Pulse Oximetry for the Electronic Patch Erik V. Thomsen ATV: Har vi en innovativ sundhedssektor? 2. september 2010 Patient monitoring today Vision: “Electronic Patch” - wearable physiological monitoring • Small patient monitoring system • Intelligent • Wireless • Easy to use • Measure in natural surroundings • Improve life quality for patients Patch Antenna Electronics Battery LEDs R. G. Haahr et al., Proc. IEEE EMBS conf., 2007 Photo detector Transmission Pulse Oximetry LED Blood vessel LED Tdiastole Tsystole Detector Detector Signal Infrared (940 nm) Red (660 nm) “Photoplethysmograms” Time Diastole Systole Reflective Pulse Oximetry LED Blood vessel Detector LED Detector Tdiastole Tsystole Signal Infrared (940 nm) Red (660 nm) “Photoplethysmograms” Time Diastole Systole Photo detector design - LED’s distance High light level Low info Signal (au) Attenuation Information (au) (au) 1.0 0.035 1.0 0.030 0.8 0.8 0.025 0.6 0.6 0.020 0.015 0.4 0.4 0.010 0.2 0.2 0.005 0.0 0.000 0.0 Low light level High info Light & Info 0.0 0.0 0.2 0.2 0.4 0.4 0.6 Distance (au) 0.8 1.0 Sensor design • • • • Backside silicon photodiode Large ring-shaped active area Central hole for light sources Free parameters: r and d. r d Backside – active side Front side – light entrance Micro fabrication Transmission through optical coating • Start: p-type floatzone Si wafer, NA = 1015 cm-3 Implantation by pre-deposition and diffusion Passivation and optical filter: dry thermal SiO2 and PECVD SiN Hole through wafer: Advanced silicon etching (ASE). 90 Transmission (%) • • • 100 80 70 60 R= R= R= R= 50 40 500 600 700 800 Wavelength (nm) Phosphor Boron SiO2 SiN S. B. Duun, R. G. Haahr, K. Birkelund, and E. V. Thomsen, ”A Ring- Shaped Photodiode Designed for Use in a Reflectance Pulse Oximetry Sensor in Wireless Health Monitoring Applications”, IEEE Sensors Journal, 10, pp. 261-268, 2010. Ti/Al/Pt 0 mm 15 mm 30 mm 40 mm 900 Sensor integration with patch • The front side of the PCB contains: MCU, RF, op-amps, and passive components • The chip is mounted at the backside of the PCB with conducting glue. LEDs current control, I2C protocol System on Chip (SoC) Crystal, 32 MHz Crystal, 32 kHz Op.amp. (thermistor) Si backside photodiode Op.amps. (photodiode) Commercial LEDs (660 nm and 940 nm) 64 kbit EEPROM, I2C protocol R. G. Haahr et al., Proc. Body Sensor Network conf., 2008 S. B. Duun, R. G. Haahr, O. Hansen, K. Birkelund and E. V. Thomsen, ”High Quantum Efficiency Annular Backside Silicon Photodiodes for Reflectance Pulse Oximetry in Wearable Wireless Body Sensors”, J. Micromech. Microeng. 20 07, p. 5020, 2010. Assembly Clinical evaluation 4 Electronic Patches SpO2 (commercial) In/Ex-hale gasses SaO2 ECG Clinical evaluation Masimo DST T. Jensen, S. Duun, J. Larsen, R. G. Haahr, M. H. Toft, B. Belhage, and E. V. Thomsen, ”Independent component analysis applied to pulse oximetry in the estimation of the arterial oxygen saturation (SpO2) - a comparative study”, Proc. Annual International Conference of the IEEE Engineering in Medicine and Biology Society EMBC 2009, pp. 4039-4044, 2009 Mean Field ICA Conclusions • Demonstrated pulse oximetry in an electronic patch • Designed, micro fabricated and characterized a ring-shaped photodiode • Developed electronics and system packaging • Performed initial small scale clinical tests • New patent idea developed, pending for filing Thank you for your attention! Acknowledgements: All partners in the Electronic Patch, Post.doc • Karen Birkelund Phd students • Sune Duun • Rasmus Haahr Master students • Rasmus Haahr • Martin Filskov Laursen • Thomas Jensen Other student projects • Emil Højlund Nielsen • Kim Degn Jensen • Lars Nørgaard Bachelor students • Palle Raahauge • Peter Petersen • Henrik Dam • Anders Christensen • Mikkel Øberg • Michael Jørgensen • Steffen Rasmussen • Martin Uhd Grønbech • Peter Friis Østergaard Funding • Danish Ministry of Science • Technology and Innovation & Collaborators • Jan Larsen (DTU Informatics) • Bo Belhage, Mette Toft, and Nana Gulsted (Bispebjerg hospital)
© Copyright 2024