Faculty of Science Anisotropic Distribution on Manifolds: Template Estimation and MPPs IPMI 2015, Sabhal Mor Ostaig, Scotland Stefan Sommer Department of Computer Science, University of Copenhagen July 9, 2015 Slide 1/25 Intrinsic Statistics in Geometric Spaces Stefan Sommer ([email protected]) (Department of Computer Science, University of Copenhagen) — Anisotropic Distribution on Manifolds: Template Estimation and MPPs Slide 2/25 Most Probable Paths to Samples • Euclidean: T −1 • density pt (x , y ) ∝ e−(x −y ) Σ (x −y ) • transition density of stationary diffusion processes • x − y most probable path from y to x • Manifolds: • construct family of anisotropic Gaussian-like distributions NM (y , Σ) • what is the most probable path from y to x? Stefan Sommer ([email protected]) (Department of Computer Science, University of Copenhagen) — Anisotropic Distribution on Manifolds: Template Estimation and MPPs Slide 3/25 Some Statistics on Manifolds 2 • Frechét mean: argminx ∈M N1 ∑N i =1 d (x , yi ) • PGA (Fletcher et al., ’04); GPCA (Huckeman et al., ’10); HCA (Sommer, ’13); PNS (Jung et al., ’12); BS (Pennec, ’15) PGA GPCA HCA Stefan Sommer ([email protected]) (Department of Computer Science, University of Copenhagen) — Anisotropic Distribution on Manifolds: Template Estimation and MPPs Slide 4/25 PGA, GPCA, HCA, PNS, . . . • search for explicitly constructed parametric subspaces: geodesic sprays, geodesics, iterated development, . . . • in general manifolds, subspaces are not totally geodesic (6≈ linear subspaces) • projections to subspaces are problematic: geodesics may be dense on tori Stefan Sommer ([email protected]) (Department of Computer Science, University of Copenhagen) — Anisotropic Distribution on Manifolds: Template Estimation and MPPs Slide 5/25 Geometry is Infinitesimal Euclidean norm kx − y k vectors linear subspaces ... Riemannian distances d (x , y ) v0 for geodesics geodesic sprays ... • difference vs. tangent vector ←→ global vs. local • geometry suggests “infinitesimal” constructions Stefan Sommer ([email protected]) (Department of Computer Science, University of Copenhagen) — Anisotropic Distribution on Manifolds: Template Estimation and MPPs Slide 6/25 Infinitesimally defined Distributions; MLE • in Rn , Gaussian distributions are transition distributions of diffusion processes dXt = dWt • on (M , g ), Brownian motion is transition distribution of stochastic process (Eells-Elworthy-Malliavin construction), or solution to heat diffusion equation ∂ 1 p(t , x ) = ∆p(t , x ) ∂t 2 2 • infinitesimal dXt vs. global pt (x , y ) ∝ e−kx −y k • aim: construction of family NM (µ, Σ) of Gaussian-like distributions allowing MLE of template / covariance Stefan Sommer ([email protected]) (Department of Computer Science, University of Copenhagen) — Anisotropic Distribution on Manifolds: Template Estimation and MPPs Slide 7/25 Anisotropic Diffusions and Holonomy • stationary driftless diffusion SDE in Rn : dXt = σdWt , σ ∈ M n×d • diffusion field σ, infinitesimal generator σσT • curvature: stationary field/generator cannot be defined due to holonomy Stefan Sommer ([email protected]) (Department of Computer Science, University of Copenhagen) — Anisotropic Distribution on Manifolds: Template Estimation and MPPs Slide 8/25 Stochastic Development: Eells-Elworthy-Malliavin Construction • Xt : Rn valued Brownian motion (driving process) • Ut : FM valued (sub-elliptic) diffusion • Yt : M valued stochastic process (target process) Stefan Sommer ([email protected]) (Department of Computer Science, University of Copenhagen) — Anisotropic Distribution on Manifolds: Template Estimation and MPPs Slide 9/25 Stochastic Development: Eells-Elworthy-Malliavin Construction • Xt : Rn valued Brownian motion (driving process) • Ut : FM valued (sub-elliptic) diffusion • Yt : M valued stochastic process (target process) Stefan Sommer ([email protected]) (Department of Computer Science, University of Copenhagen) — Anisotropic Distribution on Manifolds: Template Estimation and MPPs Slide 9/25 Stochastic Development: Eells-Elworthy-Malliavin Construction • Xt : Rn valued Brownian motion (driving process) • Ut : FM valued (sub-elliptic) diffusion • Yt : M valued stochastic process (target process) Stefan Sommer ([email protected]) (Department of Computer Science, University of Copenhagen) — Anisotropic Distribution on Manifolds: Template Estimation and MPPs Slide 9/25 Ut : Frame Bundle Diffusion Stefan Sommer ([email protected]) (Department of Computer Science, University of Copenhagen) — Anisotropic Distribution on Manifolds: Template Estimation and MPPs Slide 10/25 MLE of Diffusion Processes • Eells-Elworthy-Malliavin construction gives map Z : FM → Dens(M ) Diff R • Diff (FM ) = NM ⊂ Dens(M ): the set of (normalized) transition densities from FM diffusions R • γ = Diff (x , Xα ) = pγ γ0 , the log-likelihood N ln L (x , Xα ) = ln L (γ) = ∑ ln pγ(yi ) i =1 • Estimated Template: argmax(x ,Xα )∈FM ln L (x , Xα ) • MLE of data yi under the assumption y ∼ γ ∈ NM • Diffusion PCA (Sommer ’14): argmax ln L (x , Xα + εI ) generalizing Probabilistic PCA (Tipping, Bishop, ’99; Zhang, Fletcher ’13) Stefan Sommer ([email protected]) (Department of Computer Science, University of Copenhagen) — Anisotropic Distribution on Manifolds: Template Estimation and MPPs Slide 11/25 Estimated Templates MLE template Stefan Sommer ([email protected]) (Department of Computer Science, University of Copenhagen) — Anisotropic Distribution on Manifolds: Template Estimation and MPPs Slide 12/25 Most Probable Paths • in Rn , straight lines are most probable for stationary diffusion processes • Onsager-Machlup functional (σt curve) 1 1 L(σt ) = − kσ0 (t )k2g + R (σ(t )) 2 12 Stefan Sommer ([email protected]) (Department of Computer Science, University of Copenhagen) — Anisotropic Distribution on Manifolds: Template Estimation and MPPs Slide 13/25 Most Probable Paths • in Rn , straight lines are most probable for stationary diffusion processes • Onsager-Machlup functional (σt curve) 1 1 L(σt ) = − kσ0 (t )k2g + R (σ(t )) 2 12 Stefan Sommer ([email protected]) (Department of Computer Science, University of Copenhagen) — Anisotropic Distribution on Manifolds: Template Estimation and MPPs Slide 13/25 Most Probable Paths • in Rn , straight lines are most probable for stationary diffusion processes • Onsager-Machlup functional (σt curve) 1 1 L(σt ) = − kσ0 (t )k2g + R (σ(t )) 2 12 • MPP for target process Stefan Sommer ([email protected]) (Department of Computer Science, University of Copenhagen) — Anisotropic Distribution on Manifolds: Template Estimation and MPPs Slide 13/25 Most Probable Paths • in Rn , straight lines are most probable for stationary diffusion processes • Onsager-Machlup functional (σt curve) 1 1 L(σt ) = − kσ0 (t )k2g + R (σ(t )) 2 12 • MPP for driving process R=0 Stefan Sommer ([email protected]) (Department of Computer Science, University of Copenhagen) — Anisotropic Distribution on Manifolds: Template Estimation and MPPs Slide 13/25 Definition (MPPs for Driving Process) Let Xt be the driving process for the diffusion Yt and x ∈ M, i.e. Yt = π(φ(Xt )). Then σ is a most probable path for the driving process if it satisfies Z 1 σ = argminc ∈H (Rd ),φ(c )(1)=x −L(ct )dt 0 Theorem Let Yα be any frame for To M, and let Yt = π(φ(0,Yα ) (Xt )), i.e. Yt is the development of Xt starting at (o, Yα ). Then MPPs for the driving process Xt are geodesics of a lifted sub-Riemannian metric on FM: hw , w̃ iFM = Xα−1 π∗ w , Xα−1 π∗ w̃ Rn . • geodesics equal MPPs for driving process, isotropic case • if − ln L (x , Xα ) ≈ c + N1 ∑Ni=1 p(MPP(x , yi )). Then Frechét mean ≈ MLE, isotropic case Stefan Sommer ([email protected]) (Department of Computer Science, University of Copenhagen) — Anisotropic Distribution on Manifolds: Template Estimation and MPPs Slide 14/25 MPPs on S2 increasing anisotropy −→ (a) cov. diag(1, 1) (b) cov. diag(2, .5) (c) cov. diag(4, .25) Stefan Sommer ([email protected]) (Department of Computer Science, University of Copenhagen) — Anisotropic Distribution on Manifolds: Template Estimation and MPPs Slide 15/25 MPPs on S2 increasing anisotropy −→ (d) cov. diag(1, 1) (e) cov. diag(2, .5) (f) cov. diag(4, .25) Stefan Sommer ([email protected]) (Department of Computer Science, University of Copenhagen) — Anisotropic Distribution on Manifolds: Template Estimation and MPPs Slide 15/25 MPP Evolution Equations • sub-Riemannian Hamilton-Jacobi equations pq ẏtk = Gkj (yt )ξt ,j 1 ∂G ξ˙ t ,k = − ξt ,p ξt ,q 2 ∂y k , • in coordinates (x i ) for M, Xαi for Xα , and W encoding the inner product W kl = δαβ Xαk Xβl : jβ ẋ i = W ij ξj − W ih Γh ξjβ , i i jβ Ẋαi = −Γhα W hj ξj + Γkα W kh Γh ξjβ 1 hγ kh kδ h k k Γk ,i W Γh + Γk γ W kh Γhδ,i ξhγ ξkδ ξ˙ i = W hl Γl ,δi ξh ξkδ − 2 h k k k γ ξ˙ iα = Γk ,iα W kh Γhδ ξhγ ξkδ − W hl,iα Γl δ + W hl Γl ,δiα ξh ξkδ 1 hk hγ kδ kh W ,iα ξh ξk + Γk W ,iα Γh ξhγ ξkδ − 2 Stefan Sommer ([email protected]) (Department of Computer Science, University of Copenhagen) — Anisotropic Distribution on Manifolds: Template Estimation and MPPs Slide 16/25 LDDMM Landmark MPPs + horz. var. isotropic + vert. var. Stefan Sommer ([email protected]) (Department of Computer Science, University of Copenhagen) — Anisotropic Distribution on Manifolds: Template Estimation and MPPs Slide 17/25 Summary • infinitesimal definition of anisotropic normal distributions NM (µ, Σ) on M R • diffusion map Diff : FM → Dens(M ) from Eells-Elworthy-Malliavin construction, stochastic development • MLE of template / covariance (in FM) • MPPs for driving processes generalize geodesics 1 Sommer: Diffusion Processes and PCA on Manifolds, Oberwolfach extended abstract (Asymptotic Statistics on Stratified Spaces), 2014. 2 Sommer: Anisotropic Distributions on Manifolds: Template Estimation and Most Probable Paths, Information Processing in Medical Imaging (IPMI) 2015. 3 Sommer: Evolution Equations with Anisotropic Distributions and Diffusion PCA, Geometric Science of Information (GSI) 2015. Stefan Sommer ([email protected]) (Department of Computer Science, University of Copenhagen) — Anisotropic Distribution on Manifolds: Template Estimation and MPPs Slide 18/25 SDEs: Driving, FM and Target Process • Hi , i = 1 . . . , n horizontal vector fields on F (M ): 1 Hi (u ) = π− ∗ (ui ) • SDE in Rn (driving): dXt = Idn dBt , X0 = 0 • SDE in FM: dUt = Hi (Ut ) ◦ dXti , U0 = (x0 , Xα ) , Xα ∈ GL(Rn , Tx0 M) • Process on M (target): Yt = πFM (Ut ) Stefan Sommer ([email protected]) (Department of Computer Science, University of Copenhagen) — Anisotropic Distribution on Manifolds: Template Estimation and MPPs Slide 19/25 The Frame Bundle • the manifold and frames (bases) for the tangent spaces Tp M • F (M ) consists of pairs u = (x , Xα ), x ∈ M, Xα frame for Tx M • curves in the horizontal part of F (M ) correspond to curves in M and parallel transport of frames Stefan Sommer ([email protected]) (Department of Computer Science, University of Copenhagen) — Anisotropic Distribution on Manifolds: Template Estimation and MPPs Slide 20/25 The Frame Bundle • the manifold and frames (bases) for the tangent spaces Tp M • F (M ) consists of pairs u = (x , Xα ), x ∈ M, Xα frame for Tx M • curves in the horizontal part of F (M ) correspond to curves in M and parallel transport of frames Stefan Sommer ([email protected]) (Department of Computer Science, University of Copenhagen) — Anisotropic Distribution on Manifolds: Template Estimation and MPPs Slide 20/25 The Frame Bundle • the manifold and frames (bases) for the tangent spaces Tp M • F (M ) consists of pairs u = (x , Xα ), x ∈ M, Xα frame for Tx M • curves in the horizontal part of F (M ) correspond to curves in M and parallel transport of frames Stefan Sommer ([email protected]) (Department of Computer Science, University of Copenhagen) — Anisotropic Distribution on Manifolds: Template Estimation and MPPs Slide 20/25 Stefan Sommer ([email protected]) (Department of Computer Science, University of Copenhagen) — Anisotropic Distribution on Manifolds: Template Estimation and MPPs Slide 21/25 Anisotropic Diffusions • development / “rolling without slipping”: Rt wt = 0 us−1 ẋs ds , wt ∈ Rη • development: • Diffusion map: paths in Rn ↔ paths on M R Diff (x , Xα ) = πF (M ) (U1 ) • in Rn , sample path increments ∆xti = xti +1 − xti are normally distributed N (0, (∆t )−1 Σ) with log-probability ln p̃Σ (xt ) ∝ − 1 ∆t N −1 ∑ ∆xtT Σ−1∆xt + c i i i =1 • Formally, we can set R1 ln p̃Σ (xt ) ∝ − 0 kẋt k2Σ dt + c Stefan Sommer ([email protected]) (Department of Computer Science, University of Copenhagen) — Anisotropic Distribution on Manifolds: Template Estimation and MPPs Slide 22/25 Landmark LDDMM • Christoffel symbols (Michelli et al. ’08) 1 Γk ij = gir g kl g rs,l − g sl g rk,l − g rl g ks,l gsj 2 • mix of transported frame and cometric: F d M bundle ˜ ∈ T ∗ F d M, of rank d linear maps Rd → Tx M, ξ, ξ cometric D E D E 1 −1 ˜ ξ, ξ˜ = δαβ (ξ|π− X )( ξ|π X ) + λ ξ, ξ˜ α β ∗ ∗ gR • the whole frame need not be transported Stefan Sommer ([email protected]) (Department of Computer Science, University of Copenhagen) — Anisotropic Distribution on Manifolds: Template Estimation and MPPs Slide 23/25 Statistical Manifold: Geometry of Γ • Densities n Dens(M ) = {γ ∈ Ω (M ) : Z γ = 1, γ > 0} M • Fisher-Rao metric: GγFR (α, β) = • Γ finite dim. subset of Dens(M ) R αβ M γ γγ • properties of Z : FM → Dens(M ) Diff • naturally defined on bundle of symmetric positive T20 tensors Stefan Sommer ([email protected]) (Department of Computer Science, University of Copenhagen) — Anisotropic Distribution on Manifolds: Template Estimation and MPPs Slide 24/25 Sub-Riemannian Geometry • optimal control problem with nonholonomic constraints Z 1 xt = arg min kċt k2Xα,t dt ct ,c0 =x ,c1 =y 0 • let −1 −1 hṽ , w̃ iHFM = Xα, t π∗ (ṽ ), Xα,t π∗ (w̃ ) Rn on H(xt ,Xα,t ) FM. This defines a sub-Riemannian metric G on TFM and equivalent problem Z 1 (xt , Xα,t ) = arg min k(ċt , Ċα,t )k2HFM dt (ct ,Cα,t ),c0 =x ,c1 =y 0 (1) with constraints (ċt , Ċα,t ) ∈ H(ct ,Cα,t ) FM Stefan Sommer ([email protected]) (Department of Computer Science, University of Copenhagen) — Anisotropic Distribution on Manifolds: Template Estimation and MPPs Slide 25/25
© Copyright 2025