A Hybrid Mesh-Grid Approach for Efficient Large Body Water Simulation Morten Bojsen-Hansen Aarhus University October 27, 2011 Question • Beskriv din metode med særligt henblik pa ˚ de elementer som adskiller den fra eksisterende teknikker. • Reflekter over dine metodevalg og eventuelle alternativer hertil. • Evaluer dine resultater. What do we mean by grid and mesh? Stable fluids and level set methods fluid cells Stable Fluids Level Set Method velocity field ... both grid-based. Why not simply increase resolution? Lentine et. al, SIGGRAPH 2010 Just increase resolution of surface! • Goktekin et. al, SIGGRAPH 2004 • Bargteil et. al, ToG 2006 • Wojtan et. al, SIGGRAPH 2008 • Kim et. al, SIGGRAPH ASIA 2009 Method overview Meshbased physics Gridbased physics Constructing the ghost mesh Sample implicit surface Reconstruct explicit surface Constructing the ghost mesh Sample implicit surface Reconstruct explicit surface Constructing the ghost mesh Sample implicit surface Reconstruct explicit surface Method overview Meshbased physics Gridbased physics Correspondence: projection Correspondence: projection Orthogonal or vertical projection Correspondence: what to map Method overview Meshbased physics Gridbased physics Grid-based physics: model Model: inviscid incompressible Euler equations ∂u 1 = − (u · ∇) u − ∇p + f ∂t ρ ∇·u=0 Grid-based physics: model Model: inviscid incompressible Euler equations ∂u 1 = − (u · ∇) u − ∇p + f ∂t ρ ∇·u=0 u(n) Advection ua Grid-based physics: model Model: inviscid incompressible Euler equations ∂u 1 = − (u · ∇) u − ∇p + f ∂t ρ ∇·u=0 u(n) Advection ua External forces uf Grid-based physics: model Model: inviscid incompressible Euler equations ∂u 1 = − (u · ∇) u − ∇p + f ∂t ρ ∇·u=0 u(n) Advection ua External forces uf Pressure projection p(n) u(n+1) Grid-based physics: pressure Linear system for unknown pressure inside fluid pi−1 pi 0 xi−1 xi xi+1 pi−1 pi pI = 0 pi θ−1 θ xi−1 xi xI xi+1 Method overview Meshbased physics Gridbased physics Mesh-based physics ∂ 2h = gd∇2 h 2 ∂t (errata to thesis) Mesh-based physics • Hydrostatic pressure: p = ρgd • Validity of assumptions 2 • Coupling: ∂∂t h2 = p∇2 h • Reflecting boundary conditions • Discretisation Results • Wave speed proportional to pressure (2D) • Reflecting solid boundary condition (2D) • Vertex weighting strategies (2D) • Raindrops in pool of water (3D) • Sphere hitting pool of water (3D) • Performance Future work • Implicit solver • Solid boundary conditions • Particles • Adaptive subdivision and interpolation The end Thanks! Questions? Solid boundary condition So far we’ve talked about the free-surface boundary condition. What about the solid boundary? Push vertex adjacent to wall in outward normal direction with force proportional to pressure in the grid cell containing vertex. Project vertex to boundary if it enters wall.
© Copyright 2024