Signals and Systems I EE360: Fall 14 Homework #4 Due Th. 10/02 Note: The Basic Problems with Answers will be worth half as much as the other questions. You must show all your work to receive credit. 1. (OW 3.21) Solution Given the following information about the signal T = 8, a1 = a∗−1 = j, a5 = a−5 = 2, the periodic signal x(t) can be expressed using the complex exponential form of the Fourier Series and converted using ω0 = 2π/T = π/4. x(t) = a−5 e−j5ω0 t + a−1 e−jω0 t + a1 ejω0 t + a5 ej5ω0 t = 2 e−j5ω0 t + ej5ω0 t + j ejω0 t − e−jω0 t = 4 cos(5ω0 t) + 2 sin(ω0 t) π 5π π = 4 cos t − 2 cos t− 4 4 2 2. (OW 3.24) Solution (a) Find the average signal value over a period Z 1 1 1 1 x(t)dt = (1)(2) = . a0 = T T 2 2 2 (b) Define dx(t) g(t) = = dt ( 1 −1 0≤t≤1 . 1≤t≤2 Then FS coefficients can be found by noting Z 1 g(t) −→ bk = g(t)e−jkω0 t dt. T T k=0 k 6= 0 b0 = 0 bk = 1 2 1 Z average over single period Z 2 −jkω0 t −jkω0 t e dt − e dt 0 1 1 2 1 1 1 1 −jkω0 −jkω0 = e − e 2 −jkω0 2 −jkω0 0 1 1 1 −j2ω0 −jω0 −jω0 = 1−e + e −e 2jkω0 2jkω0 h i 1 = 1 − 2e−jkω0 + e−jk2ω0 2jkω0 " # 1 −jkπ −j2π 1 − 2e + e| {z } = 2jkπ =1 i 1 h 1 − e−jkπ = jkπ 1 Signals and Systems I EE360: Fall 14 (c) Using the differentiation property x(t) ←→ak dx(t) ←→bk = jkω0 ak = jkπak dt 1 1 1 ⇒ak = bk = [1 − e−jπ ] = 2 2 [e−jπ − 1] 2 jkπ (jkπ) k π 3. (OW 3.25) Solution (a) 1 x(t) = [ej4πt + e−j4πt ] 2 1 ⇒ ak −→ a1 = a−1 = 2 (b) 1 j4πt [e − e−j4πt ] 2j 1 1 ⇒ bk −→ b1 = , b−1 = − 2j 2j y(t) = (c) The multiplicative property states the product in the time domain has convolution of the FS coefficients. ∞ X z(t) = x(t)y(t) ←→ ck = al bk−l . l=−∞ 1 1 1 1 ck = [ δ(k + 1) + δ(k − 1)] ∗ [− δ(k + 1) + δ(k − 1)] 2 2 2j 2j 1 1 1 1 = − δ(k + 2) + δ(k) − δ(k) + δ(k − 2) 4j 4j 4j 4j 1 1 = − δ(k + 2) + δ(k − 2) 4j 4j |{z} |{z} c−2 c2 (d) Using pure trigonometric expansion z(t) = cos (4πt) sin (4πt) 1 1 = [ej4πt + e−j4πt ] · [ej4πt − e−j4πt ] 2 2j 1 = [ej2(4π)t − e0 + e0 − e−j2(4π)t ] 4j 1 j2(4π)t 1 −j2(4π)t = e − e 4j 4j |{z} |{z} c2 c−2 2 Signals and Systems I EE360: Fall 14 4. (OW 3.27) Solution N = 5, a2 = a∗−2 = 2ejπ/6 , a0 = 2, a4 = a∗−4 = ejπ/3 , ω0 = x[n] = 2 + a2 ej2ω0 n + a−2 e−j2ω0 n + a4 ej4ω0 n + a−4 e−j4ω0 n = 2 + 2ejπ/6 ej2ω0 n + 2e−jπ/6 e−j2ω0 n + ejπ/3 ej4ω0 n + e−jπ/3 e−j4ω0 n h i h i = 2 + 2 ej(2ω0 n+π/6) + e−j(2ω0 n+π/6) + ej(4ω0 n+π/3) + e−j(4ω0 n+π/3) = 2 + 4 cos (2ω0 n + π/6) + 2 cos (4ω0 n + π/3) = 2 + 4 sin (2ω0 n + π/6 + π/2) + 2 sin (4ω0 n + π/3 + π/2) = 2 + 4 sin (2ω0 n + 2π/3) + 2 sin (4ω0 n + 5π/6) 5. (OW 3.33) Solution ∂ y(t) + 4y(t) = x(t) ∂t assume input of form ejωt and find frequency response ejωt −→ H(jω)ejωt for LTI system ⇒ ∂ y(t) = jωH(jω)ejωt ∂t ⇒ jωH(jω)ejωt + 4H(jω)ejωt = ejωt ⇒ H(jω) [jω + 4] = 1 1 H(jω) = 4 + jω ←− use this for y(t) = inf X ak H(jkω0 )ejkω0 t k=− inf (a) ω0 = 2π, T = 1 x(t) = cos(2πt) = 1 j2πt e + e−j2πt 2 1 H(j2π)ej2πt + H(−j2π)e−j2πt 2 1 1 1 j2πt −j2πt e + e = 2 4 + j2π 4 − j2π y(t) = 1 ⇒ b1 = 2 1 4 + j2π 3 , b−1 1 = 2 1 4 − j2π 2π 5 Signals and Systems I EE360: Fall 14 (b) x(t) = sin( |{z} 4πt ) + cos( |{z} 6πt +π/4) T1 =1/2 T2 =1/3 ⇒ T = 1, ω0 = 2π 1 1 j2ω0 t 1 = e − e−j2ω0 t + ejπ/4 ej3ω0 t + e−jπ/4 e−j3ω0 t 2j 2 2 y(t) = 1 1 1 [H(j4π) − H(−j4π)] + ejπ/4 H(j6π)ej3ω0 t + e−jπ/4 H(−j6π)e−j3ω0 t 2j 2 2 1 1 ⇒ b2 = , 2j 4 + j4π 1 1 , b3 = ejπ/4 2j 4 + j6π b−2 b−3 1 1 =− , 2j 4 − j4π 1 1 = e−jπ/4 2j 4 − j6π 6. (OW 3.36) Solution Similar to 3.33 1 y[n] − y[n − 1] = x[n], y[n] = H(ejω )ejωn , y[n − 1] = H(ejω )ejω(n−1) 4 1 −jω jωn jω H(e ) 1 − e e = ejωn 4 H(ejω ) = 1 1− 1 −jω 4e (a) 3π 2π π x[n] = sin( n), N0 = 8 ⇒ ω0 = = 4 8 4 i 3π 1 h j 3π n = e 4 − e−j 4 n 2j i 3π 3π 1 h j 3π j 3π n H e 4 e 4 − H e−j 4 e−j 4 n 2j " # 3π 1 1 1 j 3π n −j n 4 = e 4 − 3π e 2j 1 − 1 e−j 3π 4 1 − 1 ej 4 y[n] = 4 1 ⇒ b3 = 2j 4 ! 1 1 − 41 e−j 4 3π 4 , b−3 = 1 1 1 2j 1 − ej 3π 4 4 ! Signals and Systems I EE360: Fall 14 (b) π π x[n] = cos n + 2 cos n . | {z4 } | {z 2 } N1 =8 Therefore the period of x[n] is N = 8 ⇒ w0 = Following the same procedure as above N2 =4 2π 8 = π4 . 1 x[n] = [ejπ/4n + e−jπ/4n ] + [ej2π/4n + e−j2π/4n ] 2 1 y[n] = [H(ejπ/4 ) ejπ/4n + H(e−jπ/4 ) e−jπ/4n ] + [H(ej2π/4 ) ej2π/4n + H(ej2π/4 ) e−j2π/4n ] | {z } | {z } | {z } 2 | {z } k=1 k=−1 1 ⇒ b1 = 2 b−1 = 1 2 k=2 ! 1 , 1 − 41 e−jπ/4 ! 1 , 1 − 41 ejπ/4 5 b2 = b−2 = k=−2 ! 1 , 1 − 14 e−jπ/2 ! 1 1 − 14 ejπ/2
© Copyright 2025