP168
2984 TEMP169
2985 TEMP170
2986 TEMP171
2987 TEMP172
2988 TEMP173
2989 TEMP174
2990 TEMP175
2991 TEMP176
2992 TEMP177
2993 TEMP178
2994 TEMP179
2995 TEMP180
2996 TEMP181
2997 TEMP182
2998 TEMP183
2999 TEMP184
3000 TEMP185
3001 TEMP186
3002 TEMP187
3003 TEMP188
3004 TEMP189
3005 TEMP190
3006 TEMP191
3007 TEMP192
3008 TEMP193
3009 TEMP194
3010 TEMP195
3011 TEMP196
3012 TEMP197
3013 TEMP198
3014 TEMP199
3015 TEMP200
3016 TEMP201
3017 TEMP202
3018 TEMP203
3019 TEMP204
3020 TEMP205
3021 TEMP206
3022 TEMP207
3023 TEMP208
3024 TEMP209
3025 TEMP210
3026 TEMP211
3027 TEMP212
3028 TEMP213
3029 TEMP214
3030 TEMP215
3031 TEMP216
3032 TEMP217
3033 TEMP218
3034 TEMP219
3035 TEMP220
⎯ 169 ⎯
Timer
Off On One
Time Value
Delay Delay Shot
None
6 F 2 S 0 9 0 0
Output
№
Signal
Timing
Cycle
30
90
User
Logic expression
Turn
Delay Time / Flip Flop
Flip Flop
Release
Back
Norm
Signal
Up
--
3036 TEMP221
3037 TEMP222
3038 TEMP223
3039 TEMP224
3040 TEMP225
3041 TEMP226
3042 TEMP227
3043 TEMP228
3044 TEMP229
3045 TEMP230
3046 TEMP231
3047 TEMP232
3048 TEMP233
3049 TEMP234
3050 TEMP235
3051 TEMP236
3052 TEMP237
3053 TEMP238
3054 TEMP239
3055 TEMP240
3056 TEMP241
3057 TEMP242
3058 TEMP243
3059 TEMP244
3060 TEMP245
3061 TEMP246
3062 TEMP247
3063 TEMP248
3064 TEMP249
3065 TEMP250
3066 TEMP251
3067 TEMP252
3068 TEMP253
3069 TEMP254
3070 TEMP255
3071 TEMP256
⎯ 170 ⎯
Timer
Off On One
Time Value
Delay Delay Shot
None
6 F 2 S 0 9 0 0
6. Evente record setting
Event record
Default setting
No.
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
Name
EV1
EV2
EV3
EV4
EV5
EV6
EV7
EV8
EV9
EV10
EV11
EV12
EV13
EV14
EV15
EV16
EV17
EV18
EV19
EV20
EV21
EV22
EV23
EV24
EV25
EV26
EV27
EV28
EV29
EV30
EV31
EV32
EV33
EV34
EV35
EV36
EV37
EV38
EV39
EV40
EV41
EV42
EV43
EV44
EV45
EV46
EV47
EV48
EV49
EV50
EV51
EV52
EV53
EV54
EV55
EV56
EV57
EV58
EV59
EV60
EV61
EV62
EV63
EV64
Range
0 - 3071
0 - 3071
0 - 3071
0 - 3071
0 - 3071
0 - 3071
0 - 3071
0 - 3071
0 - 3071
0 - 3071
0 - 3071
0 - 3071
0 - 3071
0 - 3071
0 - 3071
0 - 3071
0 - 3071
0 - 3071
0 - 3071
0 - 3071
0 - 3071
0 - 3071
0 - 3071
0 - 3071
0 - 3071
0 - 3071
0 - 3071
0 - 3071
0 - 3071
0 - 3071
0 - 3071
0 - 3071
0 - 3071
0 - 3071
0 - 3071
0 - 3071
0 - 3071
0 - 3071
0 - 3071
0 - 3071
0 - 3071
0 - 3071
0 - 3071
0 - 3071
0 - 3071
0 - 3071
0 - 3071
0 - 3071
0 - 3071
0 - 3071
0 - 3071
0 - 3071
0 - 3071
0 - 3071
0 - 3071
0 - 3071
0 - 3071
0 - 3071
0 - 3071
0 - 3071
0 - 3071
0 - 3071
0 - 3071
0 - 3071
Unit
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
Contents
Signal No.
Signal name
Signal No.
Event record signal
768
ditto
769
ditto
770
ditto
771
ditto
772
ditto
773
ditto
774
ditto
775
ditto
1639
ditto
28
ditto
10
ditto
0
ditto
0
ditto
0
ditto
0
ditto
0
ditto
0
ditto
0
ditto
0
ditto
0
ditto
0
ditto
0
ditto
0
ditto
1251
ditto
27
ditto
0
ditto
0
ditto
1270
ditto
1271
ditto
0
ditto
0
ditto
0
ditto
0
ditto
0
ditto
0
ditto
0
ditto
0
ditto
0
ditto
0
ditto
0
ditto
0
ditto
0
ditto
0
ditto
0
ditto
0
ditto
0
ditto
0
ditto
0
ditto
1258
ditto
1438
ditto
0
ditto
0
ditto
0
ditto
0
ditto
0
ditto
0
ditto
0
ditto
0
ditto
0
ditto
0
ditto
0
ditto
0
ditto
0
ditto
0
Signal Name
BI1 command
BI2 command
BI3 command
BI4 command
BI5 command
BI6 command
BI7 command
BI8 command
Ind reset
Trip
Cold load
Model
101D
x
x
x
x
x
x
x
x
x
x
x
Relay fail
Vd err
x
x
TCSV
CBSV
x
x
Ry fail-A
Data lost
x
x
⎯ 171 ⎯
Type
201D
On/Off
On/Off
On/Off
On/Off
On/Off
On/Off
On/Off
On/Off
On/Off
On/Off
On/Off
On/Off
On/Off
On/Off
On/Off
On/Off
On/Off
On/Off
On/Off
On/Off
On/Off
On/Off
On/Off
On/Off
On/Off
On/Off
On/Off
On/Off
On/Off
On/Off
On/Off
On/Off
On/Off
On/Off
On/Off
On/Off
On/Off
On/Off
On/Off
On/Off
On/Off
On/Off
On/Off
On/Off
On/Off
On/Off
On/Off
On/Off
On/Off
On/Off
On/Off
On/Off
On/Off
On/Off
On/Off
On/Off
On/Off
On/Off
On/Off
On/Off
On/Off
On/Off
On/Off
On/Off
6 F 2 S 0 9 0 0
Event record
Default setting
No.
Name
Range
Unit
Contents
Signal No.
Signal name
Signal No.
Signal Name
Model
101D
Type
201D
65
EV65
0 - 3071
-
ditto
0
On/Off
66
EV66
0 - 3071
-
ditto
0
On/Off
67
EV67
0 - 3071
-
ditto
0
On/Off
68
EV68
0 - 3071
-
ditto
0
On/Off
69
EV69
0 - 3071
-
ditto
0
On/Off
70
EV70
0 - 3071
-
ditto
0
On/Off
71
EV71
0 - 3071
-
ditto
0
On/Off
72
EV72
0 - 3071
-
ditto
0
On/Off
73
EV73
0 - 3071
-
ditto
0
On/Off
74
EV74
0 - 3071
-
ditto
0
On/Off
75
EV75
0 - 3071
-
ditto
0
On/Off
76
EV76
0 - 3071
-
ditto
0
On/Off
77
EV77
0 - 3071
-
ditto
0
On/Off
78
EV78
0 - 3071
-
ditto
0
On/Off
79
EV79
0 - 3071
-
ditto
0
On/Off
80
EV80
0 - 3071
-
ditto
0
On/Off
81
EV81
0 - 3071
-
ditto
0
On/Off
82
EV82
0 - 3071
-
ditto
0
On/Off
83
EV83
0 - 3071
-
ditto
0
On/Off
84
EV84
0 - 3071
-
ditto
0
On/Off
85
EV85
0 - 3071
-
ditto
0
On/Off
86
EV86
0 - 3071
-
ditto
0
On/Off
87
EV87
0 - 3071
-
ditto
0
On/Off
88
EV88
0 - 3071
-
ditto
0
89
EV89
0 - 3071
-
ditto
471
BO1 operate
x
On/Off
90
EV90
0 - 3071
-
ditto
472
BO2 operate
x
On/Off
91
EV91
0 - 3071
-
ditto
473
BO3 operate
x
On/Off
92
EV92
0 - 3071
-
ditto
474
BO4 operate
x
On/Off
93
EV93
0 - 3071
-
ditto
475
BO5 operate
x
On/Off
94
EV94
0 - 3071
-
ditto
476
BO6 operate
x
On/Off
95
EV95
0 - 3071
-
ditto
0
96
EV96
0 - 3071
-
ditto
487
HBO1 operate
x
On/Off
On/Off
On/Off
97
EV97
0 - 3071
-
ditto
488
HBO2 operate
x
On/Off
98
EV98
0 - 3071
-
ditto
489
HBO3 operate
x
On/Off
99
EV99
0 - 3071
-
ditto
490
HBO4 operate
x
On/Off
100
EV100
0 - 3071
-
ditto
0
101
EV101
0 - 3071
-
ditto
2640
SET.GROUP1
x
On
102
EV102
0 - 3071
-
ditto
2641
SET.GROUP2
x
On
103
EV103
0 - 3071
-
ditto
2642
SET.GROUP3
x
On
104
EV104
0 - 3071
-
ditto
2643
SET.GROUP4
x
On
On/Off
105
EV105
0 - 3071
-
ditto
2644
SET.GROUP5
x
On
106
EV106
0 - 3071
-
ditto
2645
SET.GROUP6
x
On
107
EV107
0 - 3071
-
ditto
2646
SET.GROUP7
x
On
108
EV108
0 - 3071
-
ditto
2647
SET.GROUP8
x
On
109
EV109
0 - 3071
-
ditto
1448
Sys. change
x
On
110
EV110
0 - 3071
-
ditto
1449
Rly. change
x
On
111
EV111
0 - 3071
-
ditto
1450
Grp. change
x
On
112
EV112
0 - 3071
-
ditto
0
113
EV113
0 - 3071
-
ditto
1272
TC alarm
x
On
On
114
EV114
0 - 3071
-
ditto
0
On
115
EV115
0 - 3071
-
ditto
0
On
116
EV116
0 - 3071
-
ditto
0
On
117
EV117
0 - 3071
-
ditto
0
On
118
EV118
0 - 3071
-
ditto
0
119
EV119
0 - 3071
-
ditto
1445
On
PLC data CHG
x
On
x
On
120
EV120
0 - 3071
-
ditto
0
121
EV121
0 - 3071
-
ditto
1409
LED RST
On
122
EV122
0 - 3071
-
ditto
1435
F.record_CLR
x
On
123
EV123
0 - 3071
-
ditto
1436
E.record_CLR
x
On
124
EV124
0 - 3071
-
ditto
1437
D.record_CLR
x
On
125
EV125
0 - 3071
-
ditto
1439
TP_COUNT_CLR
x
On
126
EV126
0 - 3071
-
ditto
0
127
EV127
0 - 3071
-
ditto
0
On
128
EV128
0 - 3071
-
ditto
0
On
On
⎯ 172 ⎯
6 F 2 S 0 9 0 0
7. Disturbance record setting
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
Setting Device Name
Signal No.
Signal Name
Range
SIG1
0 - 3071
Signal name1
SIG2
0 - 3071
Signal name2
SIG3
0 - 3071
Signal name3
SIG4
0 - 3071
Signal name4
SIG5
0 - 3071
Signal name5
SIG6
0 - 3071
Signal name6
SIG7
0 - 3071
Signal name7
SIG8
0 - 3071
Signal name8
SIG9
0 - 3071
Signal name9
SIG10
0 - 3071
Signal name10
SIG11
0 - 3071
Signal name11
SIG12
0 - 3071
Signal name12
SIG13
0 - 3071
Signal name13
SIG14
0 - 3071
Signal name14
SIG15
0 - 3071
Signal name15
SIG16
0 - 3071
Signal name16
SIG17
0 - 3071
Signal name17
ditto
ditto
ditto
ditto
ditto
ditto
ditto
ditto
ditto
ditto
ditto
ditto
ditto
ditto
ditto
ditto
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
SIG18
SIG19
SIG20
SIG21
SIG22
SIG23
SIG24
SIG25
SIG26
SIG27
SIG28
SIG29
SIG30
SIG31
SIG32
ditto
ditto
ditto
ditto
ditto
ditto
ditto
ditto
ditto
ditto
ditto
ditto
ditto
ditto
ditto
No.
0 - 3071
0 - 3071
0 - 3071
0 - 3071
0 - 3071
0 - 3071
0 - 3071
0 - 3071
0 - 3071
0 - 3071
0 - 3071
0 - 3071
0 - 3071
0 - 3071
0 - 3071
Signal name18
Signal name19
Signal name20
Signal name21
Signal name22
Signal name23
Signal name24
Signal name25
Signal name26
Signal name27
Signal name28
Signal name29
Signal name30
Signal name31
Signal name32
Contents
Disturbance record signal
Default Setting of Relay Series
World wide 101
World wide 201
Signal No.
Signal Name
Signal No.
Signal Name
11
DIF
11
DIF-A
0
NA
12
DIF-B
0
NA
13
DIF-C
14
DIFSV
14
DIFSV-A
0
NA
15
DIFSV-B
0
NA
16
DIFSV-C
28
Trip
28
Trip
10
Cold load
10
Cold load
0
NA
0
NA
0
NA
0
NA
0
NA
0
NA
0
NA
0
NA
0
NA
0
NA
0
NA
0
NA
0
NA
0
NA
0
NA
0
NA
0
NA
0
NA
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
⎯ 173 ⎯
NA
NA
NA
NA
NA
NA
NA
NA
NA
NA
NA
NA
NA
NA
NA
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
NA
NA
NA
NA
NA
NA
NA
NA
NA
NA
NA
NA
NA
NA
NA
6 F 2 S 0 9 0 0
⎯ 174 ⎯
6 F 2 S 0 9 0 0
Appendix H
Commissioning Test Sheet (sample)
1.
Relay identification
2.
Preliminary check
3.
Hardware test
3.1 User interface check
3.2 Binary input/Binary output circuit check
3.3 AC input circuit check
4.
Function test
4.1 Differential element DIF test
4.2 Supervisory element DIFSV test
5.
Protection scheme test
6.
Metering and recording check
7.
Conjunctive test
⎯ 175 ⎯
6 F 2 S 0 9 0 0
1.
Relay identification
Type
Serial number
Model
System frequency
Station
Date
Circuit
Engineer
Protection scheme
Witness
Active settings group number
2.
Preliminary check
Ratings
CT shorting contacts
DC power supply
Power up
Wiring
Relay inoperative
alarm contact
Calendar and clock
3.
Hardware test
3.1 User interface check
3.2 Binary input/Binary output circuit check
Binary input circuit
Binary output circuit
3.3 AC input circuit check
⎯ 176 ⎯
6 F 2 S 0 9 0 0
4.
Function test
4.1 Differential element DIF test
(1) Minimum operating value test
Tap setting
Measured voltage
(2) Operating time test
Tap setting
Test voltage
Measured time
4.2 Supervisory element DIFSV test
(1) Minimum operating value test
Tap setting
5.
Protection scheme test
6.
Metering and recording check
7.
Conjunctive test
Measured voltage
Scheme
Results
On load
Tripping circuit
⎯ 177 ⎯
6 F 2 S 0 9 0 0
⎯ 178 ⎯
6 F 2 S 0 9 0 0
Appendix I
Return Repair Form
⎯ 179 ⎯
6 F 2 S 0 9 0 0
RETURN / REPAIR FORM
Please fill in this form and return it to Toshiba Corporation with the GRB150 to be repaired.
TOSHIBA CORPORATION Fuchu Operations – Industrial and Power Systems & Services
1, Toshiba-cho, Fuchu-shi, Tokyo, Japan
For: Power Systems Protection & Control Department
Quality Assurance Section
Type:
GRB150
(Example: Type:
Model:
Sub No.
Model:
GRB150
201D-20-B0 )
Product No.:
Serial No.:
Date:
1.
Reason for returning the relay
† mal-function
† does not operate
† increased error
† investigation
† others
2.
Fault records, event records or disturbance records stored in the relay and relay settings are
very helpful information to investigate the incident.
Please provide relevant information regarding the incident on floppy disk, or fill in the
attached fault record sheet and relay setting sheet.
Fault Record
Date/Month/Year Time
/
/
(Example: 04/ Nov./ 1997
/
:
15:09:58.442)
Faulty phase:
Prefault values
Vda:
V
Vdb:
V
Vdc:
V
⎯ 180 ⎯
:
.
6 F 2 S 0 9 0 0
Fault values
Prefault values
Vda:
V
Vdb:
V
Vdc:
V
3.
What was the message on the LCD display at the time of the incident?
4.
Describe the details of the incident:
5.
Date incident occurred
Day/Month/Year:
/
/
/
(Example: 10/July/1998)
6.
Give any comments about the GRB150, including the documents:
⎯ 181 ⎯
6 F 2 S 0 9 0 0
Customer
Name:
Company Name:
Address:
Telephone No.:
Facsimile No.:
Signature:
⎯ 182 ⎯
6 F 2 S 0 9 0 0
Appendix J
Technical Data
⎯ 183 ⎯
6 F 2 S 0 9 0 0
TECHNICAL DATA
Ratings
AC current
Frequency
DC power supply
AC ripple on DC supply IEC 60255-11
DC supply interruption IEC 60255-11
Permissive duration of DC supply voltage
interruption to maintain normal operation
Restart time
Binary input circuit DC voltage
Overload rating
AC voltage input for varistor unit EB-101 or EB-102
Burden
Input impedance
DC power supply
Binary input circuit
High impedance differential protection
Differential protection
Supervisory
Operating time
Resetting time
Accuracy
Differential protection
Supervisory
1A
50Hz or 60Hz
110Vdc/125Vdc (Operative range: 88 to 150Vdc)
220Vdc/250Vdc (Operative range: 176 to 300Vdc)
48Vdc/54Vdc/60Vdc (Operative range: 38.4 to 72Vdc)
maximum 12%
maximum 50ms at 110Vdc
less than 10s
110Vdc/125Vdc (Operative range: 88 to 150Vdc)
220Vdc/250Vdc (Operative range: 176 to 300Vdc)
48Vdc/54Vdc/60Vdc (Operative range: 38.4 to 72Vdc)
300V continuous
1kVrms for 0.4s
667Ω with EB-101 or -102
less than 10W (quiescent)
less than 15W(operation)
0.5W/input at 110Vdc
10 to 600V in 1V step
5 to 100V in 1V step
Typical 15ms
Less than 100ms
±5% at more than 50V
±5% at more than 20V
Front Communication port - local PC (RS232)
Connection:
Cable type:
Point to point
Multi-core (straight)
Cable length:
15m (max.)
Connector:
RS232C 9-way D-type female
Rear Communication port – remote PC
RS485 I/F for IEC60870-5-103:
Connection
Cable type
Cable length
Connection
Isolation
Transmission rate
Fibre optic I/F for IEC60870-5-103:
Cable type
Connector
Transmission rate
Ethernet LAN I/F for IEC61850 or RSM100:
Multidrop (max. 32 relays)
Twisted pair cable with shield
1200m (max.)
Screw terminals
1kVac for 1 min.
9.6, 19.2kbps
Graded-index multi-mode 50/125 or 62.5/125μm fibre
ST
9.6, 19.2kbps
100BASE-TX: RJ-45 connector
100BASE-FX: SC connector
⎯ 184 ⎯
6 F 2 S 0 9 0 0
Time synchronization port
Connection:
Time code:
Binary Inputs
Operating voltage
Binary Outputs (Contact ratings)
Auxiliary relay
Ratings:
Operating time
High-speed auxiliary relay
Ratings:
Operating time
Mechanical design
Weight
Case colour
Installation
Screw terminals
IRIG-B (AM modulated, TTL)
Typical 74Vdc(min. 70Vdc) for 110V/125Vdc rating
Typical 138Vdc(min. 125Vdc) for 220V/250Vdc rating
Typical 31Vdc(min. 28Vdc) for 48V/54V/60Vdc rating
BO1 to BO6, FAIL
Make and carry: 4A continuously
Make and carry: 20A, 290Vdc for 0.2s (L/R≥5ms)
Break: 0.1A, 290Vdc (L/R=40ms)
Approx. 5ms
HBO1 to HBO4
Make and carry: 5A continuously
Make and carry: 20A, 290Vdc for 0.5s (L/R≥5ms)
Break: 0.15A, 290Vdc (L/R=40ms)
Approx. 3ms
4.5kg
2.5Y7.5/1(approximation to Munsell value)
Flush mounting
⎯ 185 ⎯
6 F 2 S 0 9 0 0
ENVIRONMENTAL PERFORMANCE
Test
Standards
Details
Atmospheric Environment
Temperature
IEC60068-2-1/2
Operating range: -10°C to +55°C.
Storage / Transit: -25°C to +70°C.
Humidity
IEC60068-2-3
56 days at 40°C and 93% relative humidity.
Enclosure Protection
IEC60529
IP51
Mechanical Environment
Vibration
IEC60255-21-1
Response - Class 1
Endurance - Class 1
Shock and Bump
IEC60255-21-2
Shock Response Class 1
Shock Withstand Class 1
Bump Class 1
Seismic
IEC60255-21-3
Class 1
Dielectric Withstand
IEC60255-5
2kVrms for 1 minute between all terminals and earth.
2kVrms for 1 minute between independent circuits.
1kVrms for 1 minute across normally open contacts.
High Voltage Impulse
IEC60255-5
Three positive and three negative impulses of 5kV(peak),
1.2/50μs, 0.5J between all terminals and between all
terminals and earth.
Electrical Environment
Electromagnetic Environment
High Frequency
Disturbance / Damped
Oscillatory Wave
IEC60255-22-1 Class 3,
IEC61000-4-12 / EN61000-4-12
1MHz 2.5kV applied to all ports in common mode.
1MHz 1.0kV applied to all ports in differential mode.
Electrostatic
Discharge
IEC60255-22-2 Class 4,
IEC61000-4-2 / EN61000-4-2
8kV contact discharge, 15kV air discharge.
Radiated RF
Electromagnetic
Disturbance
IEC60255-22-3 Class 3,
IEC61000-4-3 / EN61000-4-3
Field strength 10V/m for frequency sweeps of 80MHz to
1GHz and 1.4GHz to 4.0GHz. Additional spot tests at 80,
160, 380, 450, 900, 1860 and 2150MHz.
Fast Transient
Disturbance
IEC60255-22-4, IEC61000-4-4 /
EN61000-4-4
4kV, 5k/100kHz, 5/50ns
2kV, 5k/100kHz, 5/50ns applied to com ports (RS485, etc.)
Surge Immunity
IEC60255-22-5,
IEC61000-4-5 / EN61000-4-5
1.2/50μs surge in common/differential modes:
Conducted RF
Electromagnetic
Disturbance
IEC60255-22-6 Class 3,
IEC61000-4-6 / EN61000-4-6
10Vrms applied over frequency range 150kHz to 100MHz.
Additional spot tests at 27 and 68MHz.
Power Frequency
Disturbance
IEC60255-22-7, IEC61000-4-16
/ EN61000-4-16
300V 50Hz for 10s applied to ports in common mode.
150V 50Hz for 10s applied to ports in differential mode.
Not applicable to AC inputs.
Conducted and
Radiated Emissions
IEC60255-25 Class A,
EN55022 Class A,
IEC61000-6-4 / EN61000-6-4
Conducted emissions:
0.15 to 0.50MHz: <79dB (peak) or <66dB (mean)
0.50 to 30MHz: <73dB (peak) or <60dB (mean)
Radiated emissions (at 10m):
30 to 230MHz: <40dB
230 to 1000MHz: <47dB
HV ports: 2kV/1kV
PSU and I/O ports: 2kV/1kV
RS485 port: 1kV/ -
⎯ 186 ⎯
6 F 2 S 0 9 0 0
European Commission Directives
89/336/EEC
Compliance with the European Commission
Electromagnetic Compatibility Directive is demonstrated
according to EN 61000-6-2 and
EN 61000-6-4.
73/23/EEC
Compliance with the European Commission Low
Voltage Directive is demonstrated according to
EN 50178 and EN 60255-5.
⎯ 187 ⎯
6 F 2 S 0 9 0 0
⎯ 188 ⎯
6 F 2 S 0 9 0 0
Appendix K
Symbols Used in Scheme Logic
⎯ 189 ⎯
6 F 2 S 0 9 0 0
Symbols used in the scheme logic and their meanings are as follows:
Signal names
Marked with
: Measuring element output signal
Marked with
: Signal number
Marked with
: Signal number and name of binary input by PLC function
Signal No.
Signal name
Marked with [
] : Scheme switch
Marked with "
" : Scheme switch position
Unmarked
: Internal scheme logic signal
AND gates
A
B
Output
A
1
B
C
1
1
Other cases
Output
1
0
&
Output
A
1
B
C
1
0
Other cases
Output
1
0
&
Output
A
1
B
C
0
0
Other cases
Output
1
0
≥1
Output
A
0
B
C
0
0
Other cases
Output
0
1
≥1
Output
A
0
B
C
0
1
Other cases
Output
0
1
≥1
Output
A
0
B
C
1
1
Other cases
Output
0
1
&
C
A
B
C
A
B
C
OR gates
A
B
C
A
B
C
A
B
C
⎯ 190 ⎯
6 F 2 S 0 9 0 0
Signal inversion
A
1
A
0
1
Output
Output
1
0
Timer
t
Delayed pick-up timer with fixed setting
0
XXX:
Set time
XXX
0
Delayed drop-off timer with fixed setting
t
XXX:
Set time
XXX
t
Delayed pick-up timer with variable setting
0
XXX - YYY: Setting range
XXX - YYY
0
Delayed drop-off timer with variable setting
t
XXX - YYY: Setting range
XXX - YYY
One-shot timer
A
A
Output
Output
XXX - YYY
XXX - YYY: Setting range
Flip-flop
S
0
1
0
1
S
F/F
Output
R
R
0
0
1
1
Output
No change
1
0
0
Scheme switch
A
Output
ON
+
Output
ON
⎯ 191 ⎯
A
Switch
1
ON
Other cases
Switch
ON
OFF
Output
1
0
Output
1
0
6 F 2 S 0 9 0 0
⎯ 192 ⎯
6 F 2 S 0 9 0 0
Appendix L
Setting Calculation
⎯ 193 ⎯
6 F 2 S 0 9 0 0
1. Setting of DIF
Model circuit:
Busbar
RS1
CT1
RL1
RL2
ZR
ZE1
RS2
GRB150+
EB-101/EB-102
ZE2
CT2
IFmax
Constants:
1) Resistance of CT secondary winding ............................... RS2 = 1.5 ohms
2) Resistance of secondary wiring for CT connecting lead loop – most onerous
case .................................................................................. RL2 = 1.0 ohm
3) Maximum through fault current ...................................... IFmax = 50kA
4) CT ratio ............................................................................ N = 800
5) Number of CTs connected to GRB150 ............................ n = 14
6) CT secondary excitation current at GRB150 setting voltage
.......................................................................................... Ie = 3mA
7) GRB150 input impedance................................................. ZR = 667 ohms
8) CT knee-point voltage ...................................................... Vk= 1000V
9) Minimum internal fault current ........................................ IFmin = 1000A
Setting calculations :
1) Calculate voltage setting value.
VR ≥ 1.2 (RS2 + RL2) × IFmax / N
≥ 1.2 × (1.5 ohms + 1.0 ohm) × 50000 / 800
≥ 188V
2) Calculate minimum operating current value for internal fault.
Imin = (n Ie + Ir + I) N
= (n Ie + Ir + VR / ZR) N
= (14 × 0.003 A + 188 / 667 ohms) × 800
⎯ 194 ⎯
6 F 2 S 0 9 0 0
= 259A
Ir is neglected because it is less than 0.1 mA referring to voltage-current characteristic of
the varistor shown below.
Setting checks:
1)
Check that the setting voltage value VR is smaller than half of the CT knee-point voltage
Vk .
1000 / 2 = 500 V > 188V
2)
Check that the minimum internal fault current IFmin is larger than the minimum operating
current value Imin.
1000A > 259A
Note: The current sensitivity Imin can be reduced by connecting a shunt resistor across the
relay/varistor unit input. To reduce it from 259A to 400A for example, connect a
resistor of 1067 ohms[= 188V×800/(400A-259A)].
2000
1800
1600
1400
Voltage
(V)
1200
1000
800
600
400
200
0.0001
0.001
0.01
0.1
1
Current (A)
⎯ 195 ⎯
10
100
1000
10000
6 F 2 S 0 9 0 0
2. Setting of DIFSV
The setting of DIFSV is determined from the maximum erroneous voltage which is generated due
to the following two factors under normal service conditions.
• CT turns ratio errors
• Error due to differences in the respective lengths of the CT secondary connecting
leads to the paralleling point of the differential circuit
Erroneous voltage Ver1 due to CT turns ratio errors:
The maximum erroneous voltage Ver1 is given by the following equation:
Ver1 = ZR × ILmax × CTer
where,
ZR:
relay impedance
ILmax: maximum load current (= rated current, for example)
CTer: maximum CT turns ratio error (= 0.25 %, for example)
Then,
Ver1 = 667 ohms × 5 A × 0.0025
≒8V
When the busbar is configured with parallel feeders, the maximum load current of the feeder may
increase by up to 1.8 times rated current when one of the feeders is opened.
Then,
Ver1 = 667 ohms × 1.8 × 5 A × 0.0025
≒15 V
Erroneous voltage Ver2 due to differences in the respective lengths of the CT secondary
connecting leads to the paralleling point of the differential circuit:
The maximum erroneous voltage Ver2 must not exceed (RS + RL) × ILmax for the most onerous case,
Ver2 < (RS + RL) × ILmax
< (1.5 ohms + 1.0 ohm) × 5A
< 12.5 V
In a busbar configured with parallel feeders, the load current may increase transiently by up to 1.8
times when one of the parallel feeders is opened. Then assuming that the feeders are fully loaded
under normal conditions,
Ver2 < (1.5 ohms + 1.0 ohm) × 1.8 × 5A
< 22.5 V
DIFSV should be set to satisfy the following equation:
DIFSV > Ver1 + Ver2 = 15 V + 12.5 V = 27.5 V for single feeder busbar
= 15 V + 22.5 V = 37.5 V for parallel feeder busbar
Then,
DIFSV = 30 V for single feeder busbar
= 40 V for parallel feeder busbar
⎯ 196 ⎯
6 F 2 S 0 9 0 0
Appendix M
IEC60870-5-103: Interoperability and
Troubleshooting
⎯ 197 ⎯
6 F 2 S 0 9 0 0
IEC60870-5-103 Configurator
IEC103 configurator software is included in a same CD as RSM100, and can be installed easily as
follows:
Installation of IEC103 Configurator
Insert the CD-ROM (RSM100) into a CDROM drive to install this software on a PC.
Double click the “Setup.exe” of the folder “\IEC103Conf” under the root directory, and operate it
according to the message.
When installation has been completed, the IEC103 Configurator will be registered in the start
menu.
Starting IEC103 Configurator
Click [Start]→[Programs]→[IEC103 Configurator]→[IECConf] to the IEC103 Configurator
software.
Note: The instruction manual of IEC103 Configurator can be viewed by clicking
[Help]→[Manual] on IEC103 Configurator.
IEC60870-5-103: Interoperability
1. Physical Layer
1.1 Electrical interface: EIA RS-485
Number of loads, 32 for one protection equipment
1.2 Optical interface
Glass fibre (option)
ST type connector (option)
1.3 Transmission speed
User setting: 9600 or 19200 bit/s
2. Application Layer
COMMON ADDRESS of ASDU
One COMMON ADDRESS OF ASDU (identical with station address)
3. List of Information
The following items can be customized with the original software tool “IEC103 configurator”.
(For details, refer to “IEC103 configurator” manual No.6F2S0839.)
-
Items for “Time-tagged message”: Type ID(1/2), INF, FUN, Transmission condition(Signal
number), COT
-
Items for “Time-tagged measurands”: INF, FUN, Transmission condition(Signal number),
COT, Type of measurand quantities
-
Items for “General command”: INF, FUN, Control condition(Signal number)
-
Items for “Measurands”: Type ID(3/9), INF, FUN, Number of measurand, Type of
⎯ 198 ⎯
6 F 2 S 0 9 0 0
measurand quantities
-
Common setting
• Transmission cycle of Measurand frame
• FUN of System function
• Test mode, etc.
Note: To be effective the setting data written via the RS232C, turn off the DC supply of the relay and
turn on again.
3. 1 IEC60870-5-103 Interface
3.1.1 Spontaneous events
The events created by the relay will be sent using Function type (FUN) / Information numbers
(INF) to the IEC60870-5-103 master station.
3.1.2 General interrogation
The GI request can be used to read the status of the relay, the Function types and Information
numbers that will be returned during the GI cycle are shown in the table below.
For details, refer to the standard IEC60870-5-103 section 7.4.3.
3.1.3 Cyclic measurements
The relay will produce measured values using Type ID=3 or 9 on a cyclical basis, this can be read
from the relay using a Class 2 poll. The rate at which the relay produces new measured values can
be customized.
3.1.4 Commands
The supported commands can be customized. The relay will respond to non-supported commands
with a cause of transmission (COT) of negative acknowledgement of a command.
For details, refer to the standard IEC60870-5-103 section 7.4.4.
3.1.5 Test mode
In test mode, both spontaneous messages and polled measured values, intended for processing in
the control system, are designated by means of the CAUSE OF TRANSMISSION ‘test mode’.
This means that CAUSE OF TRANSMISSION = 7 ‘test mode’ is used for messages normally
transmitted with COT=1 (spontaneous) or COT=2 (cyclic).
For details, refer to the standard IEC60870-5-103 section 7.4.5.
3.1.6
Blocking of monitor direction
If the blocking of the monitor direction is activated in the protection equipment, all indications and
measurands are no longer transmitted.
For details, refer to the standard IEC60870-5-103 section 7.4.6.
3.2 List of Information
The followings are the default settings.
⎯ 199 ⎯
6 F 2 S 0 9 0 0
List of Information
IEC103 Configurator Default setting
INF
Description
Contents
GI
Type
COT
FUN
ID
DPI
Signal No. OFF
ON
Standard Information numbers in monitor direction
System Function
0
End of General Interrogation
Transmission completion of GI items.
--
8
10
255
--
--
--
0
Time Synchronization
Time Synchronization ACK.
--
6
8
255
--
--
--
2
Reset FCB
Reset FCB(toggle bit) ACK
--
5
3
217
--
--
--
3
Reset CU
Reset CU ACK
--
5
4
217
--
--
--
4
Start/Restart
Relay start/restart
--
5
5
217
--
--
--
5
Pow er On
Relay pow er on.
Not supported
16 Auto-recloser active
If it is possible to use auto-recloser, this item is set
active, if impossible, inactive.
Not supported
17 Teleprotection active
If protection using telecommunication is available, this
item is set to active. If not, set to inactive.
Not supported
18 Protection active
If the protection is available, this item is set to active. If
not, set to inactive.
GI
1
1, 7, 12
217
1413
1
2
19 LED reset
Reset of latched LEDs
--
1
1, 7, 11, 12
217
1409
--
2
20 Monitor direction blocked
Block the 103 transmission from a relay to control
system. IECBLK: "Blocked" settimg.
GI
1
11
217
1241
1
2
21 Test mode
Transmission of testmode situation froma relay to
control system. IECTST "ON" setting.
GI
1
11
217
1242
1
2
22 Local parameter Setting
When a setting change has done at the local, the
event is sent to control system.
23 Characteristic1
Setting group 1 active
GI
1
1, 7, 11, 12
217
1243
1
2
24 Characteristic2
Setting group 2 active
GI
1
1, 7, 11, 12
217
1244
1
2
25 Characteristic3
Setting group 3 active
GI
1
1, 7, 11, 12
217
1245
1
2
26 Characteristic4
Setting group 4 active
GI
1
1, 7, 11, 12
217
1246
1
2
27 Auxiliary input1
Binary input 1
No set
28 Auxiliary input2
Binary input 2
No set
29 Auxiliary input3
Binary input 3
No set
30 Auxiliary input4
Binary input 4
No set
Status Indications
Not supported
Supervision Indications
32 Measurand supervision I
Zero sequence current supervision
Not supported
33 Measurand supervision V
Zero sequence voltage supervision
Not supported
35 Phase sequence supervision
Negative sequence voltage supevision
Not supported
36 Trip circuit supervision
Output circuit supervision
Not supported
37 I>>backup operation
Not supported
38 VT fuse failure
VT failure
Not supported
39 Teleprotection disturbed
CF(Communication system Fail) supervision
Not supported
46 Group w arning
Only alarming
GI
1
1, 7
217
1258
1
2
47 Group alarm
Trip blocking and alarming
GI
1
1, 7
217
1252
1
2
Earth Fault Indications
48 Earth Fault L1
A phase earth fault
Not supported
49 Earth Fault L2
B phase earth fault
Not supported
50 Earth Fault L3
C phase earth fault
Not supported
51 Earth Fault Fw d
Earth fault forw ard
Not supported
52 Earth Fault Rev
Earth fault reverse
Not supported
⎯ 200 ⎯
6 F 2 S 0 9 0 0
IEC103 Configurator Default setting
INF
Description
Contents
GI
Type
COT
FUN
ID
DPI
Signal NO. OFF
ON
Fault Indications
64
Start/pick-up L1
A phase, A-B phase or C-A phase element pick-up
65
Start/pick-up L2
B phase, A-B phase or B-C phase element pick-up
No set
No set
66
Start/pick-up L3
C phase, B-C phase or C-A phase element pick-up
No set
67
Start/pick-up N
Earth fault element pick-up
68
General trip
Any trip
69
Trip L1
A phase, A-B phase or C-A phase trip
70
Trip L2
B phase, A-B phase or B-C phase trip
No set
71
Trip L3
C phase, B-C phase or C-A phase trip
No set
No set
--
2
1, 7
217
No set
72
Trip I>>(back-up)
Back up trip
No set
73
Fault location X In ohms
Fault location
Not supported
74
Fault forw ard/line
Forw ard fault
Not supported
75
Fault reverse/Busbar
Reverse fault
76
Teleprotection Signal transmitted Carrier signal sending
Not supported
77
Teleprotection Signal received
Carrier signal receiving
Not supported
78
Zone1
Zone 1 trip
Not supported
79
Zone2
Zone 2 trip
Not supported
80
Zone3
Zone 3 trip
Not supported
81
Zone4
Zone 4 trip
Not supported
82
Zone5
Zone 5 trip
Not supported
83
Zone6
Zone 6 trip
Not supported
84
General Start/Pick-up
Any elements pick-up
No set
85
Breaker Failure
CBF trip or CBF retrip
Not supported
86
Trip measuring system L1
Not supported
87
Trip measuring system L2
Not supported
88
Trip measuring system L3
Not supported
89
Trip measuring system E
90
Trip I>
91
Trip I>>
Definite time OC trip
Not supported
92
Trip IN>
Inverse time earth fault OC trip
Not supported
93
Trip IN>>
Definite time earth fault OC trip
Not supported
CB close command output
Not supported
Not supported
Not supported
Inverse time OC trip
Not supported
Autoreclose indications
128
CB 'ON' by Autoreclose
129
CB 'ON' by long-time
Autoreclose
130
Autoreclose Blocked
Not supported
Autoreclose block
Not supported
⎯ 201 ⎯
28
--
2
6 F 2 S 0 9 0 0
IEC103 configurator Default setting
INF
Description
Contents
GI
Type
ID
COT
FUN
Max. No.
Measurands
144
Measurand I
<meaurand I>
No
0
145
Measurand I,V
<meaurand I>
No
0
146
Measurand I,V,P,Q
<meaurand I>
No
0
147
Measurand IN,VEN
<meaurand I>
No
0
148
Measurand IL1,2,3, VL1,2,3,
P,Q,f
Vda, Vdb, Vdc measurand <meaurand II>
--
9
2, 7
217
9
Generic Function
240
Read Headings
Not supported
241
Read attributes of all entries of
a group
Not supported
243
Read directory of entry
Not supported
244
Real attribute of entry
Not supported
245
End of GGI
Not supported
249
Write entry w ith confirm
Not supported
250
Write entry w ith execute
Not supported
251
Write entry aborted
Not supported
Details of MEA settings in IEC103 configurator
INF
148
MEA
Tbl
Offset
Data type
Limit
Coeff
Lower
Upper
(empty)
(empty)
(empty)
Vda
1
12
short
0
4096
14.5134 (*)
Vdb
1
16
short
0
4096
14.5134 (*)
Vdc
1
20
short
0
4096
14.5134 (*)
(empty)
(empty)
(empty)
(*): In default setting, when the voltage level is 63.5V, “Coeff” is calculated by the following
equation:
LSB
Coeff = (0.27V / 63.3V / 1.2) × 212
⎯ 202 ⎯
6 F 2 S 0 9 0 0
IEC103 Configurator Default setting
INF
Description
Contents
Control
Type ID
direction
COT
FUN
Selection of standard information numbers in control direction
System functions
0
Initiation of general interrogation
--
7
9
255
0
Time synchronization
--
6
8
255
General commands
16
Auto-recloser on/off
17
Teleprotection on/off
Not supported
18
Protection on/off
(*1)
19
LED reset
23
24
Not supported
ON/OFF
20
20
217
Reset indication of latched LEDs.
ON
20
20
217
Activate characteristic 1
Setting Group 1
ON
20
20
217
Activate characteristic 2
Setting Group 2
ON
20
20
217
25
Activate characteristic 3
Setting Group 3
ON
20
20
217
26
Activate characteristic 4
Setting Group 4
ON
20
20
217
Generic functions
Read headings of all defined
240
groups
Not supported
241
Read values or attributes of all
entries of one group
Not supported
243
Read directory of a single entry
Not supported
244
Read values or attributes of a
single entry
Not supported
245
General Interrogation of generic
data
Not supported
248
Write entry
Not supported
249
Write entry w ith confirmation
Not supported
250
Write entry w ith execution
Not supported
(∗1) Note: While the relay receives the "Protection off" command, " IN SERVICE LED" is off.
Details of Command settings in IEC103 configurator
DCO
INF
Sig off
Sig on
18
2686
2686
19
0
2688
200
23
0
2640
1000
24
0
2641
1000
25
0
2642
1000
26
0
2643
1000
Rev
✓
Valid time
0
✓: signal reverse
⎯ 203 ⎯
6 F 2 S 0 9 0 0
Description
Contents
GRD140 supported
Basic application functions
Test mode
Yes
Blocking of monitor direction
Yes
Disturbance data
No
Generic services
No
Private data
Yes
Miscellaneous
Max. MVAL = rated value
times
Measurand
Current L1
Ia
No set
Current L2
Ib
No set
Current L3
Ic
No set
Voltage L1-E
Vda
Configurable
Voltage L2-E
Vdb
Configurable
Voltage L3-E
Vdc
Configurable
Active pow er P
P
No set
Reactive pow er Q
Q
No set
Frequency f
f
No set
Voltage L1 - L2
Vab
No set
Details of Common settings in IEC103 configurator
- Setting file’s remark:
IGRB150DA000
- Remote operation valid time [ms]:
4000
- Local operation valid time [ms]:
4000
- Measurand period [s]:
2
- Function type of System functions:
217
- Signal No. of Test mode:
1242
- Signal No. for Real time and Fault number: 1279
⎯ 204 ⎯
Comment
6 F 2 S 0 9 0 0
[Legend]
GI: General Interrogation (refer to IEC60870-5-103 section 7.4.3)
Type ID: Type Identification (refer to IEC60870-5-103 section 7.2.1)
1 : time-tagged message
2 : time-tagged message with relative time
3 : measurands I
4 : time-tagged measurands with relative time
5 : identification
6 : time synchronization
8 : general interrogation termination
9 : measurands II
10: generic data
11: generic identification
20: general command
23: list of recorded disturbances
26: ready for transmission for disturbance data
27: ready for transmission of a channel
28: ready for transmission of tags
29: transmission of tags
30: transmission of disturbance values
31: end of transmission
COT: Cause of Transmission (refer to IEC60870-5-103 section 7.2.3)
1: spontaneous
2: cyclic
3: reset frame count bit (FCB)
4: reset communication unit (CU)
5: start / restart
6: power on
7: test mode
8: time synchronization
9: general interrogation
10: termination of general interrogation
11: local operation
12: remote operation
20: positive acknowledgement of command
21: negative acknowledgement of command
31: transmission of disturbance data
40: positive acknowledgement of generic write command
41: negative acknowledgement of generic write command
42: valid data response to generic read command
43: invalid data response to generic read command
44: generic write confirmation
FUN: Function type (refer to IEC60870-5-103 section 7.2.5.1)
DPI: Double-point Information (refer to IEC60870-5-103 section 7.2.6.5)
DCO: Double Command (refer to IEC60870-5-103 section 7.2.6.4)
⎯ 205 ⎯
6 F 2 S 0 9 0 0
IEC103 setting data is recommended to be saved as follows:
(1) Naming for IEC103setting data
The file extension of IEC103 setting data is “.csv”. The version name is recommended to be
provided with a revision number in order to be changed in future as follows:
First draft:
∗∗∗∗∗∗_01.csv
Second draft:
∗∗∗∗∗∗_02.csv
Third draft:
∗∗∗∗∗∗_03.csv
Revision number
The name “∗∗∗∗∗∗” is recommended to be able to discriminate the relay type such as GRZ100 or
GRL100, etc. The setting files remark field of IEC103 is able to enter up to 12 one-byte
characters. It is utilized for control of IEC103 setting data.
(2) Saving theIEC103 setting data
The IEC103 setting data is recommended to be saved in external media such as FD (floppy disk)
or CD-R, not to remain in the folder.
⎯ 206 ⎯
6 F 2 S 0 9 0 0
Troubleshooting
No.
Phenomena
Supposed causes
Check / Confirmation
Object
1
Communication
trouble
(IEC103
communication
is
not
available.)
Address setting is incorrect.
BCU
RY
BCU
RY
BCU
Match address setting between BCU and relay.
Avoid duplication of address with other relay.
Match transmission baud rate setting between
BCU and relay.
RS485 or optical cable interconnection
is incorrect.
Cable
- Check the connection port.
- Check the interconnection of RS485 A/B/COM
- Check the send and received interconnection of
optical cable.
The setting of converter is incorrect.
(RS485/optic conversion is executed
with the transmission channel, etc.)
Converter
In the event of using G1IF2, change the DIPSW
setting in reference to INSTRUCTION
MANUAL (6F2S0794).
The relationship between logical “0/1” of
the signal and Sig.on/off is incorrect.
(In the event of using optical cable)
BCU
Check the following;
Logical0 : Sig.on
Logical1:Sig.off
Terminal resistor is not offered.
(Especially when RS485 cable is
long.)
cable
Impose terminal resistor (150[ohms]) to both ends
of RS 485 cable.
Relay cannot receive the requirement
frame from BCU.
BCU
Check to secure the margin more than 15ms
between receiving the reply frame from the
relay and transmitting the next requirement
frame on BCU.
BCU
Check to set the time-out of reply frame from the
relay.
Transmission baud rate setting is
incorrect.
Start bit, stop bit and parity settings of
data that BCU transmits to relay is
incorrect.
(The timing coordination of sending and
receiving switch control is irregular in
half-duplex communication.)
The requirement frame from BCU and
the reply frame from relay contend.
(The sending and receiving timing
coordination is irregular in half-duplex
communication.)
2
HMI does not
display IEC103
event on the
SAS side.
Procedure
Go over the following settings by BCU. Relay
setting is fixed as following settings.
- Start bit: 1bit
- Stop bit: 1bit
- Parity setting: even
Time-out setting: more than 100ms (acceptable
value of response time 50ms plus
margin)
The relevant event sending condition is
not valid.
RY
Change the event sending condition (signal
number) of IEC103 configurator if there is a
setting error. When the setting is correct, check
the signal condition by programmable LED, etc.
The relevant event Information Number
(INF) and/or Function Type (FUN)
may be different between the relay
and SAS.
RY
Match the relevant event Information Number
(INF) or Function Type (FUN) between the
relay and SAS.
SAS
⎯ 207 ⎯
6 F 2 S 0 9 0 0
No.
Phenomena
Supposed causes
Check / Confirmation
Object
3
Time can be
synchronised
with
IEC103
communication
.
Procedure
The relay is not initialised after writing
IEC103 configurator setting.
RY
Check the sum value of IEC103 setting data from
the LCD screen. When differing from the sum
value on IEC103 configurator, initialise the
relay.
It changes to the block mode.
RY
Change the IECBR settling to Normal.
BCU does not transmit the frame of time
synchronisation.
BCU
Transmit the frame of time synchronisation.
The settling of time synchronisation
source is set to other than IEC.
RY
Change the settling of time synchronisation
source to IEC.
(Note) BCU: Bay control unit, RY: Relay
⎯ 208 ⎯
6 F 2 S 0 9 0 0
Appendix N
Timing Chart of Cold load Condition
Judgment
⎯ 209 ⎯
6 F 2 S 0 9 0 0
Timing Chart of Cold Load Status Judgment
(1) Function 1:
Setting: [TCLP]= should be set.
[TCLE],[TCLR]=Not applied.
From CB close command output, the cold load condition is judged for a time.
CB closing
CB open
CB closing command
(“CB_FOR_CLP”)
COLD LOAD
TCLP one-shot timer
(3) Function 2:
Setting: [TCLP]=Not applied.
[TCLE],[TCLR]=should be set.
From CB contact closing, the cold load condition is judged for a time.
CB closing
CB contact
(CB_FOR_CLP)
CB open
CLOSE
OPEN
COLD LOAD
TCLR Off-delay timer
⎯ 210 ⎯
TCLE On-delay timer
6 F 2 S 0 9 0 0
Appendix O
IEC61850: MICS & PICS
⎯ 211 ⎯
6 F 2 S 0 9 0 0
PICS: The GRB150 relay supports IEC 61850 logical nodes and common data classes as indicated in the following
tables.
Logical nodes in IEC 61850-7-4
Logical Nodes
GRB150
L: System Logical Nodes
LPHD
Yes
Common Logical Node
Yes
LLN0
Yes
P: Logical Nodes for Protection functions
PDIF
Yes
PDIR
--PDIS
--PDOP
--PDUP
--PFRC
--PHAR
--PHIZ
--PIOC
--PMRI
--PMSS
--POPE
--PPAM
--PSCH
--PSDE
--PTEF
--PTOC
--PTOF
--PTOV
--PTRC
Yes
PTTR
--PTUC
--PTUV
--PUPF
--PTUF
--PVOC
--PVPH
--PZSU
--R: Logical Nodes for protection related functions
RDRE
--RADR
--RBDR
--RDRS
--RBRF
--RDIR
--RFLO
--RPSB
--RREC
--RSYN
--C: Logical Nodes for Control
CALH
--CCGR
--CILO
--CPOW
--CSWI
--G: Logical Nodes for Generic references
GAPC
--GGIO
Yes
Nodes
GRB150
GGIO_GOOSE
Yes
GSAL
--I: Logical Nodes for Interfacing and archiving
IARC
--IHMI
--ITCI
--ITMI
--A: Logical Nodes for Automatic control
ANCR
--ARCO
--ATCC
--AVCO
--M: Logical Nodes for Metering and measurement
MDIF
--MHAI
--MHAN
--MMTR
--MMXN
--MMXU
--MSQI
--MSTA
--S: Logical Nodes for Sensors and monitoring
SARC
--SIMG
--SIML
--SPDC
--X: Logical Nodes for Switchgear
XCBR
Yes
XSWI
--T: Logical Nodes for Instrument transformers
TCTR
--TVTR
--Y: Logical Nodes for Power transformers
YEFN
--YLTC
--YPSH
--YPTR
--Z: Logical Nodes for Further power system
equipment
ZAXN
--ZBAT
--ZCAB
--ZCAP
--ZCON
--ZGEN
--ZGIL
--ZLIN
--ZMOT
--ZREA
--ZRRC
--ZSAR
--ZTCF
--ZTCR
---
⎯ 212 ⎯
6 F 2 S 0 9 0 0
Common data classes in IEC61850-7-3
Common data classes
Status information
SPS
DPS
INS
ACT
ACT_ABC
ACD
ACD_ABC
SEC
BCR
Measured information
MV
CMV
SAV
WYE
WYE_ABCN
DEL
SEQ
HMV
HWYE
HDEL
Controllable status information
SPC
DPC
INC
BSC
ISC
Controllable analogue information
APC
Status settings
SPG
ING
Analogue settings
ASG
CURVE
Description information
DPL
LPL
CSD
GRB150
Yes
--Yes
Yes
Yes
Yes
Yes
----Yes
Yes
--Yes
Yes
Yes
Yes
------Yes
Yes
Yes
--------Yes
Yes
--Yes
Yes
---
⎯ 213 ⎯
6 F 2 S 0 9 0 0
LPHD class
Attribute Name
LNName
Data
PhyName
PhyHealth
OutOv
Proxy
InOv
NumPwrUp
WrmStr
WacTrg
PwrUp
PwrDn
PwrSupAlm
RsStat
Attr. Type Explanation
Shall be inherited from Logical-Node Class (see IEC 61850-7-2)
DPL
INS
SPS
SPS
SPS
INS
INS
INS
SPS
SPS
SPS
SPC
Physical device name plate
Physical device health
Output communications buffer overflow
Indicates if this LN is a proxy
Input communications buffer overflow
Number of Power ups
Number of Warm Starts
Number of watchdog device resets detected
Power Up detected
Power Down detected
External power supply alarm
Reset device statistics
Common Logical Node class
Attribute Name Attr. Type Explanation
LNName
Shall be inherited from Logical-Node Class (see IEC 61850-7-2)
Data
Mandatory Logical Node Information (Shall be inherited by ALL LN but LPHD)
Mod
INC
Mode
Beh
INS
Behaviour
Health
INS
Health
NamPlt
LPL
Name plate
Optional Logical Node Information
Loc
SPS
Local operation
EEHealth
INS
External equipment health
EEName
DPL
External equipment name plate
OpCntRs
INC
Operation counter resetable
OpCnt
INS
Operation counter
OpTmh
INS
Operation time
Data Sets (see IEC 61850-7-2)
Inherited and ٛ pecialized from Logical Node class (see IEC 61850-7-2)
Control Blocks (see IEC 61850-7-2)
Inherited and ٛ pecialized from Logical Node class (see IEC 61850-7-2)
Services (see IEC 61850-7-2)
Inherited and ٛ pecialized from Logical Node class (see IEC 61850-7-2)
T M/O GRB150
T
M
M
O
M
O
O
O
O
O
O
O
O
Y
Y
N
Y
N
N
N
N
N
N
N
N
T M/O GRB150
M
M
M
M
Y
Y
Y
Y
O
O
O
O
O
O
N
N
N
N
N
N
LLNO class
Attribute Name Attr. Type Explanation
T M/O GRB150
LNName
Shall be inherited from Logical-Node Class (see IEC 61850-7-2)
Data
Common Logical Node Information
LN shall inherit all Mandatory Data from Common Logical Node
M
Class
Loc
SPS
Local operation for complete logical device
O
Y
OpTmh
INS
Operation time
O
N
Controls
Diag
SPC
Run Diagnostics
O
Y
LEDRs
SPC
LED reset
T O
Y
⎯ 214 ⎯
6 F 2 S 0 9 0 0
PDIF class
Attribute Name Attr. Type Explanation
T
LNName
Shall be inherited from Logical-Node Class (see IEC 61850-7-2)
Data
Common Logical Node Information
LN shall inherit all Mandatory Data from Common Logical Node
Class
OpCntRs
INC
Resetable operation counter
Status Information
Str
ACD
Start
Op
ACT
Operate
T
TmAst
CSD
Active curve charactristic
Measured Values
DifAClc
WYE
Differential Current
RstA
WYE
Restraint Current
Settings
LinCapac
ASG
Line capacitance (for load currents)
LoSet
ING
Low operate value, percentage of the nominal current
HiSet
ING
High operate value, percentage of the nominal current
MinOpTmms
ING
Minimum Operate Time
MaxOpTmms
ING
Maximum Operate Time
RstMod
ING
Restraint Mode
RsDlTmms
ING
Reset Delay Time
TmACrv
CURVE
Operating Curve Type
PTRC class
Attribute Name Attr. Type Explanation
T
LNName
Shall be inherited from Logical-Node Class (see IEC 61850-7-2)
Data
Common Logical Node Information
LN shall inherit all Mandatory Data from Common Logical Node
Class
OpCntRs
INC
Resetable operation counter
Status Information
Tr
ACT_ABC Trip
Op
ACT
Operate (combination of subscribed Op from protection functions)
Str
ACD
Sum of all starts of all connected Logical Nodes
Settings
TrMod
ING
Trip Mode
TrPlsTmms
ING
Trip Pulse Time
Condition C: At least one of the two status information (Tr, Op) shall be used.
⎯ 215 ⎯
M/O GRB150
M
O
N
M
M
O
Y
Y
N
O
O
Y
N
O
O
O
O
O
O
O
O
N
N
N
N
N
N
N
N
M/O GRB150
M
O
N
C
C
O
Y
N
N
O
O
N
N
6 F 2 S 0 9 0 0
GGIO class
Attribute Name Attr. Type Explanation
T
LNName
Shall be inherited from Logical-Node Class (see IEC 61850-7-2)
Data
Common Logical Node Information
LN shall inherit all Mandatory Data from Common Logical Node
Class
EEHealth
INS
External equipment health (external sensor)
EEName
DPL
External equipment name plate
Loc
SPS
Local operation
OpCntRs
INC
Resetable operation counter
Measured values
AnIn
MV
Analogue input
Controls
SPCSO
SPC
Single point controllable status output
DPCSO
DPC
Double point controllable status output
ISCSO
INC
Integer status controllable status output
Status Information
IntIn
INS
Integer status input
Alm
SPS
General single alarm
Ind1
SPS
General indication (binary input)
Ind2
SPS
General indication (binary input)
Ind3
SPS
General indication (binary input)
Ind4
SPS
General indication (binary input)
Ind5
SPS
General indication (binary input)
Ind6
SPS
General indication (binary input)
Ind7
SPS
General indication (binary input)
Ind8
SPS
General indication (binary input)
Ind9
SPS
General indication (binary input)
Ind10
SPS
General indication (binary input)
:
:
:
Ind64
SPS
General indication (binary input)
⎯ 216 ⎯
M/O GRB150
M
O
O
O
O
N
N
N
N
O
N
O
O
O
N
N
N
O
O
O
O
O
O
O
O
O
O
O
O
N
N
Y
Y
Y
Y
Y
Y
Y
Y
Y
Y
O
Y
6 F 2 S 0 9 0 0
GGIO_GOOSE class
Attribute Name Attr. Type Explanation
T
LNName
Shall be inherited from Logical-Node Class (see IEC 61850-7-2)
Data
Common Logical Node Information
LN shall inherit all Mandatory Data from Common Logical Node
Class
EEHealth
INS
External equipment health (external sensor)
EEName
DPL
External equipment name plate
Loc
SPS
Local operation
OpCntRs
INC
Resetable operation counter
Measured values
AnIn
MV
Analogue input
Controls
SPCSO
SPC
Single point controllable status output
DPCSO
DPC
Double point controllable status output
ISCSO
INC
Integer status controllable status output
Status Information
IntIn
INS
Integer status input
Alm
SPS
General single alarm
Ind1
SPS
General indication (binary input)
Ind2
SPS
General indication (binary input)
Ind3
SPS
General indication (binary input)
Ind4
SPS
General indication (binary input)
Ind5
SPS
General indication (binary input)
Ind6
SPS
General indication (binary input)
Ind7
SPS
General indication (binary input)
Ind8
SPS
General indication (binary input)
Ind9
SPS
General indication (binary input)
Ind10
SPS
General indication (binary input)
Ind11
SPS
General indication (binary input)
Ind12
SPS
General indication (binary input)
Ind13
SPS
General indication (binary input)
Ind14
SPS
General indication (binary input)
Ind15
SPS
General indication (binary input)
Ind16
SPS
General indication (binary input)
⎯ 217 ⎯
M/O GRB150
M
O
O
O
O
N
N
N
N
O
N
O
O
O
N
N
N
O
O
O
O
O
O
O
O
O
O
O
O
O
O
O
O
O
O
N
N
Y
Y
Y
Y
Y
Y
Y
Y
Y
Y
Y
Y
Y
Y
Y
Y
6 F 2 S 0 9 0 0
XCBR class
Attribute Name Attr. Type Explanation
T
LNName
Shall be inherited from Logical-Node Class (see IEC 61850-7-2)
Data
Common Logical Node Information
LN shall inherit all Mandatory Data from Common Logical Node
Class
EEHealth
INS
External equipment health (external sensor)
EEName
DPL
External equipment name plate
OpCnt
INS
Operation counter
Controls
Pos
DPC
Switch position
BlkOpn
SPC
Block opening
BlkCls
SPC
Block closing
ChaMotEna
SPC
Charger motor enabled
Metered Values
SumSwARs
BCR
Sum of Switched Amperes, resetable
Status Information
CBOpCap
INS
Circuit breaker operating capability
POWCap
INS
Point On Wave switching capability
MaxOpCap
INS
Circuit breaker operating capability when fully charged
⎯ 218 ⎯
M/O GRB150
M
O
O
M
N
N
Y
M
M
M
O
Y
Y
Y
N
O
N
M
O
O
Y
N
N
6 F 2 S 0 9 0 0
SPS class
Attribute
Attribute Type
FC
TrgOp
Value/Value Range
Name
DataName
Inherited from Data Class (see IEC 61850-7-2)
DataAttribute
status
stVal
BOOLEAN
ST dchg
TRUE | FALSE
q
Quality
ST qchg
t
TimeStamp
ST
substitution
subEna
BOOLEAN
SV
subVal
BOOLEAN
SV
TRUE | FALSE
subQ
Quality
SV
subID
VISIBLE STRING64
SV
configuration, description and extension
d
VISIBLE STRING255
DC
Text
dU
UNICODE STRING255
DC
cdcNs
VISIBLE STRING255
EX
cdcName
VISIBLE STRING255
EX
dataNs
VISIBLE STRING255
EX
Services
As defined in Table 13
INS class
Attribute
Attribute Type
FC
TrgOp
Value/Value Range
Name
DataName
Inherited from Data Class (see IEC 61850-7-2)
DataAttribute
status
stVal
INT32
ST dchg
q
Quality
ST qchg
t
TimeStamp
ST
Substitution
subEna
BOOLEAN
SV
subVal
INT32
SV
subQ
Quality
SV
subID
VISIBLE STRING64
SV
configuration, description and extension
d
VISIBLE STRING255
DC
Text
dU
UNICODE STRING255
DC
cdcNs
VISIBLE STRING255
EX
cdcName
VISIBLE STRING255
EX
dataNs
VISIBLE STRING255
EX
Services
As defined in Table 13
(*1): “ENUM” type is also used.
⎯ 219 ⎯
M/O/C
GRB150
M
M
M
Y
Y
Y
PICS_SUBST
PICS_SUBST
PICS_SUBST
PICS_SUBST
N
N
N
N
O
O
AC_DLNDA_M
AC_DLNDA_M
AC_DLN_M
N
N
N
N
N
M/O/C
GRB150
M
M
M
Y(*1)
Y
Y
PICS_SUBST
PICS_SUBST
PICS_SUBST
PICS_SUBST
N
N
N
N
O
O
AC_DLNDA_M
AC_DLNDA_M
AC_DLN_M
N
N
N
N
N
6 F 2 S 0 9 0 0
ACT class
Attribute
Attribute Type
FC
TrgOp
Value/Value Range
Name
DataName
Inherited from Data Class (see IEC 61850-7-2)
DataAttribute
status
general
BOOLEAN
ST dchg
phsA
BOOLEAN
ST dchg
phsB
BOOLEAN
ST dchg
phsC
BOOLEAN
ST dchg
neut
BOOLEAN
ST dchg
q
Quality
ST qchg
t
TimeStamp
ST
configuration, description and extension
operTm
TimeStamp
CF
d
VISIBLE STRING255
DC
Text
dU
UNICODE STRING255
DC
cdcNs
VISIBLE STRING255
EX
cdcName
VISIBLE STRING255
EX
dataNs
VISIBLE STRING255
EX
Services
As defined in Table 13
ACT_ABC class
Attribute
Attribute Type
FC
TrgOp
Value/Value Range
Name
DataName
Inherited from Data Class (see IEC 61850-7-2)
DataAttribute
status
general
BOOLEAN
ST dchg
phsA
BOOLEAN
ST dchg
phsB
BOOLEAN
ST dchg
phsC
BOOLEAN
ST dchg
neut
BOOLEAN
ST dchg
q
Quality
ST qchg
t
TimeStamp
ST
configuration, description and extension
operTm
TimeStamp
CF
d
VISIBLE STRING255
DC
Text
dU
UNICODE STRING255
DC
cdcNs
VISIBLE STRING255
EX
cdcName
VISIBLE STRING255
EX
dataNs
VISIBLE STRING255
EX
Services
As defined in Table 13
⎯ 220 ⎯
M/O/C
GRB150
M
O
O
O
O
M
M
Y
N
N
N
N
Y
Y
O
O
O
AC_DLNDA_M
AC_DLNDA_M
AC_DLN_M
N
N
N
N
N
N
M/O/C
GRB150
M
O
O
O
O
M
M
Y
Y
Y
Y
N
Y
Y
O
O
O
AC_DLNDA_M
AC_DLNDA_M
AC_DLN_M
N
N
N
N
N
N
6 F 2 S 0 9 0 0
ACD class
Attribute
Attribute Type
FC
TrgOp
Value/Value Range
M/O/C
GRB150
Name
DataName
Inherited from Data Class (see IEC 61850-7-2)
DataAttribute
status
general
BOOLEAN
ST dchg
M
Y
dirGeneral
ENUMERATED
ST dchg
unknown | forward | backward
M
Y
| both
phsA
BOOLEAN
ST dchg
GC_2 (1)
N
dirPhsA
ENUMERATED
ST dchg
unknown | forward | backward
GC_2 (1)
N
phsB
BOOLEAN
ST dchg
GC_2 (2)
N
dirPhsB
ENUMERATED
ST dchg
unknown | forward | backward
GC_2 (2)
N
phsC
BOOLEAN
ST dchg
GC_2 (3)
N
dirPhsC
ENUMERATED
ST dchg
unknown | forward | backward
GC_2 (3)
N
neut
BOOLEAN
ST dchg
GC_2 (4)
N
dirNeut
ENUMERATED
ST dchg
unknown | forward | backward
GC_2 (4)
N
q
Quality
ST qchg
M
Y
t
TimeStamp
ST
M
Y
configuration, description and extension
d
VISIBLE STRING255
DC
Text
O
N
dU
UNICODE STRING255
DC
O
N
cdcNs
VISIBLE STRING255
EX
AC_DLNDA_M
N
cdcName
VISIBLE STRING255
EX
AC_DLNDA_M
N
dataNs
VISIBLE STRING255
EX
AC_DLN_M
N
Services
As defined in Table 13
ACD_ABC class
Attribute
Attribute Type
FC
TrgOp
Value/Value Range
M/O/C
GRB150
Name
DataName
Inherited from Data Class (see IEC 61850-7-2)
DataAttribute
status
general
BOOLEAN
ST dchg
M
Y
dirGeneral
ENUMERATED
ST dchg
unknown | forward | backward
M
Y
| both
phsA
BOOLEAN
ST dchg
GC_2 (1)
Y
dirPhsA
ENUMERATED
ST dchg
unknown | forward | backward
GC_2 (1)
Y
phsB
BOOLEAN
ST dchg
GC_2 (2)
Y
dirPhsB
ENUMERATED
ST dchg
unknown | forward | backward
GC_2 (2)
Y
phsC
BOOLEAN
ST dchg
GC_2 (3)
Y
dirPhsC
ENUMERATED
ST dchg
unknown | forward | backward
GC_2 (3)
Y
neut
BOOLEAN
ST dchg
GC_2 (4)
N
dirNeut
ENUMERATED
ST dchg
unknown | forward | backward
GC_2 (4)
N
q
Quality
ST qchg
M
Y
t
TimeStamp
ST
M
Y
configuration, description and extension
d
VISIBLE STRING255
DC
Text
O
N
dU
UNICODE STRING255
DC
O
N
cdcNs
VISIBLE STRING255
EX
AC_DLNDA_M
N
cdcName
VISIBLE STRING255
EX
AC_DLNDA_M
N
dataNs
VISIBLE STRING255
EX
AC_DLN_M
N
Services
As defined in Table 13
⎯ 221 ⎯
6 F 2 S 0 9 0 0
MV class
Attribute
Attribute Type
FC
TrgOp
Value/Value Range
M/O/C
GRB150
Name
DataName
Inherited from Data Class (see IEC 61850-7-2)
DataAttribute
measured values
instMag
AnalogueValue
MX
O
N
mag
AnalogueValue
MX dchg
M
Y
range
ENUMERATED
MX dchg
normal | high | low | high-high |
O
N
low-low |…
q
Quality
MX qchg
M
Y
t
TimeStamp
MX
M
Y
substitution
subEna
BOOLEAN
SV
PICS_SUBST
N
subVal
AnalogueValue
SV
PICS_SUBST
N
subQ
Quality
SV
PICS_SUBST
N
subID
VISIBLE STRING64
SV
PICS_SUBST
N
configuration, description and extension
units
Unit
CF
see Annex A
O
Y
db
INT32U
CF
0 … 100 000
O
N
zeroDb
INT32U
CF
0 … 100 000
O
N
sVC
ScaledValueConfig
CF
AC_SCAV
N
rangeC
RangeConfig
CF
GC_CON
N
smpRate
INT32U
CF
O
N
d
VISIBLE STRING255
DC
Text
O
N
dU
UNICODE STRING255
DC
O
N
cdcNs
VISIBLE STRING255
EX
AC_DLNDA_M
N
cdcName
VISIBLE STRING255
EX
AC_DLNDA_M
N
dataNs
VISIBLE STRING255
EX
AC_DLN_M
N
Services
As defined in Table 21
⎯ 222 ⎯
6 F 2 S 0 9 0 0
CMV class
Attribute
Attribute Type
FC
TrgOp
Value/Value Range
M/O/C
GRB150
Name
DataName
Inherited from Data Class (see IEC 61850-7-2)
DataAttribute
measured values
instCVal
Vector
MX
O
N
cVal
Vector
MX dchg
M
Y
range
ENUMERATED
MX dchg
normal | high | low | high-high |
O
N
low-low |…
q
Quality
MX qchg
M
Y
t
TimeStamp
MX
M
Y
substitution
subEna
BOOLEAN
SV
PICS_SUBST
N
subVal
Vector
SV
PICS_SUBST
N
subQ
Quality
SV
PICS_SUBST
N
subID
VISIBLE STRING64
SV
PICS_SUBST
N
configuration, description and extension
units
Unit
CF
see Annex A
O
Y
db
INT32U
CF
0 … 100 000
O
N
zeroDb
INT32U
CF
0 … 100 000
O
N
rangeC
RangeConfig
CF
GC_CON
N
magSVC
ScaledValueConfig
CF
AC_SCAV
N
angSVC
ScaledValueConfig
CF
AC_SCAV
N
angRef
ENUMERATED
CF
V | A | other …
O
N
smpRate
INT32U
CF
O
N
d
VISIBLE STRING255
DC
Text
O
N
dU
UNICODE STRING255
DC
O
N
cdcNs
VISIBLE STRING255
EX
AC_DLNDA_M
N
cdcName
VISIBLE STRING255
EX
AC_DLNDA_M
N
dataNs
VISIBLE STRING255
EX
AC_DLN_M
N
Services
As defined in Table 21
⎯ 223 ⎯
6 F 2 S 0 9 0 0
WYE class
Attribute
Name
DataName
Data
phsA
phsB
phsC
neut
net
res
DataAttribute
angRef
Attribute Type
FC
TrgOp
Value/Value Range
M/O/C
GRB150
GC_1
GC_1
GC_1
GC_1
GC_1
GC_1
Y
Y
Y
N
N
N
Inherited from Data Class (see IEC 61850-7-2)
CMV
CMV
CMV
CMV
CMV
CMV
configuration, description and extension
CF
Va | Vb | Vc | Aa | Ab | Ac | Vab |
O
Vbc | Vca | Vother | Aother
VISIBLE STRING255
DC
Text
O
UNICODE STRING255
DC
O
VISIBLE STRING255
EX
AC_DLNDA_M
VISIBLE STRING255
EX
AC_DLNDA_M
VISIBLE STRING255
EX
AC_DLN_M
ENUMERATED
d
dU
cdcNs
cdcName
dataNs
Services
As defined in Table 21
N
N
N
N
N
N
WYE_ABCN class
Attribute
Attribute Type
FC
TrgOp
Value/Value Range
M/O/C
GRB150
Name
DataName
Inherited from Data Class (see IEC 61850-7-2)
Data
phsA
CMV
GC_1
Y
phsB
CMV
GC_1
Y
phsC
CMV
GC_1
Y
neut
CMV
GC_1
Y
net
CMV
GC_1
N
res
CMV
GC_1
N
DataAttribute
configuration, description and extension
angRef
ENUMERATED
CF
Va | Vb | Vc | Aa | Ab | Ac | Vab |
O
N
Vbc | Vca | Vother | Aother
d
VISIBLE STRING255
DC
Text
O
N
dU
UNICODE STRING255
DC
O
N
cdcNs
VISIBLE STRING255
EX
AC_DLNDA_M
N
cdcName
VISIBLE STRING255
EX
AC_DLNDA_M
N
dataNs
VISIBLE STRING255
EX
AC_DLN_M
N
Services
As defined in Table 21
⎯ 224 ⎯
6 F 2 S 0 9 0 0
DEL class
Attribute
Name
DataName
Data
phsAB
phsBC
phsCA
DataAttribute
angRef
Attribute Type
FC
TrgOp
Value/Value Range
M/O/C
GRB150
GC_1
GC_1
GC_1
Y
Y
Y
Inherited from Data Class (see IEC 61850-7-2)
CMV
CMV
CMV
configuration, description and extension
CF
Va | Vb | Vc | Aa | Ab | Ac | Vab |
O
Vbc | Vca | Vother | Aother
VISIBLE STRING255
DC
Text
O
UNICODE STRING255
DC
O
VISIBLE STRING255
EX
AC_DLNDA_M
VISIBLE STRING255
EX
AC_DLNDA_M
VISIBLE STRING255
EX
AC_DLN_M
ENUMERATED
d
dU
cdcNs
cdcName
dataNs
Services
As defined in Table 21
SEQ class
Attribute
Name
DataName
Data
c1
c2
c3
DataAttribute
seqT
Attribute Type
FC
TrgOp
Value/Value Range
N
N
N
N
N
N
M/O/C
GRB150
M
M
M
Y
Y
Y
M
Y
O
O
O
AC_DLNDA_M
AC_DLNDA_M
AC_DLN_M
N
N
N
N
N
N
Inherited from Data Class (see IEC 61850-7-2)
CMV
CMV
CMV
measured attributes
MX
pos-neg-zero | dir-quad-zero
configuration, description and extension
ENUMERATED
CF
A|B|C|…
VISIBLE STRING255
DC
Text
UNICODE STRING255
DC
VISIBLE STRING255
EX
VISIBLE STRING255
EX
VISIBLE STRING255
EX
ENUMERATED
phsRef
d
dU
cdcNs
cdcName
dataNs
Services
As defined in Table 21
⎯ 225 ⎯
6 F 2 S 0 9 0 0
SPC class
Attribute
Attribute Type
FC
TrgOp
Value/Value Range
Name
DataName
Inherited from Data Class (see IEC 61850-7-2)
DataAttribute
control and status
ctlVal
BOOLEAN
CO
off (FALSE) | on (TRUE)
operTm
TimeStamp
CO
origin
Originator_RO
CO, ST
ctlNum
INT8U_RO
CO, ST
0..255
SBO
VISIBLE STRING65
CO
SBOw
SBOW
CO
Oper
Cancel
Oper
Cancel
CO
CO
stVal
q
t
stSeld
BOOLEAN
Quality
TimeStamp
BOOLEAN
ST
ST
ST
ST
subEna
subVal
subQ
subID
dchg
qchg
FALSE | TRUE
dchg
substitution
SV
SV
FALSE | TRUE
SV
SV
configuration, description and extension
PulseConfig
CF
CtlModels
CF
INT32U
CF
SboClasses
CF
VISIBLE STRING255
DC
Text
UNICODE STRING255
DC
VISIBLE STRING255
EX
VISIBLE STRING255
EX
VISIBLE STRING255
EX
BOOLEAN
BOOLEAN
Quality
VISIBLE STRING64
pulseConfig
CtlModel
sboTimeout
sboClass
d
dU
cdcNs
cdcName
dataNs
Services
As defined in Table 31
⎯ 226 ⎯
M/O/C
GRB150
AC_CO_M
AC_CO_O
AC_CO_O
AC_CO_O
AC_CO_SBO_N_
M
AC_CO_SBOW_
E_M
AC_CO _M
AC_CO_SBO_N_
M and
AC_CO_SBOW_
E_M and
AC_CO_TA_E_
M
AC_ST
AC_ST
AC_ST
AC_CO_O
N
N
Y
N
N
PICS_SUBST
PICS_SUBST
PICS_SUBST
PICS_SUBST
N
N
N
N
AC_CO_O
M
AC_CO_O
AC_CO_O
O
O
AC_DLNDA_M
AC_DLNDA_M
AC_DLN_M
N
Y
N
N
N
N
N
N
N
N
Y
N
Y
Y
Y
N
6 F 2 S 0 9 0 0
DPC class
Attribute
Attribute Type
FC
TrgOp
Value/Value Range
M/O/C
GRB150
Name
DataName
Inherited from Data Class (see IEC 61850-7-2)
DataAttribute
control and status
ctlVal
BOOLEAN
CO
off (FALSE) | on (TRUE)
AC_CO_M
N
operTm
TimeStamp
CO
AC_CO_O
N
origin
Originator
CO, ST
AC_CO_O
N
ctlNum
INT8U
CO, ST
0..255
AC_CO_O
N
stVal
CODED ENUM
ST dchg
intermediate-state | off | on |
M
Y
bad-state
q
Quality
ST qchg
M
Y
t
TimeStamp
ST
M
Y
stSeld
BOOLEAN
ST dchg
AC_CO_O
N
substitution
subEna
BOOLEAN
SV
PICS_SUBST
N
subVal
CODED ENUM
SV
intermediate-state | off | on | PICS_SUBST
N
bad-state
subQ
Quality
SV
PICS_SUBST
N
subID
VISIBLE STRING64
SV
PICS_SUBST
N
configuration, description and extension
pulseConfig PulseConfig
CF
AC_CO_O
N
ctlModel
CtlModels
CF
M
Y
sboTimeout
INT32U
CF
AC_CO_O
N
sboClass
SboClasses
CF
AC_CO_O
N
d
VISIBLE STRING255
DC
Text
O
N
dU
UNICODE STRING255
DC
O
N
cdcNs
VISIBLE STRING255
EX
AC_DLNDA_M
N
cdcName
VISIBLE STRING255
EX
AC_DLNDA_M
N
dataNs
VISIBLE STRING255
EX
AC_DLN_M
N
Services
As defined in Table 31
⎯ 227 ⎯
6 F 2 S 0 9 0 0
INC class
Attribute
Attribute Type
FC
TrgOp
Value/Value Range
Name
DataName
Inherited from Data Class (see IEC 61850-7-2)
DataAttribute
control and status
ctlVal
INT32
CO
operTm
TimeStamp
CO
origin
Originator
CO, ST
ctlNum
INT8U
CO, ST
0..255
SBO
VISIBLE STRING65
CO
SBOw
SBOW
CO
Oper
Cancel
Oper
Cancel
CO
CO
stVal
Q
T
stSeld
INT32
Quality
TimeStamp
BOOLEAN
ST
ST
ST
ST
subEna
subVal
subQ
subID
dchg
qchg
dchg
substitution
SV
SV
FALSE | TRUE
SV
SV
configuration, description and extension
CtlModels
CF
INT32U
CF
SboClasses
CF
INT32
CF
INT32
CF
INT32U
CF
1 … (maxVal – minVal)
VISIBLE STRING255
DC
Text
UNICODE STRING255
DC
VISIBLE STRING255
EX
VISIBLE STRING255
EX
VISIBLE STRING255
EX
BOOLEAN
INT32
Quality
VISIBLE STRING64
CtlModel
sboTimeout
sboClass
minVal
maxVal
stepSize
D
dU
cdcNs
cdcName
dataNs
Services
As defined in Table 31
⎯ 228 ⎯
M/O/C
GRB150
AC_CO_M
AC_CO_O
AC_CO_O
AC_CO_O
AC_CO_SBO_N_
M
AC_CO_SBOW_
E_M
AC_CO _M
AC_CO_SBO_N_
M and
AC_CO_SBOW_
E_M and
AC_CO_TA_E_
M
M
M
M
AC_CO_O
N
N
N
N
N
PICS_SUBST
PICS_SUBST
PICS_SUBST
PICS_SUBST
N
N
N
N
M
AC_CO_O
AC_CO_O
O
O
O
O
O
AC_DLNDA_M
AC_DLNDA_M
AC_DLN_M
Y
N
N
N
N
N
N
N
N
N
N
N
N
N
Y
Y
Y
N
6 F 2 S 0 9 0 0
ING class
Attribute
Attribute Type
FC
TrgOp
Value/Value Range
Name
DataName
Inherited from Data Class (see IEC 61850-7-2)
DataAttribute
setting
setVal
INT32
SP
setVal
INT32
SG, SE
configuration, description and extension
minVal
INT32
CF
maxVal
INT32
CF
stepSize
INT32U
CF
1 … (maxVal – minVal)
d
VISIBLE STRING255
DC
Text
dU
UNICODE STRING255
DC
cdcNs
VISIBLE STRING255
EX
cdcName
VISIBLE STRING255
EX
dataNs
VISIBLE STRING255
EX
Services
As defined in Table 39
(*3): “ENUM” type is also used.
ASG class
Attribute
Attribute Type
FC
TrgOp
Value/Value Range
Name
DataName
Inherited from Data Class (see IEC 61850-7-2)
DataAttribute
setting
setMag
AnalogueValue
SP
setMag
AnalogueValue
SG, SE
configuration, description and extension
units
Unit
CF
see Annex A
sVC
ScaledValueConfig
CF
minVal
AnalogueValue
CF
maxVal
AnalogueValue
CF
stepSize
AnalogueValue
CF
1 … (maxVal – minVal)
d
VISIBLE STRING255
DC
Text
dU
UNICODE STRING255
DC
cdcNs
VISIBLE STRING255
EX
cdcName
VISIBLE STRING255
EX
dataNs
VISIBLE STRING255
EX
Services
As defined in Table 42
⎯ 229 ⎯
M/O/C
GRB150
AC_NSG_M
AC_SG_M
Y(*3)
N
O
O
O
O
O
AC_DLNDA_M
AC_DLNDA_M
AC_DLN_M
N
N
N
N
N
N
N
N
M/O/C
GRB150
AC_NSG_M
AC_SG_M
Y
N
O
AC_SCAV
O
O
O
O
O
AC_DLNDA_M
AC_DLNDA_M
AC_DLN_M
Y
Y
N
N
N
N
N
N
N
N
6 F 2 S 0 9 0 0
DPL class
Attribute
Attribute Type
FC
TrgOp
Value/Value Range
Name
DataName
Inherited from Data Class (see IEC 61850-7-2)
DataAttribute
configuration, description and extension
vendor
VISIBLE STRING255
DC
hwRev
VISIBLE STRING255
DC
swRev
VISIBLE STRING255
DC
serNum
VISIBLE STRING255
DC
model
VISIBLE STRING255
DC
location
VISIBLE STRING255
DC
cdcNs
VISIBLE STRING255
EX
cdcName
VISIBLE STRING255
EX
dataNs
VISIBLE STRING255
EX
Services
As defined in Table 45
M/O/C
GRB150
M
O
O
O
O
O
AC_DLNDA_M
AC_DLNDA_M
AC_DLN_M
Y
N
Y
N
Y
N
N
N
N
LPL class
Attribute
Attribute Type
FC
TrgOp
Value/Value Range
M/O/C
GRB150
Name
DataName
Inherited from Data Class (see IEC 61850-7-2)
DataAttribute
configuration, description and extension
vendor
VISIBLE STRING255
DC
M
Y
swRev
VISIBLE STRING255
DC
M
Y
d
VISIBLE STRING255
DC
M
Y
dU
UNICODE STRING255
DC
O
N
configRev
VISIBLE STRING255
DC
AC_LN0_M
Y
ldNs
VISIBLE STRING255
EX
shall be included in LLN0 AC_LN0_EX
N
only;
for
example
"IEC
61850-7-4:2003"
lnNs
VISIBLE STRING255
EX
AC_DLD_M
N
cdcNs
VISIBLE STRING255
EX
AC_DLNDA_M
N
cdcName
VISIBLE STRING255
EX
AC_DLNDA_M
N
dataNs
VISIBLE STRING255
EX
AC_DLN_M
N
Services
As defined in Table 45
⎯ 230 ⎯
6 F 2 S 0 9 0 0
PICS: IEC61850 ASCI Conformance Statement
Client-server roles
B11
Server side (of TWO-PARTYAPPLICATION-ASSOCIATION)
B12
Client side of (TWO-PARTYAPPLICATION-ASSOCIATION)
SCSMs supported
B21
SCSM: IEC61850-8-1 used
B22
SCSM: IEC61850-9-1 used
B23
SCSM: IEC61850-9-2 used
B24
SCSM: other
Generic substation event model (GSE)
B31
Publisher side
B32
Subscriber side
Transmission of sampled value model (SVC)
B41
Publisher side
B42
Subscriber side
If Server side (B11) supported
M1
Logical device
M2
Logical node
M3
Data
M4
Data set
M5
Substitution
M6
Setting group control
Reporting
M7
Buffered report control
M7-1
sequence-number
M7-2
report-time-stamp
M7-3
reason-for-inclusion
M7-4
data-set-name
M7-5
data-reference
M7-6
buffer-overflow
M7-7
entryID
M7-8
BufTm
M7-9
IntgPd
M7-10 GI
Unbuffered report control
M8-1
sequence-number
M8-2
report-time-stamp
M8-3
reason-for-inclusion
M8-4
data-set-name
M8-5
data-reference
M8-6
BufTm
M8-7
IntgPd
M8-8
GI
Logging
M9
Log control
M9-1
IntgPd
M10
Log
M11
Control
Client/
subscriber
Server/
publisher
GRB150 Remarks
-
c1
Y
c1
-
-
Y
N
N
O
O
-
Y
Y
O
O
-
N
N
c2
c3
c4
c5
O
O
c2
c3
c4
c5
O
O
Y
Y
Y
Y
N
Y
O
O
O
O
O
O
O
O
O
M
O
M
Y
Y
Y
Y
Y
Y
Y
Y
Y
Y
Y
Y
Y
Y
Y
Y
Y
Y
Y
Y
N
N
N
N
Y
⎯ 231 ⎯
6 F 2 S 0 9 0 0
If GSE (B31/B32) is supported
GOOSE
M12-1 entryID
M12-2 DataRefInc
M13
GSSE
If SVC (B41/B42) is supported
M14
Multicast SVC
M15
Unicast SVC
M16
Time
M17
File Transfer
Server
S1
ServerDirectory
Application association
S2
Associate
S3
Abort
S4
Release
Logical device
S5
LogicalDeviceDirectory
Logical node
S6
LogicalNodeDirectory
S7
GetAllDataValues
Data
S8
GetDataValues
S9
SetDataValues
S10
GetDataDirectory
S11
GetDataDefinition
Data set
S12
GetDataSetValues
S13
SetDataSetValues
S14
CreateDataSet
S15
DeleteDataSet
S16
GetDataSetDirectory
Substitution
S17
SetDataValues
Setting group control
S18
SelectActiveSG
S19
SelectEditSG
S20
SetSGValues
S21
ConfirmEditSGValues
S22
GetSGValues
S23
GetSGCBValues
Reporting
Buffered report control block (BRCB)
S24
Report
S24-1 data-change (dchg)
S24-2 quality-change (qchg)
S24-3 data-update (dupd)
S25
GetBRCBValues
S26
SetBRCBValues
Unbuffered report control block (BRCB)
S27
Report
S27-1 data-change (dchg)
S27-2 quality-change (qchg)
O
O
Y
O
O
N
O
O
M
O
O
O
M
O
N
N
Y
Y
M
Y
M
M
M
M
M
M
Y
Y
Y
M
M
Y
M
O
M
M
Y
Y
M
O
O
O
M
O
M
M
Y
N
Y
Y
O
O
O
O
O
M
O
O
O
O
Y
N
N
N
Y
M
M
N
O
O
O
O
O
O
O
O
O
O
O
O
Y
N
N
N
N
Y
c6
c6
c6
c6
c6
c6
Y
Y
Y
N
Y
Y
c6
c6
⎯ 232 ⎯
Y
Y
Y
6 F 2 S 0 9 0 0
S27-3 data-update (dupd)
S28
GetURCBValues
c6
c6
S29
SetURCBValues
c6
c6
Logging
Log control block
S30
GetLCBValues
M
M
S31
SetLCBValues
O
M
Log
S32
QueryLogByTime
c7
M
S33
QueryLogAfter
c7
M
S34
GetLogStatusValues
M
M
Generic substation event model (GSE)
GOOSE-CONTROL-BLOCK
S35
SendGOOSEMessage
c8
c8
S36
GetGoReference
O
c9
S37
GetGOOSEElementNumber
O
c9
S38
GetGoCBValues
O
O
S39
SetGoCBValues
O
O
GSSE-CONTROL-BLOCK
S40
SendGSSEMessage
c8
c8
S41
GetGsReference
O
c9
S42
GetGSSEElementNumber
O
c9
S43
GetGsCBValues
O
O
S44
SetGsCBValues
O
O
Transmission of sampled value model (SVC)
Multicast SVC
S45
SendMSVMessage
c10
c10
S46
GetMSVCBValues
O
O
S47
SetMSVCBValues
O
O
Unicast SVC
S48
SendUSVMessage
c10
c10
S49
GetUSVCBValues
O
O
S50
SetUSVCBValues
O
O
Control
S51
Select
M
O
S52
SelectWithValue
M
O
S53
Cancel
O
O
S54
Operate
M
M
S55
CommandTermination
M
O
S56
TimeActivatedOperate
O
O
File Transfer
S57
GetFile
O
M
S58
SetFile
O
O
S59
DeleteFile
O
O
S60
GetFileAttributeValues
O
O
Time
T1
Time resolution of internal clock
T2
Time accuracy of internal clock
T3
Supported TimeStamp resolution
M – Mandatory
O – Optional
c1 – shall be ‘M’ if support for LOGICAL-DEVICE model has been declared.
c2 – shall be ‘M’ if support for LOGICAL-NODE model has been declared.
⎯ 233 ⎯
N
Y
Y
N
N
N
N
N
Y
N
N
Y
Y
N
N
N
N
N
N
N
N
N
N
N
N
Y
Y
Y
Y
N
Y
N
N
Y
1ms
1ms
1ms
T1
6 F 2 S 0 9 0 0
c3 – shall be ‘M’ if support for DATA model has been declared.
c4 – shall be ‘M’ if support for DATA-SET, Substitution, Report, Log Control, or Time model has been declared.
c5 – shall be ‘M’ if support for Report, GSE, or SV models has been declared.
c6 – shall declare support for at least one (BRCB or URCB)
c7 – shall declare support for at least one (QueryLogByTime or QueryLogAfter).
c8 – shall declare support for at least one (SendGOOSEMessage or SendGSSEMessage)
c9 – shall declare support if TWO-PARTY association is available.
c10 – shall declare support for at least one (SendMSVMessage or SendUSVMessage).
A-Profile Profile Description
shortcut
A1
A2
A3
A4
c1
c2
c3
c4
Client/server A-Profile
GOOSE/GSE
management A-Profile
GSSE A-Profile
TimeSync A-Profile
c1
c2
c3
c4
c3
c4
c3
c4
N
Y
Shall be ‘m’ if support for any service specified in Table 2 are declared within the ACSI basic conformance statement.
Shall be ‘m’ if support for any service specified in Table 6 are declared within the ACSI basic conformance statement.
Shall be ‘m’ if support for any service specified in Table 9 are declared within the ACSI basic conformance statement.
Support for at least one other A-Profile shall be declared (e.g. in A1-A3) in order to claim conformance to IEC 61850-8-1.
A-Profile Profile Description
shortcut
T1
T2
T3
T4
T5
PICS for A-Profile support
Client
Server
エラー! Remarks
F/S
F/S
リンク
が正し
くあり
ません。
c1
c1
Y
c2
c2
Y
TCP/IP T-Profile
OSI T-Profile
GOOSE/GSE T-Profile
GSSE T-Profile
TimeSync T-Profile
PICS for T-Profile support
Client
Server
エラー! Remarks
F/S
F/S
リンク
が正し
くあり
ません。
c1
c1
Y
c2
c2
N
c3
c3
Y
c4
c4
N
o
o
Y
Shall be ‘m’ if support for A1 is declared. Otherwise, shall be 'i'.
Shall be ‘o’ if support for A1 is declared. Otherwise, shall be 'i'.
Shall be ‘m’ if support for A2 is declared. Otherwise, shall be 'i'.
Shall be ‘m’ if support for A3 is declared. Otherwise, shall be 'i'.
⎯ 234 ⎯
6 F 2 S 0 9 0 0
MMS InitiateRequest general parameters
Client-CR
InitiateRequest
Base
F/S
m
m
m
m
m
m
m
m
InitiateRequestDetail
proposedVersionNumber
m
proposedParameterCBB
m
servicesSupportedCalling
m
additionalSupportedCalling
c1
additionalCbbSupportedCalling
c1
privilegeClassIdentityCalling
c1
c1 Conditional upon Parameter CBB CSPI
m
m
m
x
x
x
InitiateRequest
localDetailCalling
proposedMaxServOutstandingCalling
proposedMaxServOustandingCalled
initRequestDetail
Server-CR
Value/range
Base
F/S
1 or greater
1 or greater
m
m
m
m
m
m
m
m
m
m
m
c1
c1
c1
m
m
m
x
x
x
shall be 2.1
Value/range
1 or greater
1 or greater
shall be 2.1
MMS InitiateResponse general parameters
Client-CR
Server-CR
InitiateRequest
Base
F/S
Value/range
Base
F/S
Value/range
m
m
m
m
m
m
m
m
1 or greater
1 or greater
m
m
m
m
m
m
m
m
1 or greater
1 or greater
InitiateResponseDetail
negotiatedVersionNumber
m
negotiatedParameterCBB
m
servicesSupportedCalled
m
additionalSupportedCalled
c1
additionalCbbSupportedCalled
c1
privilegeClassIdentityCalled
c1
c1 Conditional upon Parameter CBB CSPI
m
m
m
x
x
x
m
m
m
c1
c1
c1
m
m
m
x
x
x
InitiateResponse
localDetailCalled
negotiatedMaxServOutstandingCalling
negotiatedMaxServOustandingCalled
initResponseDetail
shall be 2.1
⎯ 235 ⎯
shall be 2.1
エラー!
リンク
が正し
くあり
ません。
Y
Y
Y
Y
Y
Y
Y
N
N
N
エラー!
リンク
が正し
くあり
ません。
Y
Y
Y
Y
Y
Y
Y
N
N
N
6 F 2 S 0 9 0 0
MMS service supported conformance table
Client-CR
Server-CR
MMS service supported CBB
status
getNameList
identify
rename
read
write
getVariableAccessAttributes
defineNamedVariable
defineScatteredAccess
getScatteredAccessAttributes
deleteVariableAccess
defineNamedVariableList
getNamedVariableListAttributes
deleteNamedVariableList
defineNamedType
getNamedTypeAttributes
deleteNamedType
input
output
takeControl
relinquishControl
defineSemaphore
deleteSemaphore
reportPoolSemaphoreStatus
reportSemaphoreStatus
initiateDownloadSequence
downloadSegment
terminateDownloadSequence
initiateUploadSequence
uploadSegment
terminateUploadSequence
requestDomainDownload
requestDomainUpload
loadDomainContent
storeDomainContent
deleteDomain
getDomainAttributes
createProgramInvocation
Base
F/S
o
o
o
o
o
o
o
o
o
o
o
o
o
o
o
o
o
o
o
o
o
o
o
o
o
o
o
o
o
o
o
o
o
o
o
o
o
o
o
o
o
o
o
o
o
o
i
i
o
o
o
o
i
i
i
i
i
i
i
i
i
i
i
i
i
i
i
i
i
i
i
i
i
i
o
i
Value/range
⎯ 236 ⎯
Base
F/S
o
o
m
o
o
o
o
o
o
o
o
o
o
o
o
o
o
o
o
o
o
o
o
o
o
o
o
o
o
o
o
o
o
o
o
o
o
o
m
c1
m
o
c2
c3
c4
o
i
i
o
o
c5
c6
i
i
i
i
i
i
i
i
i
i
i
i
i
i
i
i
i
i
i
i
i
i
c14
i
Value/range
エラー!
リンク
が正し
くあり
ません。
Y
Y
Y
N
Y
Y
Y
N
N
N
N
N
Y
N
N
N
N
N
N
N
N
N
N
N
N
N
N
N
N
N
N
N
N
N
N
N
Y
N
6 F 2 S 0 9 0 0
Client-CR
MMS service supported CBB
deleteProgramInvocation
start
stop
resume
reset
kill
getProgramInvocationAttributes
obtainFile
defineEventCondition
deleteEventCondition
getEventConditionAttributes
reportEventConditionStatus
alterEventConditionMonitoring
triggerEvent
defineEventAction
deleteEventAction
alterEventEnrollment
reportEventEnrollmentStatus
getEventEnrollmentAttributes
acknowledgeEventNotification
getAlarmSummary
getAlarmEnrollmentSummary
readJournal
writeJournal
initializeJournal
reportJournalStatus
createJournal
deleteJournal
fileOpen
fileRead
fileClose
fileRename
fileDelete
fileDirectory
unsolicitedStatus
informationReport
eventNotification
attachToEventCondition
attachToSemaphore
conclude
cancel
getDataExchangeAttributes
exchangeData
Base
F/S
o
o
o
o
o
o
o
o
o
o
o
o
o
o
o
o
o
o
o
o
o
o
o
o
o
o
o
o
o
o
o
o
o
o
o
o
o
o
o
m
o
o
o
i
i
i
i
i
i
i
c9
i
i
i
i
i
i
i
i
i
i
i
i
i
i
c13
o
o
i
i
i
c8
c8
c8
i
c9
c11
i
c7
i
i
i
m
o
c10
c10
Value/range
⎯ 237 ⎯
Server-CR
Base
F/S
o
o
o
o
o
o
o
o
o
o
o
o
o
o
o
o
o
o
o
o
o
o
o
o
o
o
o
o
o
o
o
o
o
o
o
o
o
o
o
m
o
o
o
i
i
i
i
i
i
i
c9
i
i
i
i
i
i
i
i
i
i
i
i
i
i
c13
o
c12
i
i
i
c8
c8
c8
i
c9
c11
i
c7
i
i
i
m
m
c10
c10
Value/range
エラー!
リンク
が正し
くあり
ません。
N
N
N
N
N
N
N
N
N
N
N
N
N
N
N
N
N
N
N
N
N
N
N
N
N
N
N
N
Y
Y
Y
N
N
Y
N
Y
N
N
N
N
N
N
N
6 F 2 S 0 9 0 0
Client-CR
MMS service supported CBB
defineAccessControlList
getAccessControlListAttributes
reportAccessControlledObjects
deleteAccessControlList
alterAccessControl
reconfigureProgramInvocation
Base
F/S
o
o
o
o
o
o
c10
c10
c10
c10
c10
c10
Value/range
Server-CR
Base
F/S
o
o
o
o
o
o
c10
c10
c10
c10
c10
c10
Value/range
エラー!
リンク
が正し
くあり
ません。
N
N
N
N
N
N
c1 Shall be ‘m’ if logical device or logical node model support is declared in ACSI basic conformance statement.
c2 Shall be ‘m’ if logical node model support is declared in ACSI basic conformance statement or if support for the MMS write
service is declared.
c3 Shall be ‘m’ if ACSI support for SetDataValues service is declared or implied.
c4 Shall be ‘m’ if logical node model support is declared in ACSI basic conformance statement.
c5 Shall be ‘m’ if data set support is declared in the ACSI basic conformance statement.
c6 Shall be ‘m’ if support for defineNamedVariableList is declared.
c7 Shall be 'm' if support for ACSI Report or ACSI command termination is declared.
c8 Shall be 'm' if support for ACSI GetFile is declared.
c9 Shall be 'm' if support for ACSI SetFile is declared.
c10 Shall not be present since MMS minor version is declared to be 1.
c11 Shall be 'm' if support for ACSI GetFileAttributeValues is declared.
c12 Shall be 'm' if support for the ACSI log model is declared.
c13 Shall be 'm' if support for the ACSI QueryLogByTime or QueryLogAfter is declared.
c14 Shall be 'm' if support for the ACSI logical device model is declared.
MMS Parameter CBB
Client-CR
MMS parameter CBB
STR1
STR2
NEST
VNAM
VADR
VALT
bit
TPY
VLIS
bit
bit
CEI
ACO
SEM
CSR
CSNC
CSPLC
CSPI
Base
F/S
o
o
1
o
o
1 or
greater
o
o
o
x
o
c1
x
x
i
c4
c4
c4
c4
c4
c4
o
o
o
x
o
o
x
x
o
o
o
o
o
o
o
Value/range
⎯ 238 ⎯
Base
F/S
o
o
1
c1
o
c2
エラー! リ
ンクが正
しくあり
ません。
Y
N
Y(10)
o
o
o
x
o
o
x
x
o
o
o
o
o
o
o
c1
o
c1
x
o
c3
x
x
i
c4
c4
c4
c4
c4
c4
Y
N
Y
N
N
Y
N
N
N
N
N
N
N
N
N
Server-CR
Value/range
6 F 2 S 0 9 0 0
c1
c2
c3
c4
Shall be ‘m’ if ACSI logical node model support declared.
Shall be five(5) or greater if ACSI logical node model support is declared.
Shall be ‘m’ if ACSI data set, reporting, GOOSE, or logging model support is declared.
Shall not be present. Receiving implementations shall assume not supported.
GetNameList conformance statement
Client-CR
Server-CR
GetNameList
Request
ObjectClass
ObjectScope
DomainName
ContinueAfter
Response+
List Of Identifier
MoreFollows
ResponseError Type
Base
F/S
m
m
o
o
Value/range
Value/range
エラー!
リンク
が正し
くあり
ません。
Base
F/S
m
m
o
m
m
m
m
m
m
m
m
m
Y
Y
Y
Y
m
m
m
m
m
m
m
m
Y
Y
m
m
m
m
Y
NOTE Object class ‘vmd' (formerly VMDSpecific in MMS V1.0) shall not appear. If a request contains this ObjectClass, an
MMS Reject shall be issued.
AlternateAccessSelection conformance statement
Not applicable.
VariableAccessSpecification conformance statement
Client-CR
Server-CR
VariableAccessSpecification
listOfVariable
variableSpecification
alternateAccess
variableListName
Base
F/S
o
o
o
o
o
o
o
o
Value/range
Base
F/S
o
o
o
o
c1
c1
c1
c2
Value/range
エラー!
リンク
が正し
くあり
ません。
Y
Y
Y
Y
c1 Shall be ‘m’ if ACSI support for Logical Node Model is declared.
c2 Shall be ‘m’ if ACSI support for ACSI DataSets, reporting, or logging is declared.
VariableSpecification conformance statement
Client-CR
Server-CR
VariableSpecification
Base
F/S
Value/range
⎯ 239 ⎯
Base
F/S
Value/range
エラー!
リンク
が正し
くあり
ません。
6 F 2 S 0 9 0 0
name
address
variableDescription
scatteredAccessDescription
invalidated
o
o
o
o
o
o
o
o
x
x
⎯ 240 ⎯
o
o
o
o
o
m
i
i
x
x
Y
N
N
N
N
6 F 2 S 0 9 0 0
Read conformance statement
Client-CR
Server-CR
Read
Request
specificationWithResult
variableAccessSpecification
Response
variableAccessSpecification
listOfAccessResult
Base
F/S
o
m
o
m
Value/range
Value/range
Base
F/S
o
m
o
m
m
m
Y
Y
o
m
o
m
m
m
Y
Y
Write conformance statement
Client-CR
Server-CR
Write
Request
variableAccessSpecification
listOfData
Response
failure
success
Base
F/S
m
m
m
m
Value/range
Value/range
Request
variableAccessSpecification
listOfAccessResult
F/S
m
m
m
m
m
m
Y
Y
m
m
m
m
m
m
Y
Y
Base
F/S
m
m
m
m
Value/range
Base
F/S
m
m
m
m
Value/range
Request
name
address
Base
F/S
o
o
o
o
Value/range
⎯ 241 ⎯
Base
F/S
m
m
m
x
エラー!
リンク
が正し
くあり
ません。
Y
Y
GetVariableAccessAttributes conformance statement
Client-CR
Server-CR
GetVariableAccessAttributes
エラー!
リンク
が正し
くあり
ません。
Base
InformationReport conformance statement
Client-CR
Server-CR
InformationReport
エラー!
リンク
が正し
くあり
ません。
Value/range
エラー!
リンク
が正し
くあり
ません。
Y
N
6 F 2 S 0 9 0 0
Response
mmsDeletable
address
typeSpecification
m
o
m
m
x
m
m
o
m
m
x
m
DefineNamedVariableList conformance statement
Not applicable.
⎯ 242 ⎯
Y
N
Y
6 F 2 S 0 9 0 0
GetNamedVariableListAttributes conformance statement
Client-CR
Server-CR
GetNamedVariableListAttributes
Request
ObjectName
Response
mmsDeletable
listOfVariable
variableSpecification
alternateAccess
Base
F/S
m
m
m
m
o
Value/range
Value/range
エラー!
リンク
が正し
くあり
ません。
Base
F/S
m
m
m
Y
m
m
m
m
m
m
m
o
m
m
m
i
Y
Y
Y
N
DeleteNamedVariableList conformance statement
Not applicable.
ReadJournal conformance statement
Not applicable.
JournalEntry conformance statement
Not applicable.
InitializeJournal conformance statement
Not applicable.
FileDirectory conformance statement
Client-CR
Server-CR
FileDirectory
Request
filespecification
continueAfter
Response+
listOfDirectoryEntry
MoreFollows
Base
F/S
o
o
m
m
Value/range
Base
F/S
o
o
m
m
m
m
Y
Y
m
m
m
m
m
m
Y
Y
⎯ 243 ⎯
Value/range
エラー!
リンク
が正し
くあり
ません。
6 F 2 S 0 9 0 0
FileOpen conformance statement
Client-CR
Server-CR
FileOpen
Request
filename
initialPosition
Response+
frsmID
fileAttributes
Base
F/S
m
o
m
m
Value/range
Value/range
Base
F/S
m
o
m
m
m
m
Y
Y
m
m
m
m
m
m
Y
Y
FileRead conformance statement
Client-CR
Server-CR
FileRead
Request
frsmID
Response+
fileData
MoreFollows
Base
F/S
m
m
m
Value/range
Value/range
Request
frsmID
Response+
F/S
m
m
m
Y
m
m
m
m
m
m
Y
Y
Base
F/S
m
m
m
m
Value/range
Base
F/S
m
m
m
m
Value/range
GOOSE conformance statement
Subscriber
Publisher
Value/comment
GOOSE Services
SendGOOSEMessage
GetGoReference
GetGOOSEElementNumber
GetGoCBValues
SetGoCBValues
GSENotSupported
GOOSE Control Block (GoCB)
エラー!
リンク
が正し
くあり
ません。
Base
FileClose conformance statement
Client-CR
Server-CR
FileClose
エラー!
リンク
が正し
くあり
ません。
c1
m
o
o
o
o
c2
o
⎯ 244 ⎯
c1
m
c3
c4
o
o
c5
o
エラー!
リンク
が正し
くあり
ません。
Y
Y
エラー! リン
クが正しくあ
りません。
Y
Y
N
N
Y
Y
N
Y
6 F 2 S 0 9 0 0
c1
c2
c3
c4
c5
Shall be ‘m’ if support is declared within ACSI basic conformance statement.
Shall be ‘m’ if ACSI basic conformance support for either GetGoReference or GetGOOSEElementNumber is declared.
Shall be ‘m’ if support for ACSI basic conformance of GetGoReference is declared.
Shall be ‘m’ if support for ACSI basic conformance of GetGOOSEElementNumber.
Shall be ‘m’ if no support for ACSI basic conformance of GetGOOSEElementNumber is declared.
GSSE conformance statement
Not applicable.
⎯ 245 ⎯
6 F 2 S 0 9 0 0
Appendix P
Ordering
⎯ 246 ⎯
6 F 2 S 0 9 0 0
Ordering
GRB150
Type:
High-impedance Differential Relay
GRB150
Model:
- Single-phase protection (with EB-101)
8 BIs, 6 BO (*), 4 HSBO
101
- Three-phase protection (with EB-102)
8 BIs, 6 BO (*), 4 HSBO
201
Ratings:
50Hz, 110V/125Vdc
60Hz, 110V/125Vdc
50Hz, 220V/250Vdc
60Hz, 220V/250Vdc
50Hz, 48/54/60Vdc
60Hz, 48/54/60Vdc
Communications:
For IEC60870-5-103
RS485
RS485
Fibre optic
Fibre optic
1
2
5
6
A
B
For IEC61850 / RSM100
100BASE-TX
100BASE-FX
100BASE-TX
100BASE-FX
A
B
D
E
Miscellaneous:
None
0
Note
EB-101: Varistor unit for single phase
EB-102: Varistor unit for three phase
(*) BO for FAIL is excluded.
⎯ 247 ⎯
D
0
0
6 F 2 S 0 9 0 0
Version-up Records
Version
No.
0.0
1.0
Date
Revised Section
Feb. 3, 2010
Feb. 22, 2010
-3.1, 3.2.3, 4.2.4.2,
4.2.6.9, 4.2.7.2, 6.4.3
4.1.2
Appendices
2.2.2.1
2.4
3.1.2
6.5.2, 6.6.2
6.7.2
Appendices
Precaution
4.1.2
Appendices
2.0
Apr. 7, 2010
3.0
Aug. 25,2010
Contents
First issue
Modified the description (BO11-BO14 → HBO1-HBO4).
Modified Figure 4.1.1.
Modified Appendix C, D, F, G and J.
Modified Figure 2.2.2.
Modified the description.
Modified Figure 3.1.2.
Modified the description.
Modified Table 6.7.2.
Modified Appendix E, J and M.
Modified the description.
Modified the description and Figure 4.1.1.
Added Appendix O and modified Appendix J and N.
⎯ 248 ⎯