Chapter 10 & 11 Molecular Bonds & Band Structure Semiconductors Superconductivity

Chapter 10 & 11
Molecular Bonds & Band Structure
Semiconductors
Superconductivity
Lasers
Harris, “Modern Physics”
Eisberg & Resnick, “Quantum Physics of Atoms, Molecules,
Solids, Nuclei, and Particles”
Outline
• 10.1 Molecular Bonding (~2 atoms together)
– pages 334-342
• 11.1 Band Theory (~1023 atoms together)
– pages 387-392
• 11.2 Semiconductor Theory
– mainly pages 395-398
• 10.5 Superconductivity
– pages 362-381
• 10.2 Stimulated Emission & Lasers
– mainly pages 342-347
MOLECULES
(~2 atoms together)
Ionic & Covalent Bonds
Molecular Excitations
Rotation, Vibration, Electric
Ionic Bonds
ENERGY
BALANCE=
Ionization +
Electron +
Affinity
Attraction of + Pauli
Repulsion of
Cores
Electrons
RNave, GSU at http://hyperphysics.phy-astr.gsu.edu/hbase/chemical/bond.html#c4
Ionic Bond Energy Balance
Ioniz
Electron
Affinity
Coul
Attraction
Pauli
Repulsion
Energy
Balance
NaCl
5.14
-3.62
-6.10
0.31
-4.27
NaF
5.14
-3.41
-7.46
0.35
-5.34
KCl
4.34
-3.62
-5.39
0.19
-4.49
HH
13.6
-0.76
Covalent Bonds
RNave, GSU at http://hyperphysics.phy-astr.gsu.edu/hbase/chemical/bond.html#c4
Covalent Bonding
SYM
spatial
ASYM
spin
ASYM
spatial
SYM
spin
space-symmetric tend to be closer
Ref: Harris
Ionic vs Covalent Bond Properties
• Ionic Characteristics
– Crystalline solids
• Covalent Characteristics
– High melting & boiling point
– Gases, liquids, noncrystalline solids
– Low melting & boiling point
– Conduct electricity when
melted
– Poor conductors in all
phases
– Many soluble in water, but
not in non-polar liquids
– Many soluble in non-polar
liquids but not water
Molecular Excitations
Rotational Spectra

rot KE ~
1
I 2
2

1
2
Lop
2I

2
 (  1)
2I
moment of inertia
rotational A.M.
Rotational Spectra
Photon Energy  hf
Ref: Harris
Molecular Excitations
Vibration
Molecule
“Spring Const”
( N/m )
HF
970
HCl
480
HBr
410
Hi
320
CO
1860
NO
1530
Vibration (in an Electronic state)
Ocean Optics: Nitrogen N2
~ 0.3 eV
~ 0.4 eV
http://hyperphysics.phy-astr.gsu.edu/hbase/quantum/atspect.html
Electronic + Vibration
Ref: Harris
Electronic + Vibration + Rotation
2.550 eV
2.656 eV
electronic excitation gap
vibrational excitation gaps
Ref: Eisberg&Resnick
Electronic + Vibration + Rotation
Vibrational Well
2.656 eV
Vibrational Well
depth ~ 0.063 eV
electronic excitation gap
vibrational excitation gaps
Ref: Eisberg&Resnick
Electronic, Vibration, Rotation
Electronic ~ optical & UV
~ 1 – 3 eV
Vibration
~ IR
~ 10ths of eV
Rotation
~ microwave
~ 1000ths of eV
Harris 9.24
Some Molecular Constants
Molecule
Equilibrium
Distance
Ro (Å)
Dissociation
NRG
Do (eV)
Vibrational
freq
v a (cm-1)
Moment of
Inertia
Bb (cm-1)
H2+
1.06
2.65
2297
29.8
H2
0.742
4.48
4395
60.8
O2
1.21
5.08
1580
1.45
N2
1.09
9.75
2360
2.01
CO
1.13
9.60
2170
1.93
NO
1.15
5.3
1904
1.70
HCl
1.28
4.43
2990
10.6
NaCl
2.36
4.22
365
0.190
Notes: a) vibrational frequency in table is given as f / c
b) moment of inertia in table is given as hbar2/(2I) / hc
SOLIDS
x
(~10 atoms together)
Isolated Atoms
Diatomic Molecule
Four Closely Spaced Atoms
conduction band
valence band
Two atoms
Six atoms
Solid of N atoms
ref: A.Baski, VCU 01SolidState041.ppt
www.courses.vcu.edu/PHYS661/pdf/01SolidState041.ppt
Sodium Bands vs Separation
Rohlf Fig 14-4 and Slater Phys Rev 45, 794 (1934)
Copper Bands vs Separation
Rohlf Fig 14-6 and Kutter Phys Rev 48, 664 (1935)
Differences down a column in the Periodic Table:
IV-A Elements
same valence
config
Sandin
Conductors vs insulators vs semiconductors
Conductors & Insulators at T=0
Harris9.35a
Conductors & Insulators at
T>0
Harris9.35b
Semiconductors
&
Superconductors
Rex Thorton
p 395-398
p 362-381
Two atoms
Six atoms
Solid of N atoms
ref: A.Baski, VCU 01SolidState041.ppt
www.courses.vcu.edu/PHYS661/pdf/01SolidState041.ppt
Temperature Dependence of
Resistivity
R 
L

A
Ag
1.5*10-8 Wm
Cu
1.7*10-8
C amorphous
10-4
Rubber
1013
Air
1016
Conductors & Insulators at T=0
Harris9.35a
Conductors & Insulators at
T>0
Harris9.35b
• Conductors
– Resistivity  increases with increasing Temp
– Temp  t but same # conduction e-’s  
• Semiconductors & Insulators
– Resistivity  decreases with increasing Temp
– Temp  t
but more conduction e-’s  
Semiconductors
~1/40 eV gap
~1 eV gap
• Types
– Intrinsic – by thermal excitation or high nrg photon
– Photoconductive – excitation by VIS-red or IR
– Extrinsic / Doped
• n-type
• p-type
•
~1-4 eV gap
~0.01 eV gap with adjustable charge carrier density
Intrinsic Semiconductors
Silicon
Germanium
RNave: http://hyperphysics.phy-astr.gsu.edu/hbase/solcon.html#solcon
Doped Semiconductors
lattice
p-type dopants
n-type dopants
5A doping in a
4A lattice
Almost free, but not quite
Sandin, “Modern Physics”
5A in 4A lattice
3A in 4A lattice
Bands in n-doped
Semiconductor
9.44
Bands in p-doped
Semiconductor
9.45
Superconductivity
First observed Kamerlingh Onnes 1911
Note: The best conductors & magnetic materials tend not to be superconductors (so far)
Superconductors.org
Only in nanotubes
Discovery of “Type II”
--- CuxOy
Superconductor
Classifications
•
Type I
– tend to be pure elements or simple alloys
–  = 0 at T < Tcrit
– Internal B = 0 (Meissner Effect)
– At jinternal > jcrit, no superconductivity
– At Bext > Bcrit, no superconductivity
– Well explained by BCS theory
•
Type II
– tend to be ceramic compounds
– Can carry higher current densities ~ 1010 A/m2
– Mechanically harder compounds
– Higher Bcrit critical fields
– Above Bext > Bcrit-1, some superconductivity
Superconductor
Classifications
Type I
Bardeen, Cooper, Schrieffer
1957, 1972
“Cooper Pairs”
e-
Q: Stot=0 or 1? L? J?
eSymmetry energy ~ -0.01 eV
Popular Bad Visualizations:
correlation lengths
Pairs are related by momentum ±p,
NOT position.
Sn 230 nm
Al 1600
Pb
83
Nb 38
Best conductors  best ‘free-electrons’  no e- – lattice interaction
 not superconducting
More realistic 1-D billiard ball picture:
Cooper Pairs are ±k sets
Furthermore:
“Pairs should not be thought of as independent particles” -- Ashcroft & Mermin Ch 34
• Experimental Support of BCS Theory
– Isotope Effects
– Measured Band Gaps corresponding to Tcrit
predictions
– Energy Gap decreases as Temp  Tcrit
– Heat Capacity Behavior
Normal Conductor
Semiconductor
or
Superconductor
Superconductors and Semiconductors are the same animal from a band model viewpoint
Another fact about Type I:
-- Interrelationship of Bcrit and Tcrit
Type II
Yr
Mar
2011
Oct
2010
Q: does BCS apply ?
Composition
(Tl5Pb2)Ba2MgCu10O17+
(Tl4Pb)Ba2MgCu8O13+
Tc
20 C
293 K
3C
276K
May
2006
InSnBa4Tm4Cu6O18+
150
2004
Hg0.8Tl0.2Ba2Ca2Cu3O8.33
138
1987
YBa2Cu3O7
93
1986
(La1.85Ba.15)CuO4
30
actual ~ 8 mm
Sandin
Type II – mixed phases
fluxon
Q: does BCS apply ?
Y Ba2 Cu3 O7
crystalline
may control the electronic config of the conducting layer
La2-x Bax Cu O2
solid solution
Applications
OR
Other Features of
Superconductors
http://superconductors.org/Uses.htm
Meissner Effect
Magnetic Levitation – Meissner
Effect
Kittel states this explusion effect
is not clearly directly connected
to the  = 0 effects
Q: Why ?
Magnetic Levitation – Meissner
Effect
MLX01 Test Vehicle
2003 581 km/h 361 mph
2005 80,000+ riders
2005 tested passing trains at relative 1026 km/h
http://www.rtri.or.jp/rd/maglev/html/english/maglev_frame_E.html
MagLev in Shanghai
Maglev in Germany
32 km track
550,000 km since 1984
Design speed 550 km/h
Regularly operated at 420 km/h
http://en.wikipedia.org/wiki/2006_Lathen_maglev_train_accident
NOTE(061204): I’m not so sure this track is superconducting. The MagLev planned for the Munich area will be. France is also thinking about a sc maglev.
Maglev Frog
A live frog levitates
inside a 32 mm
diameter vertical bore
of a Bitter solenoid in
a magnetic field of
about 16 Tesla at the
Nijmegen High Field
Magnet Laboratory.
http://www.hfml.ru.nl/pics/Movies/frog.mpg
Josephson Junction
~ 2 nm
SQUID
superconducting quantum interference device
o
 ~ oe
ileft
 ~ o e
The phase of the wfn in left and right branches is different
because of the penetrating flux.
i right
Typical B fields
(Tesla)
(# flux quanta)
http://www.csiro.au/science/magsafe.html
Finding 'objects of interest' at sea with MAGSAFE
MAGSAFE is a new system for locating and identifying submarines.
Operators of MAGSAFE should be able to tell the range, depth and
bearing of a target, as well as where it’s heading, how fast it’s going
and if it’s diving.
Building on our extensive experience using highly sensitive magnetic
sensors known as Superconducting QUantum Interference Devices
(SQUIDs) for minerals exploration, MAGSAFE harnesses the power
of three SQUIDs to measure slight variations in the local magnetic
field.
MAGSAFE will be able to locate
targets without flying close to
the surface.
Image courtesy Department of
Defence.
MAGSAFE has higher sensitivity and greater immunity to external noise than conventional
Magnetic Anomaly Detector (MAD) systems. This is especially relevant to operation over shallow
seawater where the background noise may 100 times greater than the noise floor of a MAD
instrument.
http://www.csiro.au/science/magsafe.html
Phillip Schmidt etal. Exploration Geophysics 35, 297 (2004).
http://nextbigfuture.com/2007_10_28_archive.html
http://en.wikipedia.org/wiki/Magnetoencephalography
http://www.neurevolution.net/2007/08/20/magnetoencephalography/
http://www2.fz-juelich.de/nic/Publikationen/Broschuere/sonstiges-e.html
SQUID
2 nm
10-14 T SQUID threshold
Heart signals 10 -10 T
Brain signals 10 -13 T
•
•
•
•
•
•
•
Fundamentals of superconductors:
– http://www.physnet.uni-hamburg.de/home/vms/reimer/htc/pt3.html
Basic Introduction to SQUIDs:
– http://www.abdn.ac.uk/physics/case/squids.html
Detection of Submarines
– http://www.csiro.au/science/magsafe.html
Fancy cross-referenced site for Josephson Junctions/Josephson:
– http://en.wikipedia.org/wiki/Josephson_junction
– http://en.wikipedia.org/wiki/B._D._Josephson
SQUID sensitivity and other ramifications of Josephson’s work:
– http://hyperphysics.phy-astr.gsu.edu/hbase/solids/squid2.html
Understanding a SQUID magnetometer:
– http://hyperphysics.phy-astr.gsu.edu/hbase/solids/squid.html#c1
Some exciting applications of SQUIDs:
– http://www.lanl.gov/quarterly/q_spring03/squid_text.shtml
•
•
•
•
•
Relative strengths of pertinent magnetic fields
– http://www.physics.union.edu/newmanj/2000/SQUIDs.htm
The 1973 Nobel Prize in physics
– http://nobelprize.org/physics/laureates/1973/
Critical overview of SQUIDs
– http://homepages.nildram.co.uk/~phekda/richdawe/squid/popular/
Research Applications
– http://boojum.hut.fi/triennial/neuromagnetic.html
Technical overview of SQUIDs:
– http://www.finoag.com/fitm/squid.html
– http://www.cmp.liv.ac.uk/frink/thesis/thesis/node47.html
Lasing Systems
RexThorton
p 342-351
•
•
•
•
•
•
•
•
Stimulated Emission
Energy Level Diagrams
Ruby Laser
He-Ne Laser
Diode Lasers
Green Laser Pointers
Free Electron Lasers
National Ignition Facility
Parts of a Laser
Principal components:
1. Gain medium
2. Laser pumping energy
3. High reflector
4. Output coupler
5. Laser beam
http://en.wikipedia.org/wiki/Laser
Spontaneous Emission
Stimulated Emission
Population Inversion
PUMP
Energy Level Diagram
Three Level System
PUMPING
Light Absorption
Electrical discharge
Molecular collisions
Ruby Laser
http://en.wikipedia.org/wiki/Theodore_Maiman
Ruby Laser
http://www.olympusmicro.com/primer/anatomy/sources.html
http://web.phys.ksu.edu/vqm/laserweb/Ch-6/C6s2t1p2.htm
Rami Arieli: "The Laser Adventure" Section 6.2.1 page 2
Energy Level Diagram
Four Level System
PUMPING
Light Absorption
Electrical discharge
Molecular collisions
http://www.i-fiberoptics.com/lasers.php?cat=helium-neon-lasers&sum=1630
He-Ne Laser
http://en.wikipedia.org/wiki/Helium%E2%80%93neon_laser
http://www.mi-lasers.com/hene-lasers-c-17
He-Ne Laser
#4
#3
#2’s
Electric
Discharge
#1
He-Ne Laser
#3’s
#4’s
#2’s
#1
He-Ne Laser
#3’s
#4’s
#2’s
#1
http://web.phys.ksu.edu/vqm/laserweb/Ch-6/F6s1t1p1.htm
http://www.intenseco.com/news/detail.asp?RecordID=122
Diode Laser
http://britneyspears.ac/physics/fplasers/fplasers.htm
http://www.instructables.com/id/Laser-Flashlight-Hack!!/step3/Extract-the-DVD-Laser-Diode/
Laser Diode
http://www.rp-photonics.com/laser_pointers.html
http://donklipstein.com/lds.gif
Laser Diode
http://zone.ni.com/devzone/cda/ph/p/id/249
http://www.dragonlasers.com/catalog/Green-Laser-Pointer-532nm-Laser-Viper-Series-Lasers-price0-p-1-c-262.html
Green Laser Pointer
http://en.wikipedia.org/wiki/Laser
CO2 Lasers
CO2 Lasers
http://laserstars.org/history/mars.html
CO2 Lasers
http://what-when-how.com/electronic-properties-of-materials/applications-optical-properties-of-materials-part-5/
CO2 Lasers
http://chemwiki.ucdavis.edu/Wikitexts/UCD_Chem_205%3A_Larsen/ChemWiki_Module_Topics/How_a_Laser_operates
Free Electron Lasers
Boeing YAL-1
Airborne Laser (ABL)
anti-ballistic missile
weapons system
Developed fromBoeing
747-400F
megawatt-class
chemical oxygen iodine laser
(COIL)
http://en.wikipedia.org/wiki/Boeing_YAL-1
http://en.wikipedia.org/wiki/Chemical_oxygen_iodine_laser
Chemical oxygen iodine laser, or COIL, is an infrared chemical laser. As the
beam is infrared, it cannot be seen with the naked eye. It is capable of output
power scaling up to megawatts in continuous mode[citation needed]. Its output
wavelength is 1.315 µm, the wavelength of transition of atomic iodine.
The laser is fed with gaseous chlorine, molecular iodine, and an aqueous mixture
of hydrogen peroxide and potassium hydroxide. The aqueous peroxide solution
undergoes chemical reaction with chlorine, producing heat, potassium chloride,
and oxygen in excited state, singlet delta oxygen. Spontaneous transition of
excited oxygen to the triplet sigma ground state is forbidden giving the excited
oxygen a spontaneous lifetime of about 45 minutes. This allows the singlet delta
oxygen to transfer its energy to the iodine molecules injected to the gas stream;
they are nearly resonant with the singlet oxygen, so the energy transfer during the
collision of the particles is rapid. The excited iodine then undergoes stimulated
emission and lases at 1.315 µm in the optical resonator region of the laser.