University of Zurich Agent-based models of financial markets Development of empirical models October 20, 2014 Seminar Overview • September 15: Introduction • • • • • • September 22: September 29: October 6: October 13: October 20: November 27: Basic concepts of ABM Examples of different models Introduction to the development framework Fundamentals of financial market modelling Development of empirical models Optimization and over-fitting • • • • • • November 3: November 10: November 17: November 24: December 1: December 8: The agents’ behavior Scenario-analysis and simulation Commercialization of models How to pitch? Pitch of the Models Pitch of the Models • December 15: Pitch of the Models www.avaco.ch Content • Q&A case study • Questions & decisions • Purpose of the model • Market • Agents • Economic foundation www.avaco.ch Q&A case study • Deadline for the model, documentation and presentation slides is Friday before the presentation date ([email protected]). • The back up is used for an additional presentation date. • Appointments are available upon request. The meeting place is next the lecture hall (Begegnungszimmer). www.avaco.ch Case studies Title Beyond valuation CHFUSD CHFYEN EURCHF EURCHF EURCHF (SPI) Gold Gold Gold tbd USDCNY USDCNY, USDJPY VIX Future Comparsion of Stock Market models Herd Behavior in High-Volatility Markets (US Tech Markets) Interest rate curve USD Private Equity/LBO Performances WIG20 Index Student Silvan Fischer Mischa Haberthür Patrik Wittenwiller Daniel Auer Matteo Pianta Vanessa Kummer Stefan Betschart Florian Reeh Ankit Doshi Jan-Thore Hünecke Basil Odermatt Luca Tonizzo Nicola Lei Ravallo Agata Gareishina Jonas Elmer Christian Scheitlin Vincent Rime Ewelina Laskowska Valerio Frison Raphael Dosch Marco Rudin Cesare Scherrer Dario Messi Qian Cao Lukas Hauri Presentation 01.12.2014 01.12.2014 01.12.2014 01.12.2014 01.12.2014 01.12.2014 01.12.2014 01.12.2014 01.12.2014 01.12.2014 01.12.2014 01.12.2014 01.12.2014 01.12.2014 01.12.2014 01.12.2014 01.12.2014 01.12.2014 www.avaco.ch Case studies Title Bitcoin Bitcoin Bitcoin Bitcoin Corporate Bond Market Dax Dax DJ Transportation Average Index Hong Kong Real Estate Market Hotel accomodation Switzerland Oil S&P 500 S&P 500 S&P 500 (QE) S&P BSE Health Care index US Stocks Wheat Futures Wheat Futures Student Michael Petersen Karim Attia Tobias Bertschinger Romano Gruber Kristijan Milosavljevic Daniel Fuchs Carlo Coppetti José Parra Moyano Dzemo Facli Laura Oberbörsch Jan Kaiser Simone Huber Chuanfang Di Ziyao V. Zhou Moritz Fischer Ivan Mihailovic Fabio Isler Alexander Thomas Roger Böhler Flavio Schönholzer Yacine Brahmi Jan Iten Maria Grigorkina Fabienne Noll Jovan Vifian www.avaco.ch Presentation 08.12.2014 08.12.2014 08.12.2014 08.12.2014 08.12.2014 08.12.2014 08.12.2014 08.12.2014 08.12.2014 08.12.2014 08.12.2014 08.12.2014 08.12.2014 08.12.2014 08.12.2014 08.12.2014 08.12.2014 08.12.2014 Case studies Title BRLUSD Corporate Bond Market Dow Jones Equity REIT Total Return Index Oil Oil SMI SMI SMI/SPI SPI/SMI Subprime market Swiss Real Estate Market US residential real estate market Chinese stock market Demographics and Financial Markets Dow Jones Luxury Index (DJLUX) High Frequency Stock Market Silver Student Wei Qiu Samuel Annen Xiaoxu Yu Min Feng Thomas Füglister David Beck Ulrich Schmid Christoph Hartmeier Alain Flury Jonathan Krakow Manuel Pilla Daniela Rigert Vuk Stocanic Velimir Gordic Hanna Zechner Matthias Hafner Hao Xing Luzius Meisser Sandra Natour Sabrina Realini Jean-Paul van Brakel Wiliam Isenring Guillaume Ruch www.avaco.ch Elements of Financial Markets www.avaco.ch Presentation 15.12.2014 15.12.2014 15.12.2014 15.12.2014 15.12.2014 15.12.2014 15.12.2014 15.12.2014 15.12.2014 15.12.2014 15.12.2014 15.12.2014 15.12.2014 15.12.2014 15.12.2014 15.12.2014 15.12.2014 Do not forget ☺! • Economics is a social science dealing with the interactions of human beings. • Need to abstract from reality reduce complexity! • Economic processes are complex: It is difficult to decompose them into different parts that can be studied separately and then be aggregated to yield a complete picture. • Model financial markets as multivariate, non linear, deterministic systems with stochastic shocks and a drift component (Neither normally distributed nor stationary) • In an ABM the agents don’t need to be profitable or rational The real world market’s results stem from the interaction of real world market participants! www.avaco.ch Questions & decisions • Purpose of the model • System definition and boundaries • Market • Agents • • • • Input Decision rules Individual learning Initialization • Economic foundation www.avaco.ch Elements of Agent-Based Models Agents • Market participants • Behavioral disposition • Microeconomics • Explicit knowledge in the form of agents’ behavioral structures • Individual basic decision structures with bounded rationality • Decentralized, heterogeneous and local • Adaptive, individual learning • Analytical Environment • Market • Market structure • Macroeconomics • Implicit knowledge in the form of time series analyses • Complex, non-linear, path-dependent • Collective behavior leads to a selforganizing system • Social learning and changing market structures (regulation, …) • Computational www.avaco.ch Purpose of the model • Calibration, Validation, Benchmark • • • • • Trend direction Trading Distribution Correlation Stylized facts • Frequency www.avaco.ch Purpose of the model • Trading • Portfolio management • Risk management • Impact studies for regulators •… www.avaco.ch Decision based on the purpose What decision do you make based on the purpose of the model? Please take 10 minutes to think about this question. Briefly prepare for a discussion in class - discuss it with your neighbors. www.avaco.ch 31.01.1996 31.01.1997 31.01.1998 31.01.1999 31.01.2000 31.01.2001 31.01.2002 31.01.2003 31.01.2004 31.01.2005 31.01.2006 31.01.2007 31.01.2008 31.01.2009 31.01.2010 31.01.2011 31.01.2012 31.01.2013 31.01.2014 31.01.1992 31.01.1993 31.01.1994 31.01.1995 31.01.1972 31.01.1973 31.01.1974 31.01.1975 31.01.1976 31.01.1977 31.01.1978 31.01.1979 31.01.1980 31.01.1981 31.01.1982 31.01.1983 31.01.1984 31.01.1985 31.01.1986 31.01.1987 31.01.1988 31.01.1989 31.01.1990 31.01.1991 Market • Assets • The time series should span different cycles of the market. • Market structure • Order processing • Price calculation • Clearing and settlement • Evolution and social learning www.avaco.ch Assets 3.0000 350.00 2.5000 300.00 2.0000 250.00 1.5000 200.00 1.0000 150.00 100.00 0.5000 50.00 0.0000 0.00 www.avaco.ch Agents • Input • Decision rules • Individual learning • Initialization www.avaco.ch Agents behavior www.avaco.ch Market participants • Traders • Outright • Arbitrage • Investors • • • • Pension funds Insurance companies Asset Managers Private •… • Different profiles • Time • Risk • … Outright • Arbitrage in the time dimension • Decision under partial uncertainty • Forecasting models • Risk management Arbitrage • Profit from different prices on different markets for similar products • Geographic differences • Cash – Forward markets • Options, CFDs, … • Theoretically zero risk position • Real time program trading • Small profits How do algorithms shape our world? www.ted.com/talks/kevin_slavin_how_algorithms_shape_our_world www.avaco.ch Economic foundation • Explicit input from observations • Explicit input from data time series • Implicit input from time series • Be careful with macroeconomic time series. www.avaco.ch Iterative modeling process • Formulation of hypothesis and specification • Market environment • Market participants (agents) • Modelling and experimentation • Calibration and validation www.avaco.ch
© Copyright 2024